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Hamiltonian simulation
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As computational demands in scientific applications continue to rise, hybrid

high-performance computing (HPC) systems integrating classical and quantum

computers (HPC-QC) are emerging as a promising approach to tackling complex

computational challenges. One critical area of application is Hamiltonian

simulation, a fundamental task in quantum physics and other large-scale

scientific domains. This paper investigates strategies for quantum-classical

integration to enhance Hamiltonian simulation within hybrid supercomputing

environments. By analyzing computational primitives in HPC allocations

dedicated to these tasks, we identify key components in Hamiltonian simulation

workflows that stand to benefit from quantum acceleration. To this end, we

systematically break down the Hamiltonian simulation process into discrete

computational phases, highlighting specific primitives that could be e�ectively

o	oaded to quantum processors for improved e�ciency. Our empirical findings

provide insights into system integration, potential o	oading techniques, and the

challenges of achieving seamless quantum-classical interoperability. We assess

the feasibility of quantum-ready primitives within HPC workflows and discuss

key barriers such as synchronization, data transfer latency, and algorithmic

adaptability. These results contribute to the ongoing development of optimized

hybrid solutions, advancing the role of quantum-enhanced computing in

scientific research.
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1 Introduction

The convergence of high-performance computing (HPC) and quantum computing

(QC) is emerging as a pivotal strategy for tackling problems that demand computational

capabilities beyond the reach of classical systems alone. In domains such as quantum

chemistry, material science, nuclear fusion, and high-energy physics, the simulations and

calculations required can be computationally prohibitive, even for today’s most advanced

supercomputers (Bauer et al., 2023b; Di Meglio et al., 2024; Bauer et al., 2023a; Joseph

et al., 2023). This is especially true for applications that involve simulating quantum

phenomena, such as Hamiltonian dynamics, where capturing the intricacies of quantum

interactions places extreme demands on resources (Ayral et al., 2023). For example,

lattice QCD, a standard numerical technique where space-time is discretized, faces the

“sign problem,” where integrals become highly oscillatory and challenging for numerical

methods (Kronfeld et al., 2022; Davoudi et al., 2021). Different ideas have been pursued to

overcome such sign problems (Alexandru et al., 2022; Nagata, 2022), but these problems

are believed to be NP-hard (Troyer and Wiese, 2005). Lattice QCD relies on HPC and

advanced software to provide precision calculations of the properties of particles that
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contain quarks and gluons. In HPC systems, the uniform space-

time grid can be divided among the processors of a parallel

computer. Some recent estimates on cost estimates for one of

the most expensive physics simulations require 1.5 (1500) Exaflop

hours at Cori (NSERC) and Summit (ORNL) for lattice volumes of

323 × 64(1283 × 512) (Boyle et al., 2022).

While quantum computers inherently offer potential

advantages in scientific computing applications–particularly

for studying or simulating quantum phenomena due to their

quantum nature–there remain significant challenges in achieving

hardware readiness for widespread, reliable quantum deployment

(Funcke et al., 2023; Li et al., 2023; Meth et al., 2023). Current

quantum hardware faces limitations in terms of error rates,

coherence times, and scalability, making it challenging to fully

leverage its advantages independently.

For example, the resource estimation for state-of-the-art

methods applicable to the the lattice QCD problem indicates a

demand for resources beyond our current reach. For example, the

gate count scales as d3t3/2(L/a)3d/2ǫ−1/2 for the SU(2) and SU(3)

lattice gauge theories in the irrep basis, when approximating the

time-evolution operator via Trotterization for a maximum error ǫ

for an arbitrary state. Here, d denotes the dimensionality of space,

3 is the gauge-field truncation in the irrep basis, L is the spatial

extent of a cubic lattice and a denotes the lattice spacing. For an

accuracy goal of ǫ = 10−8 and a lattice with tens of sites along each

spatial direction, the simulation requires hundreds of thousands

of million qubits and O(1050) T-gates (Shaw et al., 2020; Kan and

Nam, 2022). Recent studies estimating the resource requirements

for the simulation of nuclear effective field theories (EFTs) report a

T-gate count of 4×1012 and 10,000 qubits for simulating a compact

Pionless EFT (Watson et al., 2023).

Given these challenges, hybrid HPC-QC systems are

increasingly explored as a practical solution to leverage

the strengths of both classical and quantum computation.

Hamiltonian simulation—a cornerstone of quantum physics for

modeling energy and interactions in a quantum systems—is a

particularly promising application for such hybridization. In

traditional HPC environments, simulating Hamiltonian dynamics

is computationally intensive due to the high dimensional operators

involves. Hybrid systems have the potential to alleviate this burden

by offloading specific computational primitives to quantum

processors, thereby enhancing precision and efficiency (Shehata

et al., 2024).

This study aims to break down the Hamiltonian simulation

workflow into computational primitives and analyze the scaling

trends when these primitives are executed using either purely

quantum or purely classical resources. The objective is to provide

further algorithm developers with actionable insights on how to

integrate quantum and classical resources effectively for overall

quantum simulation workflows. By systematically assessing the

modularity and resource allocation for Hamiltonian simulation,

we aim to inform strategies for hybrid HPC-QC architectures that

optimize the synergy between these technologies.

In contrast to previous wok focusing primarily on algorithmic

design or hardware capabilities, our study takes a pragmatic

approach by mapping simulation workflows onto hybrid systems

and identifying specific tasks most conducive to quantum

execution. Although Hamiltonian simulation is our primary focus,

its significance spans diverse applications, including spin-boson

models, lattice gauge theories, and quantum chemistry, providing a

foundation for benchmarking hybrid HPC-QC systems in broader

contexts.

In this paper, we propose a systematic approach to integrating

quantum resources within classical HPC environments. We begin

by analyzing the typical computational primitives involved in

Hamiltonian simulation and assess their potential for quantum

offloading. Through case studies in Hamiltonian simulation, we

identify tasks that are most amenable to quantum execution

and highlight their scalability. This modular approach provides

a roadmap for scaling hybrid HPC-QC systems as quantum

technology advances, aiming to maximize the strengths of each

platform in tandem.

2 Methods

Hamiltonian simulation is a cornerstone in quantum

physics and chemistry, allowing researchers to model the

energy and dynamic interactions within a quantum system.

However, simulating these interactions at a scale sufficient for

realistic applications can quickly outstrip classical computational

capabilities.

Our goal is to understand how a hybrid HPC-QC approach,

which distributes specific computational primitives across classical

and quantum resources, offers a promising pathway to more

scalable and accurate Hamiltonian simulation. To achieve this, we

introduce a structured framework for identifying quantum-ready

computational primitives based on a set of explicit selection criteria.

In this section, we dissect the Hamiltonian simulation workflow

into three primary stages (Figure 1)—initialization, evolution, and

measurement—and carry out a comparative analysis between

quantum and classical resources. The tasks within each stage are

evaluated using the following metrics:

FIGURE 1

Illustration depicting various components essential to the quantum

simulation process.
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• Computational complexity: We assess the time and space

complexity of the task on classical systems and compare it

with the estimated gate count, qubit requirements, and circuit

depth for quantum execution.

• Potential speedup: Tasks are prioritized for quantum

offloading if they demonstrate the potential for exponential

or polynomial speedup on quantum hardware compared to

classical methods.

• Resource scalability: The scalability of resources (e.g., qubits,

memory, or compute nodes) required to execute the task as

the problem size increases is evaluated to identify whether

quantum systems can handle the task more efficiently at scale.

• Task modularity: We consider the task can be modularly

integrated into a hybrid workflow without introducing

excessive synchronization overhead between classical and

quantum systems.

• Physical relevance: Tasks that are directly tied to simulating

inherently quantum phenomena, such as unitary time

evolution or entanglement measurements, are prioritized for

quantum offloading.

Using these criteria, we identified specific computational

primitives within each stage of the workflow that are well-

suited for quantum execution. For example, in the evolution

stage, tasks involving the time evolution of the system under

a Hamiltonian operator, especially those with high-dimensional

matrices, were selected due to their computational intensity and

quantum advantage in simulating unitary dynamics. Conversely,

tasks with minimal computational overhead or those involving

extensive classical data manipulation, such as pre- and post-

processing in the initialization and measurement stages, were

excluded from quantum offloading.

To validate our framework, we apply it to a few relatively

simple physics examples, quantifying the computational resources–

such as qubits, gates, and circuit depth required for the quantum

simulation, and memory and time complexity for the classical

simulation–needed for each stage. We also discuss alternative

primitives considered during the selection process and provide

justification for their exclusion, ensuring transparency in our

methodology.

By structuring our analysis around these metrics, we aim to

provide a clear and rigorous foundation for identifying tasks most

suitable for quantum offloading within hybrid HPC-QCworkflows,

thereby guiding the development of more effective and scalable

simulation strategies.

2.1 Heisenberg model ground state
preparation

The first step in Hamiltonian simulation is to initialize the

system in a well-defined quantum state, which may represent

the ground state or a specific excited state depending on the

study’s objectives (Gratsea et al., 2024). This stage typically involves

encoding the initial quantum state. On classical hardware, this

step requires generating large, structured datasets that represent

quantum states in matrix form. Quantum computers, however,

can naturally represent these states, potentially reducing data

handling complexity (Wang and Jaiswal, 2023). For hybrid

HPC-QC systems, state preparation could be offloaded to the

quantum processor to leverage its ability to represent high-

dimensional quantum states natively. Creating entangled states

or superpositions in the initial state is computationally intensive

classically, particularly for large systems. Quantum processors can

establish entangled states more efficiently, potentially improving

simulation fidelity by initializing more complex correlations

between components in the quantum system.

To showcase the complexity of state preparation, we consider

an initial quantum state that involves significant entanglement or

complex correlations. One excellent choice is the preparation of a

ground state for theHeisenberg model or preparation of an arbitrary

quantum state with entanglement.

The Heisenberg model is a fundamental model in quantum

mechanics used to describe interactions in a system of spins

arranged on a lattice. It captures how neighboring spins interact

and is widely used in studies of magnetism and condensed matter

physics. The Hamiltonian for the one-dimensional Heisenberg

model with nearest-neighbor interactions is given by:

H = J

N−1
∑

i=1

(

σ (i)
x σ (i+1)

x + σ (i)
y σ (i+1)

y + σ (i)
z σ (i+1)

z

)

, (1)

where J is the interaction strength between neighboring spins,

N is the number of spins in the system, and σx, σy, and σz are

the Pauli matrices acting on each spin. In the antiferromagnetic

case, J > 0, spins prefer to align in opposite directions, while

in the ferromagnetic case, J < 0, spins prefer to align in the

same direction. The Heisenberg model’s rich ground state and

excitation properties make it an ideal testbed for studying quantum

entanglement, phase transitions, and quantum state preparation.

The Heisenberg model introduces significant complexity in

state preparation because its ground state is entangled, especially

in one or two dimensions. Preparing the ground state involves

non-trivial entanglement across multiple qubits, making it an ideal

choice for comparing quantum and classical state preparation

methods.

In the quantum case, preparing the Heisenberg model ground

state typically requires an adiabatic approach or variational

quantum algorithms (VQAs) (Cerezo et al., 2021), like the

variational quantum eigensolver (VQE) (Peruzzo et al., 2014). The

VQE uses a parameterized circuit and classical optimization to

iteratively find the ground state.

On the classical side, preparing the ground state can be

done with exact diagonalization for small systems or tensor

network methods [e.g., Density Matrix Renormalization Group,

or DMRG (White, 1992, 1993)] for larger systems. Both of

these methods become computationally intensive as the system

size grows, allowing for a meaningful comparison of resource

requirements.

Another approach to demonstrate complexity in state

preparation is to prepare highly entangled states, such as W states

or GHZ states, where all qubits are entangled in a non-trivial

way. For W and Greenberger-Horne-Zeilinger (GHZ) states you

need entangling gates (e.g., CNOT or controlled-phase gates) for
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TABLE 1 Summary of example choices.

Example Quantum
approach

Classical
comparison

Complexity
of state
preparation

Heisenberg

ground state

Variational

quantum

eigensolver

(VQE)

Exact

diagonalization or

DMRG

High, due to

entanglement and

correlation

structure

GHZ/W

state

Entangling

circuit

Full wavefunction

representation

Moderate,

exponential growth

in classical

representation

FIGURE 2

Gate count (left) and circuit depth (right) as a function of the

number of qubits for the Heisenberg ground state circuit (green

circles) and the GHZ state circuit (gray squares). The Heisenberg

circuit exhibits a linear growth in gate count, increasing by 3 gates

per additional qubit, reflecting the complexity of preparing an

entangled ground state. In contrast, the GHZ circuit’s gate count

scales linearly with a constant rate of 1 gate per qubit, indicating its

simpler structure. Similarly, the circuit depth for the Heisenberg

circuit grows linearly by 1 per qubit, while the GHZ circuit depth

increases at the same rate.

quantum state preparation that scale in depth and complexity as

the number of qubits grows. This type of state preparation grows

polynomially in gate count. For classical simulation, the challenge

lies in representing the entangled structure and handling the

exponentially growing Hilbert space. In Table 1, we summarize our

choice of states for state preparation.

To analyze the scalability of gate count and circuit depth for

different quantum state preparation methods, we compare the

resource requirements for two representative quantum circuits: the

Heisenberg ground state and the GHZ state. Figure 2 presents the

total gate count and circuit depth for these circuits as functions

of the number of qubits. The Heisenberg ground state, prepared

using a VQE ansatz, requires a significantly higher gate count and

circuit depth, especially as the number of qubits increases. This is

due to the intricate entangling and parameterized gate structure of

the variational ansatz, which is necessary to capture the entangled

ground state properties. In contrast, the GHZ state circuit grows

linearly in both gate count and depth, as each additional qubit only

requires a single CNOT gate to entangle it with the chain. These

results demonstrate the efficiency of entangled state circuits like

GHZ in scaling, while also illustrating the computational cost of

FIGURE 3

Memory usage and runtime for classical state preparation of the

Heisenberg ground state (green circles) and GHZ state (gray squares)

as functions of the number of qubits/spins. The left axis shows

memory usage in megabytes (MB) as the system size increases. The

right axis illustrates the runtime for each preparation method.

variational approaches for more complex states, such as those in

many-body systems modeled by the Heisenberg Hamiltonian.

For the classical state preparation of the ground state of

the Heisenberg model and the GHZ state, we can use metrics

such as memory usage and time complexity as functions of the

number of spins/qubits. For the Heisenberg model, we’ll use exact

diagonalization, which allows us to find the ground state vector

but is memory-intensive and scales poorly with system size. For

the GHZ state, we’ll simulate the classical representation of the

entangled state, which grows linearly in memory usage.

The Hamiltonian matrix for the Heisenberg model grows as

2n × 2n, where n is the number of spins. The memory usages

is calculated as (dim2) ∗ 8, where each element is assumed to be

a double-precision float (8 bytes). We then compute the smallest

eigenvalue, which corresponds to the ground state. The runtime is

measured for this diagonalization step.

For the GHZ state, we simulate the memory needed to store

a 2n-dimensional vector, as the state requires storing complex

amplitudes for each basis state. This scales linearly with the number

of amplitudes. The time to initialize a GHZ state classically is

minimal, but we measure the allocation and initialization time as

an indication of computational cost (Figure 3).

As we can see from Figure 3, the Heisenberg model’s memory

requirements grow exponentially with the number of spins due to

the full matrix representation required for exact diagonalization. In

contrast, the GHZ state, which requires storing only 2n amplitudes,

has a lower memory complexity but still grows exponentially.

Exact diagonalization for the Heisenberg ground state becomes

computationally intensive as the number of spins increases, while

the runtime for GHZ state preparation remains relatively small,

reflecting its simpler structure.

In Table 2, we compare various classical and quantum state

preparation methods based on their execution time scaling,

resource requirements, and accuracy. This comparison highlights

the computational trade-offs inherent in different approaches and

provides insight into which methods may be best suited for hybrid

HPC-QC workflows.
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TABLE 2 Comparison of classical and quantum state preparation methods in terms of execution time scaling, resource savings, and accuracy.

State preparation method Time Scaling Resource savings Accuracy

Classical methods

Direct encoding O(2N ) High memory requirements Exact but costly

Hartree-Fock O(N4) High memory requirements Exact for weakly correlated

systems, poor for strong

correlations

Density-matrix renormalization group O(N3) (1D systems) Efficient for 1D systems Accurate for low-

entanglement states

Tensor network O(Nk), k < 3 Low memory requirements Lower accuracy with

approximation

Neural quantum states O(Nα),α ∼ 2 Moderate memory requirements Depends on neural

network capacity and training

Quantum methods

Variational quantum eigensolver O(d · p)/O(poly(N)) Moderate (dependent on ansatz) Depends on ansatz

and optimization

Quantum approximate optimization algorithm O(p)/O(poly(N)) Moderate (dependent on depth) Problem-dependent

accuracy

Quantum adiabatic state preparation O(1/12)/O(exp(
√
N)) Moderate (depends on adiabatic path) Depends on gap and

for worst-case scenarios evolution time

Here, N is the system size. See main text for full description.

Classical methods such as direct encoding and approximate

encoding techniques (e.g., tensor networks and neural quantum

states [NQS] (Carleo and Troyer, 2017); see Lange et al.,

2024 for a comprehensive review) typically scale polynomially

or exponentially with system size (N). Direct encoding, while

exact, suffers from an exponential growth in memory and

computation time, scaling as (O(2N)), making it infeasible for

large systems. In contrast, tensor networks reduce computational

complexity to sub-cubic polynomial scaling, typically of the form

(O(Nk)) with (k < 3), by exploiting low-rank representations

of quantum states. While this reduces resource consumption,

it comes at the cost of accuracy. The Hartree-Fock (HF)

method (Echenique and Alonso, 2007) is computationally efficient,

scaling as (O(N4)), but it becomes inaccurate for strongly

correlated systems. DMRG, which scales polynomially ((O(N3)))

in one-dimensional systems, is an effective approach for low-

entanglement states. NQS offer an alternative encoding scheme

where a neural network parameterizes the quantum state, typically

with complexity (O(Nα)), where (α ∼ 2), though accuracy

depends on the expressivity of the network and the effectiveness

of training.

Quantum computing methods such as Variational quantum

state preparation methods, such as the VQE and the Quantum

Approximate Optimization Algorithm (QAOA), introduce

tunable parameters that affect both accuracy and computational

complexity. VQA techniques scale polynomially in N. The

scaling of VQE depends on the ansatz depth and the number

of parameters used, typically expressed as (O(d · p)), where

(d) is the circuit depth and (p) is the number of variational

parameters. QAOA performance is dictated by the number of

optimization layers, scaling as (O(p)), where (p) represents the

number of QAOA layers required for convergence. Finally,

adiabatic state preparation (Albash and Lidar, 2018; Babbush

et al., 2014) follows a different paradigm, where execution time

scales inversely with the spectral gap (1) of the Hamiltonian,

resulting in a complexity of (O(1/12)). This dependence makes

adiabatic methods particularly sensitive to problem-specific

properties. For worst-case scenarios, it exhibits a complexity

of O(exp(
√
N)), though in favorable conditions, it can be

more efficient.

2.2 Time evolution for the Ising model

Once the initial state is prepared, Hamiltonian simulation

enters the evolution stage, where the system’s time-dependent

behavior under a Hamiltonian operator is simulated. This

stage often comprises applying time-evolution operators

that update the state according to Schrödinger’s equation.

However, as quantum systems grow in size, their state space

expands exponentially, making exact simulation on classical

computers infeasible beyond modestly sized systems. This

exponential complexity has driven the development of specialized

classical techniques, such as matrix exponentiation methods

and tensor network approaches, and has spurred interest

in quantum algorithms that leverage quantum hardware

to simulate such systems more efficiently (Morrell et al.,

2024).

In classical simulations, time evolution is commonly performed

by directly exponentiating the Hamiltonian matrix, which

provides an exact solution for small systems. For larger systems,

classical approaches like the Chebyshev expansion (Gull et al.,

2018) and Krylov subspace methods (Liesen and Strakos,
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2012) approximate the action of the time-evolution operator

on an initial state vector without needing to construct

the entire matrix. These methods are highly efficient but

require substantial computational resources as the number of

spins increases.

Quantum computers, by contrast, can approximate these

operators directly through quantum gates, which are well-suited for

simulating unitary evolution (Buessen et al., 2023). Offloading this

operation to QC can significantly reduce the computational burden

on classical HPC, especially in high-dimensional systems.

For complex Hamiltonians, the evolution operator is often

decomposed into simpler, sequential steps using techniques

such as Trotterization (Suzuki, 1976). This decomposition

approximates the Hamiltonian evolution by breaking it into

multiple, smaller time steps, where each step corresponds

to a simpler operator sequence. Quantum processors can

handle this decomposition more naturally. Hybrid systems can

also leverage quantum computing’s strengths in optimizing

these decompositions dynamically, with the classical system

overseeing the simulation accuracy. The Trotterized approach

divides the Hamiltonian into commuting parts and approximates

U(t) by iteratively applying each part in sequence, allowing

simulation of time evolution with native operations on a quantum

processor (Ostmeyer, 2023). Although approximate, Trotterization

is highly adaptable to the limitations of current quantum hardware,

where gate depth and coherence times remain constraints.

In this experiment, we focus on the Ising model with a

transverse magnetic field, a paradigmatic system used to study

quantum phase transitions and magnetism. The Ising model

describes a chain of spins with interactions between nearest

neighbors and an external magnetic field. This model captures

key aspects of more complex quantum systems and serves as an

ideal testbed for simulating quantum dynamics due to its well-

understood behavior and simplicity. The Hamiltonian for the 1D

Ising model with an external magnetic field is given by:

H = −J
∑

i

σ (i)
z σ (i+1)

z − h
∑

i

σ (i)
x (2)

where J represents the strength of the interaction between

neighboring spins, encouraging alignment in the z-direction, and

h represents the strength of the external magnetic field in the

x-direction, which introduces a competing influence on the spins.

In this setup, each spin is represented by a qubit, with

Pauli operators σz and σx applied to describe the interactions

and external field effects, respectively. The Ising Hamiltonian’s

structure allows us to decompose the simulation into manageable

computational steps, or primitives, that can be selectively run on

classical or quantum hardware. This modular approach provides

a basis for analyzing the resource demands of each stage in both

quantum and classical environments. Accurately modeling the time

evolution under this Hamiltonian requires calculating the unitary

operator U(t) = e−iHt , which evolves the quantum state over

time t.

We conducted and experiment to analyze and compare the

resource requirements for time evolution of the Ising model using

both classical and quantum approaches. We simulate the time

evolution on a classical computer by direct matrix exponentiation

FIGURE 4

Memory usage (left) and runtime (right) for classical time evolution

of the Ising model as functions of the number of qubits/spins. The

left axis shows memory usage in megabytes (MB) as the system size

increases. The right axis illustrates the runtime.

for small system sizes, tracking metrics such as memory usage

and runtime to understand the classical computational burden

as system size increases. These results provide a baseline for

comparing with Trotterized quantum simulations, which have

more favorable scaling on quantum devices due to their use of

native gate operations. By examining both classical and quantum

resources, this study provides insights into the practical trade-offs

between accuracy and scalability in simulating quantum dynamics

and underscores the potential of quantum algorithms for tasks that

are computationally intensive on classical architectures.

Figure 4 illustrates the memory usage and runtime required

for the classical simulation of time evolution in the Ising model,

with the number of spins ranging from 2 to 14. As the system

size increases, both memory usage (in MB) and runtime (in

seconds) display significant growth, highlighting the resource-

intensive nature of classical simulations for larger spin systems.

The memory usage starts low, at around 0.04 MB for 2 spins,

and increases exponentially, reaching approximately 6,760 MB

(or 6.76 GB) for 14 spins. This trend reflects the exponential

scaling of memory required to store the Hamiltonian matrix and

perform matrix operations as the number of spins grows, which is

a direct result of the 2n × 2ndimensionality of the Hamiltonian.

Similarly, the runtime also grows exponentially, increasing from

around 0.0005 s for 2 spins to 890 seconds (approximately 15

min) for 14 spins. The rapid increase in computational time is

due to thematrix exponentiation andmatrix-vector multiplications

required for the time evolution of the quantum state, which become

computationally prohibitive as the system size expands.

Both memory usage and runtime curves reveal the practical

limitations of classical simulations for quantum systems, especially

as the number of spins exceeds around 12–14. The exponential

scaling observed here underscores why classical methods are

infeasible for simulating large quantum systems and highlights

the potential advantage of quantum computing, where resource

requirements grow more slowly with system size for tasks like time

evolution and measurement.

Figure 5 displays the gate count (in green) and circuit depth

(in gray) required to perform first-order Trotterization for time
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FIGURE 5

Gate count (green) and circuit depth (gray) needed to perform first

order trotterization for the time evolution of the Ising model as a

function of the number of qubits, ranging from 2 to 14. We used 10

Trotter steps for this experiment to showcase the scaling. The gate

count increases approximately linearly with the number of qubits.

The circuit depth also grows steadily, though at a slower rate.

evolution of the Ising model as a function of the number of spins.

We used 10 Trotter steps consistently across all spin numbers,

even though 10 steps provide more precision than necessary for

smaller spin systems. This consistency in Trotter steps is intended

to highlight the scaling behavior as the spin count increases, where

higher precision becomes more crucial. The gate count increases

significantly with the number of spins, reflecting the additional

operations needed to simulate interactions between spins and

apply the transverse magnetic field in the Ising model. As each

Trotter step requires separate gates to simulate each term in the

Hamiltonian, the total gate count scales quickly with the number

of spins, indicating the intensive gate requirements for accurate

time evolution as system size grows. Similarly, the circuit depth

also increases with the number of spins, though at a slightly slower

rate than the gate count. Circuit depth represents the longest

sequence of dependent gates, meaning that as spin interactions

increase, more gates must be applied sequentially to simulate the

interactions accurately within each Trotter step. This increase in

depth highlights the scaling challenge for quantum circuits, as

greater circuit depth typically requires higher coherence times on

quantum hardware.

The exponential growth in both gate count and circuit

depth illustrates the practical considerations of simulating time

evolution through Trotterization on quantum hardware. While the

computational cost for small systems is manageable, the increasing

complexity for larger systems underscores the need for efficient

resource management and error mitigation on quantum devices.

Consistently using 10 Trotter steps across all system sizes also

illustrates how resource demands scale significantly as accuracy

needs increase, especially in systems with more spins, reinforcing

the importance of optimizing Trotter steps in practical applications.

2.3 Measurement in the Ising model

In this section, we delve into measurement, i.e., extracting

and analyzing observable quantities. After the quantum system

has evolved over a specified period, the next step is to

measure observables to interpret key physical properties, such

as energy levels, magnetization, or correlation functions. These

measurements provide insight into the behavior and properties of

the system and are essential for validating theoretical predictions or

examining phenomena like phase transitions and entanglement.

Calculating the expectation values of various operators, such

as spin or momentum, is a foundational measurement. Quantum

processors offer a distinct advantage in this area by leveraging

repeated sampling of the quantum state, a process that directly

yields expectation values without requiring complex probabilistic

approximations. On classical computers, however, this task is more

resource-intensive, often relying on matrix-based methods that

become computationally prohibitive as system size grows. As a

result, offloading measurement calculations to quantum hardware

can lead to faster and more accurate results, with significant

reductions in computational resources.

When considering quantum measurements on a real quantum

device, measurement involves preparing and measuring the system

multiple times to obtain statistics, but each measurement is nearly

instantaneous (on the order of microseconds to milliseconds and

it does not require explicit storage of the state vector, as in

classical simulations and thus doesn’t suffer from exponential

memory scaling. In a real-world scenario, comparing the number

of measurements required to reach a certain precision in estimating

an observable (e.g., an expectation value) would provide a fairer

basis for resource comparison. For this reason, our experiment here

consists in measuring an observable in a quantum device directly

by repeating the experiment multiple times (each measurement

or “shot" on a real quantum device is independent of system

size). In contrast, classical algorithms often need to compute full

probability distributions or use dense matrix methods, which scale

exponentially with the number of qubits.

In Figure 6, we illustrate the resource demands for measuring

the expectation value of the Ising model Hamiltonian using

both quantum and classical methods. The quantum approach

requires multiple measurements, or “shots,” to achieve a specified

precision level. As shown by the green line, increasing the number

of shots on a quantum device significantly improves precision,

with the required shot count inversely proportional to the target

accuracy. In contrast, the classical method (represented by the

red dashed line) provides an exact result in a single computation

but becomes computationally infeasible as system size increases.

This comparison underscores the potential for quantum devices

to achieve scalable precision through sampling, highlighting a

trade-off between single exact computations classically and iterative

measurements quantumly, which may offer resource efficiency in

larger quantum systems.

2.4 Quantum o	oading: feasible primitives
and integration points

State preparation remains a major bottleneck in quantum

simulation, requiring methods that balance accuracy, efficiency,

and feasibility on near-term and future quantum hardware.

From our comparison of state preparation methods (see Table 2),

purely classical and purely quantum approaches each suffer
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FIGURE 6

Mean measured expectation value (gray markers) as a function of

the number of shots, with error bars representing the standard

deviation across 100 repeated experiments, The exact classical

simulation value (green dashed line) is shown for reference. As the

number of shots increases, the mean measured expectation value

approaches the classical value, and the variability (standard

deviation) decreases, indicating improved precision with higher shot

counts. The logarithmic scale highlights the convergence trends

and the diminishing e�ect of statistical noise at larger shot counts.

from distinct scaling issues. Classical direct encoding scales

exponentially with system size (O(2N)), making it infeasible

for large quantum systems. Quantum variational methods scale

polynomially but require extensive circuit optimization, which can

be computationally prohibitive for complex systems. Adiabatic

state preparation faces challenges in maintaining a sufficiently

large spectral gap. Hybrid quantum-classical methods can bridge

this gap by (1) using classical models (e.g., NQS or tensor

networks) to generate an approximate quantum state before

quantum refinement (Yang et al., 2019; Zhu et al., 2022; Chen and

Heyl, 2024); (2) implementing quantum subroutines only for tasks

that exhibit a clear quantum advantage, such as handling high-

dimensional entanglement structure; and (3) employing classical

heuristics.

One example of such quantum-classical approach is the

integration of classical differential equation solving with adiabatic

quantum state evolution. In Hejazi et al. (2024), the authors

provide a resource-efficient approach (A-QITE) to quantum state

preparation by reducing the need for quantum tomography and

ancilla qubits. One of the key insights from A-QITE is that

imaginary time evolution can be reinterpreted as an adiabatic

process under a modified Hamiltonian H̃(τ ), which can be

precomputed classically and then used to evolve the quantum

system without costly tomography. The classical strategy in this

scheme involves soling the imaginary time evolution trajectory

classically to determine an optimal adiabatic Hamiltonian or an

efficient ansatz for the variational method. Then, the quantum

evolution is implemented using a simplified adiabatic or variational

approach, significantly reducing the depth of required quantum

circuits.

Another promising avenue for improving state preparation

in hybrid quantum-classical workflows is the integration of

optimal control techniques (Ansel et al., 2024; Coello Pérez et al.,

2022). These methods leverage classical optimization algorithms

to engineer quantum control pulses, tailoring quantum state

evolution to minimize errors and decoherence while reducing

gate complexity. In Coello Pérez et al. (2022), the authors

demonstrate that adiabatic state preparation is limited by long

implementation times, which are often comparable to the

decoherence times of near-term quantum devices. By introducing

customized quantum gates optimized through classical control

algorithms, the researchers achieved significant improvements in

fidelity (up to 95%) while dramatically reducing circuit depth.

This insight suggests that optimal control strategies could serve

as a key ingredient in hybrid HPC-QC workflows, where classical

algorithms compute optimal pulse sequences that guide quantum

state evolution in the most efficient manner.

Another essential quantum-native operation is time evolution.

Applying time-evolution operators over many iterations, as

required for simulating dynamics in quantum systems, quickly

becomes intractable for classical systems. In quantum computing,

Trotterized methods approximate time evolution by decomposing

the Hamiltonian into simpler components, each of which can

be applied as a sequence of gates on a quantum device. This

approach is advantageous in the NISQ context, as it reduces the

depth of each circuit at the expense of exact precision. Hybrid

workflows could exploit this Trotterized structure by running

parallelized quantum circuits on separate quantum devices, while

the classical system manages synchronization and error mitigation.

Despite the approximation errors introduced by Trotterization,

this hybrid strategy enhances computational speed and reduces

memory requirements, making it particularly beneficial for early

quantum processors. For example, in Carrera Vazquez et al. (2023),

the authors introduce a hybrid quantum-classical approach to

Hamiltonian simulation that leverages Multi-Product Formulas

(MPFs) (Zhuk et al., 2024) to enhance the efficiency and accuracy

of quantum computations. In this method, the expectation values

are computed on a quantum processor and then classically

combined using MPFs. This strategy avoids the need for additional

qubits, controlled operations, and probabilistic outcomes, making

it particularly suitable for current NISQ devices. the methodology

is applied to the transverse field Ising model and theoretically

analyzed for a classically intractable spin-boson model. These

applications highlight the potential of hybrid approaches to

tackle complex quantum systems that are challenging for classical

simulations alone. Furthermore, by distributing the computation

of expectation values across multiple quantum processors, the

approach can parallelize tasks, reducing overall computation time

and mitigating the impact of decoherence in NISQ devices.

In a fault-tolerant quantum future, Hamiltonian exponentiation

techniques could achieve exact time evolution on quantum

hardware, simplifying integration by removing the need for

frequent classical corrections and feedback loops in the workflow.

One of the most critical aspects of Hamiltonian simulation,

particularly in the context of variational algorithms like the VQE,

is the selection of an efficient ansatz. The ansatz is a parameterized

quantum circuit that approximates the target quantum state,

such as the ground state of a given Hamiltonian. The choice

of ansatz directly impacts the algorithm’s accuracy, convergence,

or even failure to capture the necessary correlations within the
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quantum system. HPC systems, when integrated with quantum

hardware, can play a pivotal role in addressing the challenges

by enabling more efficient ansatz design and evaluation. The

synergy between classical HPC resources and quantum devices

provides opportunities for both pre- and post-processing that

can enhance the overall workflow. For example, HPC systems

can be used to perform classical simulations, such as mean-field

approximations, tensor network simulations, or neural quantum

states, to generate initial guesses for the quantum ansatz. By

analyzing classical approximations of the target state, the quantum

circuit can be pre-conditioned to focus on the correlations

that are most challenging for classical methods, reducing the

need for deep circuits. In addition, classical machine learning

models, such as reinforcement learning or genetic algorithms, can

optimize the ansatz structure by searching for configurations that

balance expressivity and feasibility, tailoring it to the Hamiltonian

and the hardware. Adaptive ansatz strategies, such as ADAPT-

VQE (Grimsley et al., 2019), which iteratively build the circuit by

adding gates that reduce the energy error, can benefit significantly

from HPC support. Classical resources can pre-screen potential

gate additions or evaluate their impact before implementation on

the quantum device, optimizing the adaptive process. After the

quantum simulation, HPC systems can validate the results by

comparing them against high-precision classical benchmarks for

smaller subsystems or by using extrapolation techniques to assess

the accuracy of the ansatz. For example, in Jattana et al. (2022), the

effectiveness of the VQE in computing the ground state energy of

the anti-ferromagnetic Heisenberg model is evaluated. The study

involves ground state preparation, utilizing a low-depth-circuit

ansatz that leverages the efficiently preparable Néel initial state. The

largest system simulated comprises 100 qubits, with extrapolation

to the thermodynamic limit yielding results consistent with the

analytical ground state energy obtained via the Bethe ansatz. The

main bottlenecks identified include the selection of an appropriate

ansatz, the choice of initial parameters, and the optimization

method, as these factors significantly influence the convergence and

accuracy of the VQE.

Expectation value calculations represent another ideal candidate

for quantum offloading, as they involve measurements of

observables like energy or magnetization from the quantum state.

Classically, obtaining expectation values in large quantum systems

requires computing dense probability distributions or matrix

representations, both of which scale poorly with system size.

Quantum devices, on the other hand, can measure expectation

values directly through sampling, where repeated measurements

of the quantum state yield statistically accurate results without

needing to reconstruct the full state. This capability is advantageous

even in the NISQ era, as it reduces the memory and processing

demands on classical systems. However, the accuracy of quantum

sampling is limited by the number of measurements (shots)

and the fidelity of the quantum device, presenting a challenge

for hybrid workflows – such as the VQE algorithm — that

rely on high-precision data. The problem is highly exacerbated

in complex Hamiltonians, where the number of operators to

measure grows quickly, limiting the practical scalability of VQE

on current quantum hardware. To address this, a hybrid approach

could involve quantum measurements as an initial estimate,

with a classical system refining the measurement using error-

corrected feedback. For example, in Nykänen (et al.), the authors

propose a classically boosted VQE approach that uses Bayesian

inference to alleviate the measurement overhead, aiming to

reduce the required number of quantum measurements while

preserving accuracy. The strategy involves a hybrid scheme where

classical computations assist the quantum measurements through

Bayesian inference, a statistical approach that updates probability

estimates based on prior information and new data. By integrating

Bayesian inference, the algorithm reduces the need for repeated

measurements, as the classical component makes use of prior

measurement data to refine its estimates more efficiently. In Wang

and Jaiswal (2023), the application of the VQE is explored in the

preparation of ground states of the 1D generalized Heisenberg

model, utilizing up to 12 qubits. The study demonstrates that VQE

can effectively approximate ground states in the anisotropic XXZ

model. Nonetheless, the study also highlights that achieving a target

precision in expectation values is a significant challenge for larger

quantum systems. Optimized sampling methods, which adaptively

allocate measurement shots to terms with higher variance in the

Hamiltonian decomposition, substantially reduce the number of

measurements required to achieve the same precision compared to

uniform sampling.

In the long term, fault-tolerant quantum systems will further

alleviate these accuracy constraints, allowing precise measurements

of complex observables with fewer classical resources involved in

post-processing.

In designing hybrid workflows, it’s critical to establish

integration points that leverage the strengths of both quantum and

classical systems. Parallel quantum execution is one such approach,

allowing simultaneous quantum operations to reduce latency and

manage decoherence on NISQ devices. In a hybrid workflow,

multiple quantum devices could perform state preparation or

expectation value calculations in parallel, with a classical system

handling task scheduling, error correction, and result aggregation.

This parallelism is particularly beneficial in Hamiltonian

simulation, where operations can be distributed among quantum

devices to maximize computational throughput. Furthermore, to

support the development and benchmarking of quantum-HPC

applications, frameworks that provide necessary abstractions

for creating and executing primitives across heterogeneous

quantum-HPC infrastructures are needed (Saurabh et al., 2024).

Another key integration technique is a real-time data pipeline,

which enables efficient feedback loops between quantum and

classical systems. This feedback is vital in applications like

variational algorithms, where intermediate quantum outputs guide

further optimization steps in the classical system. By continuously

analyzing and refining quantum results, the classical system can

improve overall workflow efficiency, a feature that becomes even

more impactful with the increased reliability of fault-tolerant

quantum devices.

Error mitigation and hybrid error correction are pivotal for

the effective implementation of hybrid HPC-QC workflows,

particularly in the NISQ era. Some key techniques for error

mitigation and hybrid error correction can be integrated into

HPC-QC workflows. For example, zero-noise extrapolation

(ZNE) (Temme et al., 2017), a widely adopted error mitigation
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method. The core idea is to execute a quantum circuit at

varying noise levels and extrapolate the results to the zero-noise

limit. This approach involves artificially increasing the noise

in the quantum system by stretching gate times or repeating

gates, followed by applying polynomial fitting or Richardson

extrapolation (Richardson and Gaunt, 1927) to predict results at

the zero-noise limit. In hybrid HPC-QC systems, HPC resources

can aid in the extrapolation step by performing high-precision

statistical analysis and model fitting, significantly reducing the

computational overhead on quantum devices. Additionally,

ZNE can be used to mitigate errors associated with mid-circuit

measurements (DeCross et al., 2023). Delays introduced by

mid-circuit measurements often cause idle qubits to accumulate

errors due to qubit cross-talk and state decay mechanisms such as

T1 and T2 relaxation. By stretching these delays by multiple factors

and applying dynamical decoupling pulses during idle periods, it

is possible to suppress errors and extrapolate back to a zero-delay

state. This technique not only reduces the impact of errors on

dynamic circuits but also enhances the feasibility of applications

that rely on mid-circuit measurements (Carrera Vazquez et al.,

2024).

Probabilistic error cancellation (van den Berg et al., 2023)

uses knowledge of noise models to construct virtual noise-free

results. This technique requires accurately modeling the noise in

the quantum hardware and combining multiple circuit runs with

adjusted probabilities to cancel out the effects of noise. Though

computationally expensive, HPC systems can efficiently perform

the noise characterization and correction computations, leveraging

their high processing power to enable this method on quantum

devices with limited qubits (Gupta et al., 2023).

Dynamical decoupling (Ezzell et al., 2023) is a hardware-

level technique that combats decoherence by applying sequences

of carefully timed pulses to the quantum system. These pulses

average out environmental noise effects over time. HPC systems

can optimize pulse sequences using machine learning algorithms

and validate and simulate the impact of different sequences on

reducing decoherence (Rahman et al., 2024).

In hybrid workflows, classical post-processing plays a

critical role in mitigating errors from quantum outputs. Shot

noise reduction, which involves averaging multiple quantum

measurements to improve precision, and Bayesian inference,

which uses statistical models to refine measurement results and

reduce the impact of quantum sampling noise, are common

approaches. HPC systems can accelerate these processes by

running parallelized statistical computations, enabling real-time

feedback loops between quantum and classical systems.

Real-time error correction involves dynamically adjusting

quantum operations based on feedback from classical

computations. This can be achieved by monitoring noise

profiles using classical systems to continuously track noise levels

and adjust quantum gate parameters accordingly. Adaptive circuit

compilation (Mato et al., 2022; Grimsley et al., 2019; Ge et al.,

2024) can also modify quantum circuits on the fly to account for

evolving noise conditions.

Hybrid error correction schemes integrate quantum error

correction codes with classical error detection and mitigation

techniques. For example, employing quantum error correction

codes like surface codes for logical qubit protection while using

HPC systems for syndrome decoding and recovery operations,

or implementing hybrid decoding algorithms that split the

computational load between quantum and classical systems,

leveraging classical resources to handle parts of the decoding

process that exceed quantum hardware capabilities.

To integrate these strategies into hybrid HPC-QC systems,

noise modeling is essential. HPC resources can generate and

maintain detailed noise models of quantum hardware, which

are crucial for implementing error mitigation and correction

techniques.Workflow integration ensures that error correction and

mitigation are seamlessly incorporated into the quantum-classical

workflow, involving real-time data exchange between quantum

and classical systems facilitated by high-bandwidth communication

channels. Scalability remains a key concern, as quantum systems

scale and error mitigation techniques must evolve accordingly.

HPC systems provide the necessary computational power to handle

the increased complexity of error correction in larger quantum

systems.

While current error mitigation and hybrid correction

techniques address many challenges of the NISQ era, future

quantum systems will require fault-tolerant architectures that

reduce the reliance on error mitigation, though hybrid approaches

will still play a role in optimizing performance. Advanced machine

learning techniques powered by HPC systems can predict and

counteract errors in real-time, further enhancing the efficiency

of hybrid workflows. Integrated development frameworks that

provide abstractions for error mitigation and correction in hybrid

workflows will streamline the development and deployment of

quantum applications.

Despite these advantages, quantum offloading comes with

challenges that hybrid workflows can help mitigate. For example,

noise and gate fidelity issues in NISQ devices limit the precision

of offloaded primitives, such as time evolution and expectation

value measurement. A hybrid workflow can employ classical

error mitigation techniques, periodically recalibrating or correcting

quantum operations based on classical simulations. Another

challenge lies in the quantum hardware constraints on circuit

depth and coherence time, which hybrid workflows can alleviate

by dynamically adjusting which tasks are offloaded based on real-

time device diagnostics. As quantum systems evolve toward fault

tolerance, hybrid workflows could become more streamlined, with

fewer dependencies on classical oversight. Ultimately, the road

to fault tolerance will allow quantum devices to handle a greater

share of computations independently, significantly enhancing the

efficiency of Hamiltonian simulation and reducing reliance on

classical resources.

The insights provided in this manuscript are invaluable for

informing future hybrid workflow design. By identifying which

primitives are best suited for quantum offloading and detailing

integration techniques, the manuscript offers a foundation for

implementing quantum-ready computational workflows in HPC

settings. While NISQ-era devices present certain limitations, the

strategic use of hybrid workflows enables computational efficiencies

that traditional HPC cannot achieve alone. As quantum hardware

improves, the integration points and offloading strategies discussed

here will support the transition from NISQ devices to fault-tolerant
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quantum systems, establishing a sustainable path for quantum-

classical hybridization in Hamiltonian simulation.

3 Conclusion

The integration of quantum computing with HPC systems

holds transformative potential, particularly in areas like

Hamiltonian simulation, where classical computational costs

grow exponentially with system size. Quantum computing offers

a natural framework for certain computational primitives in

quantum simulation, promising to streamline complex tasks that

classical systems handle inefficiently. However, designing effective

hybrid workflows for Hamiltonian simulation requires careful

consideration of which primitives are best suited for quantum

offloading, how these operations can be integrated into existing

HPC systems, and the unique challenges and limitations posed by

current and future quantum hardware. The information in this

manuscript provides a comprehensive roadmap for identifying and

optimizing such primitives, helping to shape the development of

efficient hybrid workflows.

This breakdown into primitives enables us to identify specific

tasks best suited for quantum processors within Hamiltonian

simulation workflows. By distributing initialization, evolution,

and measurement tasks according to the strengths of each

computing resource, hybrid HPC-QC systems can achieve

significant computational savings while maintaining high accuracy

and scalability. This modular approach also makes the workflow

adaptable: as quantum hardware improves, additional primitives

could be offloaded, enhancing the simulation’s speed and depth.

Moreover, this approach lays the groundwork for scalable

hybrid systems in more general scientific applications.

The modular workflow proposed for hybrid HPC-QC

systems can be extended beyond Hamiltonian simulation to

address computational challenges in a variety of scientific and

industrial domains. By identifying computational primitives in

specific workflows and evaluating their suitability for quantum

acceleration, this approach provides a template for leveraging

hybrid systems effectively. Below, we outline potential applications

and adaptations of the workflow in other fields.

In quantum chemistry, many tasks involve solving the

electronic structure problem, which requires diagonalizing large

matrices or calculating molecular energies. Hybrid HPC-QC

workflows can leverage quantum devices to prepare molecular

ground states or approximate them through variational algorithms

such as the VQE. Classical HPC resources can optimize initial

parameters and refine variational circuits. Simulating chemical

reactions involves modeling the time-dependent behavior of

molecular systems under specific Hamiltonians, with quantum

devices handling time-evolution operators while classical systems

manage error mitigation and validate results. Observables such

as bond lengths, dipole moments, and reaction rates can

be extracted through quantum sampling, with classical post-

processing improving precision.

In machine learning and data analytics, hybrid systems address

challenges in big data and high-dimensional feature spaces.

Quantum kernels accelerate kernel-basedMLmethods by encoding

high-dimensional data into quantum feature spaces, enabling

efficient computation of similarity measures. Hybrid quantum-

classical generative models can be employed, where quantum

circuits generate complex distributions while classical systems

refine the models through training on large datasets (Delgado

et al., 2024) Optimization problems commonly encountered in ML

tasks, such as feature selection or clustering, benefit from quantum

annealing or variational approaches.

Material discovery and property prediction in material science

often involve simulating interactions at atomic or molecular scales.

The workflow can be adapted to simulate novel materials using

quantum processors to simulate material Hamiltonians while

classical HPC resources evaluate structural and thermodynamic

properties. Quantum-enhanced density functional theory (DFT)

calculations improve accuracy and scalability in predicting

electronic properties.

Optimization and operations research frequently involve

problems in logistics, finance, and network design, where the

solution space grows exponentially with problem size. Hybrid

HPC-QC workflows can implement quantum annealing to solve

combinatorial optimization problems, such as the traveling

salesman problem or portfolio optimization. Large optimization

tasks can be decomposed into subproblems solvable by quantum

devices, with classical systems orchestrating the overall process and

validating results.

In high-energy physics and cosmology, large-scale simulations

are essential for understanding fundamental interactions and the

evolution of the universe. Applications include lattice quantum

chromodynamics (QCD) simulations, where quantum processors

handle the highly oscillatory integrals in lattice QCD, while

classical systems manage grid refinement and data aggregation.

Cosmological simulations can model the large-scale structure of

the universe by offloading computationally intensive tasks, such as

N-body simulations, to quantum processors.

Generalizing the hybrid workflow to these domains requires

careful consideration of integration points, identifying which

computational primitives can be effectively offloaded to quantum

hardware. Error mitigation ensures results from noisy quantum

devices are corrected and validated through classical post-

processing. Scalability is key, adapting the workflow to handle

increasing problem sizes and complexities as quantum hardware

capabilities improve. Customization of modular workflow

components aligns with the unique requirements of each

application. By leveraging the strengths of hybrid HPC-QC

systems, researchers can address computational bottlenecks across

a wide range of disciplines, driving advances in both fundamental

science and applied research.

Finally, since quantum processors are prone to noise, post-

processing is essential to mitigate error in measurement. This task

is typically handled on the classical side, using machine learning

or statistical correction techniques. A hybrid HPC-QC setup could

integrate these error-mitigation methods into a feedback loop

where classical hardware analyzes data from measurements and

provides real-time adjustments to improve simulation fidelity.
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