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Intelligent data analysis in edge
computing with large language
models: applications, challenges,
and future directions

Xuanzheng Wang*, Zhipeng Xu and Xingfei Sui

CNOOC Safety Technology Services Co., Ltd., Tianjin, China

Edge computing has emerged as a vital paradigm for processing data

near its source, significantly reducing latency and improving data privacy.

Simultaneously, large language models (LLMs) such as GPT-4 and BERT have

showcased impressive capabilities in data analysis, natural language processing,

and decision-making. This survey explores the intersection of these two

domains, specifically focusing on the adaptation and optimization of LLMs for

data analysis tasks in edge computing environments. We examine the challenges

faced by resource-constrained edge devices, including limited computational

power, energy e�ciency, and network reliability. Additionally, we discuss how

recent advancements in model compression, distributed learning, and edge-

friendly architectures are addressing these challenges. Through a comprehensive

review of the current research, we analyze the applications, challenges, and

future directions of deploying LLMs in edge computing. This analysis aims to

facilitate intelligent data analysis across various industries, including healthcare,

smart cities, and the internet of things.
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1 Introduction

Edge computing has emerged as a powerful paradigm for processing and analyzing

data near its source. It effectively addresses limitations such as latency and bandwidth

constraints, which are particularly critical in real-time applications (Zhou et al., 2024a;

Syu et al., 2023). By distributing computational resources across a network of edge

devices, it enables rapid, local processing, minimizing dependency on centralized cloud

infrastructures. This shift is particularly important in latency-sensitive applications

like autonomous vehicles and smart cities, where instantaneous data processing is

essential (Deng et al., 2020).

Simultaneously, deep learning, particularly with large language models (LLMs), has

achieved remarkable advancements in natural language processing (NLP) and data

analysis, revolutionizing the way machines understand and produce human language

(Gangadhar et al., 2023). Models like BERT (Devlin et al., 2019) and GPT-4 (Brown

et al., 2020) have exhibited remarkable proficiency in various applications, encompassing

language translation, text summarization, sentiment assessment, and intricate data

analysis. These advancements have significantly improved the performance of various

applications, from virtual assistants to advanced data analytics platforms.
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However, deploying these models in edge environments

presents a set of technical challenges that must be addressed to

fully harness their potential. The high computational demands

and substantial memory consumption of LLMs present significant

challenges for their implementation on edge devices, which are

typically characterized by limited processing capabilities and

storage resources. Additionally, the need for frequent model

updates to ensure accuracy and relevance intensifies these

challenges, as the operational constraints of edge devices may not

accommodate the continuous retraining required for LLMs. As

a result, directly deploying these models in edge environments

is often impractical without significant optimizations (Han

et al., 2015). This situation underscores the necessity to explore

innovative techniques that can reduce the resource consumption

of LLMs while preserving their performance and effectiveness.

The integration of LLMs with edge computing presents both

a significant opportunity and a series of technical challenges.

On one hand, deploying LLMs on edge devices can facilitate

intelligent real-time data processing without relying on centralized

cloud infrastructure, which is particularly crucial for applications

that prioritize data privacy and security (Zhou et al., 2022a). By

processing sensitive data locally, organizations can mitigate the

risks associated with data breaches and ensure compliance with

privacy regulations. On the other hand, the inherent limitations

of edge devices in terms of processing power and storage

capacity necessitate the development of strategies focused on

model compression and adaptation. Such strategies are essential to

reduce the overall resource consumption of LLMs, making them

viable for deployment in edge environments (Sun and Ansari,

2019; Chi et al., 2024). Ultimately, addressing these challenges

will be key to unlocking the full potential of LLMs in edge

computing applications.

As shown in Table 1, this table presents an overview of relevant

publications focused on various aspects of edge computing and

its applications. Based on this foundation, this paper offers a

comprehensive analysis of the applications, challenges, and future

directions of intelligent data analysis in edge computing using

LLMs. This analysis highlights the key obstacles associated with

deploying LLMs on resource-constrained edge devices, explores

innovative strategies for adapting LLMs to edge environments, and

showcases their practical applications across diverse sectors such as

healthcare, IoT, and industrial automation.

This survey offers the following contributions:

• We provide a comprehensive review of edge computing and

LLM fundamentals, highlighting the distinct advantages and

limitations they present for various data analysis tasks.

• We identify and discuss the primary challenges in deploying

LLMs on resource-constrained edge devices, covering areas

such as resource limitations, energy efficiency, privacy, and

latency requirements.

• We examine state-of-the-art techniques for making LLMs

compatible with edge deployment, including model

compression, federated learning, and optimized frameworks.

• We review practical applications of LLMs in edge computing

across various domains, including healthcare, IoT, industrial

automation, and consumer electronics, demonstrating the

utility of LLMs for edge-based data analysis.

• We outline emerging trends and future directions in LLM

and edge integration, including advancements in Transformer

architectures, privacy-preserving techniques, and hardware

developments that could shape the future of edge-based

intelligent systems.

The subsequent sections of this paper are structured in

the following manner. Section 2 offers background information

on edge computing and LLM architectures, emphasizing their

essential characteristics pertinent to edge-based applications.

Section 3 examines the specific applications of LLMs in edge

computing for data analysis, while Section 4 discusses the

challenges of implementing LLMs in edge computing, including

resource constraints, energy efficiency, privacy, and latency

requirements. Section 5 explores various techniques for edge-

compatible LLM deployment, such as model compression,

federated learning, and optimized frameworks. Section 6 explores

potential avenues for future research. Section 7 wraps up the paper

by highlighting essential observations and suggesting areas for

further investigation.

2 Background

2.1 Edge computing fundamentals

Edge computing is a decentralized computing model that

facilitates data processing closer to the data source, rather

than relying on centralized cloud servers (Cicconetti et al.,

2021). This innovative approach effectively addresses several

challenges associated with traditional cloud computing, particularly

in environments where speed, efficiency, and security are

paramount (Shi et al., 2016; Deng et al., 2020). By performing

computations locally on devices such as sensors, gateways, and

mobile devices, edge computing significantly reduces latency and

bandwidth requirements (Ren et al., 2019a), which are often

limitations of cloud-based systems. This significant reduction in

latency is crucial for applications that demand real-time responses,

such as autonomous vehicles, healthcaremonitoring, and smart city

infrastructure (Lu et al., 2023; Iftikhar et al., 2023).

By processing data at the edge, applications can enhance

operational efficiency, enabling them to make faster decisions

based on real-time data analysis without the delays associated with

transferring data to and from centralized servers. The architecture

of edge computing generally consists of three distinct layers (Khan

et al., 2019), each serving a specific purpose in the data processing

workflow, as shown in Table 2.

The first layer, known as the cloud, is responsible for handling

complex computations and large-scale data storage. This layer

can process and store vast amounts of data, making it well-

suited for demanding activities such as data analysis, machine

learning, and long-term data storage (Sandhu, 2022). However,

its physical distance from the data sources often results in higher

latency (Memari et al., 2022), which can hinder the performance of

applications that require immediate responses.

The second layer, referred to as edge nodes or fog nodes,

serves as an intermediary between the cloud and the end devices.

Positioned closer to the data sources, edge nodes provide moderate
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TABLE 1 Summary of relevant publications on edge computing across various domains.

Reference Survey focus Research
method/technique

Contributions

Sun and Ansari (2019) IoT Architecture design, efficiency

analysis.

Proposes a novel architecture for Edge IoT to handle data

streams efficiently at the mobile edge.

Deng et al. (2020) AI Conceptual framework,

comparative analysis.

Divides edge intelligence into AI for edge and AI on edge,

optimizing solutions in edge environments.

Ren et al. (2019b) Augmented reality Case studies, performance metrics

evaluation.

Discusses the benefits of edge computing for AR

applications, enhancing performance and reducing server

reliance.

Zhou et al. (2022a) Privacy security Theoretical framework, privacy

analysis.

Introduces a novel privacy-preserving framework using local

differential privacy in edge computing.

Syu et al. (2023) Consumer electronics Literature review, trend analysis. Provides an overview of AI-driven improvements in latency,

robustness, and reliability in consumer electronics.

Lu et al. (2023) Fault diagnosis Methodological analysis, case

studies.

Analyzes methodologies for signal processing in machine

fault diagnosis in IoT contexts.

Iftikhar et al. (2023) Resource management Taxonomy development, literature

synthesis.

Proposes a taxonomy of AI/ML resource management

techniques in fog/edge computing, identifying challenges

and future research directions.

TABLE 2 Summary of edge computing architecture layers.

Layer Description Primary functions Advantages Disadvantages

Cloud Handles complex

computations and large-scale

data storage.

Data analysis, machine learning,

and long-term data retention.

Manages vast amounts of data and

is suitable for resource-intensive

tasks.

Higher latency due to physical

distance and it affects real-time

responsiveness.

Edge nodes Acts as an intermediary

between the cloud and end

devices and is located closer to

data sources.

Preliminary data analysis and

filtering and facilitates rapid data

processing.

Reduces data transmission volume

and optimizes bandwidth usage

while enhancing system efficiency.

Limited processing capabilities and

cannot handle extremely complex

computations.

Edge devices Located closest to data sources

and includes sensors, cameras,

and other IoT devices.

Data acquisition and real-time

processing.

Enables real-time data collection

and analysis and ensures rapid

responsiveness and reliability.

Constrained by power, memory, and

processing capabilities and has limited

functionality.

processing capabilities that enable quicker data handling in latency-

sensitive applications (Pelle et al., 2021). By performing preliminary

data analysis and filtering at this layer, edge nodes can reduce the

volume of data that needs to be sent to the cloud, thus optimizing

bandwidth usage and enhancing overall system efficiency. This

layer plays a crucial role in scenarios where timely decision-making

is essential, such as in smartmanufacturing or real-timemonitoring

systems (Nain et al., 2022).

The third layer comprises edge devices, which are located

closest to the data source. These devices include sensors, cameras,

and other IoT devices that possess limited computing power

and primarily focus on data acquisition and real-time processing

tasks (Shi et al., 2016). Edge devices are typically constrained by

factors including energy, memory, and computational capacities,

making efficient data handling critical for ensuring responsiveness

and reliability. Despite these limitations, edge devices are vital for

collecting real-time data, enabling immediate analysis and actions

that are essential in various applications, including autonomous

vehicles, healthcare monitoring, and smart city infrastructure.

Together, these three layers create a cohesive edge computing

architecture that enhances data processing efficiency, reduces

latency, and supports a wide range of applications. By distributing

computing resources across these layers, edge computing not only

addresses the limitations of traditional cloud computing but also

empowers organizations to leverage real-time data for improved

decision-making and operational effectiveness. This capability not

only improves the user experience but also optimizes resource

utilization by minimizing the need for extensive data transfers

and reducing the load on network infrastructure (Yu et al.,

2018). Consequently, edge computing enhances performance and

provides a robust solution for the evolving needs of various

data analysis tasks, facilitating more secure and efficient data

management practices.

2.2 The evolution and advancements of
language models

LLMs exemplified by notable architectures such as

BERT (Devlin et al., 2019) and GPT-4 (Brown et al., 2020),

have profoundly influenced the field of NLP by enhancing the

capability of machines to comprehend and generate human-

like text. A fundamental underpinning of these models is

the Transformer architecture, which employs self-attention

mechanisms to effectively capture dependencies and contextual
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FIGURE 1

Transformer architecture used in LLMs.

relationships within textual data (Vaswani et al., 2017). As shown

in Figure 1, Transformer architecture is characterized by its layered

structure, comprised of multiple encoders and decoders, each

integrating self-attention and feedforward neural networks (Raffel

et al., 2020).

Prior to the advent of the Transformer, models like Recurrent

Neural Networks (RNNs), Long Short-Term Memory networks

(LSTMs), and Gated Recurrent Units (GRUs) have been

predominant in sequence modeling tasks. RNNs were specifically

designed to process sequential input by retaining a hidden

state that reflects information from previous time steps (Gu

et al., 2021). However, they encountered significant limitations

in capturing long-range dependencies due to the vanishing

gradient problem, which made it difficult for the model to learn

relationships between distant words (Ribeiro et al., 2020). To

address this, LSTMs were introduced, incorporating gating

mechanisms that regulate the passage of information, allowing

them to preserve relevant context over prolonged sequences (Gu

et al., 2020). While LSTMs improved upon RNNs by mitigating

issues related to long-term dependencies, they still suffered

from inefficiencies in computational speed and the inability

to fully leverage parallel processing due to their inherently

sequential nature. GRUs further simplified the architecture of

LSTMs by combining the forget and input gates into a singular

update gate, thus reducing the complexity and enhancing

performance on various sequence tasks (Savadi Hosseini and

Ghaderi, 2020). Nonetheless, RNNs, LSTMs, and GRUs were

still constrained by their sequential processing limitations, which

hindered their scalability and posed challenges in handling large

datasets efficiently.

In contrast, Transformer architecture fundamentally

revolutionizes the approach to modeling sequence data by

enabling the self-attention mechanism (Raffel et al., 2020),

which allows the model to evaluate the significance of each

word relative to all other words in the input simultaneously,

irrespective of their positional distance. This capability not only

facilitates the capture of complex relationships and context

with remarkable accuracy but also significantly enhances

computational efficiency through parallelization (Zeng et al.,

2022). By processing entire sequences at once, Transformers can

dramatically reduce training times and handle larger datasets

more effectively, thereby overcoming the limitations imposed by

earlier models.

The self-attention mechanism represents a pivotal innovation,

empowering Transformers to dynamically assess and weigh the

relevance of different words, thus ensuring that the contextual

meaning is preserved across various tasks (Yang et al., 2023).

As a result, LLMs built on the Transformer architecture have

proven to be highly effective in diverse NLP applications,

including translation (Brown et al., 2020), summarization, and

question answering (Yao and Wan, 2020). However, despite

these advantages, it is important to note that LLMs are

inherently computationally intensive, often requiring substantial

memory and processing power that can be a barrier to

implementation in resource-constrained environments (Han et al.,

2015).
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2.3 Intersection of LLMs and edge
computing

The convergence of edge computing and LLMs creates new

possibilities for intelligent, real-time data processing right at the

source of the data. This development is especially significant

for applications that prioritize privacy and time sensitivity, such

as those found in healthcare and industrial automation (Sun

and Ansari, 2019; Li D. et al., 2023). By deploying LLMs on

edge devices, applications can leverage advanced NLP capabilities

to conduct localized data analysis. This not only minimizes

reliance on cloud infrastructure but also significantly enhances

data privacy and operational efficiency (Barua et al., 2020). The

ability to process data closer to where it is generated allows for

quicker decision-making and reduces latency, which is critical in

scenarios where timely responses are essential. Furthermore, this

localized approach ensures that sensitive information remains on-

site, thereby mitigating the risks associated with data transmission

(Cao et al., 2020).

The deployment of LLMs on edge devices presents considerable

challenges primarily due to the substantial computational and

memory requirements inherent to these models (Yang et al., 2024).

As the demand for intelligent applications grows, particularly

in environments constrained by hardware limitations, addressing

these challenges becomes crucial (Kong et al., 2022). Tomake LLMs

practical for edge environments, researchers are actively exploring

a variety of optimization techniques aimed at reducing both the

model size and the computational demands, all while striving to

maintain acceptable performance levels.

One promising approach is model compression, which

encompasses several methods such as pruning, quantization, and

knowledge distillation. Pruning involves systematically removing

less important parameters from the model, resulting in a

reduced computational footprint that allows for faster processing

on edge devices (Yeom et al., 2021). By streamlining the

model in this way, developers can enhance its efficiency

without significantly compromising its capabilities. Additionally,

quantization techniques are crucial as they reduce the number of

parameters in the model, which in turn decreases memory usage

and speeds up inference times (Kim et al., 2023). Furthermore,

knowledge distillation—a technique that conveys insights from a

larger, more intricate model commonly called the “teacher” to a

smaller, more streamlined model referred to as the “student”—

provides an alternative method for facilitating efficient deployment

on edge devices. Through this method, the student learns to

perform tasks by mimicking the teacher, allowing it to achieve

competitive performance with a fraction of the computational

resources (Gou et al., 2021). As shown in Table 3, these

optimization techniques represent significant advancements in the

field, making it possible to leverage the sophisticated capabilities of

LLMs in edge computing environments, thereby broadening their

applicability across various industries and use cases.

Federated learning represents a promising approach for

enhancing edge applications, particularly as it enables distributed

training across multiple devices without the need to transmit

raw data to a central server (Kairouz et al., 2021; Liu G.

et al., 2021). This decentralized method is particularly beneficial

for applications that prioritize data privacy, allowing sensitive

information to remain on the local device while still contributing

to the improvement of machine learning models. By facilitating

cooperative learning without compromising user privacy, federated

learning seeks to harness the collective intelligence of multiple

devices, ultimately resulting in more robust and accurate models.

In summary, the integration of LLMs with edge computing

presents substantial opportunities for real-time, privacy-sensitive

data analysis across a wide range of applications, from healthcare to

smart cities and industrial automation. This convergence allows for

the processing of data closer to its source, which not only enhances

response times but also mitigates the risks associated with data

transmission to centralized servers. However, to fully realize this

vision, it is imperative to address several critical challenges that

have emerged in the current literature. One significant challenge

is the computational constraints inherent in edge devices, which

often have limited processing power and memory compared to

traditional cloud-based systems. This limitation can hinder the

deployment of complex LLMs, necessitating the development

of more lightweight models or innovative techniques that can

efficiently leverage available resources. Additionally, ensuring

robust data privacy is paramount, as edge computing environments

often handle sensitive information that must be protected

from unauthorized access. This requires the implementation of

advanced encryption methods and privacy-preserving techniques

to safeguard user data while still allowing for effective analysis.

Moreover, optimizing LLMs for efficient performance on edge

devices is crucial. This involves not only reducing the model size

and complexity but also adapting algorithms to ensure they can

operate effectively within the constraints of edge infrastructures.

By tackling these interconnected issues, we can unlock the

transformative potential of LLMs in edge environments, paving the

way for the development of smarter, more responsive systems. Such

advancements will cater to the evolving needs of users, providing

them with timely insights and services while maintaining a strong

emphasis on privacy and security.

3 Applications of LLMs for data
analysis in edge computing

LLMs hold considerable potential for data analysis in edge

computing due to their capability to process and analyze data

locally, providing real-time insights and enhanced data privacy. In

this section, we discuss several critical application areas: healthcare

and wearable devices, IoT and smart cities, industrial automation,

and consumer applications, as shown in Figure 2.

3.1 Healthcare and wearable devices

In the realm of healthcare, edge computing significantly

enhances the capacity for real-time analysis of patient data collected

through wearable devices, thereby improving responsiveness and

minimizing latency. The deployment of LLMs on edge devices

enables the analysis of substantial volumes of textual data

derived from medical records and wearable health monitors.
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TABLE 3 Comparison of model compression techniques.

Technique Description Benefits Impact on performance

Pruning (Yeom et al., 2021) Involves systematically removing less

important parameters from the model.

Reduces computational footprint,

enhances efficiency.

Allows for faster processing on edge

devices without significant performance

loss.

Quantization (Chen et al., 2021a) Reduces the number of model

parameters.

Lowers memory usage, accelerates

inference times.

Improves processing speed and reduces

memory requirements.

Knowledge distillation (Kim, 2023) Transfers knowledge from a larger

“teacher” model to a smaller “student”

model.

Enables efficient deployment of smaller

models with competitive performance.

Allows the student model to achieve

high accuracy with significantly lower

computational resources.

FIGURE 2

Illustration of applications of LLMs for data analysis in edge computing.

This capability is instrumental in facilitating early anomaly

detection and comprehensive trend analysis, which are critical for

timely medical interventions (Esteva et al., 2019; Dias and Paulo

Silva Cunha, 2018). By processing data locally on edge devices,

sensitive patient information remains secure, effectively reducing

the necessity for cloud transmission and, consequently, preserving

data privacy (Zhou B. et al., 2022).

Wearable devices that incorporate LLMs are adept at

continuously monitoring vital signs, thus providing ongoing health

assessments (Kim et al., 2024). For instance, a wearable device

may issue alerts to healthcare providers regarding irregularities

in a patient’s vital signs, as determined through the analytical

capabilities of LLMs. This proactive approach to medical

intervention not only enhances patient care but also exemplifies

the potential for continuous health monitoring without reliance on

centralized data processing (Babu et al., 2024).

Furthermore, the integration of edge computing within

the domain of wearable health technology fosters significant

advancements in academic research. Researchers can leverage the

real-time data collected from edge devices to conduct extensive

analyses of health trends across diverse populations. This data-

driven approach enables the identification of potential health risks

and the formulation of more effective preventive measures and

treatment protocols (García-Méndez and de Arriba-Pérez, 2024).

Such insights are invaluable for the advancement of personalized

medicine, as they allow for tailored healthcare solutions that

address the unique needs of individual patients. The implications

of edge computing extend beyond individual patient care to

influence broader public health strategies (Jo et al., 2023). By

analyzing aggregated data from wearable devices, researchers

can derive insights that inform health policy decisions and

resource allocation, ultimately contributing to improved health

outcomes at the population level. This paradigm shift toward

decentralized data processing not only enhances the efficiency

and security of healthcare delivery but also paves the way for

innovative research methodologies that capitalize on the wealth

of data generated by wearable technologies (Shiranthika et al.,

2023).
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In conclusion, the application of edge computing in the

healthcare wearable sector not only enhances the efficiency and

security of data processing but also propels academic research

forward, offering new perspectives and tools for advancing health

management. As technology continues to evolve, edge computing

is poised to play an increasingly pivotal role in the future of

healthcare, facilitating more precise and effective patient care while

supporting the ongoing quest for knowledge in medical research.

3.2 IoT and smart cities

In the context of smart city applications, edge computing plays

a pivotal role in managing the vast amounts of data generated by

IoT sensors across various domains, including traffic management,

environmental monitoring, autonomous driving, and public safety.

The deployment of LLMs on edge devices enables the analysis of

diverse data streams, such as sensor reports, social media posts, and

other real-time data inputs, thereby providing actionable insights

that are crucial for city planners and emergency responders (Jan

et al., 2021; Li X. et al., 2022).

For instance, real-time traffic data analysis conducted by

LLMs on edge devices can significantly optimize traffic light

timing (de Zarzà et al., 2023), which in turn reduces congestion

and enhances fuel efficiency. By processing data locally, these

systems can react swiftly to changing traffic conditions, allowing

for dynamic adjustments that promote smoother traffic flow

and minimize delays. This capability not only improves the

overall transportation experience for citizens but also contributes

to the reduction of greenhouse gas emissions associated with

idling vehicles.

In the realm of environmental monitoring, LLMs can locally

process air quality data collected from various sensors deployed

throughout the city. When pollution levels exceed predefined safe

thresholds, these edge-based systems can issue immediate alerts to

both authorities and the public, facilitating timely interventions

to protect public health (Alahi et al., 2023). Such proactive

measures are essential in maintaining compliance with health

standards and mitigating the adverse effects of pollution on

urban populations.

The advantages of edge computing in smart city applications

extend beyond immediate responsiveness; they also encompass

a reduction in dependency on centralized cloud infrastructure.

By enabling data processing at the edge, cities can ensure that

data-driven responses can be initiated without the delays often

associated with cloud-based systems (Khan et al., 2020; Lv et al.,

2021). This decentralized approach enhances the resilience of

urban infrastructure, particularly in emergency situations where

rapid decision-making is critical. Furthermore, the integration of

edge computing within smart city frameworks fosters significant

opportunities for academic research. Researchers can utilize the

rich datasets generated by IoT sensors and edge devices to conduct

comprehensive studies on urban dynamics, environmental impacts,

and public safety trends. This data-driven research paradigm

enables the identification of patterns and correlations that can

inform policy decisions and urban planning strategies, ultimately

leading to more sustainable and livable cities (Liu Q. et al., 2021).

3.3 Industrial automation and predictive
maintenance

In industrial settings, predictive maintenance is of paramount

importance for ensuring equipment reliability and optimizing

operational efficiency. The integration of LLMs with edge

computing technologies facilitates on-site analysis of a variety

of data sources, including text-based maintenance logs, sensor

data, and equipment performance reports. This capability enables

organizations to predict potential failures before they manifest,

thereby enhancing the overall reliability of industrial operations

(Zonta et al., 2020).

By processing data at the edge, companies can substantially

reduce latency associated with data transmission to centralized

cloud systems. This reduction in latency is critical, as it allows

for the timely initiation of preventive measures, which in turn

minimizes costly downtimes and enhances productivity (Pang

et al., 2021). For instance, an LLM deployed on an edge device

can continuously analyze vibration patterns and temperature

fluctuations from manufacturing equipment. When anomalies are

detected, the system can generate immediate alerts for preventive

maintenance, enabling operators to address issues proactively

rather than reactively. This localized processing capability not

only enhances operational safety but also substantially reduces

the likelihood of unexpected shutdowns, which can have severe

financial implications for manufacturing operations.

Moreover, the advantages of edge computing in predictive

maintenance extend to the realm of data security and privacy

(Qiu et al., 2020; Zhang J. et al., 2018). By conducting analyses

locally, sensitive operational data is less exposed to external

threats associated with cloud transmission, thereby enhancing the

overall security posture of industrial facilities. This is particularly

important in industries where proprietary processes and trade

secrets are involved, as edge computing mitigates the risks of data

breaches and intellectual property theft (Zhou et al., 2024b).

The integration of edge computing and LLMs also opens

new avenues for academic research within the field of industrial

automation. Researchers can leverage the vast amounts of data

generated by industrial equipment to develop advanced predictive

models that improve maintenance strategies. By utilizing machine

learning methods and data analytics, researchers can identify

patterns and correlations that guide best practices in predictive

maintenance, ultimately enhancing the effectiveness and efficiency

of operational frameworks.

3.4 Consumer applications

In consumer applications, the integration of LLMs

embedded in edge devices has become increasingly prevalent,

particularly in smart home assistants, smartphones, and

personal wearables. These devices leverage LLMs to process

user commands locally, significantly enhancing response times

and preserving user privacy by minimizing reliance on cloud

processing (Syu et al., 2023). This local processing capability

not only facilitates quicker interactions but also mitigates

concerns related to data security and privacy, as sensitive
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information remains on the device rather than being transmitted

to remote servers.

For instance, smart home systems equipped with LLMs can

analyze and predict energy usage patterns, enabling users to

optimize their energy consumption based on real-time insights

(Yu et al., 2021; Iqbal et al., 2023). By monitoring factors such

as appliance usage and user behavior, these systems can provide

tailored recommendations that promote energy efficiency and cost

savings. This capability is particularly relevant in an era where

energy conservation is of paramount importance, as it empowers

consumers to make informed decisions regarding their energy

consumption habits.

Moreover, edge-deployed LLMs enhance security in smart

home environments by analyzing data from various sensors

to detect unusual patterns. For example, they can monitor

for unexpected motion or unusual access times, alerting users

immediately to potential security threats (Siriwardhana et al.,

2021). This proactive approach to home security not only provides

peace of mind for users but also demonstrates the potential for

LLMs to contribute to safer living environments through real-time

monitoring and alerting mechanisms.

The advantages of edge computing in consumer applications

extend beyond improved response times and enhanced privacy.

The localized processing of data allows for greater resilience in

the face of connectivity issues, as devices can continue to function

effectively even when offline or in low-bandwidth situations (Li J.

et al., 2023). This characteristic is particularly valuable in resource-

constrained environments, where consistent internet access may

not be guaranteed.

In summary, the integration of LLMs with edge computing

in consumer applications offers substantial benefits, including

reduced latency, enhanced privacy, and decreased dependency

on cloud infrastructure. These applications underscore the

transformative potential of edge-compatible LLMs in providing

real-time, privacy-conscious data insights, thereby enriching user

experiences across various domains. As research in this field

progresses, it will undoubtedly yield innovative solutions that

further enhance the capabilities and societal acceptance of AI-

driven consumer technologies.

4 Challenges of implementing LLMs in
edge computing

Deploying LLMs in edge computing environments presents

significant challenges due to the resource-constrained nature of

edge devices (Boumendil et al., 2025). These challenges include

resource constraints, energy efficiency, data privacy and security,

as well as latency and real-time requirements, as shown in Table 4.

Resource constraints arise from the limited computational and

memory capabilities of edge devices compared to robust cloud

servers, making it difficult to effectively utilize large models.

Additionally, the energy demands of LLMs pose challenges

in battery-powered edge devices, necessitating optimizations to

minimize power consumption. Data privacy concerns are amplified

in scenarios involving sensitive information, where centralized

processing introduces risks that must be mitigated. Finally, the

inherent computational intensity of traditional LLMs often results

in high latency, which is incompatible with the near-instantaneous

processing required in critical applications such as autonomous

driving and real-time diagnostics. To address these challenges,

solutions such as model compression techniques, secure local

processing methods, and latency reduction strategies are essential

for ensuring the successful integration of LLMs into resource-

constrained edge environments (Cheng et al., 2024).

4.1 Resource constraints

One of the fundamental challenges associated with the

deployment of LLMs on edge devices lies in the constraints imposed

by limited computational and memory resources (Shi et al., 2016;

Sun and Ansari, 2019). In contrast to robust cloud servers that

possess the capacity to manage large model sizes and perform

complex calculations, edge devices are typically characterized by

their insufficient memory and processing power. This inadequacy

limits their ability to store and execute LLMs directly, thereby

presenting a significant barrier to the practical application of such

models in real-world scenarios.

For example, models like GPT-3, which contain billions

of parameters, necessitate high-performance hardware such as

GPUs or TPUs to function effectively (Brown et al., 2020).

These advanced processing units are instrumental in handling

the extensive computational demands associated with both the

training and inference stages of LLMs. However, such high-

performance hardware is frequently absent in edge environments,

where devices are designed to be small, energy-efficient, and

cost-effective. This disparity between the resource requirements

of state-of-the-art LLMs and the capabilities of edge devices

leads to challenges in executing these models without significant

degradation in performance.

The limitations in computational power and memory

capacity are further compounded by the diverse nature of edge

environments, which may include mobile devices, IoT sensors,

and embedded systems. Each of these platforms comes with its

own set of constraints, making it essential for researchers to

explore alternative strategies for model deployment (Wang S. et al.,

2019). One potential avenue is to develop model compression

techniques, such as quantization and pruning (Chen et al., 2021a;

Liang et al., 2021), which aim to reduce the size of models while

retaining their essential functionalities. Additionally, approaches

such as knowledge distillation can be employed to create smaller

(Matsubara et al., 2020; Ji et al., 2024), more efficient surrogate

models that approximate the performance of larger LLMs while

being suitable for deployment on edge devices.

Overall, addressing these computational and memory

limitations is paramount for the successful integration of

LLMs into edge devices, thereby enabling the delivery of

advanced language processing capabilities in a variety of

resource-constrained environments.

4.2 Energy e�ciency

Energy efficiency poses a substantial challenge in the

deployment of LLMs on edge devices, which are inherently

constrained by their battery-powered design and limited
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TABLE 4 Challenges of deploying LLMs in edge computing environments.

Challenge Description Implications Potential solutions

Resource constraints Edge devices have limited computational and

memory resources compared to cloud

servers, making it difficult to deploy large

models like GPT-3, which require

high-performance hardware (e.g., GPUs,

TPUs) for effective operation.

The inability to store and execute LLMs

can hinder their practical application in

real-world scenarios, leading to

performance degradation.

Develop model compression techniques

(e.g., quantization, pruning) and

knowledge distillation to create smaller,

efficient models.

Energy efficiency Edge devices are typically battery-powered

and require LLMs to minimize power

consumption while maintaining

computational efficacy. Standard LLM

architectures are energy-intensive during

training and inference.

High energy usage can limit the

deployment of LLMs in

energy-constrained environments,

affecting their viability in applications

requiring sophisticated NLP.

Implement model compression, pruning,

quantization, and knowledge distillation

to reduce energy requirements while

retaining performance.

Data privacy and security Deploying LLMs at the edge involves

handling sensitive information, raising

concerns about data privacy due to potential

risks associated with centralized processing

and data transmission.

Centralized architectures can compromise

user confidentiality and trust,

necessitating robust privacy protections to

comply with ethical and legal standards.

Employ secure local processing

techniques, encryption methods,

differential privacy, and federated learning

to enhance data security.

Latency and real-time

requirements

Low latency is crucial for edge applications

like autonomous driving and real-time

diagnostics, where delays can lead to serious

consequences. Traditional LLMs often have

high latency due to their computational

demands.

Elevated latency levels can jeopardize the

effectiveness of applications that require

near-instantaneous processing, potentially

leading to critical failures.

Optimize LLMs through model

partitioning and early exit strategies to

facilitate parallel processing and timely

predictions.

availability of energy resources. The increasing proliferation

of edge devices, encompassing a diverse range of applications

such as mobile phones, smart home systems, and IoT

devices, necessitates the optimization of LLMs to ensure

minimal power consumption while maintaining the required

level of computational efficacy (Shuvo et al., 2022). This

requirement is particularly critical given the growing demand for

sophisticated NLP capabilities in scenarios where low power use

is paramount.

Standard architectures for LLMs, including well-known

models such as BERT and GPT, are particularly notable for their

substantial energy consumption during both the training and

inference phases. During these phases, particularly when dealing

with extensive datasets and complex tasks, these models can

require significant computational power and energy resources

to operate effectively. This characteristic starkly contrasts with

the low-power requirements typically associated with edge

environments, where devices are designed to function under

strict energy constraints without sacrificing performance (Devlin

et al., 2019). The challenge here is twofold: not only must the

models operate efficiently, but they must also be capable of

delivering acceptable performance levels despite the limitations

of edge devices. Larger models, characterized by billions of

parameters, tend to demand exponentially increasing amounts

of computational resources, which translates to higher energy

usage (Strubell et al., 2020; Wang H. et al., 2019). This relationship

underscores the urgency for developing model adaptation

techniques aimed at achieving performance equivalence while

significantly reducing energy expenditure. Such techniques are

not merely advantageous but essential for effectively integrating

the capabilities of LLMs within energy-constrained contexts,

allowing for the deployment of advanced NLP applications

in a variety of settings without detrimental impacts on

device operation.

To address these energy efficiency challenges, several

strategies can be employed. One prominent approach is model

compression, which encompasses techniques such as pruning,

quantization, and knowledge distillation. Pruning involves

removing redundant parameters from the model, thereby reducing

its size and, consequently, its computational demands (Kim,

2023). Quantization refers to the process of approximating the

model weights using lower precision formats, which can further

decrease memory usage and accelerate inference speed (Zhang

et al., 2025). In contrast, knowledge distillation involves training

a smaller, more efficient model (referred to as the student) to

imitate the behavior of a larger, more complex model (the teacher)

(Wang et al., 2024). This process yields a streamlined version that

maintains a significant portion of the original model’s performance

while utilizing fewer resources.

4.3 Data privacy and security

Data privacy emerges as a critical concern in the deployment

of LLMs at the edge, particularly in applications that involve

handling sensitive information such as healthcare records, financial

transactions, and personal data (Kairouz et al., 2021). Traditional

centralized models typically necessitate the transfer of data to cloud

servers for processing, which introduces substantial privacy risks.

These risks arise from several factors, including potential data

interception during transmission, vulnerabilities associated with

centralized storage systems, and the possibility of unauthorized

access to sensitive information (Zhou et al., 2022b). Consequently,

such centralized architecturesmay compromise user confidentiality

and trust, raising ethical and regulatory concerns.

In contrast, edge computing offers a paradigm that can

significantly mitigate these privacy-related challenges by ensuring
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that data remains closer to its source. By processing data locally on

edge devices, the exposure of sensitive information is inherently

reduced, thereby reducing the likelihood of data breaches and

unauthorized access. This localized data processing approach

enables organizations to leverage powerful LLMs while adhering

to privacy regulations and maintaining user trust (Ali et al., 2021).

However, the transition to edge computing does not eliminate

the need for robust privacy protections; rather, it necessitates the

implementation of secure local processing techniques. Effective

encryption methods must be employed to safeguard data both

at rest and in transit, ensuring that even if data does reside

on edge devices, it remains protected from potential adversaries

(Alwarafy et al., 2021). Additionally, incorporating differential

privacy techniques can further enhance data security by adding

noise to the data during processing, making it increasingly

challenging for attackers to infer sensitive information without

significantly impacting the model’s performance (Du et al., 2020).

Edge environments often consist of a diverse array of devices, each

with varying levels of security capabilities, which complicates the

development of standardized privacy protocols. Therefore, it is

essential to adopt amultifaceted approach that considers the unique

attributes and constraints of different edge devices. This may

include utilizing lightweight privacy-preserving algorithms that are

compatible with the limited computational resources typical of

edge devices while ensuring compliance with relevant legal and

ethical standards.

The integration of federated learning into edge computing

architectures presents a promising solution to enhance data

privacy (Nguyen et al., 2021b). Federated learning facilitates

the training of models across various edge devices without the

necessity of sharing raw data. Instead, only model updates–

devoid of sensitive information—are sent to a central server for

aggregation. This approach preserves user privacy while allowing

for the ongoing enhancement of LLMs (Abreha et al., 2022;

Xia et al., 2021). While the deployment of LLMs at the edge

offers significant advantages in terms of data privacy, it also

presents unique challenges related to secure local processing. A

comprehensive strategy that incorporates encryption, differential

privacy, lightweight algorithms, and federated learning is essential

for mitigating privacy risks while ensuring the effective use of LLMs

in sensitive applications.

4.4 Latency and real-time requirements

Low latency is a critical requirement for edge applications

across various sectors (Ke et al., 2023), including autonomous

driving, augmented reality (Zhang et al., 2020), and real-

time diagnostics, where even minor delays in response times

can lead to significant consequences, potentially jeopardizing

safety and operational efficiency (Kang et al., 2017). In

these contexts, traditional LLMs pose challenges due to

their inherent computational intensity, which often results in

elevated latency levels that are incompatible with the stringent

demands of edge applications that necessitate near-instantaneous

processing capabilities.

For instance, in the realm of autonomous driving, the ability

to process sensory data and make real-time decisions is paramount

(Roszyk et al., 2022); any delay can result in critical failures, such

as the inability to react promptly to dynamic road conditions or

obstacles (Lin et al., 2018). Similarly, augmented reality applications

rely on real-time data processing to provide users with seamless

and interactive experiences, where lag can disrupt the immersive

quality of the application (Chen et al., 2018; Zhang W. et al., 2018).

In the field of real-time diagnostics, the timely analysis of medical

data can be a matter of life and death (Köhl and Hermanns, 2023),

underscoring the importance of minimizing latency.

To effectively utilize LLMs for real-time processing of speech

or image data, a range of optimizations is essential to minimize

processing time while maintaining accuracy. Various techniques

are being investigated to tackle latency issues, including model

partitioning and early exit strategies. Model partitioning involves

distributing the model across multiple devices, enabling parallel

processing that significantly reduces latency (Kang et al., 2017).

Meanwhile, early exit mechanisms allow the model to generate

predictions at intermediate layers once a high level of confidence

is reached, thereby decreasing computation time for simpler

tasks (Teerapittayanon et al., 2016). These strategies are crucial for

meeting the real-time demands of edge applications, allowing LLMs

to deliver timely responses without sacrificing performance.

5 Recent advances for
edge-compatible LLMs

Given the computational and storage constraints of edge

devices, deploying LLMs necessitates the implementation

of various techniques aimed at minimizing model size,

energy consumption, and latency. These constraints are

critical considerations, as edge devices often operate under

limited processing power and memory capacity, which can

significantly impact the performance of LLMs. Therefore, it is

essential to adopt strategies that not only reduce the resource

footprint of these models but also ensure their effectiveness in

real-world applications.

This section discusses threemajor approaches formaking LLMs

compatible with edge devices. First, model compression techniques,

such as pruning, quantization, and knowledge distillation, play a

crucial role in reducing the size and complexity of LLMs without

substantially sacrificing their performance. These methods allow

for the deployment of smaller models that can operate efficiently

within the constraints of edge environments. Second, federated

and distributed learning frameworks offer innovative solutions for

training LLMs across decentralized data sources while preserving

data privacy. By enabling collaborative learning without the need

to centralize sensitive information, these approaches not only

enhance security but also improve the robustness of the models

through diverse data exposure. Lastly, optimized architectures and

frameworks, particularly those that are edge-friendly, are crucial for

ensuring that LLMs can operate effectively in resource-constrained

environments. These architectures focus on balancing performance

and efficiency, allowing for rapid inference times and reduced

energy consumption, which are essential for applications that

require real-time processing.
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FIGURE 3

Illustration of model compression techniques for edge deployment: pruning, quantization, and knowledge distillation.

5.1 Model compression techniques

Model compression is essential to fit LLMs within the resource-

constrained environments of edge devices. Compression methods

aim to reduce model size and computational demands while

retaining performance. Three popular compression techniques are

pruning, quantization, and knowledge distillation (Han et al.,

2015; Sanh et al., 2019). Pruning involves removing the less

important connections within the model to reduce its size without

a significant drop in performance (Han et al., 2015). Quantization

reduces the precision of the model weights, decreasing memory

requirements and improving computational efficiency (Jacob et al.,

2018). Knowledge distillation enables a student model to learn from

a teacher model, retaining key features of the original model but

in a more compact form (Sanh et al., 2019). These techniques,

illustrated in Figure 3, have shown promise in adapting LLMs to

edge devices, but further advances are needed to effectively balance

model performance with hardware limitations.

5.1.1 Pruning
Pruning is a pivotal technique in the field of model compression

that focuses on enhancing the efficiency of neural networks by

removing redundant connections (Wang et al., 2021). This is

accomplished by systematically removing low-weight parameters,

leading to a substantial decrease in both memory requirements

and computational costs. Pruning techniques can be generally

divided into two categories: structured and unstructured methods.

Structured pruning entails the removal of entire neurons, channels,

or layers, while unstructured pruning focuses on the elimination of

individual weights (Gale et al., 2019).

Recent advancements in pruning techniques have highlighted

two primary approaches: structured and unstructured pruning

(Vahidian et al., 2021). Structured pruning focuses on the removal

of entire neurons, channels, or layers, thereby maintaining the

overall architecture of the network while significantly enhancing

its efficiency (Anwar et al., 2017). On the other hand, unstructured

pruning targets individual weights, allowing for a finer level of

granularity in the pruning process. While unstructured pruning

often achieves higher compression rates, it can lead to irregular

sparsity patterns that may not be as easily optimized for hardware

acceleration (Vahidian et al., 2021). In contrast, structured pruning

tends to produce more regular sparsity patterns, making it more

compatible with various hardware architectures (Xu et al., 2025),

such as GPUs and TPUs, which can exploit these structures

for improved performance. The integration of pruning with

neural architecture search (NAS) has gained traction, enabling the

automatic discovery of optimal architectures that are inherently

more efficient (Ding et al., 2022). Additionally, the development

of dynamic pruning methods, which adaptively prune weights
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during training based on their importance, has shown promise

in maintaining model performance while achieving significant

reductions in size (Hu et al., 2023; Liu et al., 2018). Another

notable trend is the use of pruning in conjunctionwith quantization

techniques, which further compress models by reducing the

precision of the weights (Chowdhury et al., 2021), leading to even

greater efficiency.

5.1.2 Quantization
Quantization is a pivotal technique in the optimization of

neural networks, specifically designed to enhance computational

efficiency and reduce memory usage. This process involves

decreasing the precision of model weights, allowing them to be

represented with fewer bits—commonly using 8-bit integers in

place of the traditional 32-bit floating-point representations (Jacob

et al., 2018). By reducing the bit-width of weights, quantization

not only conserves memory but also accelerates computational

operations, making quantized models particularly well-suited for

deployment on edge devices that often have stringent resource

constraints. In recent years, the field of quantization has witnessed

significant advancements, especially in the context of LLMs.

One notable trend is the integration of quantization

with retraining strategies, where models are fine-tuned after

quantization to recover any potential loss in accuracy (Wu et al.,

2020). This approach has proven effective in mitigating the impact

of reduced precision, ensuring that the quantized models remain

robust and reliable for real-world applications. Another area of

focus has been the development of adaptive quantization methods,

which dynamically adjust the quantization strategy based on

the distribution of weight values within the model (Zhou et al.,

2018). This technique allows for more efficient representation of

weights, optimizing both performance and resource utilization.

Additionally, researchers have explored the potential of mixed-

precision quantization, where different layers of a neural network

are quantized to varying degrees of precision based on their

sensitivity to quantization errors (Chen et al., 2021b). This tailored

approach can lead to enhanced performance while still achieving

significant reductions in model size (Liu X. et al., 2021). The rise

of quantization-aware training has also emerged as a key area

of research. This technique involves incorporating quantization

effects into the training process itself, allowing the model to learn

to be robust against the quantization noise it will encounter during

inference (Nagel et al., 2022). This proactive strategy has shown

promise in preserving accuracy while maximizing the benefits of

quantization (Sakr et al., 2022).

5.1.3 Knowledge distillation
Knowledge distillation is a powerful technique in the field of

deep learning. The primary objective of this process is to train the

student to replicate the outputs of the teacher, effectively allowing it

to inherit the performance characteristics of the more sophisticated

model while maintaining a significantly reduced size (Gou et al.,

2021).

One prominent example of knowledge distillation is

DistilBERT (Sanh et al., 2019), which is a distilled variant of

the well-known BERT model. DistilBERT achieves remarkable

efficiency by retaining approximately 97% of BERT’s language

understanding capabilities while being roughly half the size of the

original model. This compression is particularly advantageous

for applications requiring deployment on edge devices, where

computational resources and memory are often limited (Gou et al.,

2021). One notable direction is the exploration of multi-teacher

distillation, where the student model is trained to learn from

multiple teacher models simultaneously (Liu et al., 2020). This

approach can enhance the student’s performance by leveraging

diverse knowledge representations, thus improving generalization

capabilities across various tasks (Yuan et al., 2021). Another

significant development is the integration of knowledge distillation

with other model compression techniques, such as pruning

and quantization (Kim, 2023). By combining these methods,

researchers have been able to create even more compact models

that not only maintain high levels of accuracy but also achieve

lower latency and energy consumption during inference (Bao et al.,

2019).

Additionally, there has been a growing interest in the

application of knowledge distillation beyond traditional supervised

learning settings. For instance, distillation techniques are being

adapted for use in semi-supervised (Li et al., 2019; Guo et al., 2022)

and unsupervised learning scenarios (Han et al., 2022), allowing

student models to benefit from the knowledge encoded in teacher

models trained on large, unlabeled datasets. Advancements in the

design of loss functions used during the distillation process have

also emerged. Researchers are investigating new ways to optimize

the training objective, focusing on enhancing the alignment

between the teacher’s and student’s outputs (Liu P. et al., 2021),

which can lead to improved performance of the distilled models.

5.2 Federated and distributed learning for
edge applications

Federated and distributed learning techniques enable the

training and updating of LLMs across multiple edge devices

without requiring raw data to be transferred to a central

server. These methods are especially beneficial in privacy-sensitive

applications, such as healthcare and finance, as they allow data to

remain local to the device (Kairouz et al., 2021; Ye et al., 2023).

5.2.1 Federated learning
Federated learning is an innovative distributed machine

learning paradigm that enables multiple edge devices to

collaboratively train a shared model while keeping their data

localized. In this approach, each device computes local model

updates based on its unique dataset, which are subsequently

aggregated to form a global model (Kairouz et al., 2021). This

methodology significantly mitigates the need for centralized

data storage, thereby enhancing data privacy and security, as

sensitive information remains on the individual devices rather

than being transmitted to a central server. Federated learning has

gained considerable attention, particularly in contexts where data

privacy is paramount, such as healthcare, finance, and personal

mobile applications. One of the critical challenges associated with
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federated learning is the heterogeneity of data across devices, which

often leads to non-IID (independent and identically distributed)

data distributions (McMahan et al., 2017). This variability can

complicate the training process, as models trained on diverse data

may not converge effectively.

To address these challenges, researchers have been developing

various techniques aimed at improving communication efficiency

and model synchronization (Zhou et al., 2023). One prominent

method is federated averaging, which optimally aggregates the

model updates from different devices (Nguyen et al., 2021a).

This technique helps to balance the contributions from devices

with varying amounts of data, ensuring that the global model

reflects the knowledge from all participating devices. Another

noteworthy advancement is the concept of adaptive federated

learning, which dynamically adjusts the training process based

on the characteristics of the participating devices and their data

(Wang S. et al., 2019). This approach can include mechanisms to

prioritize updates from devices with more representative or higher-

quality data, thereby enhancing the overall performance of the

federated model.

Recent studies have explored the integration of federated

learning with other emerging technologies, such as differential

privacy (Wei et al., 2020) and secure multi-party computation

(Byrd and Polychroniadou, 2021). These integrations aim to further

bolster the privacy and security guarantees of federated learning

systems, making them more robust against potential adversarial

attacks. Additionally, advancements in communication protocols

have been a focal point of research, with efforts aimed at reducing

the bandwidth required for model updates (Qin et al., 2021).

Techniques such as model compression and quantization are being

employed to minimize the size of the updates transmitted between

devices and the central server, thus improving the overall efficiency

of the federated learning process.

5.2.2 Distributed learning
Distributed learning represents a significant evolution in

machine learning paradigms, extending the principles of federated

learning to encompass a broader range of computational resources,

including both edge devices and cloud servers. This approach

capitalizes on the strengths of edge devices for real-time

data processing, while simultaneously leveraging the substantial

computational power of cloud servers for more resource-intensive

tasks. By dynamically distributing model components across

various devices and servers, distributed learning effectively balances

latency and computational efficiency, making it particularly

suitable for applications that require rapid response times and

substantial processing capabilities (Kang et al., 2017).

One notable technique is split learning, which involves

partitioning a neural network into segments that can be processed

on different devices. In this framework, the initial layers of

the model may run on edge devices, which handle local data

and perform preliminary processing. The subsequent layers are

executed on cloud servers, where the more complex computations

take place (Vepakomma et al., 2018). This separation not only

reduces the computational burden on edge devices but also

minimizes the amount of data that needs to be transmitted to the

cloud, thereby enhancing privacy and reducing communication

costs (Zhang et al., 2024).

Recent advancements have also focused on optimizing the

training process in distributed learning scenarios. Techniques such

as adaptive resource allocation (Li J.-Y. et al., 2023) and dynamic

task scheduling (de Zarzà et al., 2023) are being explored to ensure

that computational resources are utilized effectively. By intelligently

assigning tasks based on the current workload and capabilities of

each device, distributed learning systems can achieve improved

performance and responsiveness. Moreover, the integration of

distributed learning with edge computing and the IoT has opened

new avenues for real-time data analytics and decision-making (Saha

et al., 2021). For instance, in smart cities, distributed learning can

enable the analysis of data generated by various sensors and devices

to optimize traffic management, energy consumption, and public

safety measures. This real-time processing capability is crucial for

applications that require immediate insights and actions based on

rapidly changing data.

5.3 Optimized architectures and
frameworks for edge deployment

Optimized architectures and frameworks have been specifically

developed to facilitate the deployment of LLMs on edge devices.

These solutions focus on creating lightweight and efficient models

that significantly reduce the computational demands traditionally

associated with LLMs. By optimizing both the architecture and the

underlying frameworks, these tailored systems ensure that edge

devices can effectively perform a wide range of NLP tasks without

sacrificing performance or functionality. This advancement not

only enhances the usability of LLMs in resource-constrained

environments but also broadens their applicability in scenarios

requiring real-time processing and low-latency responses.

5.3.1 Lightweight model architectures
Lightweight model architectures are vital in NLP, especially

for LLMs. They seek to optimize complexity and resource usage

without sacrificing performance, driven by the need to deploy

advancedmodels on resource-limited devices like smartphones and

edge computing platforms.

One notable example of a lightweight architecture is ALBERT,

which introduces several innovative modifications to the original

BERT architecture (Lan et al., 2019). By sharing parameters

across different layers, ALBERT significantly reduces memory

requirements without compromising the model’s ability to

understand and generate human-like text. This parameter-sharing

technique not only enhances efficiency but also facilitates faster

training and inference times, making it a compelling choice for

applications that require rapid processing. Another significant

development in lightweight model architectures is MobileBERT.

This model incorporates bottleneck structures and various

optimizations specifically designed to enable BERT to function

effectively on mobile and edge devices (Sun et al., 2020). By

leveraging these architectural innovations, MobileBERT achieves

a balance between model size and performance, allowing it to
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deliver high-quality natural language understanding capabilities in

environments where computational resources are limited.

The exploration of hybrid architectures that integrate

lightweight models with more complex systems has also gained

traction. These hybrid approaches allow for the efficient handling

of various tasks by dynamically allocating resources based on the

particular demands of each task, optimizing both performance and

efficiency (Sun et al., 2022; Bayoudh, 2024).

5.3.2 Edge-AI frameworks
Edge-AI frameworks have become instrumental in enabling the

deployment of LLMs on edge devices, addressing the challenges

posed by limited computational resources and varying hardware

capabilities (Ignatov et al., 2018). Notable examples of such

frameworks include TensorFlow Lite, ONNX Runtime, and

PyTorch Mobile, all provide tools to enhance LLM implementation

in resource-limited edge computing environments (Danopoulos

et al., 2021).

TensorFlow Lite is a lightweight version of TensorFlow

specifically tailored for mobile and edge applications. It provides

robust support for model conversion and optimization techniques,

such as quantization (Pandey and Asati, 2023). Quantization

reduces the precision of model weights and activations, leading

to a significant decrease in model size and an increase in

inference speed without a substantial loss in accuracy. TensorFlow

Lite also includes acceleration capabilities for various hardware

architectures, enabling efficient execution on mobile CPUs

and GPUs (Adi and Casson, 2021). This adaptability makes

it particularly suitable for applications that require real-time

processing, such as voice assistants and interactive chatbots.

ONNX Runtime is designed to facilitate cross-platform

compatibility for optimized model execution. It supports models

developed in various frameworks, allowing developers to leverage

the strengths of different tools while maintaining a consistent

runtime environment (Kim et al., 2022). ONNX Runtime

incorporates several optimization techniques, including graph

optimization and kernel fusion, which enhance the performance

of models during inference (Niu et al., 2021). This framework is

particularly beneficial for deploying LLMs across diverse hardware

platforms, ensuring that models can be executed efficiently,

whether on edge devices, cloud servers, or hybrid environments.

PyTorch Mobile has proven to be a robust solution for

implementing machine learning models on edge devices. It allows

developers to convert PyTorch models into a format optimized

for mobile environments, ensuring that they can run efficiently on

both Android and iOS platforms (Deng, 2019). PyTorch Mobile

supports a variety of optimizations, including quantization and

pruning, to reduce model size and improve inference speed.

Additionally, it provides tools for dynamic model updates (Li

M. et al., 2022), enabling applications to adapt to new data or

requirements without necessitating a complete redeployment.

Recent advancements in these frameworks have further

expanded their capabilities. For instance, TensorFlow Lite,

ONNX Runtime, and PyTorch Mobile have integrated support

for hardware-specific optimizations that take advantage of the

unique features of different processors, such as ARM and

NVIDIA GPUs. These optimizations allow models to run more

efficiently, maximizing the performance of edge devices while

minimizing energy consumption. Additionally, the emergence of

new model compression methods, has been incorporated into

these frameworks (Pandey and Asati, 2023). Pruning involves

removing less significant weights from a model, resulting in a

sparser representation that requires fewer resources for inference.

Knowledge distillation enables the creation of smaller student

models that can mimic the performance of larger teacher models,

making it easier to deploy high-performingmodels on edge devices.

In summary, the advancement of model compression

techniques, including pruning, quantization, and knowledge

distillation, plays a pivotal role in enhancing the deployment of

LLMs on edge devices. These techniques enable the reduction of

model size and complexity, allowing for efficient utilization of

limited computational resources inherent in edge environments.

Pruning effectively removes redundant parameters from models,

thereby streamlining their structure without significantly

compromising performance. Quantization reduces the precision

of the model weights, which not only decreases memory usage

but also accelerates inference times. Knowledge distillation, on

the other hand, involves training a smaller, more efficient model

to replicate the behavior of a larger model, thus maintaining

performance while ensuring that the model is lightweight and

suitable for edge deployment.

Additionally, federated and distributed learning frameworks

offer innovative solutions for training models across decentralized

data sources while preserving data privacy. These approaches allow

for collaborative learning without the need to transfer sensitive

information to a central server, thus enhancing security and

compliance with privacy regulations.

Furthermore, the development of optimized architectures and

frameworks, such as lightweight model architectures and edge-AI

frameworks, is essential for facilitating efficient model deployment

in edge computing scenarios. Lightweight architectures are

specifically designed to operate within the constraints of edge

devices, ensuring that models can deliver high performance with

minimal resource consumption.

By addressing these interconnected challenges and leveraging

these advanced techniques, we can unlock the full potential of LLMs

in edge computing, paving the way for smarter, more responsive

systems. These advancements will not only meet the evolving needs

of users but also ensure that privacy and security are maintained

throughout the data analysis process.

6 Future directions

The field of LLMs in edge computing is dynamic and

constantly evolving. To fully leverage LLMs for edge applications,

researchers are focusing on several future directions, including

ultra-efficient Transformer architectures, adaptive deployment

models, edge-specific hardware, enhanced privacy, multi-modal

LLMs, and hybrid edge-cloud systems. This section discusses these

emerging areas.
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6.1 Ultra-e�cient transformer
architectures for edge

Developing ultra-efficient Transformer architectures is vital

for deploying LLMs in edge environments with limited resources.

Current models, such as MobileBERT and TinyBERT, achieve

significant efficiency gains by reducing the parameter count and

computational complexity (Sun et al., 2020). MobileBERT, for

example, is a compact, task-agnostic model that uses bottleneck

structures and parameter sharing across layers, enabling high

performance in edge scenarios with constrained processing

capabilities. By reducing the model size and adapting it for specific

tasks, MobileBERT represents a viable approach for deploying

Transformers on edge devices where real-time processing

is essential.

Further research into efficient model architectures, such as

sparse Transformers and lightweight attention mechanisms, could

yield even more optimized models for edge deployment. Sparse

Transformers reduce memory and processing requirements by

using selective attention, focusing computational resources only

on relevant data (Jaszczur et al., 2021). Techniques like these

allow models to operate with minimal resources, making them

suitable for applications requiring continuous processing, such as

wearable health monitors and environmental sensors. As the need

for efficient edge-compatible LLMs grows, more research will likely

focus on refining these architectures to achieve better performance

without sacrificing accuracy.

The future of edge-based LLMs may also involve adaptive

Transformers that adjust their complexity based on input

characteristics. By enabling models to dynamically allocate

computational resources, adaptive Transformers optimize

processing power and latency, which is important for edge

applications that need quick responses amid varying resource

availability. These innovations are expected to enhance

the accessibility and utility of LLMs across various edge

computing scenarios.

6.2 Adaptive and context-aware model
deployment

To enhance flexibility in edge computing, future LLMs will

likely feature adaptive deployment mechanisms, allowing models

to adjust to their operating context. Context-aware models can

dynamically allocate resources based on device capabilities, user

needs, or network conditions, optimizing processing efficiency and

power consumption (Neseem et al., 2023). For instance, early-exit

strategies enable models to terminate processing once they reach

an acceptable confidence level, saving computational resources and

reducing latency. This approach is particularly beneficial for edge

environments where device capabilities vary significantly.

Another promising approach is on-device model compression,

where edge devices themselves can prune or quantize models in

real-time based on task requirements. This adaptability is especially

useful for consumer devices such as smartphones, where power

and memory limitations fluctuate depending on user activity and

battery status. Research into self-optimizing models that adjust

based on operational data could further improve LLM performance

in edge settings, allowing devices to perform complex analytics even

in low-power modes.

The continued development of context-aware models could

also lead to smarter load balancing between edge and cloud

resources. By dynamically offloading certain tasks to cloud

resources based on network conditions and processing demands,

adaptive deployment strategies can enhance responsiveness and

resource management. As edge computing applications grow more

complex, adaptable LLMs will become essential for delivering real-

time insights without straining device resources.

6.3 Hardware-accelerated edge AI

Hardware advancements specifically designed for edge AI will

play a crucial role in supporting complex LLMs on resource-

constrained devices. AI accelerators like FPGAs, edge Tensor

Processing Units (TPUs), Neural Network Processing Units

(NPUs), and neuromorphic processors are being developed to

execute LLM inference tasks with lower power consumption and

higher efficiency compared to traditional CPUs (Krestinskaya et al.,

2019).

Edge TPUs are tailored to perform high-speed inferences

on deep learning models, offering a solution for real-time

applications that require continuous processing while preserving

power efficiency (Akin et al., 2022; Shuvo et al., 2022). NPUs

represent another class of specialized hardware that is increasingly

being utilized in edge computing. NPUs are specifically designed to

accelerate deep learning tasks by optimizing the execution of neural

networks (Jang et al., 2021). They offer significant advantages

in terms of throughput and energy efficiency, making them

particularly suitable for real-time applications in mobile devices

and IoT. By enabling high-speed computations and supporting

parallel processing of neural network layers, NPUs facilitate the

deployment of complex LLMs directly on edge devices, thereby

enhancing responsiveness and preserving user privacy (Heo et al.,

2024; Xu et al., 2024).

Neuromorphic computing represents a promising direction for

supporting LLMs in edge environments. Neuromorphic processors

use spiking neural networks to perform computations, which

can significantly reduce power usage compared to traditional

deep learning hardware. This technology holds great potential

for applications such as autonomous drones and mobile health

monitors, where low-latency, energy-efficient processing is

critical (Schuman et al., 2022).

In addition to traditional AI accelerators, the field of quantum

computing is emerging as a revolutionary force that could reshape

the landscape of machine learning and edge AI (Liang et al., 2023).

Quantum processors utilize the principles of quantum mechanics

to execute computations at unprecedented speeds, potentially

enabling the processing of complex models that are currently

impractical with classical hardware. While still in its nascent

stages, quantum computing holds the promise of improving the

training and inference capabilities of LLMs, especially for tasks

that demand significant computational resources (Aizpurua et al.,

2024). Researchers are investigating hybrid methods that integrate
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classical and quantum processing. This approach would allow edge

devices to offload demanding computations to quantum processors

while maintaining real-time responsiveness for less intensive tasks.

As hardware development progresses, the integration of

specialized AI accelerators in edge devices will enhance the

performance and efficiency of LLMs, enabling more sophisticated

applications. Continued research and innovation in this area will

help overcome one of the key barriers to deploying LLMs on the

edge: the high computational demand of complex models.

6.4 Data privacy and federated security
models

Data privacy remains a top priority as LLMs handle

increasingly sensitive information in edge environments. Methods

such as differential privacy, homomorphic encryption, and secure

multi-party computation offer means to safeguard data while

preserving its usability (Phan et al., 2017). Differential privacy

ensures that individual data points are anonymized, allowing LLMs

to analyze data collectively without revealing personal information.

Homomorphic encryption, meanwhile, enables computations on

encrypted data, which is invaluable for applications where data

must remain secure throughout the processing lifecycle.

Federated learning has emerged as a powerful tool for training

models on decentralized data sources while preserving user

privacy (Kairouz et al., 2021). However, traditional federated

learning approaches face challenges in terms of communication

efficiency and handling non-IID data. Advances in hierarchical

federated learning and split learning, where portions of the model

are trained locally and others centrally, offer solutions to these

challenges by reducing communication overhead and ensuring

robust model updates across devices (Vepakomma et al., 2018).

Future research will likely focus on refining these methods to make

federated learning more adaptable for complex LLMs and diverse

edge applications.

As privacy-preserving technologies evolve, integrating them

into edge-compatible LLMs will allow for safer, more responsible

deployment in sensitive domains like healthcare, finance, and smart

cities. Ensuring that LLMs operate within ethical and regulatory

boundaries will be essential for broadening their adoption in

edge computing.

6.5 Multi-modal LLMs for edge
applications

The development of multi-modal LLMs that can process

diverse data types, including text, images, and audio, is a key

future direction for edge applications. Multi-modal capabilities

allow models to provide more comprehensive insights by analyzing

various data streams simultaneously, which is particularly useful in

autonomous systems and IoT applications (Radford et al., 2021).

For example, a multi-modal LLM in a smart vehicle could analyze

visual data from cameras and textual data from sensors to enhance

object detection and navigation (Xie et al., 2022).

Edge devices equipped with multi-modal LLMs can also

improve situational awareness in smart cities, processing real-

time data from transport infrastructure, air quality sensors, and

emergency alerts. By deploying multi-modal LLMs on the edge,

systems can respond more quickly and intelligently to real-world

events without relying on cloud-based processing. Such real-time,

multi-modal analytics is vital for applications where latency could

impact safety or operational effectiveness.

Future research in multi-modal LLMs will focus on developing

lightweight architectures that integrate multiple data types without

excessive computational demand. These advancements will expand

the range of edge applications, enabling devices to handle complex

tasks in real-time while conserving resources.

6.6 Hybrid edge-cloud architectures and
collaborative intelligence

Hybrid edge-cloud architectures address the constraints of

fully decentralized edge computing by optimizing resource

distribution between the edge and the cloud (Kang et al., 2017).

Additionally, methods such as differential privacy, homomorphic

encryption, and secure multi-party computation enable data

protection without sacrificing functionality. This collaborative

intelligence framework allows for dynamic adjustments in

workload distribution, improving performance in applications that

require a mix of local and remote processing.

Collaborative edge-cloud architectures are particularly

beneficial for applications such as smart cities and industrial

IoT, where devices need both rapid, localized responses and

access to extensive computational resources. For instance, edge

devices in a smart factory might analyze sensor data to detect

defects in real-time, while more complex, large-scale analytics

are processed in the cloud to optimize production processes. By

leveraging both edge and cloud resources, hybrid architectures can

provide a flexible and scalable solution for deploying LLMs across

distributed environments.

Hybrid systems will likely involve more advanced orchestration

algorithms that optimize resource allocation based on real-time

conditions, such as network latency, device availability, and

task complexity. These systems promise to make LLMs more

scalable and adaptable, facilitating a new generation of intelligent,

responsive edge applications.

The future of LLMs in edge computing will be driven

by advancements in model efficiency, adaptive deployment,

specialized hardware, privacy, multi-modal capabilities, and

hybrid architectures. Together, these innovations will expand the

capabilities of edge-based LLMs, enabling them to process data

in real time, protect user privacy, and respond flexibly to diverse

operational requirements. The continued exploration of these

areas will be crucial for realizing the full potential of LLMs in

edge computing.

7 Conclusion

The convergence of LLMs and edge computing signifies a

groundbreaking advancement in the field of data analysis, with the

Frontiers inComputer Science 16 frontiersin.org

https://doi.org/10.3389/fcomp.2025.1538277
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Wang et al. 10.3389/fcomp.2025.1538277

potential to redefine operational frameworks across a multitude

of industries. This integration offers a transformative opportunity

to enhance real-time insights, bolster data privacy, and enable

autonomous decision-making, addressing critical demands in an

increasingly data-driven world. By decentralizing computational

capabilities and bringing them closer to the source of data

generation, the deployment of LLMs on edge devices addresses

key challenges such as latency, scalability, and security, while

simultaneously paving the way for a new era of intelligent, localized

data processing.

The deployment of LLMs on edge devices is accompanied

by significant challenges. Resource constraints remain a primary

obstacle, as edge devices typically have limited computational

power, memory, and energy efficiency compared to centralized

cloud systems. Addressing these constraints requires the

development of lightweight models through techniques such

as model compression, pruning, quantization, and knowledge

distillation, which reducemodel size while preserving performance.

Additionally, ensuring data privacy and security in distributed

edge environments is critical, as edge devices are often more

vulnerable to targeted attacks. Robust security mechanisms,

adaptive frameworks, and real-time threat mitigation strategies

are essential to protect sensitive data and maintain trust. Another

challenge lies in the variability and unpredictability of edge

environments, which can affect the performance and reliability of

deployed models. Adaptive learning techniques, continuous model

updates, and mechanisms for dynamic optimization are necessary

to ensure that LLMs remain effective and relevant in changing

operational contexts.

The convergence of LLMs and edge computing represents

not just a technological innovation but a paradigm shift in

how data is processed, analyzed, and utilized across industries.

By addressing the unique challenges of edge deployments and

leveraging cutting-edge techniques such as model compression,

federated learning, and collaborative frameworks, this integration

offers transformative benefits. The ability to derive actionable

insights in real time, while preserving data privacy and enabling

autonomous decision-making, has far-reaching implications for a

wide range of sectors.
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