
TYPE Original Research

PUBLISHED 18 June 2025

DOI 10.3389/fcomp.2025.1521059

OPEN ACCESS

EDITED BY

Ed Younis,

Berkeley Lab (DOE), United States

REVIEWED BY

Shuai Xu,

Case Western Reserve University,

United States

Samah Saeed,

City College of New York (CUNY),

United States

*CORRESPONDENCE

Theodoros Trochatos

theodoros.trochatos@yale.edu

RECEIVED 01 November 2024

ACCEPTED 25 March 2025

PUBLISHED 18 June 2025

CITATION

Trochatos T, Xu C, Deshpande S, Lu Y, Ding Y

and Szefer J (2025) Trusted execution

environments for quantum computers.

Front. Comput. Sci. 7:1521059.

doi: 10.3389/fcomp.2025.1521059

COPYRIGHT

© 2025 Trochatos, Xu, Deshpande, Lu, Ding

and Szefer. This is an open-access article

distributed under the terms of the Creative

Commons Attribution License (CC BY). The

use, distribution or reproduction in other

forums is permitted, provided the original

author(s) and the copyright owner(s) are

credited and that the original publication in

this journal is cited, in accordance with

accepted academic practice. No use,

distribution or reproduction is permitted

which does not comply with these terms.

Trusted execution environments
for quantum computers

Theodoros Trochatos1*, Chuanqi Xu1, Sanjay Deshpande1,

Yao Lu1, Yongshan Ding1 and Jakub Szefer1,2

1Electrical Engineering, Yale University, New Haven, CT, United States, 2Northwestern University,

Evanston, IL, United States

The cloud-based environments in which today’s and future quantum computers

will operate raise concerns about the security and privacy of user’s intellectual

property, whether code, or data, or both. Without dedicated security protections,

quantum circuits submitted to cloud-based quantum computer providers

could be accessed by the cloud provider, or malicious insiders working in

the cloud provider’s data centers. Furthermore, data embedded in these

circuits can similarly be accessed as it is encoded using quantum gates

inside the circuit. This study presents various hardware and architecture

modifications that could be deployed in today’s quantum computers, based on

superconducting qubits, to protect both the code and data from potentially

untrusted quantum computer providers or malicious insiders. Motivated by

existing Trusted Execution Environments (TEEs) in classical computers, this

study introduces the notion of Quantum Trusted Execution Environments

(QTEEs) which leverage trusted hardware to hide or obfuscate quantum circuits

executing on a remote, cloud-based quantum computer. This study presents

multiple, di�erent approaches to design of QTEEs and considers both hardware

and architecture, as well as system software and operating system support

necessary for realization of QTEEs. Overall, this study presents three hardware

architectures, namely, QC-TEE, SoteriaQ, and CASQUE, that have been designed

to protect users’ circuits and data from potential threats originating from both

malicious quantum computer cloud providers or insider attackers. This study

further outlines a roadmap for other possible QTEEs that can be developed in

the future, to account for di�erent threat models or to support di�erent types of

quantum computer architectures.

KEYWORDS

quantum computing, trusted execution environments, hardware security,

confidentiality, obfuscation

1 Introduction

Noisy Intermediate-Scale Quantum (NISQ) computers are being rapidly developed,

with machines over 100 qubits available today (Chow et al., 2021) and the industry projects

4, 000-qubit or larger devices before the end of the decade1. Many different types of

quantum computers exist, with superconducting qubit quantum computers being one of

the types available today to researchers and the public through cloud-based services. The

1 IBM’S target: a 4000-qubit processor by 2025. Available online at: https://spectrum.ieee.org/ibm-

quantum-computer.

Frontiers inComputer Science 01 frontiersin.org

https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org/journals/computer-science#editorial-board
https://www.frontiersin.org/journals/computer-science#editorial-board
https://www.frontiersin.org/journals/computer-science#editorial-board
https://www.frontiersin.org/journals/computer-science#editorial-board
https://doi.org/10.3389/fcomp.2025.1521059
http://crossmark.crossref.org/dialog/?doi=10.3389/fcomp.2025.1521059&domain=pdf&date_stamp=2025-06-18
mailto:theodoros.trochatos@yale.edu
https://doi.org/10.3389/fcomp.2025.1521059
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fcomp.2025.1521059/full
https://spectrum.ieee.org/ibm-quantum-computer
https://spectrum.ieee.org/ibm-quantum-computer
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Trochatos et al. 10.3389/fcomp.2025.1521059

superconducting qubit machines are developed by numerous

companies, such as IBM2, Rigetti3, or Quantum Circuits,

Inc.4. These machines implement quantum computing with

superconducting electronic circuits which are operated at

approximately 20 mK temperatures, by placing the quantum chips

in dilution refrigerators.

Cloud-based services such as IBM Quantum (see text

footnote 1), Amazon Braket5, and Azure Quantum (Hooyberghs

and Hooyberghs, 2022) provide access to superconducting and

other types of NISQ quantum computers remotely for users. Due

to the expensive nature of the quantum computing equipment,

we believe that the dominant means of accessing these computers

will remain cloud-based. In the cloud setting, however, the

cloud provider has full control over the quantum computers.

Especially, they can have access to the circuits (and the resulting

control pulses) that execute on the quantum computer. Given

knowledge of the circuits (or equivalently of the control pulses,

which can be reverse-engineered into the circuits), the cloud

provider has full access to what the users are executing. The

cloud-based model of quantum computing benefits users as it

allows for on-demand access to quantum computation resources.

But at the same time, it endangers the intellectual property and

secrecy of users’ algorithms and circuits executing on quantum

computers—this necessitates development of security techniques

to protect user’s code and data from snooping by untrusted

cloud providers, or malicious insiders in the remote cloud

data centers.

To help protect from the untrusted quantum cloud providers

or insider attackers, a number of researchers have so far focused on

developing various kinds of Blind Quantum Computation (Childs,

2001; Broadbent et al., 2009; Aharonov et al., 2008; Morimae

et al., 2011; Dunjko et al., 2012; Morimae and Fujii, 2012, 2013;

Fitzsimons and Kashefi, 2017; Morimae, 2012; Sueki et al., 2013;

Morimae and Koshiba, 2013; Giovannetti et al., 2013; Mantri

et al., 2013; Morimae, 2014; Shan et al., 2021; Liu et al., 2020).

Most of these works remain theoretical, due to the fact that

most of the schemes require a local, trusted quantum computer

and quantum networking to connect the local and cloud-based

and quantum computers. Other approaches for protection from

untrusted quantum computer cloud providers include Quantum

Homomorphic Encryption (QHE) (Armknecht et al., 2015;

Fontaine and Galand, 2007; Mahadev, 2020; Rivest et al., 1978;

Tan et al., 2016; Liu et al., 2022; Zhang et al., 2021; Zeuner

et al., 2021). However, the realization of fully secure QHE, as

indicated by the “no-go theorem” (Fang and Liu, 2020), introduces

exponential computational overhead. This impracticality arises,

especially in the near term, as noisy quantum devices struggle

to manage the substantial noise accumulation associated with

such computations.

As an alternative approach to BQC or QHE, in this study, we

propose new hardware architectures for the protection of quantum

2 IBM quantum. Available online at: https://quantum-computing.ibm.

com/.

3 Rigetti computing. Available online at: https://www.rigetti.com/.

4 Quantum circuits. Available online at: https://quantumcircuits.com/.

5 Amazon braket. Available online at: https://aws.amazon.com/braket/.

circuits from untrusted quantum computer cloud providers or

from insider attackers. We show that trusted hardware can be

incorporated into the quantum computer to help protect the user’s

circuits and data. We present different architectures for Quantum

Trusted Execution Environments (QTEEs) which address various

threat models.

1.1 Contributions

This journal paper combines and extends our existing research

on QTEEs. It incorporates results and designs from our work

on QC-TEE (Trochatos et al., 2023b) and CASQUE (Trochatos

et al., 2024a), pre-print work on SoteriaQ (Trochatos et al.,

2023a), trusted controller work presented at QCE (Trochatos et al.,

2024b), and poster at QuantumOS workshop on the topic of

software support for QTEEs (Trochatos and Szefer, 2024). It further

introduces previously unpublished designs for system software and

quantum operating system support needed for QTEEs. Combined,

this journal paper contributes:

1. Design and evaluation of architecture for obfuscation of

quantum circuit control pulses based on decoy control pulses,

from QC-TEE and SoteriaQ work.

2. Design and evaluation of architecture for obfuscation of

quantum circuit control pulses based on switching of

pulses among different qubit and control channels, from

CASQUE work.

3. Design for system software and quantum operating system

support for QTEE.

4. Categorization of possible threat models and QTEE

architectures (current and future) to address the different

threat models.

2 Background

This section presents the basics of quantum computing. The

fundamental unit of quantum computing is the quantum bit,

or qubit, which represents the states in the process of quantum

computing. Quantum bits can be measured, and the measurement

is typically probabilistic. The quantum bits store quantum states,

which are manipulated through quantum gates. Quantum bits,

quantum gates that control them, and other operations such as

measurement, together form the quantum circuit, which represents

how these quantum bits are controlled by these quantum gates in

order. Details are presented below.

2.1 Quantum bits

Quantum states are represented by the quantum bit or qubit.

Qubit is the fundamental unit of quantum computing, analogous

to the classical bit used in conventional computing. Like a bit, a

qubit has two basis states, typically denoted in bra-ket notation

as 0 and |1〉. One widely used representation is the matrix-

vector representation, where the quantum states are represented by

Frontiers inComputer Science 02 frontiersin.org

https://doi.org/10.3389/fcomp.2025.1521059
https://quantum-computing.ibm.com/
https://quantum-computing.ibm.com/
https://www.rigetti.com/
https://quantumcircuits.com/
https://aws.amazon.com/braket/
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Trochatos et al. 10.3389/fcomp.2025.1521059

vectors. For example, the two basis states |0〉 and |1〉 are usually

represented as follows:

|0〉 =

[

1

0

]

, |1〉 =

[

0

1

]

(1)

However, unlike a classical bit, which is restricted to either 0 or

1, a qubit can exist in any linear combination of these two states,

subject to the constraint that the total probability remains 1. This is

often called superposition. Specifically, a qubit |ψ〉 can be expressed

as follows:

|ψ〉 = α|0〉 + β|1〉 =

[

α

β

]

(2)

where α and β are complex numbers that satisfy the normalization

condition |α|2 + |β|2 = 1.

In general, an n-qubit system has 2n basis states. The basis states

span a 2n-dimensional space, ranging from |00 . . . 0〉 to |11 . . . 1〉.
An arbitrary n-qubit state |φ〉 can be described as follows:

|ψ〉 =
2n−1
∑

i=0

ai|i〉, (3)

where the coefficients ai are complex numbers, and their

magnitudes satisfy the normalization condition
∑2n−1

i=0 |ai|2 = 1.

i is the decimal number of a n-binary-digit number.

The above is also often called the pure state, and it

cannot represent all quantum states. Quantum systems can

also exist in mixed states, which represent a probabilistic

combination of different quantum states. A mixed state

occurs when, with probability pi, a system is in the

quantum state |ψi〉. Such a probabilistic mixture is denoted

as {(pi, |ψi〉)} and is described mathematically using the

density matrix formalism. The density matrix ρ is defined

as follows:

ρ =
∑

i

pi|ψi〉〈ψi| (4)

where 〈ψi| : = |ψi〉†, indicating that ρ is a matrix. This

representation is useful for describing systems that are not in

a definite quantum state but rather in a statistical mixture of

possible states.

2.2 Measurement

Measurement in quantum computing is a crucial process

that connects the quantum world to classical outcomes.

Unlike classical computing, where the measurement result is

definite, the measurement result of a quantum state is often

probabilistic. According to Born’s rule, for a state described as

in Equation 3, the probability of measuring or observing |i〉 is

given by

P(|i〉) = |ai|2 (5)

For the density matrix representation in Equation 4, the

probability of measuring or observing |i〉 is given by

P(|i〉) = 〈i|ρ|i〉 =
∑

j

pj〈j||ψj〉〈ψj||j〉 =
∑

j

pj|aji|2 (6)

where |aji| is the component of |ψj〉 on |i〉.
Another difference from classical computing is that in

classical computing, the state of a bit can be directly observed

without affecting the system. However, measuring a qubit

fundamentally alters its state. Prior to measurement, a qubit

can exist in a superposition of multiple states, but once a

measurement is made, the qubit collapses to one of its basis

states, typically |0〉 or |1〉, with probabilities determined by the

above equations.

One concrete and interesting example is quantum

entanglement. For a 2-qubit Bell state in the form of:

|8〉+ =
1
√
2
|00〉 +

1
√
2
|11〉 (7)

according to Equation 5, the probabilities of individually measuring

the first or the second qubit to get |0〉 or |1〉 are all 1
2 . However,

if both two qubits are measured, the probabilities of measuring

|00〉 and |11〉 are both 1
2 , and there will not be results of |01〉 and

|10〉. This cannot be seen in classical computing. Consider two bits

which can be 1
2 probability in 0 and 1

2 in 1. The measurement

of them is independent, and thus, the result of one bit does not

influence the result of the other bit, so there can be cases of 01

or 10.

Measurement not only extracts information but also causes

an irreversible change in the quantum system, making it a

unique and non-deterministic process compared to classical

measurements. This interplay between quantum superposition,

probability, and collapse is central to understanding how

quantum algorithms operate and how quantum information

is processed.

2.3 Quantum gates

In quantum computing, analogous to classical computing, the

fundamental operations are quantum gates. Quantum gates are

unitary operations that transform qubits, and quantum algorithms

are constructed by applying a sequence of these gates to manipulate

qubits into desired states.

A quantum gate U must satisfy the property of unitarity,

meaning UU† = U†U = I, where U† is the conjugate

transpose (or Hermitian adjoint) of U, and I is the identity

matrix. When a quantum gate U operates on a qubit state

|ψ〉, the transformation can be expressed as |ψ〉 → U|ψ〉.
In matrix form, n-qubit quantum gates are represented by

2n × 2n matrices that act on the vector representation of the

qubit states.

For example, the Pauli-X gate, a single-qubit gate, performs

a bit-flip operation, transforming |0〉 to |1〉 and |1〉 to |0〉.
This gate is analogous to the classical NOT gate. Another

Frontiers inComputer Science 03 frontiersin.org

https://doi.org/10.3389/fcomp.2025.1521059
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Trochatos et al. 10.3389/fcomp.2025.1521059

crucial gate is the Controlled-NOT (CNOT) gate, also called

the CX gate. The CNOT gate is a two-qubit gate where, if the

control qubit is in the state |1〉, it applies a Pauli-X operation

(bit-flip) to the target qubit; otherwise, it leaves the target

qubit unchanged.

There are other quantum gates that do not have direct classical

analogs. For instance, the RZ gate introduces a relative phase shift

between the states |0〉 and |1〉 without changing their amplitudes.

The SX gate performs a “half” of the Pauli-X gate’s operation,

and its function is unique to quantum computing without a clear

classical counterpart.

The matrix representations of these gates, along with those of

other quantum gates, are presented below. It should be noted that

Qiskit’s (Wille et al., 2019) qubit ordering convention is followed,

where the leftmost qubit is the most significant, and the rightmost

qubit is the least significant. As a result, the matrix representation

of the CX gate may differ in other literature that uses different qubit

ordering conventions:

ID =

[

1 0

0 1

]

, X =

[

0 1

1 0

]

, CX =

1 0 0 0

0 0 0 1

0 0 1 0

0 1 0 0

(8)

RZ(θ) =

[

e−i θ2 0

0 ei
θ
2

]

, SX =
1

2

[

1+ i 1− i

1− i 1+ i

]

(9)

2.4 Gate-level quantum circuit

Gate-level quantum circuits are the foundational model for

executing quantum computations. Analogous to classical circuits

that manipulate bits using logic gates such as AND, OR,

and NOT, quantum circuits use quantum gates to manipulate

qubits. Quantum circuit transforms the quantum state of

qubits in a way that leverages principles such as superposition

and entanglement, both of which have no counterpart in

classical computing.

A gate-level quantum circuit is composed of a series of

quantum gates applied sequentially or in parallel to one or

more qubits. Each qubit is initialized in a well-defined quantum

state, typically |0〉, and then undergoes transformations as the

gates act on it. The result of these transformations defines

the quantum algorithm being implemented. The final step in

most quantum circuits is a measurement, where the state of

the qubits is collapsed to classical bits, yielding the result of

the computation.

Quantum circuits are typically represented diagrammatically,

where time flows from left to right, and each line

in the circuit diagram represents a qubit, with gates

applied along the line to indicate operations on those

qubits. An example of a gate-level circuit is shown

in Figure 1.

2.5 Control pulses

Gate-level quantum circuits provide the structural basis for

running quantum algorithms. They are easy to understand and

are the abstract description of quantum algorithms, and thus, they

are independent of the low-level hardware. Moving downward, the

actual realization of qubits and quantum gates depends on the

technology used. In superconducting qubit architectures, qubits

are realized using Josephson junctions, while gates are realized

using sets of analog RF control pulses which actuate the qubits or

couplings between them to realize one-qubit and two-qubit gate

operations, respectively.

A control pulse is generally characterized by five main

parameters: the envelope, frequency, phase, duration, and

amplitude. In the context of superconducting qubit control, the

envelope determines the shape of the signal, which is generated

using an arbitrary waveform generator (AWG). Envelopes are

typically discretized into a series of time steps, where each element

represents the amplitude at a particular time step. An alternative,

more efficient approach involves the use of parameterized pulses.

These pulses are defined by predefined shapes, requiring only

a few parameters for storage. The frequency and phase define a

periodic signal that modulates the envelope signal. In addition,

duration specifies the length of the pulse, while the amplitude

indicates the relative strength of the pulse. The combination of

these components forms the control pulse that is sent to the qubit

to perform the desired operation. There are separate control pulses

for each qubit, as well as, control pulses used on “control” channels

used to realize two-qubit operations. This precise manipulation of

qubits using control pulses enables the implementation of quantum

gates on superconducting qubit-based quantum computers. At the

same time, the pulses totally define the operation of the quantum

circuits being executed, thus knowing some or all of the pulse

parameters can be used to reveal what circuit is being executed.

3 Cloud-based quantum computers

NISQ computers nowadays available from cloud-based services

such as IBMQuantum vary in size from 5 qubits to 127 qubits. IBM

also announced a 433 qubit machine in November 2022, as well

as a projection for 4, 000-qubit or larger devices by the end of the

decade (see text footnote 1). These machines are also available for

researchers and the public. In addition to free access for research,

pay-as-you-go access has been made available, with users paying

1.60 USD per runtime second with a credit card or IBM Cloud

credits (see text footnote 2). As a reference, a 2-qubit Grover’s

search algorithm (Lavor et al., 2003) requires approximately 2µs

per shot, with a usual 4, 096 shots per experiment the cost would be

0.013 USD.

Most algorithms require thousands of shots to execute. Each

shot is one execution of the algorithm, and the outputs of all the

shots are collected to compute the final output probabilities. The

output probabilities can be the final answer of the algorithm, as is

the case for Grover’s search. Or the output probabilities can be used

to drive optimization of the algorithm and its future iterations, as

is the case for VQE (Peruzzo et al., 2014) and quantum machine

learning (Biamonte et al., 2017). Any changes in the environment

Frontiers inComputer Science 04 frontiersin.org

https://doi.org/10.3389/fcomp.2025.1521059
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Trochatos et al. 10.3389/fcomp.2025.1521059

FIGURE 1

Example of a quantum gate-level circuit, describing the Bernstein-Vazirani algorithm. This circuit uses 4 qubits, q0, q1, q2, and q3. A measurement

operation would typically be applied at the end of the circuit on each qubit.

or operational errors of the NISQ computer will impact the output

probabilities of the algorithms.

4 Threat models for QTEEs

The main objective of this study is to protect the users’

quantum circuits from untrusted cloud-based quantum computing

providers or malicious insiders. These possible attackers could try

to attack different parts of the quantum computing system to

extract information about users’ circuits, so we consider two threat

models for our design of QTEE architectures. Other threat models

are possible but left for future work to explore them.

4.1 Entities in the threat models

In all the threat models in this study, we consider three

entities: users, cloud provider (including malicious insiders), and

quantum computer manufacturer. Users may have sensitive data

and computation that they want to run on a quantum computer.

Cloud provider manages the quantum computers. Quantum

computer manufacturer is the entity who makes the quantum

computers. Even if the cloud provider and quantum computer

manufacturer have the same name, e.g., IBM, we assume they

are separate business entities or divisions. This way, we separate

security threats at run time (due to cloud provider) from supply

chain and manufacturing security (due to quantum computer

manufacturer). Many examples exist today of cloud providers who

are not manufacturers, e.g., Amazon Braket (see text footnote 5) or

Microsoft Azure Quantum (Hooyberghs and Hooyberghs, 2022).

4.2 Assumptions in the threat models

In this study, we assume honest-but-curious cloud provider,

meaning that the cloud provider (or the insiders) honestly performs

the requested operations, but at the same time may try to steal

information. We thus consider side-channel type attacks but not

fault-injection type attacks. We further focus on run-time attacks

and leave consideration of supply chain or hardware modification

attacks for future work.

4.3 Goals of the attackers

We consider two major adversarial objectives: First, the

attackers may be interested in the data that the quantum program

processes. Second, they want to learn the quantum algorithms itself.

In particular, the algorithm running inside the quantum computer

may be intellectual property that should be kept confidential, or the

owner may not want to expose implementation details.

4.4 Means for attackers to collect
information

We assume the attackers have various means of collecting

information. First, the attacker can directly read the programs

or code submitted to the cloud provider. This is the case today,

there are no technological means in place for IBM, Amazon, or

Microsoft, as cloud providers, to prevent them from seeing what

code the users submit. This first scenario fits the untrusted cloud

provider threat. Second, the attacker can collect traces of power,

EM, or other information through side channels. Even if the

attacker cannot directly read the code, the side channel information

could be used to reverse engineer the program’s control and data

flow, allowing the attacker to deduce which kinds of algorithms are

deployed and perhaps even the data. This second scenario fits the

malicious insider threat—someone whomay not have logical access

to the user’s submitted programs and data, but who has access to the

equipment to perform side-channel attacks.

4.5 Threat model A: trusted QPU,
untrusted controller

In this threat model, we assume the user is trusted as well as

his or her compiler and the user is able to generate transpiled

Frontiers inComputer Science 05 frontiersin.org

https://doi.org/10.3389/fcomp.2025.1521059
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Trochatos et al. 10.3389/fcomp.2025.1521059

FIGURE 2

Schematic of a typical superconducting quantum computer, showing an honest-but-curious cloud provider attempting to spy on the control pulses

and equipment outside the trusted controller. The green boundaries are trusted components. (a) Threat model A: trusted QPU, untrusted controller.

(b) Threat model B: untrusted QPU, trusted controller.

circuits that are sent to the cloud provider for execution.We assume

that correct information about the properties of the quantum

computers is provided to the user; thus, he or she can correctly

transpile the circuits for the target quantum computer.We consider

an untrusted quantum computer cloud provider that does not

manipulate the transpiled circuit or the resulting control pulses

or any classical information sent to the quantum computer for

execution, but he or she can observe this information to try to learn

user’s circuits or data.

We assume that the QPU is trusted, in the case of

superconducting qubit machines, this is the dilution refrigerator

which contains all the qubits, similar to the processor chip being

the trust boundary in classical trusted execution environments,

such as Intel SGX (Costan and Devadas, 2016). Since the dilution

refrigerator keeps an extremely low temperature and target

pressure, any access or opening of the dilution refrigerator is easily

detected. Furthermore, the intrusion will disturb temperature and

pressure, effectively destroying the qubit state; thus, we assume

the cloud provider cannot access the dilution refrigerator without

destroying the quantum computation. We trust all the hardware

(our additions as well as existing hardware) inside the dilution

refrigerator to be correct, verified, and bug-free.

We assume the remaining components, namely, the controller

and any cloud servers, are untrusted. This is where the attacks

could be occurring. E.g., cloud provider can directly read the code

submitted by the user (at the server) or a malicious insider can

collect power traces from the controller to recover the control

pulses executed (and thus the quantum gates, from which the

circuit can be reverse engineered). Details of this threat model are

shown in Figure 2a.

4.6 Threat model B: untrusted QPU,
trusted controller

In this threat model, we also assume the user is trusted as well

as his or her compiler and the user is able to generate transpiled

circuits that are sent to the cloud provider for execution.We assume

user has correct information about the properties of the quantum

computers; thus, he or she can properly transpile the circuits for

the target quantum computer. We assume again the quantum

computer cloud provider that does not manipulate the transpiled

circuits or the resulting control pulses or any classical information

sent to the quantum computer for execution, but he or she can

observe this information to try to learn user’s circuits or data.

We assume the quantum computer controller is trusted. Since

the controllers are based on classical CPUs and FPGAs, there are

well-studied solutions, such as Intel SGX (Costan and Devadas,

2016), which can protect these components. E.g., any modification

to data or code provided to Intel SGX enabled CPU will be detected

by use of digital signatures, thwarting attacks at this level. Similar

trusted execution environments for FPGAs have been similarly

explored (Xia et al., 2021; Oh et al., 2021).

We assume the remaining components, namely, the cloud

servers and the QPU are untrusted. This is where the attacks could

occur. E.g., cloud provider can directly read the code submitted by

the user (at the server) or the QPU could be manipulated to collect

the information about quantum gates being executed. Details of this

threat model are shown in Figure 2b.

5 Hardware architecture of SoteriaQ

In this section, we consider Threat Model A and leverage the

trusted QPU to provide protections from the honest-but-curious

untrusted quantum cloud provider or insiders. In this threat model,

since the QPU is trusted, additional hardware can be introduced

into the QPU to protect from the cloud providers. The first

architecture for protection under this threat model is SoteriaQ.

SoteriaQ targets superconducting qubit architectures. This section

is based on our QC-TEE (Trochatos et al., 2023b) and SoteriaQ

(Trochatos et al., 2023a) papers. The SoteriaQwork supersedes QC-

TEE, and the two are together simply referred to as the SoteriaQ

architecture.

To realize SoteriaQ, a number of hardware components need

to be added to the internals of the dilution refrigerator. All

components are available today and use very low power and area

compared to existing quantum computer components. A block

Frontiers inComputer Science 06 frontiersin.org

https://doi.org/10.3389/fcomp.2025.1521059
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Trochatos et al. 10.3389/fcomp.2025.1521059

FIGURE 3

Major hardware components of SoteriaQ design added to the internals of the dilution refrigerator.

diagram of the major components and their connections is shown

in Figure 3, and they are listed below.

5.1 Decryption engine and input bitmap
memory

A Decryption Engine is used to decrypt the encrypted input

bitmap and then store the decrypted input bitmap in the Input

Bitmap Memory. The decryption engine works by first using

public-key cryptography to establish a shared secret key (symmetric

key) and then using symmetric-key cryptography to decrypt the

input bitmap itself. Both the public- and private-key algorithms

need to be post-quantum secure. All the decrypted secrets are

assumed to be secure from probing while inside the quantum

computer’s fridge, following our threat model in Section 4.5.

5.2 Hardware security engine

Hardware Security Manager is used to send the bits of the

decrypted input bitmap to the attenuation switches. Each drive and

control channel is associated with one attenuation switch. In each

160dt time period, each of the drive and control channels for all

the qubits is provided with one bit: 0 for no attenuation and 1 for

attenuation.

The hardware security engine is a hardware implementation of

a state machine that controls the attenuation switches (described

in Section 5.3). After the decryption engine decrypts the ciphertext

and stores the input bitmap in the input bitmap memory (shown

in Figure 3), the hardware security engine is ready and circuit

execution can start. As the RF control pulses arrive, the hardware

security engine reads input bitmap bits from the memory and

attenuates the randomized pulses.

After the start of a circuit, every 160dt the hardware security

engine outputs one control bit, per drive or control channel. The

bits come from the input bitmap memory and are used to instruct

the switches to attenuate (if the bit is 1) or not (if the bit is 0)

the pulses during that time period. Note that two-qubit gates are

padded with delays to make their duration a multiple of 160dt, i.e.,

for two-qubit gates, multiple input bitmap bits will be used, since

one bit is used per 160dt.

In addition to that, in case of randomize-output variant of the

mixer algorithm (described in Algorithm 1), while executing the

last layer of the circuit, which consists of X gates, the hardware

security engine draws random bits from TRNG. The number of

bits is equal to the number of qubits and attenuates if the signal

on those qubits for which the generated TRNG bit is 0 and does

not attenuate if the bit is 1. This is the opposite of input bitmap

specification. However, with this specification, if the output bitmap

bit is 1, that means X gate was applied and the state of qubit was

flipped. Now, the 1 can be also sent to the user, who can xor the

receivedmeasured bit ci with 1 to flip it. If no X gate was applied, the

output bitmap bit is 0, and xorwith 0 is equivalent to no operation.

5.3 Attenuation switches

One advantage of the superconducting qubit quantum

computers leveraged in this study is the dilution refrigerator used to

keep the qubits at cryogenic temperatures. The dilution refrigerator

creates a natural boundary, where it is difficult to probe inside the

refrigerator. This way, the outside of the refrigerator is considered

the untrusted environment. This untrusted environment includes

the cloud provider who controls the pulse generators and classical

control equipment used to send RF pulses need to control

superconducting qubits. At the same time, it is infeasible to add

arbitrary equipment inside the refrigerator due to the limits on

the cooling power. Naive TEE solutions, such as adding a signal

generator inside the refrigerator, are not currently practical.

Attenuation switches are used to attenuate the decoy control

pulses, which were added to confuse the potential attackers, and are

Frontiers inComputer Science 07 frontiersin.org

https://doi.org/10.3389/fcomp.2025.1521059
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Trochatos et al. 10.3389/fcomp.2025.1521059

Input: Transpiled Quantum Circuit (QC_IN), Backend
information (B_INFO), Obfuscation Level (OL)

Output: Randomized Transpiled Quantum Circuit (QC_OUT),
Input Bitmap (IB[m][n]) is used as input to the
quantum computer backend

Step 1: Split Input Circuit into Slots (Sec. 5.1.1)
1a. Scan B_INFO and identify possible CNOT couplings

and identify the longest CNOT duration
(MAX_CNOT_DUR) and single qubit gate delay
(SQ_DUR)

1b. Round MAX_CNOT_DUR up to the next even multiple
of single-qubit gate delay, CEIL_MAX_CNOT_DUR
1c. Scan QC_IN and place a barrier before and after

each CNOT gate to separate single-qubit gates
and CNOT gates into separate slots

1d. Insert delays in each slot:
if (Slot_CX)

Insert delay to pad duration of the slot to
CEIL_MAX_CNOT_DUR

else if (Slot_SQ) then
if (Obfuscation Level == one-sixteenth-delay)

Insert delays to pad duration of the
slot to CEIL_MAX_CNOT_DUR/16

else if (Obfuscation Level = quarter-delay)
Insert delays to pad duration of the
slot to CEIL_MAX_CNOT_DUR/4

else if (Obfuscation Level = max-delay)
Insert delays to pad duration of the
slot to CEIL_MAX_CNOT_DUR

Step 2: Insert Decoy Gates into Sub-Slots (Sec. 5.1.2)
2a. Replace delays with decoy gates:

if (Slot_CX)
for each coupling without a CX gate randomly
insert CX gate, or a random mix of X and
SX gates totaling CEIL_MAX_CNOT_DUR; mark the
position of decoy gates in Input Bitmap (IB)

if (Slot_SQ)
replace each delay with a random mix of X
and SX gates; mark the position of the decoy
gates in Input Bitmap

Step 3: Generate Input Bitmap (Sec. 5.1.3)
3a. Capture information from Steps 1 and Step 2

for all drive and control channels C[1] to C[m]
in IB[1][1] to IB[m][n] (where m is the number
of drive and contorl channels, n is the number
of sub-slots on each qubit) and generate the IB:

for (i from C[1] to C[m])
for (j from IB[i][1] to IB[i][n])

if (gate == decoy gate)
B[i][j] = 1

else
B[i][j] = 0

Step 4: Add X Gate for Randomized Output (Sec. 5.1.4)
4a. if (randomize-output == True) then

Append one X gate on each qubit drive channel
at the end of the circuit

Algorithm 1. Decoy Pulse Insertion Algorithm. SlotCX is a slot that consists

of at least one CNOT gate. SlotSQ is a slot that consists of only single-qubit

gates.

not actually used for computation. The RF switches, each requires

1 bit of input to set if the switch should or should not attenuate the

input RF signal during this time period.

Instead of adding excessive and likely unrealistic equipment

inside the refrigerator, our proposed design leverages adding simple

RF switches inside the refrigerator to attenuate the decoy control

pulses sent to the quantum computer. The transpiled quantum

program can include additional gates which should not be actually

executed, but which are added to confuse the honest-but-curious

quantum computer provider, who is observing the operation of the

RF pulses. The proposed design can be realized by (1) inserting

dummy control and drive pulses into transpiled programwhen user

locally transpiles their quantum program, (2) encrypting classical

‘pulse mask’ which is used to indicate which pulses should be

executed and which should be attenuated, (3) send the pulse mask

to the quantum computer, and (4) inside the boundary of the

refrigerator decrypt the pulse mask and activate RF switches to

attenuate control pulses according to the pulse mask.

The switches are passive elements, and they do not generate any

control pulses themselves. Let us consider an single pole, double

throw (SPDT) RF switch, whose single pole is connected to the

input line of the fridge to receive the incoming RF signal. On the

output side, one of the double throws is connected to the drive

line that continues to the qubit device, while the other throw is

terminated by amatched impedance. This way, the SPDT RF switch

can either pass or isolate the drive pulses they use to operate the

quantum processor, with its on–off state controlled by a DC gate

voltage. In addition, they choose GaAs-based RF switches (such

as CMD196C36) that can function at cryogenic temperatures, with

a wide frequency range (DC-18GHz), low insertion loss (1.5dB),

high isolation (46dB), and fast switching (2.5ns). Existing work has

already tested RF switches capable of routing microwave signals at

cryogenic temperatures (Pechal et al., 2016).

The control voltage of the switches is generated, achieved by

the hardware security engine and the input bitmap. This “pulse

mask” is encrypted by using quantum-safe encryption, and it is

only decrypted inside the refrigerator. They propose to mount

the switches (power consumption of only 1uW), the encryption

and decryption engine (power consumption of only 20mW),

as well as the simple control state machine, all on the high-

temperature stage (such as the 4K stage) of the fridge, which

provides ample cooling power (nearly 1W) to suppress the heating

effect of the switch operations. The control logic and switches

need to operate at a rate between 1 and 200MHz, which can

be easily achieved. This is due to the fact that the single qubit

gates in IBM machines each currently take 160dt, where 1dt =
0.222ns, and thus, each gate has to be attenuated (or not to be

attenuated) at a rate of 35.5ns (= 160 ∗ 0.222ns) or equivalently

at a frequency of 28.5MHz. Due to the non-idealities of the

on-state of the switch (such as the insertion loss or impedance

mismatch), recalibrations of the phase and amplitudes of the

single- and two-qubit gate pulses are required to optimize the

gate infidelities.

5.4 Encryption engine and TRNG

SoteriaQ supports the option to randomize the circuit outputs,

and this is achieved by conditionally executing X gates right before

measurement operation at the end of the circuit. A TRNG controls

which X gates are applied, and this information is also stored in the

(encrypted) output bitmap sent to the user; many existing TRNG

designs are available (Majzoobi et al., 2011), and design of TRNG is

not the focus of this study.

The encryption engine is used if qubit flipping is enabled. The

engine encrypts the output bitmap, so that the user can correctly

interpret the qubit measurements. The engine uses symmetric-key

encryption to encrypt the swapping bits with a randomly generated

key and public key encryption to encrypt the symmetric key with

the user’s public key. Post-quantum secure encryption has to be

6 Cmd196c3. Available online at: https://www.qorvo.com/products/d/

da007444.

Frontiers inComputer Science 08 frontiersin.org

https://doi.org/10.3389/fcomp.2025.1521059
https://www.qorvo.com/products/d/da007444
https://www.qorvo.com/products/d/da007444
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Trochatos et al. 10.3389/fcomp.2025.1521059

used for the public key cryptography, while for symmetric key

cryptography they use a hardware implementation of an AES-

GCM (Koteshwara et al., 2017).

The encryption engine can be a hardware implementation of

an AES-GCM (Koteshwara et al., 2017). It uses the same shared

secret established as part of the decryption engine (described in

Section 5.1) as a symmetric key to encrypt the TRNG output, i.e.,

the output bitmap, if randomize-output options is used. The client

can later decrypt the encrypted output bitmap and conditionally

apply logical NOT operations wherever the output bitmap indicates

the corresponding bit had been flipped before measurement.

6 SoteriaQ obfuscation algorithm and
software

In this section, we describe the algorithms for how control

pulses are obfuscated with the addition of decoy pulses (in software,

on user’s end) and how later the decoy pulses are removed (in

hardware, in the trusted fridge of the quantum computer). Our

algorithm in software takes any transpiled quantum circuit as input,

including circuits with custom gates, and performs a series of

operations at the gate level to generate an obfuscated output circuit.

The algorithmic description of the steps taken to insert the decoy

control pulses is shown in Algorithm 1.

6.1 Circuit preparation

Our algorithm takes the input circuit already transpiled for the

target backend and divides it into so-called slots. During processing

of the circuit, barriers are inserted before and after CNOT gates to

separate portions of the circuit with single qubit gates from ones

with CNOT gates. Each barrier, thus, determines a start of a slot.

The barriers are later removed and are only used during circuit

preparation.

SlotCX is a slot that consists of at least one CNOT gate and

optionally any single qubit gates on the other qubits where the

CNOT gate is not connected. The duration of SlotCX slots is

determined by choosing the longest CNOT gate duration out of all

possible couplings on the backend and then rounding it up to be

an even integer multiple of the single-gate duration. Having set the

SlotCX duration this way, all SlotCX slots are checked and delays are

added so that each SlotCX slot has the same length.

SlotSQ is a slot that consists of only single qubit gates and

optionally any delays if required. The duration of these slots

is determined at compile time and chosen based on the target

security level. Currently, three duration periods are suggested: one-

sixteenth-delay, quarter-delay, andmax-delay. One-sixteenth-delay

means the duration of SlotSQ is one sixteenth of the duration of

SlotCX . Quarter-delay means the duration of SlotSQ is a quarter

of the duration of SlotCX , and recall SlotCX slots are set to be

of duration; this is even multiple of single-qubit gate duration.

Max-delay means the duration of SlotSQ is equal to the duration

of SlotCX .

The output of this circuit preparation step is a circuit that

consists of multiple slots. The number of slots is determined by

the depth of the circuit in terms of CNOT gates: whichever qubit

has the most CNOT gates on it, which determines how many slots

the circuit will be divided into. In our experience it is unlikely, but

possible, that the number of single-qubit gates between any two

CNOT gates can be more than what can fit in a duration of SlotCX .

In such corner case, there will be two (or more) SlotSQ between

consecutive SlotCX . In the usual case, however, SlotCX and SlotSQ
occur in alternating order. Extra SlotCX and SlotSQ can also be

added to increase confusion for the attacker, as well as to make it

harder to guess the structure of the user’s circuit.

6.2 Decoy gate insertion

Each slot is divided into equal-length sub-slots. The length of

the sub-slot is equal to the duration of a single-qubit gate, 160dt on

IBM quantum computers. Figure 4a earlier in the study shows the

input circuit with the slots and sub-slots. Any sub-slots which are

not occupied by a gate can be filled with decoy gates.

For each SlotCX in the circuit, on the unused qubits in that slot

we either add a CNOT gate if CNOT coupling of the backend allows,

or we add a random mix of X and SX gates; addition of other and

custom gates is possible as well. Figure 4b shows in red color the

addition of a decoy CNOT gate next to user’s CNOT gate in a SlotCX .

Note that the decoy CNOT gates are later attenuated, and the user’s

circuit’s depth in terms of CNOT gates per qubit does not increase

with our architecture.

For each SlotSQ, in addition to the existing single-qubit gates

from the original circuit, a random mix of X and SX gates are

added in each empty sub-slot; addition of other and custom gates is

possible as well. Figure 4b shows in red color the addition of decoy

single-qubit gates in a SlotSQ. The Rz gates from the original circuit

are added to the slots but are not counted toward a sub-slot because

the Rz gates are virtual.

Our design supports dynamical decoupling and the

optimizations offered by the target platforms. We support a

so-called decoy to identity gate conversion scheme. The output

of our obfuscation scheme is a transpiled circuit which includes

a number of decoy pulses. However, we observe that during

insertion of decoy pulses, there will be one or many sequences of

two X decoy gates or four SX decoy gates that are inserted. Two

X gates in sequence or four SX gates in sequence each form an

identity gate. These identity sequences can be allowed to execute by

setting relevant configuration bits in the input bitmap to indicate

they should not be attenuated. Furthermore, if any dynamical

decoupling is added in software prior to our decoy gate insertion,

it is also preserved.

6.3 Input bitmap generation

While constructing the quantum circuit with the added decoy

gates, we keep note of each random single-qubit gate that is

inserted. In each slot, for each qubit, we divide the slot into sub-

slots, and each sub-slot is equal in duration to a single-qubit gate.

Since one single-qubit gate fits in one sub-slot, we generate one

binary bit per qubit per sub-slot to note if this is an actual gate, i.e.,

control pulse, or if this is a decoy pulse. The bit value 1 represents

Frontiers inComputer Science 09 frontiersin.org

https://doi.org/10.3389/fcomp.2025.1521059
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Trochatos et al. 10.3389/fcomp.2025.1521059

FIGURE 4

Example illustration of how control pulses are obfuscated, the pulses shown are not real control pulses but their simplified graphical representation.

(a) Control pulses correspond to the input circuit of the user. (b) Control pulses with decoy pulses added, along with the input bitmap, specifying

which are real control pulses and which are decoy pulses to be attenuated. (c) Original control pulses are executed on the quantum computer, and

after the attenuation of decoy pulses, attenuation is done based on the information from the input bitmap. The time is quantized into sub-slots of

160dt. Each pulse takes an integer multiple of 160dt, allowing for 1 a bit in the input bitmap per qubit per sub-slot period to specify if the pulse (in

that time period on the corresponding qubit) should be attenuated or not. The input bitmap is encrypted before being sent to the cloud provider.

the algorithm has inserted a decoy gate as part of obfuscation in

the corresponding sub-slot–this gate, i.e., pulse, will have to be

later attenuated before it reaches the quantum computer’s qubits,

and thus, it does not actually perform any operation (Figure 4c).

Meanwhile, the bit value 0 represents the gates that are part of the

original input circuit from the original input and these should be

executed, i.e., not attenuated. These bits are stored as the input

bitmap. An example of the input bitmap was shown in Figure 4b

earlier in the study.

6.4 Output randomization

An additional layer of X gates can be added at the end

of the circuit to randomize the output (shown in Step 4 of

Algorithm 1). The randomizing of the output happens inside the

dilution refrigerator on the server end. This process is described

in Section 7.

6.5 Circuit post-processing

At the end, the barriers are removed from the quantum circuit

while the inserted gates remain. The resulting circuit is a valid

circuit that can be executed on the target backend. However,

unless the decoy gates are removed, i.e., attenuated, the result

of the computation will be random. The purpose of SoteriaQ

hardware, described later, is to attenuate the decoy gates, i.e., pulses,

based on the (encrypted) input bitmap information, before these

pulses actually reach qubits.

6.6 Circuit execution

After the algorithm finishes, the input bitmap has to be

encrypted and signed by using quantum-safe cryptographic

algorithms before transmission to the cloud provider. The

encrypted digital input bitmap along with the plaintext circuit

(that includes decoy gates) is sent to the cloud provider. The

provider then schedules and executes the circuit on the target

computer. The provider is untrusted (honest-but-curious) while

the quantum computer fridge and hardware is trusted. In particular,

the SoteriaQ hardware inside the trusted boundary of the fridge

decrypts and validates the input bitmap and uses the information

to determine which of the control pulses to attenuate. All the

expensive signal generation logic in our design can be kept outside

the fridge.

7 SoteriaQ deobfuscation and
hardware

The SoteriaQ hardware and state machines effectively

implement the inverse of the obfuscation. When the circuit is

about to execute, the ciphertext (the encrypted input bitmap) is

sent to the decryption engine (described in Section 5.1) inside the

fridge. The AES-GCM module which is part of the decryption

engine decrypts the ciphertext and re-generates the input bitmap

containing information about which control pulses in which sub-

slots should be attenuated. As shown in Figure 3, this input bitmap

is stored in the input bitmap memory. After this, the hardware

security manager and the signal/pulse generator are notified to

start generating the RF signals involved in the quantum circuit

(including the decoy pulses). The attenuation switches inside

the fridge (shown in Figure 3) filter the unwanted random gates

based on the control signals generated by the hardware security

manager. We propose to achieve the synchronization between

the hardware security manager and signal/pulse generator using

handshake signals. Since the original quantum circuit is only

deobfuscated inside the dilution refrigerator (which we consider

a trusted boundary), we achieve the required secrecy between the

client and server.

To help hide the output of the circuit, X gates are inserted at the

end of the circuit, and during execution, the control logic generates

corresponding X control pulses. However, when these X control

pulses reach the quantum computer, SoteriaQ will randomly

attenuate them; thus, the cloud provide does not actually know

which of the pulses were executed, i.e., which output was flipped. In

software, onlyX gates are inserted. The decision to attenuate them is

performed randomly at runtime on SoteriaQ hardware by using

Frontiers inComputer Science 10 frontiersin.org

https://doi.org/10.3389/fcomp.2025.1521059
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Trochatos et al. 10.3389/fcomp.2025.1521059

the TRNG. The random bits used to specify whether to attenuate or

not the final X gates are also encrypted and sent back to the user so

he or she can know how to interpret the outputs.

8 SoteriaQ evaluation setup

To evaluate the fidelity overhead of SoteriaQ’s hardware

additions, we use the 7-qubit IBMmachine (backend)ibm_perth

to test small-scale benchmarks and 27-qubit ibm_algiers to test

medium-scale benchmarks. We also use the Aer_Simulator

with imported noise model from other different machines.

8.1 Benchmarks used

QASMBench Benchmark Suite version 1.4 (Li et al., 2020)

was used in our study to analyze the impact of the SoteriaQ

design on different circuits. We transpile each benchmark for the

target backend. The transpiled code is then used as input to the

obfuscation algorithm, which is described in Section 6. We test

small-scale circuits on the free 7 qubit backend, as well as, we

use the pay-as-you-27 qubits backend for medium-scale circuits.

Overall, we test our design on 22 benchmarks. We keep the number

of shots constant at 8, 192. For the simulator, we use the same set

of benchmarks.

8.2 Obfuscation levels evaluated

We evaluated different configurations: baseline, one-sixteenth-

delay, quarter-delay, max-delay; further for all the levels, except

baseline, we analyze results with and without the randomize-

output option. The baseline is simply the benchmark transpiled

for the target backend without any of our modifications. The one-

sixteenth-delay means the duration of SlotSQ is one sixteenth of

the duration of SlotCX . The quarter-delay means the duration of

SlotSQ is a quarter of the duration of SlotCX , and recall SlotCX
slots are set to be of duration, which is even multiple of single-

qubit gate duration. The max-delay means the duration of SlotSQ
is equal to the duration of SlotCX . The randomize-output includes

an additional layer of X gates before measurement to protect the

output, and it can be applied to any of the obfuscation levels.

8.3 Variational distance

We measure the impact of our modifications on the circuits by

using variational distance (VD). Informally, the variational distance

of two output probability distributions is the measure of how one

probability distribution is different from the other. In general, the

total variation distance between P and Q is defined below. We

compute variational distance between the circuit outputs generated

without our modifications and the outputs generated for different

obfuscation levels.

VD(P,Q) =
1

2

∑

|P − Q|

TABLE 1 Worst case variational distance (VD) for the QASMBench

benchmarks considering: perfect RF switches, emulating imperfect RF

switches which attenuate the decoy pulses to 0.01% amplitude, and

considering our identity gate conversion scheme.

Obfuscation level: Max-delay

w/o rand.-out. w/ rand.-out.

Avg. VD (perfect RF switches) 0.2099 0.2453

Avg. VD (imperfect RF

switches)

0.2652 0.2691

Avg. VD (imperfect RF

switches w/ identity gate

conversion)

0.1998 0.2188

8.4 Circuit fidelity

We also measure fidelity (F) by performing state fidelity7

computations. The state fidelity computations use the density

matrix of each state. Formally, the state fidelity F for density input

states ρ1 and ρ2 is given by:

F(ρ1, ρ2) =
[

tr

(

√√
ρ1ρ2

√
ρ1

)]2

To show the worst possible effects due to SoteriaQ,

we compute the fidelity between the best and worst possible

configuration, i.e., between baseline (the unmodified benchmark)

vs. the max-delay. This evaluation is discussed in greater detail

in Section 9.4.

9 Evaluation of SoteriaQ

In this section, we present the evaluation of our design. Since

we are not able to modify IBM Quantum computers to insert the

RF switches and the SoteriaQ’s logic, we focus on the evaluation

of the expected impact of the changes on the fidelity of the circuits.

9.1 Impact of increased circuit duration

Our obfuscation technique works by adding decoy pulses

and then attenuating them before actual execution. Once the

decoy pulses are attenuated, they effectively become delays. In the

presence of ideal RF switches, the circuit that is executed is the

same as provided by the user but with extra delays (where the decoy

pulses were). In the presence of imperfect RF switches, the locations

where the pulses should be fully attenuated contain partial pulses,

which increase noise and degrade the fidelity.

Manufacturer datasheets indicate that high-isolation RF

switches can achieve extremely low leakage rates. For instance,

Pasternack specifies that their cryogenic RF switches can achieve

isolation levels of up to 90 dB at cryogenic temperatures. This

7 https://docs.quantum.ibm.com/api/qiskit/0.19/qiskit.quantum_info.

state_fidelity

Frontiers inComputer Science 11 frontiersin.org

https://doi.org/10.3389/fcomp.2025.1521059
https://docs.quantum.ibm.com/api/qiskit/0.19/qiskit.quantum_info.state_fidelity
https://docs.quantum.ibm.com/api/qiskit/0.19/qiskit.quantum_info.state_fidelity
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Trochatos et al. 10.3389/fcomp.2025.1521059

isolation level translates to a leakage of approximately 10−9 of

the original signal amplitude. We model imperfect switches as

switches that attenuate the decoy pulses to 0.01% of the original

amplitude, so they do not fully remove them as ideal switches

would. Regardless of the switch attenuation effectiveness, by using

our identity gate conversion technique, some of the lost fidelity

can be recovered. The variational distance results for the worst

case scenario, which is the max-delay obfuscation level, are shown

in Table 1. The assumption of 0.01% amplitude transmission

is conservative and ensures that our security analysis remains

robust. Even if the actual leakage is lower, our security guarantees

would still hold, and the fidelity impact would be less significant

than anticipated.

9.2 Sensitivity to quantum volume and
noise

As quantum computers improve, we expect the impact of

the noise to decrease. Indeed, we explored if and how quantum

volume (QV) and noise model may impact the variational distance.

Table 2 reports the average VD over the set of the QASMBench

benchmarks, and we observe a lower average VD for higher

quantum volume machines.

9.3 Evaluation of circuit correctness

We evaluated the impact of the inserted decoy gates in

the correctness of circuit outputs. In Table 3, we examined and

show in detail the correctness of the output for 20 tested small-

scale benchmarks and 2 medium-scale benchmarks for the three

different configurations, with and without the randomize-output

option considering imperfect switches that attenuate decoy gates

to 0.01% of the original amplitude. We observe 100% correctness

when we apply the one-sixteenth-delay configuration and nearly

90% correctness on average with max-delay. To emphasize, we

observe correct output even for benchmarks with high depths, such

as dnn and qaoa, which implies that our design can be scalable for

circuits with more qubits and higher depths. Please note that for the

evaluation of correctness, we compared the output of the baseline

benchmark circuits without the addition of the decoy gates, with

the output of modified benchmark circuits after inserting the decoy

gates. If we are able to observe the true dominant state in both cases,

we put a checkmark for this configuration. Although added decoy

gates degrade the fidelity of the circuits, in all tested algorithms, we

are able to observe correct outputs if the variational distance is less

than 0.25.

9.4 Evaluation of circuit fidelity

We also evaluated the state fidelity between the quantum

states of each modified with the inserted delays benchmark,

comparatively with the quantum states of the baseline unmodified

benchmark, as shown in the last column of Table 3. We only

performed experiments for the worst-case scenario (max-delay).

We observe that, except one benchmark, the fidelity remains high.

TABLE 2 Worst case variational distance (VD) for the QASMBench

benchmarks for machines with di�erent quantum volume (QV).

Obfuscation level: Max-delay

w/o rand.-out. w/ rand.-out.

Real IBM Perth (QV = 32) 0.2099 0.2453

Sim. IBM Perth (QV = 32) 0.1461 0.1481

Sim. IBMMumbai (QV = 64) 0.1653 0.1705

Sim. IBM Cairo (QV = 128) 0.1286 0.1299

The VD is averaged over all the benchmarks and is reported for the max-delay obfuscation

level, augmented with the randomize-output option. The data are for ideal RF switches.

We observe basis_trotter to have the worst behavior regarding the

fidelity loss. This is understandable, as the circuit uses 4 qubits but

is quite deep, challenging the decoherence times of a NISQ device,

even if we run it without applying our SoteriaQ scheme.

9.5 Evaluation of power requirements

Since we propose to add additional (minimal) hardware to

the fridge, we consider the power consumption of these changes,

since the hardware running our algorithms would be inside

the dilution refrigerator that has limited cooling and power

capabilities. For the public key cryptographic algorithm, we note

that the existing work (Tasopoulos et al., 2023) shows that

for CRYSTALS-Kyber with the highest security level, the Key

Generation, Encapsulation, and Decapsulation consume 157mW,

160mW, and 162mW, respectively, on a Xilinx Artix 7 FPGA. For

symmetric key cryptography, AES-GCM (Koteshwara et al., 2017)

consumes 19mW for encryption/decryption on Altera Cyclone V

FPGA.We note that while we were writing this study, no prior work

on running cryptographic algorithms in cryogenic temperatures

was documented in the literature to the best of our knowledge.

However, we note that other applications, such as (Conway Lamb

et al., 2016), have been successfully tested in cryogenic temperatures

(4K). Since all cryptographic operations do not need to run at

the same time, we estimate a needed budget of 180mW for our

added hardware. Today, 1W cooling power at the 4K stage of the

fridge should be easily achieved8; thus, our additions require only

approximately 20% of the cooling budget, and this will become less

with newer and better fridges.

9.6 Evaluation of area overhead

The main overhead of the scheme comes in terms of power,

evaluated in above in Section 9.5, as well as physical overhead of the

SoteriaQ’s logic and RF switches. Considering XLD Blue Fors

dilution refrigerator 9, the volume of the refrigerator with height

of approximately 1, 481mm and radius of approximately 460mm

8 Oxford Instruments. Principles of dilution refrigeration.

9 Bluefors. Cryogen-free XLDsl dilution refrigerator measurement system.

bluefors.com. Available online at: https://bluefors.com/products/xldsl-

dilution-refrigerator/ (accessed August 5, 2023).

Frontiers inComputer Science 12 frontiersin.org

https://doi.org/10.3389/fcomp.2025.1521059
https://bluefors.com/products/xldsl-dilution-refrigerator/
https://bluefors.com/products/xldsl-dilution-refrigerator/
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

T
ro
c
h
a
to
s
e
t
a
l.

1
0
.3
3
8
9
/fc

o
m
p
.2
0
2
5
.1
5
2
1
0
5
9

TABLE 3 Evaluation of correctness and fidelity for 22 QASMBench benchmarks (Li et al., 2020), assuming imperfect RF switches as simulated by gates representing decoy gates attenuated to 0.01% of the original

amplitude of the gate on IBM ibm_perth quantum computer; number of Gates, CX, and Depth refer to pre-transpilation numbers.

Benchmark Qubits Gates CX Depth Correctness Fidelity

One-sixteenth-delay Quarter-delay Max-delay Max-delay

w/o rand.-out. w/ rand.-out. w/o rand.-out. w/ rand.-out. w/o rand.-out. w/ rand.-out. w/ rand.-out.

Deutsch 2 5 1 5 X X X X X X 0.978

Iswap 2 9 2 8 X X X X X X 0.984

Quantumwalks 2 11 3 8 X X X X X X 0.982

Grover 2 16 2 12 X X X X X X 0.972

dnn 2 226 42 155 X X X X X X 0.998

Teleportation 3 8 2 7 X X X X X X 0.995

qaoa 3 15 6 12 X X X X X X 0.994

Toffoli 3 18 6 13 X X X X X X 0.991

Linearsolver 3 19 4 12 X X X X X X 0.931

Fredkin 3 19 8 12 X X X X X X 0.906

Basis_change 3 53 10 22 X X 0.889

Adder 4 23 10 12 X X X X X X 0.825

Bell 4 33 7 14 X X X X X X 0.987

qft 4 36 12 9 X X X X X X 0.994

Variational 4 54 16 34 X X 0.828

vqe 4 89 9 28 X X X X X X 0.995

Basis_trotter 4 1,626 582 815 X X 0.401

Qec_en 5 25 10 18 X X X X X X 0.862

Error_correctiond3 5 114 49 78 X X X X X X 0.764

qaoa 6 270 54 110 X X X X X X 0.945

bv 19 56 18 22 X X X X X X 0.887

Wstate 27 157 52 55 X X X X X X 0.835

Checkmarks indicate that we are to observe the true, i.e., correct, dominant state. The fidelity experiments are performed on Aer_Simulator with an imported noise model from the 127-qubit IBM Brisbane quantum computer. The evaluation is done for the worst case

of max-delay configuration.

F
ro
n
tie

rs
in

C
o
m
p
u
te
r
S
c
ie
n
c
e

1
3

fro
n
tie

rsin
.o
rg

https://doi.org/10.3389/fcomp.2025.1521059
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Trochatos et al. 10.3389/fcomp.2025.1521059

is π × 4602 × 1, 481 = 984, 011, 944mm3. Bigger refrigerators

will be needed for larger quantum computers, but taking this

as a conservative estimate, our analysis shows the percentage of

volume is taken by the added hardware for quantum computers

with different qubit size. We observed that the overhead in all cases

is 0.002% or less.

9.7 Scalability considerations

The proposed SoteriaQ can scale to handle large number of

qubits. We note that publicly announced designs for large quantum

computers are modular. For example, the forthcoming Flamingo

processor (Gambetta, 2020) is projected to support 1,386 qubits,

which will be located in three 462-qubit modules or chip. One

SoteriaQ can be deployed per module or chip. Our analysis

shows that in all cases, the expected power consumption of the

SoteriaQ logic for different size quantum computers, from

27 to 1,386 qubits (Gambetta, 2020), will be nearly 180 mW.

Note that larger quantum processors, such as Kookaburra, will

be built from these smaller modules and would simply require a

number of SoteriaQ hardware proportional to the number of the

quantum computers.

10 Security analysis of SoteriaQ

To evaluate the security of our proposed scheme, we compute

the total number of possible circuits that the obfuscated circuit

could represent. This is the attack complexity from the perspective

of the honest-but-curious cloud provider or insider attacker. In the

computation, we take into account the following aspects: number

of qubits (nqubits), number of CNOT gate slots (nSlotCX), number

of single qubit gate slots (nSlotSQ), number of gates which fit in

a slot SlotSQ on each qubit (nSubSlots), number of CNOT gates on

different qubits in a SlotCX (nSubCXInSlotCX), number of single-

qubit gates which fit on qubits not consisting CNOT gates in

SlotCX (nSubSlotsInSlotCX). The number of combinations (Comb) that

the malicious cloud provider must try to find the correct circuit

executed inside the fridge is

Comb = ((2nSubSlots)
nSlotSQ)

nqubits×
((2)nSlotCX)nSubCXInSlotCX×

((2nSubSlotsInSlotCX)nSlotCX)
(nqubits−2×nSubCXInSlotCX)

Figure 5 shows how many circuit combinations an attacker

(without any knowledge of the algorithm) needs to guess the circuit,

versus the circuit duration increase for different obfuscation levels.

In general, we observe the number of possible combinations an

attacker would need to guess is significantly beyond 2256 security

level, making it nearly impossible for attackers to deduce the true

circuit. Based on Figure 5, we also observe that one-sixteenth-delay,

the lowest obfuscation level, is sufficient to confuse the quantum

cloud provider or insider attacker to be unable to apply brute

force search to extract the circuit for most of the benchmarks. For

example, for QAOA benchmark, which uses 6 qubits, 270 gates,

and 84 CNOT gates (after transpilation), the attack complexity for

FIGURE 5

Combinations required by an attacker to guess the circuit vs circuit

duration increase factor for each of the three obfuscation levels. We

assume the attacker does not have any knowledge of the circuit. H:

one-sixteenth-delay, �: quarter-delay, •: max-delay.

max-delay is 212,264; here, we assume nSubSlots = 18, nSlotSQ = 84

(between each CNOT gate slot there is one non-CNOT gate slot), and

nqubits = 6; this is representative of the ibm_perth backend.

Our method can be also applied to hide the information of

the victim circuits, even if attackers have some knowledge of

the victim circuits. For some algorithms, the overall structure of

the circuit, i.e., how gates are connected, may be fixed, while

the specific configuration parameters of the circuit are encoded

into parameters of the gates, e.g., rotational angles for VQE

and QAOA. Both the algorithm and the specific configuration

parameters need to be known to make them useful for attackers.

Knowledge of the algorithm helps to decrease the attack complexity

somewhat, but attackers still need to try to find the specific

configuration parameters.

As an example, for QAOA, there is typically one rotational gate

between each CNOT gate pair. Therefore, if the attacker knows the

circuit to be a QAOA circuit, then he or she knows that only one

rotational gate should be between each CNOT gate pair, and he or

she can use that knowledge to eliminate some circuit combinations

from their guesses. Since we break down the circuit into slots, this

means for a single-qubit gate slot between two CNOT gate slots,

the approximated lower bound of the number of choices for the

attacker to guess the correct QAOA configuration is approximately

nSubSlots
ncp , where ncp is the number of CNOT gate pairs in QAOA

and nSubSlots is a number of gates which fit in a slot SlotSQ on

each qubit.

We note that how the circuit is transpiled also affects the

attack. Since not all qubits are connected on most quantum

computers, swap operations may be inserted at transpliation time;

swap operations are realized also using CNOT gates. The number

of added swap operations is highly dependent on the circuit and

the hardware, but an upper bound can be approximated. Suppose

that there are nqubitsInBackend qubits in the quantum processor,

then nqubitsInBackend − 1 swap operations need to be added in the

Frontiers inComputer Science 14 frontiersin.org

https://doi.org/10.3389/fcomp.2025.1521059
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Trochatos et al. 10.3389/fcomp.2025.1521059

worst case to perform the CNOT gate between the two most far-

apart qubits. Then, for ncp CNOT gate pairs, in the worst case

in the transpiled circuit, there will be nc_switch = ncp × 3 ×
(nqubitsInBackend − 1) CNOT gates since one switch gate consists of

three CNOT gates. The approximated upper bound of the number

of choices for an attacker to guess the correct QAOA configuration

will be nSubSlots
ncp+nc_switch .

For instance, the same example of QAOA benchmark uses

6 qubits, 270 gates, and 84 CNOT gates (after transpilation), if

attacker knows this is QAOA benchmark, the attack complexity

for max-delay is approximately 18798 ≈ 23330; here, we assume

nc_switch = 42×3×(7−1) = 756 for 7-qubit ibm_perth backend,

for example, and nSubSlots = 18. Even with some knowledge,

the attack complexity for the attacker is significantly beyond 2256

security level.

10.1 Additional possible attacks

If the cloud provider has more knowledge, like a list of

possible circuits and their duration in time, they can leverage this

information plus the real execution timing to perform a circuit

identification attack. To protect from such timing side-channel

attacks, the next step is to make the number of slots to be variable

and not directly depend on the circuits. For example, a random

number of extra SlotCX and SlotSQ can be added into the circuits,

where each such slot is full of decoy control pulses. Users can add

such random gates in software independently of our architecture.

There can also be power side-channel attacks on quantum

computers, which have been proposed in concurrent work in Xu

et al. (2023). However, the authors only assume the power can be

measured from the drive equipment. If the on and off states of RF

switches have an influence on the power and can be measured by

malicious providers, then the providers may be able to recover the

real circuits. Our work assumes the fridge forms a trust boundary

and power attacks on equipment inside the fridge are out of scope.

11 CASQUEmain features

In this section, we again consider Threat Model A and leverage

the trusted QPU to provide protections from the honest-but-

curious untrusted quantum cloud provider or insiders. In this

threat model, since the QPU is trusted, additional hardware can

again be introduced into the QPU to protect from the cloud

providers. The second architecture for protection under this

threat model is CASQUE. CASQUE targets superconducting qubit

architectures. This section is based on our CASQUE (Trochatos

et al., 2024a) paper.

11.1 Pulse switching

The key idea is pulse switching. Today, a cloud provider can

directly see which pulses execute on which qubit. However, if new

hardware is added to allow to switch any control pulse to any

channel, then for each time period, there are
(n
k

)

, i.e., n choose

k, possibilities that k pulses can execute on n qubits. Within

limitations discussed later, after a circuit is transpiled, the control

pulses can be re-arranged in
(n
k

)

ways in each time period and the

re-arrangement information can be saved so that the pulses can be

switched back during execution. The re-arrangement in software

is a simple modification of digital data representing the circuit.

In the hardware, the re-arrangement can be achieved by use of a

Beneš Networks.

11.1.1 Single-qubit gates
Single qubit gates such as X and SX gates can be switched

between any qubit channel. The amplitude of the pulses is different

for different qubits; thus, if there is any switching, the amplitude

has to be adjusted. To simplify the CASQUE design, we assume

all single qubit pulses on all channels will be initially sent at

maximum amplitude, and then, the trusted hardware attenuates

them according to the target qubit. Since each incoming pulse

regardless of the channel will have the same initial amplitude, the

attenuation hardware does not need to know the initial amplitude

or the channel, only the target channel.

11.1.2 Two-qubit gates
Two qubit gates such as CNOT gate cannot be switched between

channels, at least in current IBM Quantum computer designs. The

reason is that for different qubits and couplings, the exact pulses,

not just their amplitudes, are different for different couplings. In

base CASQUE, we assume that CNOT gates will not be switched. In

CASQUE+, we discuss how to increase attack complexity by adding

dummy qubits to the user’s programs (as long as the quantum

computer backend has sufficient physical qubits to accommodate

the original qubits and the dummy qubits). Dummy qubits increase

the number of possible locations for switching pulses, increasing n

in the
(n
k

)

number of possible combinations.We further leverage the

dummy qubits to enable the addition (and elimination) of dummy

single-qubit gates, as well as two-qubit gates, such as CNOT gates.

The dummy gates can be switched to the dummy qubits, effectively

removing them—while the cloud provider does not know this is

happening since they can only see the input circuit which includes

the actual and dummy qubits and actual and dummy gates in the

transpiled circuit specification.

11.2 Pulse protection map

We propose to save the re-arrangement information in a new

data structure called Pulse Protection Map (PPM). The PPM can

be viewed as a list containing switching information for each time

period. The transpiled circuit can be easily modified to quantize

the time into fixed time periods. For example, single-qubit gates on

IBM Quantum today execute in 160dt time, while two-qubit gates

have variable timing, but can be easily padded so that each two-

qubit gate takes a duration that is a fixed multiple of 160dt. As a

result, the PPM can be viewed as a list of control bits specifying

the switching of pulses at each time period. The PPM needs to be

encrypted so that the cloud provider does not access it. Inside the

trusted hardware, the PPM can be decrypted. The decrypted control

bits can be used directly to control the Beneš Network, and no real-

time computation is needed–simply the control bits from PPM can

be sent to the RF switches.

Frontiers inComputer Science 15 frontiersin.org

https://doi.org/10.3389/fcomp.2025.1521059
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Trochatos et al. 10.3389/fcomp.2025.1521059

FIGURE 6

Overview of the software steps for the update of user’s circuits for CASQUE protection.

11.3 Attenuation and phase map

While control pulses can be easily switched between different

channels, the same control pulse on different channels is slightly

different. For example, the control pulse specifying X gate executing

on qubit 0 may have a different amplitude than the control

pulse specifying X gate executing on qubit 1. The phase of the

pulses may also have to be adjusted. Furthermore, since we want

to enable switching any pulse to any channel, the input pulse

should have the maximum amplitude of all the channels. Thus,

in the transpiled circuit, all the control pulses are at maximum

amplitude. This means, regardless of the circuit, the input pulses

going to the quantum computer will be at maximum amplitude,

and the attenuation amount does not depend on the circuit. The

attenuation amount and any phase change information can be

stored in the Attenuation and Phase Map (APM). This is public

information since the properties of the quantum computer, such

as shapes and amplitudes of control pulses, are known. The APM

can be stored on trusted hardware without any protection. The

APM is used by our trusted CASQUE logic for amplitude and phase

controller (APC) which we introduce into the dilution refrigerator.

11.4 Measurement obfuscation

After all the pulses are switched and the circuit finishes

execution, there is a need to protect the measurements. To

obfuscate the measurement results, the best approach is to

randomly flip qubits before measurement by using X gates at the

end of the circuit. However, gates cannot be simply “added” to the

circuit in the dilution refrigerator. As an alternative, we assume the

user transpiles his or her circuit with a layer of X gates at the end of

the circuit, on half of the qubits used by the circuit qubits. During

execution of the circuit, each X gate will be randomly switched to a

different channel. Half of the qubits will not have X gate applied and

their output is not flipped, while the other half will have the X gate

applied and the output will be flipped. Assuming there are n qubits

used, then there are
(n
(n/2)

)

possibilities for which qubits are flipped

and which are not.

The switching of the final gates can be further determined

at run-time, so for each shot, different qubits have their output

flipped. To support this, TRNG can be used to generate randomness

to determine which qubits to flip. This information about which X

gates actually, i.e., which qubits were flipped, needs to be encrypted

and sent back to the user so he or she can recover the correct

outputs. We note that, as a side benefit, the addition of X before

measurements may also help to reduce measurement errors (Tannu

and Qureshi, 2019).

12 Software overview of CASQUE

We summarize the software steps required by CASQUE below,

and we show them schematically in Figure 6.

1. Pad each CNOT gate with delays such that all CNOT gates with

their associated padding take the same amount of time, and

the duration including padding should be a fixed multiple of

single-qubit gate duration.

2. Add padding between other gates if necessary to “line up” all

the gates so that each gate starts at a time that is a multiple of

single-qubit gate duration.

3. Increase the amplitude of each control pulse to the maximum

amplitude needed by any channel.

4. For each time period, randomly switch the pulses between

channels and add a layer of gates for flipping the output.

5. Save the switching information in the pulse protection map

(PPM).

6. Encrypt PPM with the cryptographic key associated with the

trusted CASQUE hardware inside the target.

The transpiled circuit (with all the modifications and with pulses

switched between channels) is sent to the cloud provider, along with

the encrypted PPM.

13 Hardware architecture of CASQUE

On the hardware end, the pulses need to be switched to

the correct channels and possibly have their amplitude or phase

adjusted. We assume the control pulses are correctly generated

by the cloud provider, based on the user’s transpiled circuit that

they received. The untrusted cloud provider who we assume can

passively try to spy on the information should not learn details of

the circuit since they do not know how the pulses are switched

and on which qubits they actually execute. The encrypted Pulse

Protection Map (PPM) cannot be read by the cloud provider who

does not have the decryption keys. However, the encrypted PPM is

Frontiers inComputer Science 16 frontiersin.org

https://doi.org/10.3389/fcomp.2025.1521059
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Trochatos et al. 10.3389/fcomp.2025.1521059

FIGURE 7

Combined hardware modifications for support of CASQUE. The additions inside the dilution refrigerator include the CASQUE logic, Beneš Network,

Amplitude and Phase Control (APC), and the Mixers.

sent to the hardware before the circuit executes so that the trusted

CASQUE Logic hardware can decrypt the PPM and send the control

bits to the switches and amplitude and phase control. Compared

to an unmodified quantum computer, a number of operations are

performed on the control pulses which are input to the dilution

refrigerator.

1. For each time period, based on the control bits from the PPM,

the incoming pulses need to be switched to the correct channels;

at each time period, the control bits are loaded into the Beneš

Network to re-configure the routing of the incoming signals.

2. After the pulses pass the Beneš Network, they pass through

amplitude and phase control; the APM specifies the attenuation

and any phase shifting needed.

3. Finally, the control pulses are now sent to the mixers so that the

incoming control signals can be mixed with the carrier signal at

the frequency matching the channel.

4. For the output protection, at runtime, TRNG generates random

bits used to determine how the final X gates will be switched, and

this information is also encrypted and sent back to the user.

Switching control pulses requires more than just redirecting

the control signals to different qubits. We need to consider other

features of the control signals, such as the frequency or amplitude

of the signals.

13.1 Pulse switching with Beneš network

Swapping of the control pulses between qubits and couplings

can be realized by a Beneš network. A Beneš network can be used

to switch signals between N inputs and N outputs, where any

rearrangement of the inputs can be achieved without blocking.

Beneš network of N inputs has 2 × log2(N) − 1 stages, each

containing N/2 two-by-two crossbar switches, and uses a total of

N × log2(N) − N/2 two-by-two crossbar switches. For specifying

switching, rather than specify for each qubit or coupling channel

its target channel, we can instead directly provide control bits for

each switch in the Beneš network at each time period. Recall that

all gates in transpiled circuit are padded to that they each start

at a time that is multiple of single-qubit duration. In effect, the

circuits are quantized into fixed time periods. In each time period,

N × log2(N) − N/2 bits are needed (i.e., one bit per switch to

determine whether the switch should exchange its inputs, or let

them pass unchanged).

The Beneš network’s switches can be realized with standard RF

switches. For example, the CMD272P310 is a low loss broadband

positive control double-pole, double-throw (DPDT) transfer

switch. The CMD272P3 covers DC to 10GHz and offers a low

insertion loss of 1.6dB and high isolation of 43dB at 5GHz, which

is the target frequency for many superconducting qubit quantum

computers. The CMD272P3 operates using complementary control

voltage logic lines of 0/+5V that can be easily generated by

the control logic by converting typical single-ended outputs to

differential pair outputs.

13.2 Frequency adjustment

In a superconducting qubit quantum computer, each qubit has

a target frequency. Pulses generated for one qubit will not work on

another if the frequency is incorrect. Figure 7 shows a schematic

of a typical superconducting quantum computer showing arbitrary

waveform generators (AWGs) with local oscillators (LOs) and

mixers used to mix the I,Q pulses onto the target qubit’s or

coupling’s frequency. The AWGs, LOs, and mixers are located

outside the dilution refrigerator.

In CASQUE, the Beneš network can switch pulses but cannot

adjust the frequency. Furthermore, we do not want to introduce any

10 Qorvo. Cmd272p3 dpdt transfer switch documentation.

Frontiers inComputer Science 17 frontiersin.org

https://doi.org/10.3389/fcomp.2025.1521059
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Trochatos et al. 10.3389/fcomp.2025.1521059

high-power equipment, such as signal generators, into the dilution

refrigerator. A solution we propose for CASQUE is to move the

mixers into the dilution refrigerator. The I and Q pulses are at the

same frequency for all qubits, and it is only the frequency of the LO

that changes for each qubit. Thus, the I and Q pulses can be sent

through the switching network to switch the gates. Once the pulses

are switched, they can be mixed with the LO signal.

13.3 Amplitude and phase adjustment

One of the main differences between the control pulses, in

addition to the frequency, is the amplitude of the pulse. As

discussed before, in CASQUE, all pulses are sent at the highest

amplitude and then attenuated. The amplitude adjustment can

be achieved with a voltage-controlled attenuator, for example,

F2258NLGK8 from Renesas11. The example attenuator works in

range up to 6GHz, with 1.4dB insertion loss and the control voltage

can be from 0V to 3.6V. To generate the attenuation control voltage

from digital information, a digital-to-analog converter is needed.

Assuming 10 bits of resolution for the digital-to-analog, we can

control the amplitude with resolution of over 0.001%. Detailed

analysis of the type of the needed attenuation levels, and any

residual impact of the attenuation on the control signals, is left for

future work.

The phase of the control pulses also affects their operation.

The phase information is stored in I and Q signals. If needed, the

phase may have to be modified before the I and Q signals reach the

mixers. Phase adjustment can be achieved with a phase shifter, for

example, HMC649A from Analog Devices12. The example phase

shifter works in 3 GHz to 6 GHz frequency range, with 8 dB

insertion loss, and has a resolution of 6 bits, corresponding to phase

adjust resolution of 5.625 degrees.

13.4 Combined hardware modifications

Figure 7 shows the combined modifications to the quantum

computer hardware that CASQUE introduces. The additions inside

the dilution refrigerator include the CASQUE logic, switching

network, APC, and mixers. These are the trusted components.

Furthermore, the CASQUE logic is made of one or more decryption

tiles and engines discussed later to support various sizes of

switching networks (and the number of control bits they require).

The only modification to the untrusted hardware outside the

dilution refrigerator is the removal of the mixers, which are now

moved inside the fridge.

13.5 PPM and APM data size and
bandwidth

The Beneš network requires N × log2(N) − N/2 control bits

for each time period to allow for arbitrary switching of N channels.

11 Newark. f2258nlgk8 rf attenuator documentation.

12 Analog. Hmc649a documentation.

Furthermore, 10 × N control bits are needed for the amplitude

control on N channels, and 6 × N control bits may be needed for

phase adjustment.

The control bits for Beneš network are stored in PPM, and at

each time period, the Beneš network requires N × log2(N) − N/2

bits need to be provided from the PPM to switch the switches.

Meanwhile, control data related to amplitude and phase is stored in

the APM. These control bits from APM only need to be provided

before the circuit starts to execute. At each time period, for each

channel, it is only needed to specify the type of gate, so the

appropriate APM data can be used to adjust the amplitudes, for

example. In IBMQuantum, there are X, SX, and CX basis gates that

use real control pulses; thus, 2 × N = log2(3) × N control bits are

needed for each time period, in addition to the switching bits. The

time period corresponding to the duration of single-qubit gates is

today 160 dt in IBM quantum computers, which is equivalent to

35.5 ns. This corresponds to a frequency of 28.5 MHz which the

switching network control bits need to be provided.

13.6 Security-performance tradeo� with
tiled switching network design

According to recent IBM roadmaps, large quantum computer

systems will be built from smaller quantum computers or

quantum computer chips on the order of 1, 000 qubits, such as

the 1, 386-qubit Kookaburra quantum processing unit that can

be replicated multiple times to build a larger computer. In a

basic approach, CASQUE hardware can be instantiated for each

quantum processing unit. Multiple CASQUE hardware can work in

parallel, each with its associated quantum processing unit. While

approximately 75 GB/s bandwidth between each CASQUE logic and

its associated switching network is high, it is within reach of today’s

electronics (e.g., DDR5 can provide 51 GB/s data bandwidth per

module, or HBM can provide 256 GB/s data bandwidth). However,

so many switches are not needed in practice. From a security

perspective, if we consider even circuits with an order of 6 qubits

and 100s of gates, our evaluation in Section 9 shows the complexity

can be above 2256. Thus, if we only switch a few channels, the attack

complexity is huge and there is no need to switch all the channels

each time and the 75 GB/s bandwidth is unlikely to be actually

needed, order or two smaller bandwidth could be sufficient when

only smaller number of qubits are switches—while still having high

security level.

13.6.1 Tiling of the switching network
N × N Beneš network is actually built from two N/2 × N/2

networks with added layers. As a result, it is simple to trade off

the number of possible permutations vs. the number of control

bits (and thus bandwidth) needed. Table 4 shows different sizes

of networks and the associated number of permutations, needed

control bits, and bandwidth. Based on the different sizes of the

network, a different number of control bits are needed. We note

that in our design of the decryption engine which decrypts the

PPM, discussed next, we use the AES algorithm, which has a block

size of 128 bits. Each decryption tile can provide 128 bits in a time

Frontiers inComputer Science 18 frontiersin.org

https://doi.org/10.3389/fcomp.2025.1521059
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Trochatos et al. 10.3389/fcomp.2025.1521059

TABLE 4 Number of control bits, number of possible permutations, and

corresponding bandwidth for di�erent sizes of Beneš network.

Size Perm. Ctrl. Bits Bandwidth Num. Dec.
Tiles

2× 2 21 1 3.5 MB/s 1

4× 4 ∼ 24.5 6 21.1 MB/s 1

8× 8 ∼ 215.3 20 70.4 MB/s 1

16× 16 ∼ 244.3 56 197.2 MB/s 1

32× 32 ∼ 2117.6 144 507.0 MB/s 2

64× 64 ∼ 2296.0 352 1, 873.0 MB/s 3

Bandwidth computation is based on the number of control bits that need to be provided in

each 35.5ns time period.

period. Depending on the size of the switching network, multiple

tiles can be used in parallel.

13.7 CASQUE logic and decryption engine
design

In this study, we also implement a hardware design for the

decryption engine, which is a key part of the CASQUE logic.

The decryption engine helps decrypt the encrypted PPM inside

the trusted hardware. For our evaluation, we consider AES-GCM

algorithm to encrypt the PPM on the user’s end. We use an

existing AES-GCMmodule (Käsper and Schwabe, 2009) which can

perform both encryption and decryption and implement a wrapper

consisting of a controller which helps in loading the encrypted

PPM from the BRAM or DRAM, decrypt it, and write it back to

the same memory location block by block. We name this module

as decrypt_tile (shown in Figure 8). The decrypt_tile

has the capability of generating parameterized output width

for these decrypted PPM bits. Users can choose the width

arbitrarily based on the bandwidth requirement. Furthermore,

the decrypt_tile also supports a high-performance mode

where multiple decrypt_tile could be stacked together to

decrypt large PPMs efficiently. The key required by the AES-GCM

module is established using a quantum-safe public key algorithm,

e.g., Classic McEliece (Albrecht et al., 2020). In our hardware

design, for the public key algorithm, we use the mceliece38864

decapsulation module described in Section 5.4 of (Che, 2022).

Other quantum-safe algorithms could be used as well.

In addition to the decryption engine, to protect the output

generated from the quantum computer (discussed in Section 11.4),

we also implement a True Random Number Generator (TRNG).

For the TRNGmodule, we use an existing SHAKE256module (Che,

2022) and implement a wrapper around it to feed an arbitrary size

seed [we assume that there is a random number generator (RNG)

inside the trusted hardware boundary that provides uniformly

distributed random bits to our module as an initial seed] and

squeeze out the required number (N) of random bits (RB), where

N is the number of qubits for the given quantum computer. As

discussed in Section 11.4, based on these bits, an X gate is either

applied or not on the output of the quantum circuit. The wrapper

FIGURE 8

Top-level design of CASQUE hardware module, which implements

key parts of the CASQUE logic. Quantum-safe public-cryptographic

modules (mceliece38864 decapsulation) for establishing the

shared secret for use in the AES would be extra hardware.

also facilitates the encryption of RB using the AES-GCM module

from the decrypt_tile, which is sent to the user.

The TRNG module uses the SHAKE256 with the smallest

performance parameter configuration, i.e., parallel_slices

= 1 (described in Che, 2022). The top_module combines all

other modules as shown in Figure 8. The hardware utilization of

our CASQUE hardware module is as follows: 3,340 LUTs, 1,158

FFs, 10 BRAMs, and it operates at a frequency of 103 MHz when

targeted to Xilinx Artix 7 xc7a100t. To handle a 1 MB PPM,

our hardware module takes 7.7 ns. These results do not include

the resources used for the public-key algorithm. We do not report

the BRAM utilization required for the PPM storage. This is because

the size of the PPM changes as per the target quantum computer

and quantum circuit. For large quantum computers and large

circuits, the size of the on-chip BRAM may not be enough for

the PPM storage, in which case we could use off-chip storage

units such as DRAM. Our CASQUE hardware design supports the

usage of either of them. We also note that we chose to target a

lightweight hardware implementation for this evaluation. However,

the parameterizable capability of our design allows switching to a

high-speed parallel implementation easily.

13.7.1 Serializer–deserializer for outputs
Although the operating frequency of the CASQUE hardware

module is higher (103 MHz), the frequency at which the pulse

switching happens is much slower (i.e., 28.5 MHz, as described

in Section 13.5). One possible solution to tackle this is to run

the complete design at the (slower) switching frequency, but the

bandwidth requirement of the Beneš network may not be met.

Consequently, we run our design at the fast frequency and use an

asynchronous FIFO (ASYNC_FIFO) to handle the crossing clock

domains. Figure 8 shows usage of two sets of ASYNC_FIFOs, one

for switching network and the other to control the application of X

gate on the output. From the (ASYNC_FIFO), the decrypted PPM

output is then loaded into the serializer–deserializer to arrange

bits as per required bandwidth. We note that we successfully

conducted practical experiments by running our hardware design

Frontiers inComputer Science 19 frontiersin.org

https://doi.org/10.3389/fcomp.2025.1521059
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Trochatos et al. 10.3389/fcomp.2025.1521059

TABLE 5 Variational distance (VD) metric for selected QASMBench

benchmarks (Li et al., 2022).

Benchmark Qubits Gates CNOT VD

Wstate 3 30 9 0.126

Basis_change 3 53 10 0.116

Variational 4 54 16 0.080

vqe 4 89 9 0.195

qec_en 5 25 10 0.642

Error_correctiond3 5 114 49 0.184

Simon 6 44 14 0.195

qaoa 6 270 54 0.203

The Qubits, Gates (single-qubit gates), and CNOT numbers are pre-transpilation.

on Xilinx Artix 7 xc7a100t FPGA and interfacing them with the

RF switches (described in Section 13.1). We simulate the quantum

computer control pulses, going into the RF switches, using a lab

signal generator; an oscilloscope is used to validate that the switches

attenuate the pulses when needed.

14 CASQUE evaluation setup

Our evaluation focuses on fidelity evaluation using variational

distance (VD), as well as computation of complexity of how many

circuit the attacker would have to try based on the obfuscation

provided by the switching of the pulses. We use selected

QASMBench benchmarks (Li et al., 2022) for the evaluation.

Fidelity evaluation is done on the 7-qubits real IBM Perth quantum

machine.

15 Fidelity evaluation of CASQUE

Assuming ideal operation of the switches and other added

components, we focus on the impact of added delays due to “lining

up” of gates done as part of CASQUE software steps. When CNOT

gates are padded with delays to have fixed duration, we observe

that with more delays, the variational distance increases, i.e., the

fidelity decreases. For this reason, we measure the variational

distance (VD) between each of the eight selected benchmarks and

the unmodified benchmark from the QASMBench benchmarks

suite. Informally, the variational distance of two output probability

distributions is the measure of how one probability distribution

is different from the other. In general, the total variation distance

between P and Q is defined as follows: δ(P,Q) = 1
2

∑

|P − Q|.
The impact of the extended duration of the selected

benchmarks is presented in Table 5.

16 Security analysis of CASQUE

In the computation of the security level and the security

analysis, we take into account the following aspects: number of

qubits (nqubits), total number of single-qubit slots (p), number of

single-qubit gate pulses in each slot (msi), total number of CNOT

slots (q), number of single-qubit slots within duration of a CNOT

slot (r), number of CNOT gate pulses we have in each CNOT slot

(cj), and number of single-qubit gate pulses in each slot within a

CNOT slot (mcj,k):

C =
p−1
∏

i=0

(

nqubits
msi

)

×
q−1
∏

j=0

r−1
∏

k=0

(

(nqubits − (2× cj))

mcj,k

)

 (10)

In the above equation, we use
(n
k

)

notation to represent n choose

k computation. In our implementation, each CNOT gate slot is

padded with delays such that all CNOT gates within the circuit take

the same duration of time (equal to the duration of the longest

CNOT gate on any of the coupling in the target quantum computer).

The CNOT gate duration of time including padding is set to be

a multiple of the single-qubit gate slot duration, currently 160dt.

Since all CNOT gate slots are of the same duration, regardless which

CNOT slot j is considered, the number of single-qubit gate slots

that fit within the CNOT slot is the same and equal to r, as result

r depends on the quantum computer backend which determines

the duration of CNOT gates. Meanwhile, p, q, msi, mcj,k, and cj
depend on the user’s circuit, its structure, and the gates used. nqubits
depends on the number of qubits used by the user’s circuit but

clearly cannot be larger than the number of qubits available on the

target quantum computer. The approximate attack complexity on

selected bencharks is shown in Table 6. The table also shows the

complexity for CASQUE+ extended architecture, discussed next.

17 CASQUE+ architecture

Our proposed CASQUE provides very good protection at a

very high obfuscation level. However, we observed that a novel

application of the switches can be realized if we assume that

additional dummy qubits can be added to the user’s circuit.

Specifically, if dummy qubits (qubits not otherwise used by the

original circuit) are added to the design, then it is possible to switch

control pulses from the other qubits to the dummy qubits. Pulses

switched to the dummy qubits do not affect nor perform any useful

computation, and thus, they are effectively eliminated from the

circuit. Furthermore, pulses can be added to the dummy qubits, and

pulses can be switched among the dummy qubits, which also does

not affect the actual computation.

17.1 Increasing obfuscation with added
dummy qubits and dummy gates

Adding dummy qubits and dummy gates increases the number

of possibilities for switching the gates–increasing the complexity

for the attacker. Considering our prior Equation 1, adding dummy

qubits increases nqubits. Adding dummy single-qubit gates increases

msi and mcj,k. Adding two-qubit gates increases cj. However, the

complexity increases further as in Equation 1 and baseline CASQUE

design we do not alter the two-qubit CNOT gates. Now, with

dummy qubits, we can add dummy two-qubit gates on original

qubits and then switch them to the dummy qubits to eliminate

them. As a result, the attacker (cloud provider) no longer is certain

Frontiers inComputer Science 20 frontiersin.org

https://doi.org/10.3389/fcomp.2025.1521059
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Trochatos et al. 10.3389/fcomp.2025.1521059

TABLE 6 Approximate attack complexity on selected QASMBench benchmarks (Li et al., 2022).

Benchmark Qubits Gates CNOT Complexity

0 dummy qubits w/ 2 dummy qubits w/ 4 dummy qubits w/ 8 dummy qubits

(CASQUE) (CASQUE+) (CASQUE+) (CASQUE+)

Wstate 3 30 9 28 215 219 225

Basis_change 3 53 10 243 266 280 2100

Variational 4 54 16 220 226 230 236

vqe 4 89 9 245 264 277 295

qec_en 5 25 10 217 222 226 232

Error_correctiond3 5 114 49 2103 2132 2155 2191

Simon 6 44 14 220 225 228 233

qaoa 6 270 54 2268 2324 2365 2428

Complexity calculated for zero, two, four, and eight number of added dummy qubits. The Qubits, Gates (single-qubit gates), and CNOT gates numbers are pre-transpilation.

that a CNOT gate will execute (as it did in CASQUE). Rather, each

CNOT could be a real gate that executes or could be a gate that is

eliminated (by switching it to a dummy qubit) before execution.

The updated complexity for the number of possible circuits that the

untrusted cloud provider would have to guess from is

C′ =
p−1
∏

i=0

(

nqubits
msi

)

×
q−1
∏

j=0

r−1
∏

k=0

(

(nqubits − (2× cj))

mcj,k

)

 × 2cj

 (11)

17.2 Preventing dummy qubit detection

Although the attacker does not know which are the dummy

qubits from the input circuit, they could use the circuit structure

to guess the dummy qubits. First, if the circuit can be partitioned

into two disjoint circuits not connected by a two-qubit gate, then

the attacker could easily say that one of the two circuits is made up

of the dummy qubits. Thus, we must ensure that there is at least

one dummy two-qubit gate that connects one of the original qubits

with one of the dummy qubits. Second, if there is no measurement

on a qubit, it can be identified as an ancillary qubit (actually used

by the circuit, but not measured) or as the dummy qubit. Thus, we

must ensure there is a measurement gate on all qubits, so that all

qubits look like they are part of the circuit, even if the measurement

will be discarded by the user.

17.3 Switching of multi-qubit gates

The current design of CASQUE does not switch multi-qubit

gates due to the complexity of the waveform of the multi-qubit

gates. However, this can also be done with enough knowledge of

the waveform of the multi-qubit gates. For example, if the CNOT

gates on different qubit pairs have the same waveform, then this can

be easily done with the same scheme as in CASQUE. Nevertheless,

the current design of the CNOT gate on the IBM cloud introduces

different duration and pulse patterns, which may require additional

hardware, such as the hardware to change the duration of pulses.

The study of switching multi-qubit gates is left for future work, but

we acknowledge that switching CNOT gates would further increase

attack complexity.

17.4 Operation of CASQUE+

Figure 9 shows schematically the steps of extending the user’s

circuit with CASQUE+ protections. We assume that the input is

the CASQUE protected circuit. The steps are done on top of, or in

addition to, the protection applied by CASQUE. The steps to add

dummy qubits and dummy gates are as follows:

1. Add dummy qubits to the circuit.

2. Randomly add two-qubit gates in CNOT gate slots, ensure that at

least in one slot one of the added gates uses both real and dummy

qubits.

3. Randomly add single qubit gates.

4. Add measurement gates on all qubits.

5. Update pulse protection map.

17.5 Analysis of increased complexity

Based on Table 6, we can achieve higher complexity by adding

additional dummy qubits to the circuits. We tested for two, four,

and eight additional dummy qubits for every application. We

observe the highest complexity for the 6-qubit benchmark qaoa,

as this benchmark has the highest number of gates and CNOT

gates among all the tested benchmarks. We acknowledge that in

CASQUE+ architecture, some extra qubits for the machine are

occupied and prevented from being used by other applications to

run in parallel; however, we consider this to be a minor issue in

larger quantum machines.

Frontiers inComputer Science 21 frontiersin.org

https://doi.org/10.3389/fcomp.2025.1521059
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Trochatos et al. 10.3389/fcomp.2025.1521059

FIGURE 9

Software steps in the extended CASQUE+ architecture.

18 Comparison of SoteriaQ and
CASQUE

SoteriaQ and CASQUE take fundamentally different

approaches to securing quantum computations, each with its

own strengths and trade-offs in terms of performance and

protection. In general, CASQUE is expected to introduce less delay

compared to SoteriaQ. This is primarily because CASQUE avoids

extensive use of decoy operations. Instead, it relies on rearranging

the quantum channels effectively by permuting the mapping

of logical operations onto physical qubits and thus to achieve

obfuscation. By not requiring uniform-duration slots or time-

padding, CASQUE keeps the circuit shallower and the execution

faster. This makes it especially appealing for platforms with tight

coherence budgets or when minimizing latency is a priority.

SoteriaQ, on the other hand, is designed with a stronger emphasis

on security. It introduces a greater number of decoy gates and

employs slot equalization to conceal timing information, aiming to

neutralize an adversary’s ability to infer circuit structure through

side-channel analysis. While this approach results in increased

latency, fidelity loss, and potentially greater resource usage, it

offers a higher level of protection, particularly against adversaries

capable of monitoring fine-grained execution characteristics.

Please note that both mitigation schemes are application-agnostic.

Ultimately, the two architectures represent different points in the

design space. CASQUE favors efficiency and is well-suited for

scenarios where performance is a key constraint. SoteriaQ accepts

additional overhead to provide stronger obfuscation, making it

a better fit for threat models where more sophisticated attacks

are anticipated.

19 Hardware architecture of a trusted
controller

In this mitigation strategy, we aim to analyze what protections

a trusted quantum computer controller could give users

from honest-but-curious cloud providers who want to learn

what quantum programs or data, i.e., quantum circuits or

algorithms, are being executed by the user. We assume the

cloud provider has access to all the information and electronics,

including the interior of the dilution refrigerator (in case of

superconducting quantum machines). The threat model can

be applied to both superconducting and non-superconducting

quantum machines. We assume the honest-but-curious provider

can observe any communication (digital and analog) but

does not tamper with it (such tampering can be detected by

checking the quality of the solution). Thus, the goal is to

protect from passive attacks, such as information leakage.

Active attacks such as fault injection are orthogonal and

future work.

19.1 Abstracted view of a quantum
computer controller

We present an abstracted view of the quantum computer

controller and make the assumption that the quantum

controller, which converts the digital control pulses to analog

RF pulses, to be trusted. We develop a simple abstraction of

a quantum computer controller: A classical processing unit

(CPU/FPGA), which is required to manage and orchestrate

the quantum operations and a digital-to-analog and analog-to-

digital converter unit (DAC/ADC), converts the digital signals

into analog signals suitable for manipulating the qubits, and

also converts analog signals back to digital ones that can be

processed on the controller. A typical schematic of our proposed

controller architecture is shown in Figure 10. Considering

the two units: CPU/FPGA and DAC/ADC, there are four

possible combinations:

19.2 Untrusted CPU/FPGA and untrusted
DAC/ADC

If both the CPU/FPGA and DAC/ADC in a quantum

computing system are untrusted, clearly the units cannot

be leveraged to provide protection mechanisms. This is

equivalent to today’s cloud-based quantum computers,

where there are no added security features nor trust in

the controller.

Frontiers inComputer Science 22 frontiersin.org

https://doi.org/10.3389/fcomp.2025.1521059
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Trochatos et al. 10.3389/fcomp.2025.1521059

FIGURE 10

Schematic of the architecture for a trusted controller. The trusted

controller consists of a CPU or FPGA and ADC or DAC components.

In the figure, it is shown the scenario where both CPU and DAC or

ADC components are trusted.

19.3 Untrusted CPU/FPGA and trusted
DAC/ADC

An untrusted CPU/FPGA is not able to provide any security

features. However, a trusted DAC/ADC, on the other hand, could

be leveraged to protect the circuits during the digital to analog,

or analog to digital conversion. As DAC/ADC is involved in

conversion of signals, we assume it has no computation power

on its own, so it may not be able to add, remove, or modify the

quantum circuits. However, in theory, it is possible for a trusted

DAC/ADC to manipulate its operation as it generates analog

signals (DAC), or when it recovers digital signals from analog

inputs (ADC).

• Hiding power signatures: The power consumption of

electronic devices, including DAC/ADC, can exhibit

characteristic patterns during different operations. By

intentionally introducing variations in power consumption

that are independent of the actual digital data (for DAC) or

analog signal (for ADC), the DAC/ADC unit may attempt to

make it more difficult for an attacker to analyze the power

side-channel and extract sensitive information.

• Injecting noise: A trusted DAC/ADC unit could dynamically

adjust output signal (for DAC) to create noise in the RF lines

and mitigate EM based side channels, or it could manipulate

digital data (for ADC) to confuse the cloud provider about

what is actually read from the quantum computer signals.

19.4 Trusted CPU/FPGA and untrusted
DAC/ADC

A trusted CPU/FPGA can be leveraged to add, remove, or

modify the quantum gates in a circuit before it is sent to

the quantum computer. It can also manipulate the received

measurements before they are passed onto the rest of the cloud

computing infrastructure. Importantly, trusted CPU/FPGA can be

used to decrypt circuits received from users, and encrypt the results.

• Adding circuit and its inverse: The trusted CPU/FPGA could

insert quantum gates and their inverses (Saki et al., 2021) into a

circuit. The trusted CPU/FPGA could in this way obfuscate the

structure of the circuit. The output analog signals observed by

the cloud provider would correspond to the obfuscated circuit.

• Swapping qubits: Quantum swapping operations allow the

rearrangement of qubits (Trochatos et al., 2024a). The trusted

CPU/FPGA could dynamically modify quantum circuits to

swap qubits or channels. The resulting circuit executed on the

quantum computer would have different qubit orders, adding

some obfuscation.

• Executing dummy shots: The trusted CPU/FPGA could

execute dummy or decoy shots. These dummy shots would

later have to be discarded. The cloud provider, not knowing

which are right and which are wrong shots, would have more

difficulty guessing what is the actual computation being done

by the user.

19.5 Trusted CPU/FPGA and trusted
DAC/ADC

Having both a trusted CPU/FPGA and a trusted DAC/ADC in a

quantum computing system combines the benefits of both a trusted

CPU/FPGA and a trusted DAC/ADC.

20 Design of QOS support for QTEEs

The deployment of the Quantum Computer Trusted Execution

Environments (QC-TEEs) necessitates a Quantum Operating

Systems (QOS) that can support QCTEE hardware and operation.

In this section, we outline the mechanisms necessary for the

secure loading of quantum circuits, the establishment of a trusted

environment for their execution, and the return of computation

results to users.

20.1 Existing QTEEs

Several QTEEs have already been proposed in the literature,

which are briefly introduced below.

20.1.1 QC-TEE
The QC-TEE framework (Trochatos et al., 2023b) introduced

the concept of adding obfuscation to quantum circuits. While

digital control pulses of quantum circuits can be encrypted, they

ultimately need to be converted to analog pulses for execution

on quantum hardware, and analog pulses cannot be encrypted

digitally. This leaves them vulnerable to potential spying and

attacks by untrusted cloud providers. QC-TEE introduced

hardware modifications to filter out dummy obfuscation

pulses before they reach the qubits. Encrypted metadata allows

Frontiers inComputer Science 23 frontiersin.org

https://doi.org/10.3389/fcomp.2025.1521059
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Trochatos et al. 10.3389/fcomp.2025.1521059

FIGURE 11

Lifecycle of quantum circuits and QOS support needed for the QC-TEEs.

QTEE hardware to distinguish between genuine and dummy

obfuscation pulses.

20.1.2 SoteriaQ
Building on the QC-TEE (Trochatos et al., 2023b), the SoteriaQ

framework (Trochatos et al., 2023a) detailed a comprehensive

architecture for circuit obfuscation. As with QC-TEE,

encrypted metadata helps the QTEE hardware identify dummy

obfuscation pulses.

20.1.3 CASQUE
The CASQUE framework (Trochatos et al., 2024a) introduced

a novel approach to obfuscation by swapping pulses between

different control and drive channels. In the user’s circuit, after

transpilation, the control pulses are swapped between channels.

CASQUE includes hardware modifications that allow these pulses

to be redirected back to their correct channels before reaching

the qubits. Encrypted metadata enables CASQUE hardware to

determine the correct channel mapping.

20.2 Life cycle of quantum circuit in QTEE

Regardless of the QC-TEE type, the lifecycle of a circuit in a

QTEE follows three phases: (I) secure loading of quantum circuits,

(II) execution on the quantum computing hardware, and (III)

transmission of computation results back to the users. Figure 11

outlines the life cycle of a quantum circuit as handled by QOS.

20.2.1 Phase I: secure loading of quantum
circuits

On the user end, the quantum circuit is obfuscated according

to the target QC-TEE, and encrypted metadata is attached to

the circuit. The obfuscated circuit and encrypted metadata are

securely sent to the cloud provider, by an encrypted network

connection. Upon decryption of the network packets, the circuit

and encrypted metadata needs to be safely stored by QOS while

awaiting execution. The QOS needs to support classical, secure

networking to receive users’ circuits and their encrypted metadata.

The QOS needs to track of the circuit and encrypted metadata once

received. When storing them on the cloud, the circuit and encrypted

metadata need to be associated with each other. Since the obfuscation

method and encrypted metadata is specific to a particular quantum

computer, the QOS scheduling also needs to be augmented to keep

track of which quantum computer the circuit can execute on.

20.2.2 Phase II: secure execution of quantum
circuits

When the circuit is ready to execute, the transpiled circuit

is loaded onto the quantum controller, which, for example, in

case of superconducting qubit quantum computer, generates the

analog pulses that drive the qubits. In case of QC-TEE (Trochatos

et al., 2023b), SoteriaQ (Trochatos et al., 2023a), and CASQUE

(Trochatos et al., 2024a), these pulses contain some form of

obfuscation. Thus, in parallel the encrypted metadata has to be sent

to the quantum computer, so it can decrypt it and operate on the

input pluses according to the metadata. For example, for Trochatos

et al. (2023a), some pulses are attenuated based on the metadata,

while for (Trochatos et al., 2024a), channels on which pulses are

supposed to execute are swapped. The QOS needs to ensure that the

obfuscated circuits of the user are loaded in parallel to the encrypted

metadata on the target quantum computer.

20.2.3 Phase III: transmission of computation
results back to the user

For each shot of a circuit, it is measured and results returned

to the user. Both QC-TEE (Trochatos et al., 2023b) and SoteriaQ

(Trochatos et al., 2023a) proposed to randomly insert X gates at

the end of the circuit to randomize the output. In parallel, the

modified quantum computer hardware generates (and encrypts) its

own metadata that can be used by the users to know which qubits’

outputs were flipped by the X, so the users can recover the correct

output. To support these operations, the QOS needs to keep track

of the (encrypted) output metadata and transmit it back to the

user along with circuit outputs. The transmission back to the user

should use secure, classical networking. The QOS needs to ensure

that the circuit outputs and the output metadata are associated until

they are returned to the user. The QOS needs to support classical,

secure networking to send back users’ results and their encrypted

output metadata.

Frontiers inComputer Science 24 frontiersin.org

https://doi.org/10.3389/fcomp.2025.1521059
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Trochatos et al. 10.3389/fcomp.2025.1521059

20.3 Analysis of QOS support for QTEE

The QOS modifications to support QTEE are minimal and

can be realized with no overhead on the computation (beyond

the overheads of the specific QTEE hardware). Scheduling will be

impacted by the QTEEs need that the circuit protection is specific

to each quantum computer (because of the unique cryptographic

keys needed for the encrypted metadata). QOS scheduler cannot

move a circuit to a different quantum computer since each circuit

targets a specific backend. This is not a problem in the current

NISQ era as all circuits are transpiled to a specific back end. But in

error corrected quantum computers, where a circuit can execute on

different quantum computer backends, this will be a new constraint

that the QOS needs to manage.

21 Conclusion

This study has demonstrated a comprehensive approach to

establishing Trusted Execution Environments (TEEs) for quantum

computers, ensuring secure execution even in potentially untrusted

quantum cloud environments. The proposed architectures tailored

for superconducting quantum machines, including CASQUE and

SoteriaQ, offer robust mechanisms for obfuscating quantum

control pulses and measurements, thus significantly mitigating

threats from side-channel attacks and malicious insiders. Through

layered hardware and software protections, such as decoy pulse

insertion, randomized output gates, and encrypted Pulse Protection

Maps (PPM), the system effectively conceals sensitive quantum

circuits and user data from unauthorized entities. We also

explored architectures that minimize the trusted area and cover

the non-superconducting quantum machines. In this direction, we

proposed a hardware architecture for securing quantum computers

with a trusted controller.

The results underscore the feasibility and scalability of

the proposed solutions in quantum cloud infrastructure, with

minimal performance overhead and security assurances surpassing

conventional approaches. The use of trusted controllers opens

avenues for extending this framework to diverse quantum

architectures beyond superconducting qubits. Future research will

aim to adapt these security measures to other quantum computing

paradigms and integrate new advancements in TEE technology to

support the growing quantum ecosystem.

Data availability statement

The original contributions presented in the study are included

in the article/supplementary material, further inquiries can be

directed to the corresponding author.

Author contributions

TT: Conceptualization, Data curation, Formal analysis,

Funding acquisition, Investigation, Methodology, Project

administration, Resources, Software, Supervision, Validation,

Visualization, Writing – original draft, Writing – review &

editing. CX: Conceptualization, Data curation, Formal analysis,

Funding acquisition, Investigation, Methodology, Project

administration, Resources, Software, Supervision, Validation,

Visualization, Writing – original draft, Writing – review &

editing. SD: Conceptualization, Data curation, Formal analysis,

Funding acquisition, Investigation, Methodology, Project

administration, Resources, Software, Supervision, Validation,

Visualization, Writing – original draft, Writing – review &

editing. YL: Conceptualization, Data curation, Formal analysis,

Funding acquisition, Investigation, Methodology, Project

administration, Resources, Software, Supervision, Validation,

Visualization, Writing – original draft, Writing – review

& editing. YD: Conceptualization, Data curation, Formal

analysis, Funding acquisition, Investigation, Methodology,

Project administration, Resources, Software, Supervision,

Validation, Visualization, Writing – original draft, Writing –

review & editing. JS: Conceptualization, Data curation, Formal

analysis, Funding acquisition, Investigation, Methodology,

Project administration, Resources, Software, Supervision,

Validation, Visualization, Writing – original draft, Writing –

review & editing.

Funding

The author(s) declare that financial support was received for the

research and/or publication of this article. This study was supported

in part through National Science Foundation grant no. 2312754,

2245344, and 2332406.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.

Generative AI statement

The author(s) declare that no Gen AI was used in the creation

of this manuscript.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Frontiers inComputer Science 25 frontiersin.org

https://doi.org/10.3389/fcomp.2025.1521059
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Trochatos et al. 10.3389/fcomp.2025.1521059

References

Aharonov, D., Ben-Or, M., and Eban, E. (2008). Interactive proofs for quantum
computations. arXiv:1704.04487.

Albrecht, M. R., Bernstein, D. J., Chou, T., Cid, C., Gilcher, J., Lange, T., et al. (2020).
Classic McEliece. Technical report, National Institute of Standards and Technology.
Available online at: https://csrc.nist.gov/projects/post-quantum-cryptography/round-
3-submissions.

Armknecht, F., Boyd, C., Carr, C., Gjøsteen, K., Jäschke, A., Reuter, C. A., et al.
(2015). A guide to fully homomorphic encryption. Cryptol. ePrint Archive.

Biamonte, J., Wittek, P., Pancotti, N., Rebentrost, P.,Wiebe, N., and Lloyd, S. (2017).
Quantum machine learning. Nature 549, 195–202. doi: 10.1038/nature23474

Broadbent, A., Fitzsimons, J., and Kashefi, E. (2009). “Universal blind quantum
computation,” in 2009 50th Annual IEEE Symposium on Foundations of Computer
Science, 517–526. doi: 10.1109/FOCS.2009.36

Chen, P., Chou, T., Deshpande, S., Lahr, N., Niederhagen, R., Szefer, J., et al. (2022).
Complete and improved FPGA implementation of classic McEliece. Cryptology 2022,
71–113. doi: 10.46586/tches.v2022.i3.71-113

Childs, A. M. (2001). Secure assisted quantum computation.Quantum Inf. Comput.
5, 456–466. doi: 10.26421/QIC5.6-4

Chow, J., Dial, O., and Gambetta, J. (2021). IBM quantum breaks the 100-qubit
processor barrier. IBM Research Blog 2.

Conway Lamb, I. D., Colless, J. I., Hornibrook, J. M., Pauka, S. J., Waddy,
S. J., Frechtling, M. K., et al. (2016). An FPGA-based instrumentation platform
for use at deep cryogenic temperatures. Rev. Sci. Instr. 87:014701. doi: 10.1063/1.
4939094

Costan, V., and Devadas, S. (2016). Intel SGX explained. Cryptol. ePrint Archive.

Dunjko, V., Kashefi, E., and Leverrier, A. (2012). Blind quantum
computing with weak coherent pulses. Phys. Rev. Lett. 108:200502.
doi: 10.1103/PhysRevLett.108.200502

Fang, K., and Liu, Z.-W. (2020). No-go theorems for quantum resource purification.
Phys. Rev. Lett. 125:060405. doi: 10.1103/PhysRevLett.125.060405

Fitzsimons, J. F., and Kashefi, E. (2017). Unconditionally verifiable blind quantum
computation. Phys. Rev. A 96:5217. doi: 10.1103/PhysRevA.96.012303

Fontaine, C., and Galand, F. (2007). A survey of homomorphic encryption for
nonspecialists. EURASIP J. Inf. Secur. 2007, 1–10. doi: 10.1155/2007/13801

Gambetta, J. (2020). IBM’S roadmap for scaling quantum technology. IBM Research
Blog (September 2020).

Giovannetti, V., Maccone, L., Morimae, T., and Rudolph, T. G. (2013).
Efficient universal blind quantum computation. Phys. Rev. Lett. 111:230501.
doi: 10.1103/PhysRevLett.111.230501

Hooyberghs, J., and Hooyberghs, J. (2022). “Azure quantum,” in Introducing
Microsoft Quantum Computing for Developers: Using the Quantum Development Kit
and Q# (Berkeley, CA: Apress), 307–339. doi: 10.1007/978-1-4842-7246-6_11

Käsper, E., and Schwabe, P. (2009). “Faster and timing-attack resistant AES-
GCM,” in International Workshop on Cryptographic Hardware and Embedded Systems
(Springer), 1–17. doi: 10.1007/978-3-642-04138-9_1

Koteshwara, S., Das, A., and Parhi, K. K. (2017). “FPGA implementation
and comparison of AES-GCM and deoxys authenticated encryption schemes,”
in 2017 IEEE International Symposium on Circuits and Systems (ISCAS), 1–4.
doi: 10.1109/ISCAS.2017.8050315

Lavor, C., Manssur, L., and Portugal, R. (2003). Grover’s algorithm: quantum
database search. arXiv preprint quant-ph/0301079.

Li, A., Stein, S., Krishnamoorthy, S., and Ang, J. (2020). Qasmbench: a low-
level QASM benchmark suite for NISQ evaluation and simulation. arXiv preprint
arXiv:2005.13018.

Li, A., Stein, S., Krishnamoorthy, S., and Ang, J. (2022). Qasmbench: a low-level
quantum benchmark suite for NISQ evaluation and simulation. ACM Trans. Quant.
Comput. 4, 1–26. doi: 10.1145/3550488

Liu, J., Li, Q., Quan, J., Wang, C., Shi, J., and Situ, H. (2022). Efficient
quantum homomorphic encryption scheme with flexible evaluators and its
simulation. Designs, Codes Cryptogr. 90, 577–591. doi: 10.1007/s10623-021-00
993-2

Liu, W.-J., Chen, Z.-Y., Liu, J.-S., Su, Z.-F., and Chi, L.-H. (2020). Full-blind
delegating private quantum computation. arXiv preprint arXiv:2002.00464.

Mahadev, U. (2020). Classical homomorphic encryption for quantum circuits.
SIAM J. Comput. 52, FOCS18–189. doi: 10.1137/18M1231055

Majzoobi, M., Koushanfar, F., and Devadas, S. (2011). “FPGA-based true
random number generation using circuit metastability with adaptive feedback
control,” in Workshop on Cryptographic Hardware and Embedded Systems.
doi: 10.1007/978-3-642-23951-9_2

Mantri, A., Pé rez-Delgado, C. A., and Fitzsimons, J. F. (2013).
Optimal blind quantum computation. Phys. Rev. Lett. 111:230502.
doi: 10.1103/PhysRevLett.111.230502

Morimae, T. (2012). Continuous-variable blind quantum computation. Phys. Rev.
Lett. 109:230502. doi: 10.1103/PhysRevLett.109.230502

Morimae, T. (2014). Verification for measurement-only blind quantum computing.
Phys. Rev. A 89:060302. doi: 10.1103/PhysRevA.89.060302

Morimae, T., Dunjko, V., and Kashefi, E. (2011). Ground state blind quantum
computation on aklt state. Quant. Inf. Comput. 15, 200–234. doi: 10.26421/QIC15.
3-4-2

Morimae, T., and Fujii, K. (2012). Blind topological measurement-based quantum
computation. Nat. Commun. 3:1036. doi: 10.1038/ncomms2043

Morimae, T., and Fujii, K. (2013). Blind quantum computation
protocol in which alice only makes measurements. Phys. Rev. A 87:050301.
doi: 10.1103/PhysRevA.87.050301

Morimae, T., and Koshiba, T. (2013). Composable security of measuring-alice blind
quantum computation. Available online at: https://arxiv.org/pdf/1306.2113.pdf

Oh, H., Nam, K., Jeon, S., Cho, Y., and Paek, Y. (2021). Meetgo: a trusted
execution environment for remote applications on fpga. IEEE Access 9, 51313–51324.
doi: 10.1109/ACCESS.2021.3069223

Pechal, M., Besse, J.-C., Mondal, M., Oppliger, M., Gasparinetti, S., and Wallraff, A.
(2016). Superconducting switch for fast on-chip routing of quantum microwave fields.
Phys. Rev. Appl. 6:024009. doi: 10.1103/PhysRevApplied.6.024009

Peruzzo, A., McClean, J., Shadbolt, P., Yung, M.-H., Zhou, X.-Q., Love, P. J.,
et al. (2014). A variational eigenvalue solver on a photonic quantum processor. Nat.
Commun. 5:4213. doi: 10.1038/ncomms5213

Rivest, R. L., Adleman, L., and Dertouzos, M. L. (1978). On data banks and privacy
homomorphisms. Found. Secure Comput. 4, 169–180.

Saki, A. A., Suresh, A., Topaloglu, R. O., and Ghosh, S. (2021). “Split compilation
for security of quantum circuits,” in 2021 IEEE/ACM International Conference On
Computer Aided Design (ICCAD), 1–7. doi: 10.1109/ICCAD51958.2021.9643478

Shan, R.-T., Chen, X., and Yuan, K.-G. (2021). Multi-party blind quantum
computation protocol with mutual authentication in network. Sci. China Inf. Sci.
64:162302. doi: 10.1007/s11432-020-2977-x

Sueki, T., Koshiba, T., and Morimae, T. (2013). Ancilla-driven universal blind
quantum computation. Phys. Rev. A 87:060301. doi: 10.1103/PhysRevA.87.060301

Tan, S.-H., Kettlewell, J. A., Ouyang, Y., Chen, L., and Fitzsimons, J. F.
(2016). A quantum approach to homomorphic encryption. Sci. Rep. 6:33467.
doi: 10.1038/srep33467

Tannu, S. S., and Qureshi, M. K. (2019). “Mitigating measurement errors in
quantum computers by exploiting state-dependent bias,” in Proceedings of the
52nd Annual IEEE/ACM International Symposium on Microarchitecture, 279–290.
doi: 10.1145/3352460.3358265

Tasopoulos, G., Dimopoulos, C., Fournaris, A. P., Zhao, R. K., Sakzad, A., and
Steinfeld, R. (2023). Energy consumption evaluation of post-quantum tls 1.3 for
resource-constrained embedded devices. Cryptology ePrint Archive, Paper 2023/506.
doi: 10.1145/3587135.3592821

Trochatos, T., Deshpande, S., Xu, C., Lu, Y., Ding, Y., and Szefer, J.
(2024a). “Dynamic pulse switching for protection of quantum computation
on untrusted clouds,” in 2024 IEEE International Symposium on Hardware
Oriented Security and Trust (HOST), 404–414. doi: 10.1109/HOST55342.2024.
10545385

Trochatos, T., and Szefer, J. (2024). Quantum operating system support for
quantum trusted execution environments. arXiv:2410.08486.

Trochatos, T., Xu, C., Deshpande, S., Lu, Y., Ding, Y., and Szefer, J. (2023a).
Hardware architecture for a quantum computer trusted execution environment. arXiv
preprint arXiv:2308.03897.

Trochatos, T., Xu, C., Deshpande, S., Lu, Y., Ding, Y., and Szefer, J. (2023b). A
quantum computer trusted execution environment. IEEE Comput. Archit. Lett. 22,
177–180. doi: 10.1109/LCA.2023.3325852

Trochatos, T., Xu, C., Deshpande, S., Lu, Y., Ding, Y., and Szefer, J. (2024b).
“Protecting quantum computers with a trusted controller,” in International Conference
on Quantum Computing and Engineering, QCE. doi: 10.1109/QCE60285.2024.
00133

Wille, R., Van Meter, R., and Naveh, Y. (2019). “IBM’S qiskit tool chain: working
with and developing for real quantum computers,” in 2019 Design, Automation Test in
Europe Conference Exhibition (DATE) (IEEE), 1234–1240. doi: 10.23919/DATE.2019.
8715261

Xia, K., Luo, Y., Xu, X., and Wei, S. (2021). “SGX-FPGA: trusted execution
environment for CPU-FPGA heterogeneous architecture,” in 2021 58th ACM/IEEE

Frontiers inComputer Science 26 frontiersin.org

https://doi.org/10.3389/fcomp.2025.1521059
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://doi.org/10.1038/nature23474
https://doi.org/10.1109/FOCS.2009.36
https://doi.org/10.46586/tches.v2022.i3.71-113
https://doi.org/10.26421/QIC5.6-4
https://doi.org/10.1063/1.4939094
https://doi.org/10.1103/PhysRevLett.108.200502
https://doi.org/10.1103/PhysRevLett.125.060405
https://doi.org/10.1103/PhysRevA.96.012303
https://doi.org/10.1155/2007/13801
https://doi.org/10.1103/PhysRevLett.111.230501
https://doi.org/10.1007/978-1-4842-7246-6_11
https://doi.org/10.1007/978-3-642-04138-9_1
https://doi.org/10.1109/ISCAS.2017.8050315
https://doi.org/10.1145/3550488
https://doi.org/10.1007/s10623-021-00993-2
https://doi.org/10.1137/18M1231055
https://doi.org/10.1007/978-3-642-23951-9_2
https://doi.org/10.1103/PhysRevLett.111.230502
https://doi.org/10.1103/PhysRevLett.109.230502
https://doi.org/10.1103/PhysRevA.89.060302
https://doi.org/10.26421/QIC15.3-4-2
https://doi.org/10.1038/ncomms2043
https://doi.org/10.1103/PhysRevA.87.050301
https://arxiv.org/pdf/1306.2113.pdf
https://doi.org/10.1109/ACCESS.2021.3069223
https://doi.org/10.1103/PhysRevApplied.6.024009
https://doi.org/10.1038/ncomms5213
https://doi.org/10.1109/ICCAD51958.2021.9643478
https://doi.org/10.1007/s11432-020-2977-x
https://doi.org/10.1103/PhysRevA.87.060301
https://doi.org/10.1038/srep33467
https://doi.org/10.1145/3352460.3358265
https://doi.org/10.1145/3587135.3592821
https://doi.org/10.1109/HOST55342.2024.10545385
https://doi.org/10.1109/LCA.2023.3325852
https://doi.org/10.1109/QCE60285.2024.00133
https://doi.org/10.23919/DATE.2019.8715261
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Trochatos et al. 10.3389/fcomp.2025.1521059

Design Automation Conference (DAC) (IEEE), 301–306. doi: 10.1109/DAC18074.2021.
9586207

Xu, C., Erata, F., and Szefer, J. (2023). “Exploration of power side-channel
vulnerabilities in quantum computer controllers,” in Proceedings of the 2023 ACM
SIGSAC Conference on Computer and Communications Security, CCS ’23 (New York,
NY, USA: Association for Computing Machinery), 579–593. doi: 10.1145/3576915.
3623118

Zeuner, J., Pitsios, I., Tan, S.-H., Sharma, A. N., Fitzsimons, J.
F., Osellame, R., et al. (2021). Experimental quantum homomorphic
encryption. NPJ Quant. Inf. 7:25. doi: 10.1038/s41534-020-00
340-8

Zhang, Y., Shang, T., and Liu, J. (2021). A multi-valued quantum
fully homomorphic encryption scheme. Quant. Inf. Proc. 20, 1–25.
doi: 10.1007/s11128-021-03051-x

Frontiers inComputer Science 27 frontiersin.org

https://doi.org/10.3389/fcomp.2025.1521059
https://doi.org/10.1109/DAC18074.2021.9586207
https://doi.org/10.1145/3576915.3623118
https://doi.org/10.1038/s41534-020-00340-8
https://doi.org/10.1007/s11128-021-03051-x
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

	Trusted execution environments for quantum computers
	1 Introduction
	1.1 Contributions

	2 Background
	2.1 Quantum bits
	2.2 Measurement
	2.3 Quantum gates
	2.4 Gate-level quantum circuit
	2.5 Control pulses

	3 Cloud-based quantum computers
	4 Threat models for QTEEs
	4.1 Entities in the threat models
	4.2 Assumptions in the threat models
	4.3 Goals of the attackers
	4.4 Means for attackers to collect information
	4.5 Threat model A: trusted QPU, untrusted controller
	4.6 Threat model B: untrusted QPU, trusted controller

	5 Hardware architecture of SoteriaQ
	5.1 Decryption engine and input bitmap memory
	5.2 Hardware security engine
	5.3 Attenuation switches
	5.4 Encryption engine and TRNG

	6 SoteriaQ obfuscation algorithm and software
	6.1 Circuit preparation
	6.2 Decoy gate insertion
	6.3 Input bitmap generation
	6.4 Output randomization
	6.5 Circuit post-processing
	6.6 Circuit execution

	7 SoteriaQ deobfuscation and hardware
	8 SoteriaQ evaluation setup
	8.1 Benchmarks used
	8.2 Obfuscation levels evaluated
	8.3 Variational distance
	8.4 Circuit fidelity

	9 Evaluation of SoteriaQ
	9.1 Impact of increased circuit duration
	9.2 Sensitivity to quantum volume and noise
	9.3 Evaluation of circuit correctness
	9.4 Evaluation of circuit fidelity
	9.5 Evaluation of power requirements
	9.6 Evaluation of area overhead
	9.7 Scalability considerations

	10 Security analysis of SoteriaQ
	10.1 Additional possible attacks

	11 CASQUE main features
	11.1 Pulse switching
	11.1.1 Single-qubit gates
	11.1.2 Two-qubit gates

	11.2 Pulse protection map
	11.3 Attenuation and phase map
	11.4 Measurement obfuscation

	12 Software overview of CASQUE
	13 Hardware architecture of CASQUE
	13.1 Pulse switching with Beneš network
	13.2 Frequency adjustment
	13.3 Amplitude and phase adjustment
	13.4 Combined hardware modifications
	13.5 PPM and APM data size and bandwidth
	13.6 Security-performance tradeoff with tiled switching network design
	13.6.1 Tiling of the switching network

	13.7 CASQUE logic and decryption engine design
	13.7.1 Serializer–deserializer for outputs

	14 CASQUE evaluation setup
	15 Fidelity evaluation of CASQUE
	16 Security analysis of CASQUE
	17 CASQUE+ architecture
	17.1 Increasing obfuscation with added dummy qubits and dummy gates
	17.2 Preventing dummy qubit detection
	17.3 Switching of multi-qubit gates
	17.4 Operation of CASQUE+
	17.5 Analysis of increased complexity

	18 Comparison of SoteriaQ and CASQUE
	19 Hardware architecture of a trusted controller
	19.1 Abstracted view of a quantum computer controller
	19.2 Untrusted CPU/FPGA and untrusted DAC/ADC
	19.3 Untrusted CPU/FPGA and trusted DAC/ADC
	19.4 Trusted CPU/FPGA and untrusted DAC/ADC
	19.5 Trusted CPU/FPGA and trusted DAC/ADC

	20 Design of QOS support for QTEEs
	20.1 Existing QTEEs
	20.1.1 QC-TEE
	20.1.2 SoteriaQ
	20.1.3 CASQUE

	20.2 Life cycle of quantum circuit in QTEE
	20.2.1 Phase I: secure loading of quantum circuits
	20.2.2 Phase II: secure execution of quantum circuits
	20.2.3 Phase III: transmission of computation results back to the user

	20.3 Analysis of QOS support for QTEE

	21 Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Generative AI statement
	Publisher's note
	References

