AUTHOR=Deshpande Uttam U. , Shanbhag Supriya , Koti Ramesh , Chate Ameet , Deshpande Sudhindra , Patil Rudragoud , Kulkarni Pavan G. , Ganiger Neha S. , Rasane Varad A. TITLE=Computer vision and AI-based cell phone usage detection in restricted zones of manufacturing industries JOURNAL=Frontiers in Computer Science VOLUME=Volume 7 - 2025 YEAR=2025 URL=https://www.frontiersin.org/journals/computer-science/articles/10.3389/fcomp.2025.1535775 DOI=10.3389/fcomp.2025.1535775 ISSN=2624-9898 ABSTRACT=Phone calls are strictly forbidden in certain locations due to the potential security threats. Mobile phones’ growing capabilities have also increased the risk of their misuse in places that are restricted, like manufacturing plants. Unauthorized mobile phone use in these environments can lead to significant safety hazards, operational disruptions, and security breaches. There is an urgent need to develop an intelligent system that can identify the presence of individuals as well as cellphone usage. We propose an advanced Artificial Intelligence and Computer Vision-based real-time cell phone detection system to detect mobile phone usage in restricted zones. Modern deep learning approaches, such as YOLOv8 for real-time object detection to accurately detect cell phone usage, are combined with dense layers of ResNet-50 to perform image classification tasks. We highlight the critical need for such detection systems in manufacturing settings and discuss the specific challenges encountered. To support this research, we have developed a custom dataset of 2,150 images, which features a diverse array of images with varying foreground and background elements to reflect real-world conditions. Our experimental results demonstrate that YOLOv8 achieves a Mean Average Precision (mAP50) of 49.5% at 0.5 IoU for cellphone detection tasks and an accuracy of 96.03% for prediction tasks. These findings underscore the effectiveness of our AI and CV-based system in detecting unauthorized mobile phone usage in restricted zones.