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Phone calls are strictly forbidden in certain locations due to the potential security 
threats. Mobile phones’ growing capabilities have also increased the risk of their 
misuse in places that are restricted, like manufacturing plants. Unauthorized mobile 
phone use in these environments can lead to significant safety hazards, operational 
disruptions, and security breaches. There is an urgent need to develop an intelligent 
system that can identify the presence of individuals as well as cellphone usage. 
We propose an advanced Artificial Intelligence and Computer Vision-based real-
time cell phone detection system to detect mobile phone usage in restricted 
zones. Modern deep learning approaches, such as YOLOv8 for real-time object 
detection to accurately detect cell phone usage, are combined with dense layers of 
ResNet-50 to perform image classification tasks. We highlight the critical need for 
such detection systems in manufacturing settings and discuss the specific challenges 
encountered. To support this research, we have developed a custom dataset of 
2,150 images, which features a diverse array of images with varying foreground 
and background elements to reflect real-world conditions. Our experimental 
results demonstrate that YOLOv8 achieves a Mean Average Precision (mAP50) 
of 49.5% at 0.5 IoU for cellphone detection tasks and an accuracy of 96.03% for 
prediction tasks. These findings underscore the effectiveness of our AI and CV-
based system in detecting unauthorized mobile phone usage in restricted zones.
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1 Introduction

In today’s digitally connected world, the proliferation of mobile devices has transformed 
the way we  live and work. In the modern era of fast network expansion and extensive 
smartphone use, voice calls have ingrained themselves into our everyday lives. Cell phone use 
in restricted areas, such as government buildings, military installations, and sensitive industrial 
zones poses a serious risk to security and privacy (Jegham et al., 2020). The unauthorized use 
of cell phones in these areas can lead to the leakage of sensitive information including 
Intellectual Property (IP) and compromise national security. However, there are specific 
circumstances in which using a mobile phone poses a significant risk to one’s safety. According 
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to recent studies, using a phone in a restricted place has resulted in 
numerous accidents. Surveillance cameras are placed in some areas, 
like gas stations, industries, vehicles, etc. to help control and constrain 
human behavior and address the serious safety risk that handheld 
phone use poses. Nonetheless, psychological factors like carelessness 
can still cause people to act in ways that are unsafe and can result in 
safety incidents (Farmer et  al., 2010; Shukla et  al., 2013). Many 
governments and nations have approved laws prohibiting the use of 
mobile phones in designated places due to the dangers they pose to 
public safety and property. The study in Wang et al. (2014), Berri et al. 
(2014), Jiménez et al. (2016), and Ziebinski et al. (2017) details precise 
mobile phone detection utilizing a variety of techniques, including 
gesture recognition.

Despite the implementation of traditional security measures, the 
detection of cell phones in restricted zones remains a significant 
challenge. Thus, it is essential to implement a computer-vision and 
artificial intelligence (AI) based mobile phone detection system in 
restricted areas, particularly in manufacturing plants where security 
and safety are of the highest importance. By proactively identifying 
and preventing unauthorized mobile phone usage, the project 
significantly enhances workplace safety, minimizes operational 
disruptions, and fortifies sensitive data integrity. This initiative not 
only fosters a culture of compliance and accountability but also 
bolsters overall operational efficiency and productivity within 
manufacturing facilities. Conventional methods of cell phone 
detection, such as manual searches and metal detectors, are often 
time-consuming, invasive, and prone to errors. Moreover, the 
increasing sophistication of cell phone designs and the widespread use 
of concealment methods have made it even more difficult to detect 
these devices using traditional approaches. As a result, there is a 
growing need for innovative solutions that can effectively detect cell 
phones in restricted zones without compromising individual privacy 
or security protocols.

The primary motivation behind the proposed research is to tackle 
a significant issue prevalent in manufacturing industries. The 
integration of Artificial Intelligence (AI) and Computer Vision (CV) 
technologies offers a promising solution to this problem. By leveraging 
the capabilities of AI-powered algorithms and CV-based image 
analysis, it is possible to develop a system that can accurately detect 
cell phones in restricted zones in real time. Such a system can 
be integrated with existing surveillance infrastructure, providing a 
cost-effective and efficient means of enhancing security in sensitive 
areas. We propose an AI and CV-based cell phone detection system in 
restricted zones, which aims to address the limitations of traditional 
detection methods and provide a robust solution for ensuring security 
and confidentiality in sensitive environments.

2 Related work

Conventional object detection algorithms that rely on human 
feature extraction have performed poorly and made slow progress. In 
2012, the topic of object detection reached new heights with the 
development of Convolutional Neural Networks (CNNs). Despite this, 
many object detection network studies have ignored model, 
computation, and parametric size and concentrated only on increasing 
accuracy. Cai and Vasconcelos (2018) developed an R-CNN model 
which was a region recognition-based object detection system that 

embraced the sliding window principle and used a Region region-
generating network (RPN). To overcome R-CNN networks’ speed and 
accuracy constraints, the Fast R-CNN network was developed in 2015 
by Ren et al. (2015). Even though its performance had improved, it 
was still dependent on the selective search technique to find Regions 
of Interest (ROI) and could not achieve real-time capabilities. To 
accomplish real-time end-to-end object identification, Faster R-CNN 
was subsequently proposed (Girshick, 2015). It demonstrated real-
time performance that was most comparable to deep learning 
detection techniques. Despite being two-stage algorithms that are 
faster and more accurate than conventional algorithms, both models’ 
slow detection rates fall short of real-time performance standards due 
to their sophisticated network architecture and computational 
redundancy. Mask R-CNN (He et al., 2017) was presented as a solution 
to this problem where a faster R-CNN structure was improved to 
accomplish the segmentation process and then the ROI pooling 
operation was aligned to provide greater object localization 
performance. Single-stage object detection methods immediately 
sample the image’s dense features for classification and regression 
rather than generating candidate regions. Many efforts have been 
made in the field of CNN-based Infrared (IR) image enhancement in 
surveillance systems (Zhang et al., 2025; Zhang et al., 2024) to preserve 
image quality, and have produced promising results.

The YOLO (You Only Look Once) technique (Redmon et al., 
2016) was described by Redmon et al. (2016) as a solution for the 
sluggish detection speeds that are typically encountered in two-stage 
target detection systems. Although the class of objects and their 
position in the image can be accurately predicted by this technique, 
small targets could not respond well to it. To overcome this problem, 
Liu et al. presented SSD (Single Shot multi-box Detector) (Liu et al., 
2016), which detects targets on feature maps with various visual fields 
using initial frames that were utilized by Anchors in Faster 
RCNN. Feature-based fused SSD was proposed by Cao et al. (2018). 
It makes use of both layer-level and global-feature fusion techniques. 
While the latter improves the detection capability for small targets, the 
former preserves the symbolic data of each layer to increase the 
accuracy of the object detection task. The YOLO family has undergone 
significant evolution since its founding in 2016 and continues to do 
so. Using the foundational basis of YOLOv1, and YOLOv2 models, 
Redmon and Farhadi proposed the YOLOv3 model (Redmon and 
Farhadi, 2018). The backbone is the 53-layer (Darknet) feature-
extraction-efficient CNN layers. This Darknet network creates three 
different feature map sizes, and multi-scale feature fusion is used to 
retrieve small target feature information. Despite improving the 
accuracy of small target recognition, the model is dense. The YOLOv4 
network model was introduced by Bochkovskiy et al. (2020). The 
YOLOv4 algorithm integrates optimization techniques from the 
developments in CNN (Convolutional Neural Network) (LeCun et al., 
1998) and is based on the original YOLO architecture (Redmon et al., 
2016). An object detector’s performance is highly dependent on the 
quality of features extracted. Different experimentations were carried 
out by the researchers on different backbones including EfficientNet 
(Google-Brain). This led to the creation of DenseNet (Huang et al., 
2017), which lowered the number of network parameters by 
addressing the vanishing gradient issue and promoting feature 
propagation and reuse. As the result of another experiment, 
EfficientNet-B3 (Tan and Le, 2019) offers the best choice for parameter 
selection if CNN’s scaling is accomplished using a search technique. 
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CSPDarknet-53 was identified as the official backbone for YOLO-v4 
after further examination.

They experimented with several neck-level integration strategies 
for feature extraction, such as Spatial Attention Mechanism (SAM) 
(Vaswani et al., 2017), Feature Pyramid Networks (FPN) (Lin et al., 
2017), and Path Aggregation Networks (PANet) (Liu et al., 2018). In 
the end, PANet was chosen as the best feature aggregator. An improved 
variant of FPN called PANet adds a shortcut connection to connect 
fine-grained features from high-to-low-level layers while working on 
a reverse augmentation path (bottom-up) in addition to the top-down 
FPN approach. To separate the key features coming from the backbone 
and expand the receptive field, CSPDarknet-53 was added. While 
training with a single GPU, the YOLOv4 model not only validates the 
effects of several cutting-edge target detector training techniques but 
also adapts and enhances them. Similar to YOLOv4, YOLOv5 
(Ultralytics, n.d.) concentrates on integrating and refining various 
computer vision techniques to enhance performance. YOLOv5 divides 
the input picture into several grid cells, and each grid cell is in charge 
of predicting a set of bounding boxes including the likelihood estimate 
of a target class within it. PyTorch (Jocher et al., 2021) served as the 
foundation for the YOLOv5 architecture, which was created to offer 
the required infrastructure to assist in the deployment of portable 
handheld devices.

To design an object detector with an industry application focus, 
Li et al. published the first codebase of the YOLOv6 (Li et al., 2022) 
network in 2022. The architecture is required to be extremely fast and 
accurate while maintaining high performance on a variety of hardware 
options to satisfy the requirements of industrial applications. YOLOv6 
employs a complex model with good resolution on a large training set 
to increase the detection accuracy. Through adaptive training and 
auto-hyperparameter settings, the model can efficiently strike a 
compromise between speed and accuracy.

Performance was improved by using a redesigned reparametrized 
YOLOv5 backbone (EfficientRep) and neck (Ding et  al., 2021) 
(Rep-PAN neck) with extra layers isolating features from the final 
head. The YOLOv7 was introduced by Wang et al. to focus more on 
GPU speed enhancements, particularly inferencing (Wang et  al., 
2022). To preserve high detection speeds and improve accuracy, 
YOLO-v7 recommends certain architectural improvements.

In January 2023, Ultralytics released a new upgrade to the YOLO 
family called YOLOv8 (Jocher et al., 2023) to satisfy the demands of 
automated quality inspection in the industrial surface defect detection 
domain—such as the need for quick detection, high accuracy, and 
deployment onto edge devices. YOLOv8 provides state-of-the-art real-
time and high-classification performance with a small number of 
effective computational parameters. Figure 1 illustrates how YOLO-v8 
outperforms its predecessors in terms of throughput on identical 
parameters after being trained on COCO images (Lin et al., 2014). 
YOLOv5 provides exceptional real-time performance, while YOLOv8 
is the ideal option for applications that require high inference speed 
and constrained real-time edge device deployment.

Several application computer-vision-based applications have been 
developed using these frameworks. Ahmad et al. proposed a mobile 
phone usage detection system based on the YOLOv5 algorithm to 
administer the online test (Al-Allaf and Asker, 2022). The Makesense 
website was used to categorize a custom dataset of phone photos in 
various positions and orientations. The examinee’s computer’s webcam 
records live footage which was subsequently analysed YOLOV5 
algorithm. Real-time mobile phone usage detection with a maximum 
accuracy of 92% and a False acceptance rate (FAR) of 4% was reported. 
The YOLOv8n (Shen et al., 2024) based model was introduced by 
Qian et al. to identify distracted driving. They included StarNet into 
the model’s core to boost feature extraction performance while 
achieving a notable decrease in computational complexity. To lower 
the detection head’s computational load and parameter size, the 
shared convolution layers were incorporated. An accuracy of 99.6% 
on a dataset of 100 drivers showed a notable improvement in 
distracted driving behavior.

A method for detecting mobile phone usage was developed by 
Rehman et al. (2021). For feature extraction, they used the Speeded 
Up Robust-Features (SURF) and Histogram of Oriented-Gradients 
(HOG) approaches. Classification tasks are completed by Support 
Vector Machine (SVM), Nearest Neighbour (K-NN), and Decision 
Tree classifiers. High-speed detection was possible with HOG and 
SVM classifiers, but accuracy was compromised. Talib et al. (2024) 
presented “YOLOv8-CAB” as an improvement to the YOLOv8 object 
identification framework. Contextual-Attention-Block offers multi-
scale feature maps and incremental feedback, which greatly enhances 

FIGURE 1

YOLOv5 to v8 performance comparison (Hussain et al., 2023).
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small object identification performance. As a result, feature-fusion, 
contextual information preservation, and enhanced weak feature 
extraction are made possible by this architecture. When tested on the 
COCO dataset, the model demonstrated a mean average precision of 
97% of detecting rate, which is a 1% improvement over 
traditional models.

As discussed in this section, the YOLOv8 has improved over its 
predecessors to provide state-of-the-art real-time performance with 
high accuracy and speed—two essentials for real-time object 
recognition applications. Its capacity to precisely identify smaller 
objects has been significantly improved by anchor-free architecture, 
multi-scale prediction capabilities, and optimizations. Most recent 
research focuses on driver distraction behavior, mobile usage 
detection in exams, or object detection using YOLO models. Research 
on mobile phone recognition in restricted areas, particularly in 
industrial settings, utilizing the YOLOv8 model is still in its early 
stages. Using the cutting-edge YOLOv8 object detector, we proposed 
an “automated cell phone detection system for manufacturing plants” 
to bridge this gap. The remainder of the paper is organized as follows: 
The implementation details are covered in Section 3. The research 
findings and analysis are discussed in section 4. The section wraps up 
by providing a summary of the work and outlining the scope of 
future work.

3 Implementation

To ensure a cell-free environment within restricted zones of 
manufacturing industries, there is a need to develop inexpensive and 
accurate solutions that can be  seamlessly integrated into existing 
infrastructure. To address this issue, we have proposed an AI and 
Computer-vision-based cell phone detection system in restricted 
zones, detecting and preventing cell phone usage in restricted zones. 
The system leverages cutting-edge advancements in AI and CV that 
can be integrated with existing surveillance camera systems to identify 
cellphone misuse and alert authorities in real-time. The flowchart in 
Figure 2 illustrates the process of the proposed system. The steps are 
explained next.

3.1 Dataset collection

Our study started by tackling the issue of the absence of publicly 
available datasets on mobile usage in industrial environments. By 
collecting images from numerous manufacturing facilities in the 
Belagavi (Karnataka) and Kolhapur (Maharashtra) regions under 
varying lighting circumstances and CCTV camera angles, 
we produced a high-quality dataset. Additionally, as the resolution of 
CCTV footage varies across different industries, we  developed a 
dataset derived from online videos to simulate CCTV point-of-
view perspectives.

This allowed our model to be trained and become proficient in 
identifying cell phones even from various CCTV angles. The sample 
collected dataset images are indicated in Figure 3. We have created a 
custom dataset containing 4,500 images by capturing images from 
various industries and collecting images of people carrying cell phones 
from online repositories. After the data cleaning process, we carefully 
chose 2,150 images for implementing the model. The dataset is divided 

into two classes and contains images of persons carrying a cell phone 
(With cellphone) and another without one (Without cellphone). To 
maintain the person’s privacy and confidentiality, we have blurred 
their faces in the generated dataset.

3.1.1 Ground truth dataset and annotation
Now our next step is to create ground truth by labeling and 

segmenting the collected dataset. For this we chose a popular annotating 
tool called “LabelImg” for cell phone detection. LabelImg is a user-
friendly tool with a straightforward interface that typically involves 
drawing bounding boxes around the phones in images. LabelImg excels 
at this task, allowing us to efficiently create precise annotations and 
labelling as shown in Figure 4. After labeling the data set using people 
with and without cellphone labels, we perform segmentation tasks on the 
specific object of interest, i.e., the phone itself. This allows us to focus 
solely on the phone’s presence or absence in the images without any 
distractions from other objects or background elements. Segmenting the 
phone helps standardize the dataset by removing variations in 
background, lighting conditions, or other environmental factors that 
may be present in the original images. This ensures consistency across 
the dataset and facilitates more accurate analysis and classification. 
We have segmented up the dataset using the Python code, so we get good 
quality. Following labeling and segmentation, the information is saved in 
XML (eXtensible Markup Language) format to give structured annotated 
information, such as the location and characteristics of objects in images. 
It contains tags that represent many aspects of the labeled data, including 
class labels, object bounding boxes, and picture metadata. In addition to 
being compatible with a variety of annotation tools and frameworks, this 
structured representation enables effective storage and retrieval of 
annotated data. After the labeling process, the XML file is then converted 
to YOLO format.

FIGURE 2

Steps followed in the implementation of the proposed cellphone 
detection system in restricted zones.
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3.1.2 Data augmentation
Data augmentation techniques are employed to enhance the 

variability of the dataset, thereby improving the model’s robustness. 
These techniques include rescaling, shearing, zooming, flipping, 
rotation, and adjusting brightness. By exposing the model to a wider 
range of variations in the data, data augmentation helps to enhance 
the model’s performance and prevent overfitting.

3.1.3 Data splitting and generators
The dataset is split into separate training and validation sets using 

a train-test split. This step ensures that we have distinct datasets for 
training and evaluating the performance of our cellphone detection 
model. Data generators are created for both the training and validation 
data, responsible for loading batches of data during model training. 
This facilitates the efficient processing of large datasets and ensures 
that the model receives properly formatted input data during training, 
thereby enhancing the model’s performance and accuracy.

3.2 Model selection

The detection of cell phones in restricted zones is a critical task for 
ensuring compliance with regulations and maintaining security. 
Computer vision techniques can be employed to accurately detect cell 
phones in such environments. These techniques involve the use of 

machine learning algorithms, such as deep learning architectures 
based on convolutional neural networks, to recognize cell phones 
from visual data. The problem of object detection is a rapidly evolving 
research area in contemporary AI, with several well-recognized 
strategies available. These include:

 • Single-shot Multi-Box Detector (SSD)
 • YOLO
 • ResNet (Residual Network)
 • Region Based Convolutional Neural Network (R-CNN)
 • DetectNet
 • RetinaNet
 • CenterNet

Since the proposed work requires a balance between detection 
accuracy and real-time performance, we  chose the YOLOv8 
framework for cell phone detection operations. Since the cellphone is 
a small object to be detected under diverse lighting and background 
scenes, after accurate cellphone object detection, accurate recognition 
plays a very crucial operation in the success of this proposed work. In 
addition to YOLO, we utilize ResNet-50 (He et al., 2016), a state-of-
the-art deep learning algorithm to recognize and validate the unseen 
dataset as well as assess the model’s performance during training. 
ResNet-50, a variant of the ResNet (Residual Network) architecture, 
is frequently used in object detection tasks since it can train networks 

FIGURE 3

The sample dataset used in our proposed work. (a) Custom developed dataset image with a cellphone (b) a Custom dataset image without a cellphone 
(c) a sample person with a cellphone image from the Roboflow 2.0 (Talib et al., 2024) dataset.

FIGURE 4

Ground truth dataset labeling and segmentation. (a) With a cellphone (b) without a cellphone (c) segmenting cellphone object.
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with hundreds of layers, which is extremely deep. Because information 
from previous layers can be  preserved, residual blocks and skip 
connections are used to make this possible. Getting state-of-the-art 
results in a variety of image-related tasks, including object 
identification, image classification, and picture segmentation, is 
another benefit of ResNet-50. This dual-layer approach of using 
YOLOv8 for real-time object detection and ResNet-50 for cellphone 
recognition ensures a high level of accuracy and robustness in 
detecting unauthorized cellphone usage.

3.2.1 YOLOv8 architecture
In the year 2025, Redmon et al. (2016) presented their object-

detection algorithm known as “You Only Look Once (YOLO)” which 
outperformed its predecessor Region-based Convolutional Neural 
Network (R-CNN) model in terms of real-time object detection 
capabilities. It is called a single-shot detector that uses a single neural 
network to predict bounding boxes and class probabilities from the 
same image to perform classification tasks in a single pass. The YOLO 
architecture is illustrated in Figure 5. Over the earlier YOLO models, 
the recently released YOLOv8 computer vision algorithm is the best 
example of a cutting-edge model. The head, neck, and backbone layers 
make up the architecture.

3.2.1.1 Backbone
It is sometimes referred to as the feature extractor that is 

responsible for obtaining edge and texture feature maps from images 
through a pre-trained CNN.

3.2.1.2 Neck
The neck performs feature fusion operations and integrates 

contextual information using Feature Pyramid Network (FPN) 
path aggregation blocks. This layer serves as a bridge between the 
head and the backbone. It is responsible for predicting bounding 
boxes and classification of objects before passing them onto the 
head layer.

3.2.1.3 Head
It is the last component of the network and is in charge of 

producing the outputs in the form of object detection confidence 
scores in the bounding box representing the likelihood that an object 
is present.

Each of these components is essential to our YOLO cell phone 
detection process, and the network’s architecture is tailored to 
effectively and efficiently gather complex visual information, 
producing the quick and precise predictions required for real-
time applications.

3.2.2 Pre-trained ResNet-50
Figure 6 highlights the key components of the popular ResNet-50 

model (He et al., 2016) where each block has a different composition, 
convolution sizes, and feature maps. ResNet50 is pre-trained with 
images from the ImageNet dataset. It presents a novel residual learning 
idea that makes training deeper networks easier and mitigates the 
vanishing gradient issue (see Figure 7).

The modified architecture after removing the original classification 
layers also has proven to have remarkable feature extraction 
capabilities, which makes it a good fit for challenging classification 
tasks like cell phone detection in complex environments. In our work, 
we use ResNet50 as a feature extractor without fully connected layers. 
We freeze its convolutional layers to retain pre-trained knowledge. 
Later we add new dense layers with ReLU activation and dropout to 
prevent overfitting and finally use a sigmoid activation in the final 
layer for binary classification. To ensure the precision of the detection 
process, the output layer is therefore essential in pinpointing the 
precise locations of the pure bounding boxes of the objects that have 
been detected. This is especially crucial for accurately detecting cell 
phones in photos processed by the ResNet-50 and 
YOLOv8 combination.

3.2.3 Proposed YOLOv8 with ResNet-50 based 
cellphone detector

Figure 7 illustrates the proposed YOLOv8 and ResNet-50 based 
cellphone detector system. YOLO is a popular object detection model 
known for its speed and accuracy. It is an end-to-end neural network 
architecture that makes bounding box and class probability 
predictions all at once. It differs from the approach taken by previous 
object detection algorithms, which repurposed classifiers to perform 
detection. By taking a radically different approach to object detection, 
YOLO outperformed existing real-time object detection algorithms 
and produced state-of-the-art results. A custom-trained deep 
learning model, specifically designed for cellphone detection, forms 
the core of the system. High-resolution CCTV cameras or webcams 

FIGURE 5

YOLO object detector architecture (He et al., 2016).
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strategically placed within the restricted zone capture real-time video 
footage of the manufacturing environment. The acquired video 
stream undergoes preprocessing to optimize it for subsequent 
analysis. This may involve frame rate adjustment, resizing, and noise 
reduction to enhance image quality and computational efficiency. 
The model is trained on a diverse dataset comprising images of 
cellphones in various orientations, lighting conditions, and 
backgrounds, ensuring robustness and adaptability to real-
world scenarios.

The deep learning model analyzes each preprocessed frame, 
identifying potential Regions of Interest (ROI) that may contain a 
cellphone. Within these ROIs, the model performs fine-grained 
analysis, extracting features like shape, texture, and color to determine 
the likelihood of a cellphone being present. Upon detection, the 
system accurately localizes the cellphone within the frame by drawing 
a bounding box around it, providing visual feedback to operators. 
Regions of interest are further scrutinized by ResNet-50 for dataset 
validation. Post-processing refines detections, triggering alerts, or 
real-time visual displays upon confirmation of mobile phone presence. 

All detections are logged in the serial frame monitor and display the 
result of cellphone detections. These backbones include, for example, 
the well-known Darknet-53 or CSPDarknet-53.

3.3 Implementation

A head network, neck network, and backbone network make up 
the YOLOv8 architecture as indicated in Figure 5. These steps are 
explained below.

3.3.1 Dataset preprocessing
This process involves removing irrelevant images, resizing images 

to maintain uniformity, and enhancing image quality to improve the 
system’s accuracy. Different transformation operations such as 
rotation, scaling, and flipping are applied to increase the diversity of 
the training data and prevent overfitting. The images are labeled to 
create a ground truth dataset for training and validation purposes. 
Our model receives an input image, typically in the form of pixels, and 

FIGURE 6

ResNet-50 architecture (He et al., 2016).

FIGURE 7

YOLOv8 with ResNet-50 dense layer architecture for cellphone detection.
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preprocesses it to a format suitable for neural network inference. The 
image is resized to a fixed input size (e.g., 416×416 pixels) to ensure 
consistency across different images.

3.3.2 Neural network architecture
YOLOv8 employs a convolutional neural network (CNN) 

architecture, specifically designed for object detection tasks. The 
network consists of multiple convolutional layers followed by 
detection layers responsible for predicting bounding boxes and 
associated class probabilities.

3.3.3 Anchor box and grid cell
The principle of anchor boxes forms the basis of YOLOv8’s operation. 

To predict the location and class of objects in a picture, anchor boxes with 
preconfigured bounding boxes of varying sizes and aspect ratios are used. 
YOLOv8 utilizes anchor boxes, which are predefined bounding boxes of 
different sizes and shapes, to predict object locations and sizes. The 
network predicts bounding box coordinates (x, y, width, height) relative 
to each anchor box, along with confidence scores indicating the 
likelihood of an object being present and class probabilities for each 
detected object class. The feature maps are divided into a grid of cells, 
typically with a size of 13×13 or 19×19. Each grid cell is responsible for 
detecting objects whose centre falls within its boundaries. The model 
gains the ability to modify the anchor boxes to better fit the image’s 
objects during training.

3.3.4 Feature extraction backbone network
The task of extracting features from the input image falls to the 

backbone network. The backbone network collects hierarchical 
features by methodically examining input images, revealing important 
information from different levels of abstraction. The neck network 
lowers the feature maps’ spatial resolution by aggregating features 
from several scales. Predicting the bounding boxes and class 
probabilities for every object in the picture is the responsibility of the 
head network. The input image is passed through the CNN, where 
successive convolutional layers extract features at different scales. 
Feature maps are generated at multiple resolutions, allowing the 
network to detect objects of various sizes and aspect ratios.

3.3.5 Bounding box prediction
For each grid cell, YOLOv8 predicts multiple bounding boxes 

(usually 3 or 5) using anchor boxes of different scales and aspect 
ratios. The network outputs confidence scores for each bounding box, 
representing the likelihood that the box contains an object and class 
probabilities for each object class. Let the image be divided into a S*S 
grid by this architecture. This grid identifies the object if the object’s 
bounding box centre is situated inside it. Bounding boxes are 
predicted by each grid using its confidence score. Each confidence 
score indicates how precisely the bounding box coordinates are 
predicted about the ground truth prediction and how likely it is that 
the bounding box will include an object.

We multiply the individual box confidence predicted by the 
conditional class probabilities at test time. Our confidence score is 
defined in the Equation 1.

 ( )= ∗ truthConfidence Score Pr Object IOU  (1)

The confidence score in object detection tasks is essential for 
identifying whether items are present inside bounding boxes. The 
overlap between the predicted and ground truth bounding boxes is 
measured by the Intersection over Union (IoU) metric, which is used 
to calculate this score. The confidence score is assigned to 0 when 
there is no object in the grid cell, demonstrating the model’s 
uncertainty about object presence. The degree of agreement between 
the predicted and ground truth bounding boxes is reflected in the 
confidence score when an item is discovered, on the other hand; larger 
IoU values signify greater confidence in the detection. The existence 
of an object in the grid cell determined the condition of this likelihood. 
Each grid cell forecasts a single set of class probabilities, regardless of 
the number of boxes. The class-specific confidence scores for each box 
are then obtained by multiplying the conditional class probabilities by 
the individual box confidence forecasts as given below in Equation 2.

 

( )
( ) ( )∗ ∗ = ∗truth truth

Pr Class|Object
Pr Object IOU Pr Class IOU

 (2)

Next, when multiple boxes are predicted for the same item, we use 
non-maximal suppression (NMS) to suppress the non-max outputs. 
Finally, our final forecasts are produced. NMS eliminates overlapping 
boxes with lower confidence scores, ensuring that each object is 
detected only once.

3.3.6 Post-processing and cell phone 
classification

The identified bounding boxes are post-processed to extract the 
coordinates and class labels of detected objects, including cell phones. 
ResNet-50 is trained with ImageNet-pretrained weights, and the 
model is fine-tuned for cell phone detection by adding dense layers for 
classification. Following the precise cell phone detection, the algorithm 
draws a bounding box around the phone to localize it methodically. 
These ROIs are further investigated attentively by ResNet-50 layers 
and are categorized as individual “with a cell phone” or “without a cell 
phone.” The model is compiled with appropriate loss and optimization 
functions, and its performance is evaluated using validation data. The 
system performance parameters and results are discussed in the 
next section.

4 Results and discussions

Meticulous selection and dataset preparation for training the 
model coupled with thorough preprocessing and augmentation tasks 
play an important role in creating the foundation for a reliable and 
successful “YOLOv8-based cell phone usage detection in an industrial 
environment.” This carefully curated dataset will provide a solid 
foundation for training and evaluating our AI model, ensuring its 
ability to accurately detect mobile phone usage in the complex and 
varied settings of manufacturing plants.

Depending on the industry sector and region, manufacturing 
facilities might have a variety of machinery, lighting, and layouts. 
These variations are included in our dataset by collecting data from 
various places as tabulated in Table 1. This is due to the possibility that 
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our model, which was trained exclusively on data from one place, may 
not be able to generalize and function accurately in other plants with 
diverse backgrounds.

4.1 Experimental setup

Several assessment metrics and hyperparameters are used by our 
unique YOLOv8 + ResNet-50, method as demonstrated by 
the following:

 1. To ensure uniformity among images, the image is reduced to a 
predetermined input size (e.g., 416×416 pixels). High-quality 
images would increase the detection accuracy but at a 
significant computational expense. However, employing 
low-quality photos could result in each image losing important 
details. Previous YOLO versions have shown experimentally 
that the specified resolution yields meaningful results.

 2. 300 epochs are used in the training process because this 
quantity of epochs enables the model to learn key characteristics 
without overfitting the training set.

 3. A set of 30 batch samples is used in each cycle because deep 
learning techniques generally use this batch size to strike a 
reasonable balance between computational viability and model 
update frequency.

 4. We set the initial learning rate of 0.001 and it reduces by 50% 
for every 3 cycles. This is a common setting that enables the 
model to cover at a moderate pace to optimally utilize the 
computational resources. The trials were carried out Google 
Colab platform that uses NVIDIA’s Tesla T4 and V100 18 GB 
GPUs with pre-installed libraries such as TensorFlow, PyTorch, 
and Open CV.

The efficiency of the suggested model was assessed by a series of 
comparative tests carried out on the custom-built dataset. To evaluate 
the detection capabilities of the YOLOv8 + ResNet-50 algorithm in 
real-world scenarios, a variety of complex scene photos in different 
scenarios were used.

4.2 Model training and validation

The training process is divided into two main parts:

 i. Dataset validation: This involves validating the labeled dataset 
to ensure that it is accurate and reliable. This step is essential 
for ensuring that the training process is based on a high-quality 
dataset, which in turn is critical for achieving accurate and 
reliable results. This process encompasses various techniques 
and steps aimed at ensuring that the data is accurate, consistent, 
and representative of the real-world phenomenon it is intended 
to describe or analyze. The validation process involves 
evaluating various parameters, including accuracy, loss, 
validation accuracy, validation loss, and learning rate. These 
metrics provide valuable insights into the performance of the 
model and enable us to make informed decisions about 
whether the model is suitable for deployment in a 
manufacturing plant setting. By validating the dataset, we can 

ensure that the model is trained on high-quality data that 
accurately represents the real-world phenomenon of cell phone 
usage in a manufacturing plant.

 ii. Cell phone detection: This is the primary training step, where 
the model is trained to detect the presence of a cell phone in 
the images. The YOLOv8 model is particularly well-suited for 
this task, as it is designed to detect objects in real-time, even in 
complex and dynamic environments. Object detection involves 
identifying and localizing multiple objects within an image or 
video frame. Unlike image classification (where we classify the 
entire image), object detection pinpoints the location of each 
object. Further, a pre-trained ResNet-50 model plots a 
bounding box around the phone to categorize persons “with a 
cell phone” or “without a cell phone” class.

We divided our custom dataset in a 70:20:10 ratio, resulting in 
1522 training, 387 validation, and 241 test images. Throughout the 
training process, we will closely monitor the model’s performance and 
make any necessary adjustments to ensure that it is accurately and 
reliably detecting the presence of a cell phone in the images. This will 
enable us to develop a highly accurate and reliable cell phone detection 
system that can be deployed in a manufacturing plant setting. The 
training and validation performance of our proposed model is 
indicated in graphs as shown in Figure  8. These are training and 
validation metrics for a machine learning model, likely related to 
object detection Here’s what each graph represents:

4.2.1 Training metrics (top row)
 i. Train/box_loss: The loss related to bounding box predictions 

during training is displayed in this graph. This loss is decreasing 
as the model is gaining knowledge.

 ii. Train/cls_loss: It refers to the loss associated with class (object 
category) predictions. It is declining throughout epochs, like 
box loss.

 iii. Train/dfl_loss: Both box and classification losses are included 
in the total loss. Smoothing makes trends easier to see.

 iv. Precision (at B): The precision metric quantifies the proportion 
of true positives that are predicted. The model achieved higher, 
i.e., 97% of detection accuracy. This suggests the model is good 
at avoiding false positives.

 v. Recall (at B): The graph shows the proportion of true positive 
cases that were accurately predicted. The model is missing 
some true positives, so it’s less sensitive to detecting all relevant 
objects. The model achieved moderate recall accuracy of 65%.

4.2.2 Validation metrics (bottom row)
 i. val/box_loss: Like training box loss, but with a metric that is 

decreasing over time and assessed on the validation set.
 ii. val/cls_loss: Similar to training box loss but measured on the 

validation set the values are expected to decline over time.
 iii. val/dfl_loss (Smoothed): It is the measure of overall loss on the 

validation set and the values are reducing over time.
 iv. mAP50 (at B): Mean Average Precision (mAP) at an IoU 

threshold of 0.5. It combines precision and recall across 
different confidence thresholds. The mean average precision (at 
top  50 predictions) of mAP50 = 0.495 indicates the model 
produces decent overall performance but this value can further 
be improved.
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 v. mAP50_95 (at B): Similar to mAP50 but considers a wider 
range of IoU thresholds (from 0.5 to 0.95). mAP50_95 of 0.289 
indicates the model seeks performance improvement.

After successfully training and validating the model, we proceed 
with model testing and demonstrate the results next (see Table 1).

4.3 Model testing for cell phone detection

Testing entails utilizing an independent test set that was not 
presented to the model during training. This guarantees an 
objective assessment of the model’s capacity to generalize to 
unknown data. A variety of lighting settings, phone types, 
backgrounds, and possible occlusions should all be included in 
the test set to make it typical of real-world situations. We have 
used 241 samples for testing our YOLOv8 (without ResNet-50) 
and YOLOv8 (with ResNet-50) model of which 151 samples 
contain “person with cellphones” and 90 are “person without 
cellphones.” The confusion matrix showing the performance of 
our model utilized for cell phone detection in restricted zones is 
described in Table 2. The confusion matrix contrasts the model’s 
predictions with the actual labels, or ground truth and it is 
explained next.

True-Positive (TP) instances: 145 images containing a person with 
a cell phone are correctly predicted by Model A, and 73 images are 
correctly predicted by Model B.

True-Negative (TN) instances: In 9 instances where the person 
was without cellphones Model A predicted correctly and Model B 
correctly predicted 3 instances.

False-Positive (FP) instances: Model A predicted a 
person with cellphones 6 times and Model B 30 times, when there 
were none.

False-Negative (FN) instances: There were 81 images of people 
using cell phones, but Model A failed to detect them. Similarly, Model 
B missed 106 instances of people using cell phones.

Model B (YOLOv8 without ResNet-50) produced 70.87% 
precision compared to 96.03% of Model A (YOLOv8 with ResNet-
50). The inclusion of ResNet-50 is certainly helping in reducing 
false detection rates. We consider Model A for further discussion 
and performance comparisons. Based on the confusion matrix in 
Table 2, several performance measures are calculated to assess the 
model’s performance. The performance measure metrics and their 
values for our suggested system are listed in Table 3. The Roboflow 
2.0-based Cellphone Object Detection (Fast) (Talib et al., 2024) 
and YOLOv8-CAB (Talib et al., 2024), Nanodet (Talib et al., 2024) 
models are developed on the YOLOv8 framework and tested on 
COCO datasets (Lin et al., 2014). Another cellphone detection 

FIGURE 8

Training and validation loss graphs.

TABLE 1 Custom dataset created to test the proposed cell phone detection system.

Sr. No Dataset source Number of images

1.
Custom cell phone usage dataset collected from Belagavi (Karnataka, India), Kolhapur, and 

Pune (Maharashtra, India) industries.
1,000

2. Roboflow Cellphone Dataset Computer Vision Project (Talib et al., 2024). 800

3. Cell phone usage images from various online sources. 350

Total Images 2,150
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method (Rehman et  al., 2021) is developed using a classical 
Speeded Up Robust Features (SURF) feature extraction and 
Support Vector Machine (SVM) based classification methods. 
We  compare our proposed model’s performance with these 
frameworks and list the values. YOLOv8-CAB details are already 
discussed in the literature survey reported in Section 2. Roboflow 
2.0 is an object detection YOLOv8 model tested on 1901 images 
in which 1,525 images contain with cell phones and 376 without 
cell phones instances. Roboflow offers a subset of the 2017 COCO 
dataset and provides a good alternative to work on this research 
area. The results in the table show that our system produced Mean 
Average Precision (mAP50) and mAP50 average precision 
(mAP_95) of 49.5 and 28.9%, respectively. SURF and SVM-based 
methods (Rehman et al., 2021) utilize 1,000 images (500 with and 
the remaining 500 without cellphones). 91% classification 
accuracy of persons with cell phones was achieved by using this 
combination method.

The Precision, Recall, and F1 scores of our proposed 
YOLOv8 + Resnet-50 model are 96.03, 64.16, and 76.92%, respectively. 
A selection of scenes demonstrating people using cell phones and 
successfully detecting objects is shown in Figure  9. The model can 
recognize and distinguish different objects in challenging environments. 
Precise object boundary masks, even in situations with complex 
backgrounds and object occlusions, are among the notable features.

A key element of our cell phone detection system is real-time 
analysis using a webcam, which allows for quick and precise cell 
phone recognition in live video feeds, as demonstrated in 
Figure 10. The user may be able to monitor and view the real-time 
analysis system’s performance, including frame rate, processing 
time per frame, and detection accuracy. This allows users to 
evaluate the effectiveness and dependability of the system while it 
is in use.

Ongoing real-time analysis of the webcam video stream is made 
possible by the looping processes of frame capture, preprocessing, 
object detection, annotation, visualization, performance monitoring, 
and interactivity. Rapid cell phone detection is made possible by the 
remarkable inference speed of 340 ms, which is essential for real-time 
application settings.

5 Conclusion and future scope

This work addresses the issue of enforcing cellphone restrictions in 
restricted areas of various industries by proposing a novel YOLOv8 
object detection model combined with the layers of ResNet-50 for 
accurate cell phone detection and classification tasks. The work involved 
several key steps, including data collection, preprocessing, model 
configuration, training, evaluation, and deployment. Through extensive 
experimentation and fine-tuning of hyperparameters, we successfully 
trained a YOLOv8 model that demonstrated robust performance in 
detecting cell phones with high accuracy. At 0.5 IoU, the model’s 
precision (mAP50) for cell phone identification tests was 49.5%, while it 
produced 96.03% accuracy for prediction tasks. This exhibits the 
generalization and efficiency of YOLOv8 architectures on object 
identification tasks, as well as their ability to precisely locate and classify 
cell phones in a range of scenarios. Furthermore, the real-world 
deployment of the trained model demonstrated its practical utility in 
identifying cell phones in images and videos with real-time performance, 
indicating its readiness for practical applications. The benefits of this 
research can be extended to various domains, including surveillance, 
security, and image analysis applications. The accurate detection of cell 
phones can enhance security measures in sensitive areas, facilitate 
content moderation in social media platforms, and enable automated 
analysis of visual data in research and industry settings.

TABLE 2 Confusion matrix of the proposed YOLOv8 detector with and without ResNet-50.

N = 241 YOLOv8 with ResNet-50 (Model A) YOLOv8 without ResNet-50 (Model B)

Actual Actual

Person with cell 
phone

Person without cell 
phone

Person with cell 
phone

Person without cell 
phone

Predicted
Person with cell phone 145 6 73 30

Person without cell phone 81 9 106 3

TABLE 3 Experimental results and performance comparison.

Performance 
metrics

Model scores

Proposed 
YOLOv8 + ResNet-50

Roboflow YOLOv8 
(Fast) (Cellphone 

Dataset Computer 
Vision Project, 2022)

YOLOv8-CAB 
(Talib et al., 

2024)

Nanodet 
(Talib et al., 

2024)

SURF & SVM 
(Rehman 

et al., 2021)

Mean average precision 

(mAP50) %
49.5 40.3 47.4 39.5 --

mAP50 average precision 

(mAP50_95) %
28.9 -- 28.2 -- --

Precision % 96.03 59.7 89.3 66 91

Sensitivity (recall) % 64.16 38.4 64.7 61 --

F1 score % 76.92 -- 75.07 71 --
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Despite the system’s strong prediction performance, false positives 
may occur when phones are partially or covered by objects, in low or 
bright illumination, or when objects resemble phones. False-negative 
results may result from tiny items that are comparable to or 
indistinguishable from a cell phone. Further research could focus on 
overcoming these limitations by integrating AI-based pose estimation 
methods, and deep learning models (Generative AI & GANs) to 
recognize the context and predict the missing object for occluded cell 
phones. Histogram equalization or exposure correction algorithms 
can help deal with varying lighting conditions while detecting cell 
phones. Multi-modal fusion (Infrared, RF detection, depth sensors) 
methods can detect a phone’s heat emissions or thickness to 
differentiate between a cell phone and look-alike objects ex wallets, 
remote controls, etc. The YOLOv8 architecture for particular use cases 
can be improved by looking into real-time deployment strategies for 
large-scale applications and examining other data augmentation 
techniques to enhance model generalization. By deploying the 
YOLOv8 model on edge devices, such as NVIDIA’s Jetson Nano, for 
on-device processing, latency and reliance on cloud connectivity can 
be decreased, increasing system resilience and making it appropriate 
for deployment in remote or bandwidth-constrained environments.
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