
Frontiers in Computer Science 01 frontiersin.org

NeuralConstraints: integrating a
neural generative model with
constraint-based composition
Juan S. Vassallo 1*, Örjan Sandred 2 and Julien Vincenot 3

1 Faculty for Art, Music and Design, The Grieg Academy, University of Bergen, Bergen, Norway, 2 Marcel
A. Desautels Faculty of Music, University of Manitoba, Manitoba, MB, Canada, 3 Department of Music,
Harvard University, Cambridge, MA, United States

We present ‘NeuralConstraints,’ a suite of computer-assisted composition tools
that integrates a feedforward neural network as a rule within a constraint-based
composition framework. ‘NeuralConstraints’ combines the predictive generative
abilities of neural networks trained on symbolic musical data with an advanced
backtracking constraint algorithm. It provides a user-friendly interface for exploring
symbolic neural generation, while offering a higher level of creative control compared
to conventional neural generative processes, leveraged by the constraint solver.
This article outlines the technical implementation of the core functionalities of
‘NeuralConstraints’ and illustrates their application through specific tests and
examples of use.

KEYWORDS

artificial intelligence, machine learning, human-computer interaction, computer-
assisted composition, neural networks, deep learning, constraints solver algorithms

Introduction

Music is a field where intellect and emotion converse. Music theorists emphasize the
importance of structure as a foundation for creating coherence and meaning within musical
works. At the same time, being immersed in a musical culture allows us to intuitively1
appreciate music as an expression beyond our intellect. This duality between the mind’s need
for structure and its response to emotional depth lies at the heart of musical communication.

Composers use many varied strategies when creating music: some look at structure as a
starting point for a new composition, while others lean toward an intuitive approach (Wiggins,
2012; Pohjannoro, 2016; Pohjannoro, 2021). Computer-assisted composition (CAC) has
traditionally served to leverage the structural foundations of music composition. These
methods potentially assist in the creative process by reducing the cognitive load associated
with structural details, freeing composers to concentrate on artistic intent and expression
(Xenakis, 1992; Koenig, 1970). The use of symbolic AI and rule-based methods in CAC dates
back to some of the earliest experiments in computer-generated music (Brooks et al., 1957;
Hiller and Isaacson, 1958). Other approaches include corpus-based methods, such as Markov
Chains (Ames, 1989; Pachet and Roy, 2011; Ramanto and Maulidevi, 2017; Vassallo, 2024) and

1 Intuition, often described as the ability to understand something without the need for conscious

reasoning, is a concept usually echoed in artificial intelligence, with researchers illustrating how these

systems can mimic human-like pattern recognition and instinctive decision-making processes. See for

example Frantz (2003), Simon and Mellon (1995).

OPEN ACCESS

EDITED BY

Çagri Erdem,
University of Oslo, Norway

REVIEWED BY

Evellin Cardoso,
Universidade Federal de Goiás, Brazil
Vincenzo Madaghiele,
University of Oslo, Norway

*CORRESPONDENCE

Juan S. Vassallo
 juan.vassallo@uib.no

RECEIVED 10 December 2024
ACCEPTED 09 April 2025
PUBLISHED 30 April 2025

CITATION

Vassallo JS, Sandred Ö and Vincenot J (2025)
NeuralConstraints: integrating a neural
generative model with constraint-based
composition.
Front. Comput. Sci. 7:1543074.
doi: 10.3389/fcomp.2025.1543074

COPYRIGHT

© 2025 Vassallo, Sandred and Vincenot. This
is an open-access article distributed under
the terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other forums is
permitted, provided the original author(s) and
the copyright owner(s) are credited and that
the original publication in this journal is cited,
in accordance with accepted academic
practice. No use, distribution or reproduction
is permitted which does not comply with
these terms.

TYPE Original Research
PUBLISHED 30 April 2025
DOI 10.3389/fcomp.2025.1543074

https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fcomp.2025.1543074&domain=pdf&date_stamp=2025-04-30
https://www.frontiersin.org/articles/10.3389/fcomp.2025.1543074/full
https://www.frontiersin.org/articles/10.3389/fcomp.2025.1543074/full
https://www.frontiersin.org/articles/10.3389/fcomp.2025.1543074/full
mailto:juan.vassallo@uib.no
https://doi.org/10.3389/fcomp.2025.1543074
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/computer-science#editorial-board
https://www.frontiersin.org/journals/computer-science#editorial-board
https://doi.org/10.3389/fcomp.2025.1543074

Vassallo et al. 10.3389/fcomp.2025.1543074

Frontiers in Computer Science 02 frontiersin.org

Neural Networks (Todd, 1989; Voisin and Meier, 2009), as well as
grammars, evolutionary methods, and more2.

With the rise of connectionist techniques for symbolic music
generation, it is not necessary to formalize rules or algorithms to
generate music. Instead, a computational model such as a Neural
Network (NN) can be trained with a corpus of example scores to learn.
After this training phase, the NN can generate new scores with similar
musical properties to the examples it was trained on. This approach
closely resembles the intuitive methods composers often use,
grounded in experiential processes shaped by the musical cultures in
which they are immersed (Pearce and Wiggins, 2007; Wiggins, 2006;
Boden, 2004). The strength of this method is also its weakness; since
it is based on statistical predictions, we should not expect any output
that substantially differs musically from the training set. For a
composer who wants to use a generative tool to explore new musical
ideas, a NN might not be an ideal method.

Research inquiry

We explored the potential for a generative tool that merges rule-
based and inferential approaches, building on suggestions from
researchers in the field that emphasize the need to bridge the gap
between symbolic and sub-symbolic frameworks for developing
innovative creative tools (Briot et al., 2020). For that, we investigated a
method for combining NNs with constraint solving techniques to
create a tool for compositional experiments, incorporating a NN as a
rule within the workflow of the constraint solving algorithm. This
approach allows the generation of a musical sequence that follows a
rule guided by NN predictions while simultaneously being constrained
by additional rules, such as desired or allowed notes at certain time
points, allowed interval movements, patterns of repetition or
non-repetition, and so on. Consequently, these predictions are adjusted
to align with a desired musical behavior, even if that behavior deviates
from the patterns present in the training dataset. The constraint solver
would provide the logical framework to support these more structural
aspects of music, while the NN would offer an inferential method
where learned musical examples can influence the generation.

Overview and goal

In this article, we present the CAC library ‘NeuralConstraints’ as
the result of our work toward implementing this approach. First,
we discuss constraint solvers in the context of music composition.
Next, we discuss neural networks for symbolic music generation.
We then detail the technical implementation of ‘NeuralConstraints’
and provide examples of its use. Finally, we outline its limitations and
explore potential future enhancements. Importantly, our goal was not
to evaluate the success of these combined techniques in
‘NeuralConstraints’ based on their ability to replicate existing styles
but rather on how effectively two distinct computational paradigms—
and, ultimately, compositional approaches—can be integrated into a

2 For comprehensive surveys on research on computer-generated music,

see Fernández and Vico (2013) and Papadopoulos and Wiggins (1999).

single unified creative environment that can be deployed on a standard
computer without requiring large-scale computational infrastructure.

Constraint solvers and rules

A constraint algorithm, or constraint solver (CS) algorithm, is a
computational method that searches for values for a set of variables
that satisfy a defined set of constraints. The basic idea of constraint
programming is that the user specifies the constraints, and a CS is
employed to resolve them, ensuring that all conditions or rules are
met. Constraints represent relations, and a constraint satisfaction
problem defines the relations that should hold among the given
variables (Rossi et al., 2006).

In CAC, a CS algorithm allows the generation of sequences of
musical elements such as pitches, durations, dynamics, instrumental
techniques, articulations, or any other musical information encoded
as symbols (Laurson, 1996). The composer can formalize a set of rules
to govern the local organization of these elements in the resulting
sequence and how they relate to each other globally (Schilingi, 2009;
Sandred, 2009; Sandred, 2010; Sandred, 2021).

The primary components of a musical CS algorithm include:

 1. Variables: These are the elements that need values assigned. In
its application for music composition, for example, a simple
melody can be seen as a sequence of n pitch variables, each to
be assigned by the CS.

 2. Domains: Each variable has a domain, which is the set of
candidate values that the variable can take. For the same
melody, the domain for each variable could be constrained by
the melodic or harmonic context at different points in time.

 3. Constraints: These are rules that restrict the values that the
variables can take. Again, for a melody, we might allow certain
notes to follow others, prohibit others in specific positions
within the sequence (such as strong or weak beats), or use only
notes that fit the specific range of an instrument, etc.

Constraint rules are typically expressed as logical statements in
computer code and fall into two categories: strict or heuristic. Strict
rules (also known as ‘True/False’ rules) evaluate combinations of
elements depending on whether they satisfy the rule and return True
or False in each case. These rules are always enforced unless it is
logically impossible, and the evaluation of the rule returns False.
Consequently, a combination of strict rules can significantly reduce
the number of possible combinations of musical elements for a desired
sequence. Heuristic rules, by contrast, express a preference toward
certain solutions, by assigning them higher weights. Normally, the
solution with the highest weight is picked by the engine; however, if
another strict rule prevents the choice of the solution with the highest
weight, the constraint solver will pick a solution with a lower weight
so that the strict rule is met. In music applications, heuristic rules play
a distinct role in significantly influencing the musical quality of the
solution. Strict rules typically establish the framework for an
acceptable solution, while heuristic rules often function as musical
directions within the generated music (Ebcioğlu, 1990).

The nature of a musical CS algorithm for creative purposes is that
the composer needs to define these rules. The rules can be borrowed
from traditional musical theory, or created according to a composer’s

https://doi.org/10.3389/fcomp.2025.1543074
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Vassallo et al. 10.3389/fcomp.2025.1543074

Frontiers in Computer Science 03 frontiersin.org

own theories or experimental practice. In any case, they must find ways
to describe the properties and relations of the musical situation they
are looking for in the form of a logical statement expressed as computer
code, in terms that the CS system can understand and enforce.

While rule formalizations, such as those governing polyphony,
counterpoint, and harmony, have been fundamental in music theory
long before computers, applying these rules efficiently in
computational systems has proven to be a highly complex challenge.
The initial Monte Carlo approach—generating random sequences of
musical elements and repeatedly trying until an acceptable solution
meeting predefined rules was found—proved inefficient, even for
moderately complex scores. In current days, CS algorithms typically
use some version of backtracking, where the software can go back and
reconsider earlier decisions without having to try every combination
of values. While this dramatically increases the efficiency of the
algorithm, it can still be a challenge for a computer to find solutions
to more complex musical problems3.

NNs and predictions

A NN operates fundamentally differently from a CS. After a
training phase, the NN can be used to predict the continuation of a
musical sequence. Various techniques have been developed for
symbolic music generation using NNs that essentially rely on these
models learning the structure of existing musical examples and
generalizing from these learned structures to compose new pieces.
More recently, with the advent of Deep Learning4, common
approaches include:

 1. Recurrent Neural Networks (RNNs): RNNs, particularly Long
Short-Term Memory (LSTM) networks, are well-suited for
modeling longer time dependencies of music (Conner et al.,
2022; Kumar Arya et al., 2022).

 2. Convolutional Neural Networks (CNNs): CNNs have been
applied to symbolic music generation tasks. They are often
employed within generative adversarial networks (GANs)
(Yang et al., 2017).

 3. Variational AutoEncoders (VAEs) in combination with RNN
architectures have been used for music generation, employing
an encoder-decoder structure with latent probabilistic
connections to capture musical structure (Koh et al., 2018).

Despite producing compelling results, these methods often rely on
local temporal structures that span only a few bars. They also require
complex software implementations and potentially large-scale
computing infrastructure for training. Furthermore, these methods
primarily aim to replicate the musical characteristics of a dataset

3 For an in-depth review on CS techniques in music composition, see

Anders (2018).

4 Unlike ‘shallow’ learning, which involves neural networks with a limited

number of layers and often requires manual feature extraction, deep learning

utilizes neural networks with multiple layers to learn complex feature

representations. Deep learning is also well-suited for large datasets as it

captures complex patterns and dependencies through its layered architecture.

rather than support an interactive compositional process, which limits
creative agency for composers.

A simple feedforward NN can be implemented without extensive
computational infrastructure or advanced Machine Learning
knowledge. However, once trained, it remains deterministic; the same
input will always yields the same output. This assumes a singular, ‘best’
solution for constructing a musical sequence, an assumption that
rarely aligns with the realities of composition. Additionally, we might
want other criteria to influence the behavior of our melody, such as
changes in the harmonic, or rhythmic context or to correctly fit in a
polyphonic texture.

Combining rules and predictions

To address some of the issues discussed above, we propose a
system that involves using a feedforward NN as a heuristic rule within
a CS algorithm. In this configuration, the temporal structures of the
generated music, both shorter and longer, as well as its local and global
scope, can be shaped by constraint rules. This approach affords a
higher level of creative agency to the composer compared to other
systems without requiring complex software implementation or large
computational infrastructure.

At first glance, using a deterministic NN would limit the
application of other compositional rules during the generative process,
as these NNs typically output the highest confidence prediction
without an alternative. However, they can also offer an error metric
for predictions, which can serve as a weighting factor for heuristic
rules. Predictions with lower error values indicate more favorable
solutions, while those with higher error values are considered less
favorable but are not entirely excluded. This approach introduces
flexibility to the CS process, akin to conventional heuristic methods.

Materials

We use two existing algorithms in Common Lisp as starting
points for our research: the music constraint solver ‘Cluster-Engine’
(CE) and the library ‘Simple-Neural-Network’ (SNN).

Cluster-Engine

CE is a Lisp-based constraint solver designed to address complex
musical problems by integrating rhythm, pitch, and meter across
multiple voices within a unified sequential search process (Sandred,
2021). Initially developed as a library for the composition environment
PWGL (Laurson et al., 2009), CE has since been ported to Max5, built
on the ‘Bach’6 ecosystem (Agostini and Ghisi, 2012), and is now
distributed as part of the external package ‘MOZ’Lib’7. A key feature
of ‘MOZ’Lib’ is its ability to execute Lisp code directly within the Max
environment (Vincenot, 2017), facilitating the use of CE and other
Lisp-based functionalities in Max.

5 https://cycling74.com

6 https://bachproject.net

7 https://github.com/JulienVincenot/MOZLib

https://doi.org/10.3389/fcomp.2025.1543074
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org
https://cycling74.com
https://bachproject.net
https://github.com/JulienVincenot/MOZLib

Vassallo et al. 10.3389/fcomp.2025.1543074

Frontiers in Computer Science 04 frontiersin.org

CE enables the codification of musical rules beyond the capacity of
monophonic systems, allowing for the reciprocal influence of harmony,
rhythm, beat structure, or melodic movement across multiple voices.
It supports the use of domains encompassing individual pitches or
groups (melodic motifs), intervals or interval groups (intervallic
motifs), and individual durations or groups (rhythmic motifs).

CE represents each musical voice using two distinct sequences:
one for durations and another for pitches. For a two-voice score, for
example, this results in four sequences. Additionally, a global sequence
is used to represent metric structure (time signature and subdivision).
As a result, solving constraints for two voices would require five
engines in total.

CE solves constraints sequentially, selecting candidate values for
variables and evaluating them one at a time. Unlike traditional
constraint systems, CE splits a problem among various search engines
working in parallel, sharing partial solutions. Additionally, they can
prompt one another to backtrack during the search process. The
advantages of dividing the problem across multiple engines become
apparent when logical conflicts arise, and backtracking becomes
necessary. CE can identify which variable caused a given conflict,
enabling a direct backjump to that position, bypassing intermediate
steps. While respecting the variable visitation order, backtracking can
occur within any independent sequence, leaving others undisturbed.
This significantly improves the process efficiency (Figure 1).

Cluster-Engine rules

A CE rule consists of two parts. The first is the rule accessor, which
accesses elements in a musical sequence -such as the pitch or duration
of a note- or a succession of notes in one or more voices. Accessors
vary based on the specific musical information they can access. For
instance, one accessor may access pitch or rhythmic information
sequentially for a single voice, another may access both pitch and
rhythm across multiple voices, while another might be limited to
accessing information from different voices only at certain time points
in the sequence. The second part is a logical statement that defines the
relation between the score elements returned by the rule accessor. This
is implemented as a Lisp anonymous (lambda) function.

Rules can be applied in three distinct ways: (1) Index rules: These
are applied to musical events at specific, fixed positions within the

sequence, where each position is represented as a sequentially
increasing index number; (2) Sequence rules: These rules check the
entire sequence of events as it is being built, from the beginning to the
current variable being checked; and (3) Wildcard rules: Here, the rule
is applied stepping through the sequence and accessing events
one-by-one or in groups of n adjacent variables (Figure 2).

Simple-Neural-Network8

‘Simple-Neural-Network’ (SNN) is a Common Lisp open-source
library that allows for the construction, training, and application of
feedforward NNs trained using backpropagation. Users can create
NNs for specific prediction or classification tasks by specifying the
number of input and output neurons along with the architecture of
hidden layers. SNN supports training optimization functions like
batch processing and momentum coefficient and provides functions for
retrieving the Mean Absolute Error (MAE) for a single or a set of
predictions, or accuracy values for tasks of classification. In addition,
it allows for parallel computation support and simple functions for
saving and restoring models. The activation function used by the
neurons is:

 () ()= ∗ ∗1.7159 tanh 0.66667A x x

Methods

To establish a bridge between the CS and NN paradigms, we have
developed ‘NeuralConstraints’ (NC) in the Max environment. NC
provides a user-friendly visual interface for SNN’s training and
prediction functionalities using symbolic music datasets. It also works
as an add-on to CE, allowing the deployment of trained NNs as rules
applicable to the constraint-solving process.

8 Simple-Neural-Network was developed by Guillaume Le Vaillant, and the

source code can be found here: https://codeberg.org/glv/

simple-neural-network

FIGURE 1

(a) Example of CE’s normal search process; (b) Example of the sequential backtracking method used in other constraint solvers. In the event of a
conflict between two variables in a two-voice musical scenario (e.g., variables 3 and 11 in the rhythm sequence for voice 2), all intermediate values are
erased; (c) CE’s backtracking method employs backjumping, which directly targets the source of the conflict. Once variable 3 is reassigned, only
variable 7 requires recalculation.

https://doi.org/10.3389/fcomp.2025.1543074
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org
https://codeberg.org/glv/simple-neural-network
https://codeberg.org/glv/simple-neural-network

Vassallo et al. 10.3389/fcomp.2025.1543074

Frontiers in Computer Science 05 frontiersin.org

Musical domains

As of now, NC accepts datasets of pitch and rhythmic values.
Regarding pitch representation, the NC interface is optimized to
receive values in MIDI cents. For the encoding, users can choose
between intervals (I), as signed integer values representing the

distance in semitones between successive pitches, or pitch class +
octave (PC8va) where a pitch is represented by two integers: one for
the pitch class (modulo 12) and another for the register, specified by
the octave number. For example, the values (0 4) represent a middle
(C). The model also supports rhythmic durations (R) expressed as
rational numbers (fractions), which are encoded as two integers: the

FIGURE 2

The user interface of Cluster-Engine showing examples of four different types of accessors and three different types of rules.

https://doi.org/10.3389/fcomp.2025.1543074
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Vassallo et al. 10.3389/fcomp.2025.1543074

Frontiers in Computer Science 06 frontiersin.org

FIGURE 4

Sequential organization of inputs and targets.

numerator and the denominator. Rests are indicated by a negative
numerator. Each domain can be encoded independently or in
combination with another. For example, PC8va + R, or I + R.

Encoding and normalization

In the initial step of encoding a dataset for training a NN, each
numeric value in the input and target series is converted into a binary
representation, with each bit corresponding to an individual neuron
in the NN. In the second step, these binary inputs and targets are then
normalized to double-float vectors and finally fed into the NN for
training. Conversely, when given an input, the NN predicts values as
normalized double-float vectors. To return this result to the original
scale of the inputs and targets, an inverse transformation is applied:
the prediction must be first denormalized and then converted from
binary digits back to the original scale. Below is a scheme of the
structure of the prediction function (Figure 3).

Training

Inside the ‘NC-train’ module, the data is organized into lists9 of
inputs and targets. A key concept is that ‘NC-train’ arranges the
training dataset sequentially to simulate the causality inherent in
music. A customizable windowing size determines the number of
consecutive input values that lead to a subsequent target, with the
target windowing size also customizable. For example, with a
windowing size of n = 4 inputs and n = 1 target, each input list will
contain four values, and each corresponding target list will contain
one value. This setup enables the neural network to learn—and
subsequently predict—values step-by-step, advancing incrementally
by one position with each prediction (Figure 4).

The user interface of NC allows for the selection and adjustment
of several options for training the NN, such as the windowing size of
inputs and targets, the domain (I, R, PC8va, PC8va + R, I + R), the
number and size of the hidden layers and the learning rate and
number of epochs. In addition, a file name for saving the NN model
file on the hard drive must be specified. Other optimization
parameters, such as the batch size and momentum coefficient, can also
be adjusted. Once all these parameters are set, the training can begin.
While it takes place, the ongoing epoch number as well as the

9 In Lisp., the list is a fundamental data structure consisting of a sequence

of elements: values, symbols, or other lists. This structure is enclosed in

parentheses and supports recursive nesting. The quasi-Lispian ‘llll’ data structure

provided by the ‘Bach’ library provides the integration of Lisp-style nested lists

into a Max patch. This structure can theoretically handle nested lists of any

length and depth, something not possible by default in Max.

corresponding Mean Absolute Error (MAE) of the dataset for that
epoch is printed in the Max console. Once the training is complete,
the whole sequence of MAE values is displayed as a break-point
function. When a NN file is created, it is loaded automatically for
testing predictions with original inputs from the model. This facilitates
comparing predictions with the real targets, along with the
corresponding MAE value (Figure 5).

Chaining NN and logic rules

In order to apply the NN as a constraint rule, first, it is necessary
to load a model file generated by the training module into the CE. The
loaded file will be stored in a global variable to be accessed by the
engine rule during the search. After this step, it is now possible to add
NN rules to the classic chained flow of rules of the CE. NN rules are
available as modules that must be connected to a CE accessor pointing
to the same musical parameter as the one originally used to train the
NN. The example below shows a flow diagram of CE using two rules:
a conventional logic rule applied over the rhythmic domain and a NN
rule applied over the pitch domain (Figure 6).

MAE rules

SNN provides a function to calculate the Mean Absolute Error
(MAE) for a NN over a set of inputs and targets, ranging from the
entire dataset to a single data point:

 = =
= −

× ∑∑
1 1

1 ˆ
N M

ij ij
i j

MAE y y
N M

∣ ∣

Where N is the number of input samples, M is the size of the
output, ijy is the actual target value and ˆijy is the predicted output value.

FIGURE 3

Scheme of the structure of the prediction function.

https://doi.org/10.3389/fcomp.2025.1543074
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Vassallo et al. 10.3389/fcomp.2025.1543074

Frontiers in Computer Science 07 frontiersin.org

To obtain the MAE, the function iterates over each input-target
pair, where the neural network generates a predicted output for each
input, and the corresponding target value (true value) is retrieved. The

absolute value of this error is taken and these absolute errors are
summed up. Once all inputs are processed, the final MAE is
computed as:

FIGURE 5

The user interface of the module ‘NC-Train’.

https://doi.org/10.3389/fcomp.2025.1543074
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Vassallo et al. 10.3389/fcomp.2025.1543074

Frontiers in Computer Science 08 frontiersin.org

FIGURE 6

Example of a classic chained flow of rules for Cluster-Engine, with
two rules at work: a NN rule that accesses pitch information and
another logic rule that accesses rhythm.

FIGURE 7

Diagram illustrating the sequential and iterative operation of the
system using a MAE rule.

TABLE 1 Example of how CE selects the best candidate solution using
two versions of the MAE rule in heuristic mode.

Two examples of MAE heuristic rules

Input
list

Candidates
from the
domain

Weight
(negated MAE

value)

Weight (MAE
after

optimization
function)

(1 2 3 4) (3) −0.93 1.52

(1 2 3 4) (4) −0.48 2.55

(1 2 3 4) (5) −0.05

(solution picked by CE)

20.49

(solution picked by CE)

The first version uses the negated MAE value as the weight, while the second applies an
optimization function to the MAE value that penalizes higher values and rewards lower ones.

=

total absolute errorMAE
total number of outputs

When the MAE function is applied to a single input-target pair,
the mean calculation simplifies to the absolute error for that
specific pair:

 i iMAE output target= −∣ ∣

Since CE solves constraints sequentially and the SNN is trained to
generate outputs in sequence, we experimented with a rule design that
uses the negated Mean Absolute Error (MAE × −1) of a single data
point as a heuristic weight. At each sequential step, the MAE rule
iteratively computes the MAE for each candidate in the CE domain,
treating it as the output for the given input list. Since heuristic rules
rank solutions based on the highest weight, the MAE must be negated
so that values closer to zero correspond to higher weights. As a result,
the candidate with the lowest MAE—when negated, yielding the largest
weight—is selected as the optimal solution (Figure 7).

In a subsequent refinement of the rule, we replaced the negated
MAE value with an optimization function that penalizes higher MAE
values and rewards lower ones:

 () −
=

+ + 6
1

log 1 10
weight

MAE

The Table 1 provides an example of the process for selecting the
best candidate solution using a heuristic rule that calculates the
negated MAE, along with another MAE rule that applies the
optimization function discussed above to the MAE value.

Prompting
It is recommended to initialize the generation process with a fixed

set of domain values corresponding to existing inputs in the dataset. This
initialization step helps guide the NN rule toward results resembling the
dataset. The module ‘NC-Prompt’ facilitates this process by allowing the
selection of an initial prompt10 from the training dataset. It uses index

10 The word ‘prompt’ here refers to an initial input that shapes the model’s

response. While the idea of prompting is typically connected to written

instructions for large language models (LLMs), it can also encompass other forms

of information, such as symbolic representations in musical domains. In the

context of ‘NeuralConstraints,’ a prompt specifically denotes an input that

determines the NN’s output. Although our prompting mechanism essentially

relies on fixing certain variables using index rules—a longstanding approach in

CS techniques—we believe the term is particularly fitting, as it aligns with the

idea of generating musical continuations, making the concept intuitive for users.

https://doi.org/10.3389/fcomp.2025.1543074
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Vassallo et al. 10.3389/fcomp.2025.1543074

Frontiers in Computer Science 09 frontiersin.org

rules to fix certain variables of the solution (such as the initial ones) to
predefined values that the NN takes as input. Additionally, the
‘NC-Inputs-Targets’ helper module can be used to select a score fragment
from the training dataset itself and provide it directly to the ‘NC-Prompt’
module. Below is a schematic representation of the workflow of NC,
including the ‘NC-prompt’ module, a MAE rule with an optimization
function and subsequent evaluation:

Results

For our tests, we trained several NNs using the ‘Schubert Winterreise’
dataset (Weiß et al., 2021), consisting of the 24 songs of the cycle
Winterreise, with the music of Franz Schubert (1797–1828) and poetry

of Willhelm Müller (1794–1827). In addition, we trained several other
NNs using the ‘Weimar’ dataset of folk melodies (Pfleiderer, 2017).

Using the ‘Winterreise’ dataset

We trained the model on a corpus of vocal melodies, selected
for their adherence to tonal rules11, focusing solely on the vocal

11 We understand, nevertheless, that a drawback of employing a feedforward

NN to predict tonal melodies is that it restricts the analysis to relatively short

sequences of inputs, whereas tonality relies on vertical harmonic constructions,

as well as possibly longer-span melodic structures.

FIGURE 8

(a) Continuation predicted using the first 6 pitch classes from the song ‘Gute Nacht’. (b) Original vocal melody of the song Gute Nacht (first 13
measures). Observe that the neural network accurately predicts the melodic structure of the original piece, with the exception of the repetition in
measures 3–4 and the final beat in m. 10/first beat in m. 11.

https://doi.org/10.3389/fcomp.2025.1543074
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Vassallo et al. 10.3389/fcomp.2025.1543074

Frontiers in Computer Science 10 frontiersin.org

FIGURE 9

(a) shows the original sequence generated using the six first notes of the song Der Lindembaum; (b) shows the result of applying an index rule
preventing pitches 0 and 14 to be the same; (c) result of applying a rule to prevent repeating patterns longer than length 14, alongside two additional
rules: one limiting interval leaps to 12 semitones and another restricting more than five consecutive repetitions.

melodies and excluding the piano accompaniments. Since
we trained the model using the information of pitch class + octave
(PC8va), part of the normalization of the dataset involved
transposing all the songs to a unique key. This subset of the dataset
comprised 4,358 lists of inputs paired with an equal number of
targets. The architecture of the network was configured with six
inputs (48 neurons), one output (8 neurons), and four hidden layers
containing 96, 48, 24, and 16 neurons, respectively. The SNN
training function was configured with a batch size of 32, a
momentum coefficient of 0.95, and a learning rate of 0.001. The
training process ran for 50,000 epochs and the MAE for the dataset
converged to approximately 0.07.

It is worth noting that in our pitch-related tests, the domain -the
pool of pitches that CE can pick from- spans all pitches from MIDI
note 53 to 84, a range that covers the full ‘Winterreise’ dataset.
Although the NN was trained using a normalized key across the entire
dataset, it would be possible, in theory, to bias it toward more coherent
outcomes by constraining the range of possible pitch choices.

We tested the system by applying a MAE heuristic rule and, in place
of a prompt, using the first six PC8va from the vocal part of Gute Nacht,
the opening song of the cycle Winterreise. The NN yielded a coherent
melodic pattern that spanned up to 62 pitches. The contour of the
prediction matched the opening four phrases of the original song, except
for inner repetitions. Beyond this point, the melody entered a loop
(Figure 8). We observed this as a common occurrence when generating
with NN rules. The reason for the looping, as we understand it, comes
from the natural behavior of the CE when using a heuristic rule (in this
case, a MAE rule), which picks candidates that yield the higher weight,
disregarding other potential candidates that, despite yielding lower
weights, are also suitable in the musical context.

Combination with logic rules

As an initial step in testing the interaction between the NN and other
logic rules, we focused on addressing the issue of the looping occurring

https://doi.org/10.3389/fcomp.2025.1543074
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Vassallo et al. 10.3389/fcomp.2025.1543074

Frontiers in Computer Science 11 frontiersin.org

recurrently when using solely NN rules for generation. To tackle this,
we explored two approaches. The first, localized in scope, introducing an
index rule to ensure that the pitch at the beginning of a loop differs from
that picked by the CS, thereby preventing the sequence from restarting:

 ≠_ _ _ _x ypitch at index pitch at index

Using a different prompt—the six initial pitch classes of Der
Lindenbaum (the fifth song of Winterreise)—a loop would begin on
pitch 14 (see Figure 9a). By constraining the pitch at index 14 to differ
from index 0, the looping at this position was prevented. While this
approach avoided looping at position 14 and the new generation
continued the original contour of the song, it inevitably led to another
loop shortly thereafter (see Figure 9b).

Our second approach introduced a rule based on the function
ptrn-find from the CAC library ‘OM Morphologie’ (Baboni Schillingi
et al., 1999)12, designed to detect repeated patterns within a list of
symbols. This rule establishes a maximum threshold for the length of
any repeated pattern. For example, setting the maximum length to 14
permits patterns with up to 14 elements but prevents longer repetitions
(see Figure 9c). This method offers a global and more adaptive
approach to addressing the looping issue. However, its drawback is the
increased computational cost when dealing with larger patterns, as the
algorithm must identify patterns in every temporary solution for each
random pick.

While the first approach was less effective in this particular
musical context, it is computationally more efficient than the

12 https://github.com/openmusic-project/morphologie/releases/tag/v1.1

second. Its flexibility to combine with other rules, such as
index-specific constraints applied at various points, still makes it a
viable option for experimentation. Ultimately, combining different
types of rules yields diverse outcomes, allowing the composer to
select the most effective constraint strategies to achieve
desired results.

Using the ‘Weimar’ dataset

We used a subset of the first 100 folk melodies of the ‘Weimar’
dataset to train a NN on melodic intervals (I). This subset of the
dataset comprised only the first 100 melodies. The number of inputs
paired with an equal number of targets was 4,391. The network was
designed with eight inputs (48 neurons), one output (6 neurons),
and four hidden layers containing 96, 48, 24, and 12 neurons,
respectively. This time, we allowed the process to run for
100,000 epochs.

Using this model, we tested the system’s ability to generate
intervallic profiles without an initial prompt. To prevent the CE from
randomly selecting values to fill the required number of inputs and
targets based on the model’s training configuration for MAE
calculation—which would result in a randomized profile until the
MAE rule begins to influence the generation—we refined the MAE
rule so that it incrementally calculates MAE values with a growing list
of inputs and a single target (Figure 10).

Two simultaneous NN rules

We explored the application of multiple NN rules concurrently
by loading two independent model files into CE. Specifically,

FIGURE 10

Comparison between an intervallic profile generated with a MAE rule without a prompt and a randomly generated profile.

https://doi.org/10.3389/fcomp.2025.1543074
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org
https://github.com/openmusic-project/morphologie/releases/tag/v1.1

Vassallo et al. 10.3389/fcomp.2025.1543074

Frontiers in Computer Science 12 frontiersin.org

FIGURE 11

Schematic representation of the data flow of inputs with NC-prompt,
and the algorithm of a MAE rule.

we combined the two previously discussed NNs—the ‘Winterreise’
model (PC8va) and the ‘Weimar’ model (I)—as simultaneous MAE
rules, each influencing an independent musical voice. Additionally,
we used a CE accessor for pitch information on simultaneous
independent voices, incorporating a rule to constrain the harmonic
intervals between them. These intervals, expressed as pitch class
(modulo 12) differences, were restricted to 3, 4, 7, 8, 9, or 0 at the start
of every beat:

 { }− =0 1_ _ _ _ 0,3,4,7,8,9pitch class voice pitch class voice

Another rule ensured that the ‘Winterreise’ voice consistently
remained above the ‘Weimar’ voice:

 ≥0 1_ _ _ _pitch in voice pitch in voice

For initialization, the ‘Winterreise’ model was prompted with
the first six pitches of Gute Nacht (Figure 11), while the ‘Weimar’
model was initialized without a prompt. The rhythmic domain for
each voice was restricted to quarter-notes (‘Winterreise’) and
sixteen-notes (‘Weimar’). The result of this test is shown in
Figure 12.

Using NN rules trained on integrated
domains

NC facilitates the training of a NN using an encoding that
integrates two musical domains, such as pitch class/8va + rhythm
(PC8va + R) or intervals + rhythm (I + R). This model can then
function as a rule for a CE accessor capable of simultaneously
accessing pitch and rhythm information. To test this type of rule,
we trained a model using a reduced version of the ‘Weimar’
dataset, which included only the first ten songs, comprising 505
input-target pairs. The information from PC8va and rhythmic
duration (PC8va + R) was integrated and encoded for each value
in the input-target lists. The NN was designed with six inputs (84
neurons), one output (14 neurons), and four hidden layers
containing 168, 84, 42, and 28 neurons, respectively.

In our tests using this model, we found that the MAE
heuristic rule was too weak, either having no observable impact
on the solution or resulting in different solutions for each
generation. This behavior is peculiar because, even though the
NN rule is heuristic, it should consistently favor a preferred
solution as the best candidates’ weight prevails. To address this,
we experimented with setting MAE thresholds to determine
acceptable results, effectively turning the MAE heuristic rule into
a True/False rule. It’s important to note that heuristic rules are
not backtracked in the CE; only True/False rules have
this capability.

We established a threshold of 0.15 for non-negated MAE
metrics without computing the optimization function, forcing the
engine to select only predictions below this threshold. In this
scenario, the impact of the rule was observable; however, the CE
often experienced excessively long iterations or became stuck in

backtracking loops. Below are some results using PC8va + R
prompts (Figure 13).

While MAE metrics for these integrated models dropped
significantly during extended training, and the prediction/test results
in the ‘NC-train’ module were generally accurate, handling pitch and
rhythm simultaneously with an NN rule in heuristic mode poses
challenges for the CE. Although we did not notice issues with weak
heuristic rules when using single-domain rules, these problems
became evident when using a CE accessor for both pitch and rhythm
information simultaneously. Using the MAE rule in strict mode by
setting MAE thresholds worked as expected, however, the options for

https://doi.org/10.3389/fcomp.2025.1543074
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Vassallo et al. 10.3389/fcomp.2025.1543074

Frontiers in Computer Science 13 frontiersin.org

the CE became significantly restricted, as error values vary largely
across the dataset, often forcing it to backtrack and become stuck in
backtracking loops.

Discussion

One of the main challenges when generating music sequences
is the necessity of modeling coherent both long- and short-span
structures. While constraint rules can introduce some control on
the longer-term musical behavior, the current architecture of
SNN can only learn relatively short-term musical patterns.
Therefore, we view our current tests as a starting point,
potentially directed toward implementing more advanced NNs13

13 For example cf. https://github.com/melisgl/mgl

as rules that can better account for longer-term musical aspects.
However, handling longer-span structures can introduce
limitations on the CE side, as these can become computationally
expensive, as observed when using the ‘OM Morphologie’
function.

Currently, the rhythmic domain learns sequences of durations but
lacks awareness of their metric structure. Upcoming refinements to
the system include to enhance the system’s ability to recognize a metric
domain—a domain already manageable by the CE—that could
enhance the NN’s ability to recognize musical patterns based on
metric structures.

We considered introducing a parameter to the neural network
rule—similar to the ‘temperature’ parameter in some stochastic
networks—to inject randomness and reduce looping behavior.
We believe this effect can be achieved on the CE rule side by
incorporating an operation that acts directly on the weights,
closely aligned with our approach to implementing the
optimization function.

FIGURE 12

Example of using two simultaneous NN rules for independent musical voices, establishing harmonic intervallic constraints between them.

FIGURE 13

Various results using a NN trained on combined domains (PC8va + R) setting a MAE threshold of 0.15.

https://doi.org/10.3389/fcomp.2025.1543074
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org
https://github.com/melisgl/mgl

Vassallo et al. 10.3389/fcomp.2025.1543074

Frontiers in Computer Science 14 frontiersin.org

A promising approach could involve using NN rules trained
on parameters beyond pitches, durations, and meter, such as
dynamics, articulations, or other musical metadata. This is feasible
as CE can establish constraint relations between these using an
experimental feature currently in development. However, a
significant challenge is the increased computational demand of
training high-dimensional models, as NC is not built to rely on
large-scale computational infrastructure. Additionally, this may
require refinements to the CE architecture to enhance its
effectiveness and efficiency when exploring integrated
musical domains.

In future implementations, we aim to investigate the
system in real-time musical contexts such as improvisation or
interactive installations. Although the NN must be trained
offline, rules can be adjusted in real-time, providing flexibility
to the process. CE has already shown robust performance in
several live situations14, indicating its viability for real-
time applications.

Conclusion

In this article, we introduced ‘NeuralConstraints,’ a
computer-assisted composition library that combines symbolic
neural generation and constraint-based computation. Our primary
objective was to explore a tool that could enhance compositional
control over a neural generative process. To achieve this, we integrated
two Lisp-based algorithms: the music constraint solver ‘Cluster-
Engine’ and the feedforward neural network ‘Simple-Neural-
Network,’ positioning the latter as a heuristic rule within a constraint-
based composition workflow. Our tests, using the ‘Schubert
Winterreise’ dataset and the ‘Weimar’ dataset of folk melodies,
involved training models on musical parameters like pitch
class + octave, intervals, rhythm, or combinations of these. Our results
demonstrated that the NN effectively integrated into CE as a heuristic
and strict rule, shaping musical sequences based on the training data.
Furthermore, the interaction between NN rules and logical constraint
rules successfully produced coherent musical outcomes, as shown in
the examples. Although our goal was not primarily to assess their
musical quality, the system yielded coherent and potentially
interesting results that could inspire further compositional
exploration. Still, challenges remain in its present form, such as
dealing with longer-term music patterns, including meter and other
music parameters for the training of more complex models, and
further research is needed around using the system for real-time
artistic endeavors.

Data availability statement

The source code, abstractions, example patches and models created
for this study can be found in the following link: https://github.com/

14 For example, the sound installation ‘Sonic Trails’ by Örjan Sandred. The

documentation of the work can be accessed here: https://sandred.com/

sonictrails

juansv2k2/NeuralConstraints.git. The ‘Schubert Winterreise’ datasets
used for this research can be found in the link https://zenodo.org/
records/3968389. The ‘Weimar’ dataset of folk melodies used for this
research can be found in the link https://jazzomat.hfm-weimar.de/
dbformat/dbformat.html.

Author contributions

JVa: Conceptualization, Data curation, Formal analysis, Funding
acquisition, Investigation, Methodology, Project administration,
Resources, Software, Validation, Visualization, Writing – original draft,
Writing – review & editing. ÖS: Conceptualization, Investigation,
Project administration, Software, Supervision, Writing – original draft,
Writing – review & editing. JVi: Conceptualization, Investigation,
Software, Validation, Visualization, Writing – review & editing.

Funding

The author(s) declare that financial support was received for the
research and/or publication of this article. The research is funded by
the Norwegian Artistic Research Program. However, the publication
fee is covered by the University of Bergen.

Acknowledgments

JVa wants to thank the Norwegian Artistic Research Program for
funding his Doctoral research and the University of Bergen for
providing the infrastructure and administrative resources to carry out
this project.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Generative AI statement

The authors declare that Gen AI was used in the creation of this
manuscript. To help edit the manuscript. The Generative AI is not
listed as an author of the manuscript, the content edited using the
Generative AI has been checked for factual accuracy and plagiarism.
The normal prompt used is 'Refine. Make only minor editorial
adjustments'. Model: ChatGPT 4o, ChatGPT 4.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations,
or those of the publisher, the editors and the reviewers. Any product
that may be evaluated in this article, or claim that may be made by its
manufacturer, is not guaranteed or endorsed by the publisher.

https://doi.org/10.3389/fcomp.2025.1543074
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org
https://github.com/juansv2k2/NeuralConstraints.git
https://sandred.com/sonictrails
https://sandred.com/sonictrails
https://github.com/juansv2k2/NeuralConstraints.git
https://zenodo.org/records/3968389
https://zenodo.org/records/3968389
https://jazzomat.hfm-weimar.de/dbformat/dbformat.html
https://jazzomat.hfm-weimar.de/dbformat/dbformat.html

Vassallo et al. 10.3389/fcomp.2025.1543074

Frontiers in Computer Science 15 frontiersin.org

References
Agostini, A., and Ghisi, D. (2012). Bach: an environment for computer-aided

composition in max. Icmc 2012: Non-Cochlear Sound - Proceedings of the International
Computer Music Conference 2012, 373–378.

Ames, C. (1989). The Markov process as a compositional model: a survey and tutorial.
Leonardo 22, 175–187. doi: 10.2307/1575226

Anders, T. (2018). Compositions created with constraint programming. New
York, NY, United States: The Oxford Handbook of Algorithmic Music.

Baboni Schillingi, J., Voisin, F., and Sarhan, F. (1999). OpenMusic Morphologie:
Fonctions d'analyse, de reconnaissance, de classification et de reconstitution de
séquences symboliques et numériques. Ircam documentation. 16.

Boden, M. A. (2004). The creative mind: Myths and mechanisms. 2nd Edn.
London,New York: Routledge.

Briot, J.-P., Hadjeres, G., and Pachet, F.-D. (2020). Deep learning techniques for music
generation. Cham, Switzerland: Springer.

Brooks, F. P., Hopkins, A. L., Neumann, P. G., and Wright, W. V. (1957). An experiment
in musical composition. IRE Trans. Electron. Comput. Ec-6, 175–182. doi:
10.1109/TEC.1957.5222016

Conner, M., Gral, L., Adams, K., Hunger, D., Strelow, R., and Neuwirth, A. (2022).
Music generation using an Lstm. doi: 10.48550/arXiv.2203.12105

Ebcioğlu, K. (1990). An expert system for harmonizing chorales in the style of Js Bach.
J. Log. Program. 8, 145–185. doi: 10.1016/0743-1066(90)90055-A

Fernández, J. D., and Vico, F. (2013). Ai methods in algorithmic composition: a
comprehensive survey. J. Artif. Intell. Res. 48, 513–582. doi: 10.1613/jair.3908

Frantz, R. (2003). Herbert Simon. Artificial intelligence as a framework for
understanding intuition. J. Econ. Psychol. 24, 265–277. doi: 10.1016/S0167-4870(02)
00207-6

Hiller, J. L. A., and Isaacson, L. M. (1958). Musical composition with a high-speed
digital computer. J. Audio Eng. Soc. 6, 154–160.

Koenig, G. M. (1970). The use of computer programmes in creating music. In Music
and Technology (Proceedings of the Stockholm Meeting organized by UNESCO), Paris: La
Revue Musicale. 93–115.

Koh, E. S., Dubnov, S., and Wright, D. (2018). Rethinking recurrent latent variable
model for music composition. doi: 10.48550/arXiv.1810.03226

Kumar Arya, P., Kukreti, P., and Jha, N. (2022). “Music generation using Lstm and its
comparison with traditional method” in Advances in transdisciplinary engineering (Ios
Press). doi: 10.3233/ATDE220793

Laurson, M. (1996). PatchWork: A visual programming language and some musical
applications. Helsinki, Finland: Sibelius Academy.

Laurson, M., Kuuskankare, M., and Norilo, V. (2009). An overview of Pwgl, a visual
programming environment for music. Comput. Music. J. 33, 19–31. doi:
10.1162/comj.2009.33.1.19

Pachet, F., and Roy, P. (2011). Markov constraints: steerable generation of Markov
sequences. Constraints 16, 148–172. doi: 10.1007/s10601-010-9101-4

Papadopoulos, G., and Wiggins, G. (1999). Ai methods for algorithmic composition:
A survey, a critical view and future prospects. Aisb'99 symposium on musical creativity.
Brighton, Uk: Aisb (Society for the Study of Artificial Intelligence and the Simulation of
Behaviour).

Pearce, M. T., and Wiggins, G. A. (2007). Evaluating cognitive models of musical
composition. Proceedings of the 4th international joint workshop on computational
creativity, 73–80.

Pfleiderer, M. (2017). Inside the Jazzomat: New perspectives for jazz research. Mainz,
Germany: Schott Campus.

Pohjannoro, U. (2016). Capitalising on intuition and reflection: making sense of a
composer’s creative process. Music. Sci. 20, 207–234. doi: 10.1177/1029864915625727

Pohjannoro, U. (2021). Mind the body: materiality and physicality in a composer’s
thinking process. Psychol. Music 50, 1169–1183. doi: 10.1177/03057356211034916

Ramanto, A. S., and Maulidevi, N. U. (2017). Markov chain based procedural music
generator with user chosen mood compatibility. Int. J. Asia Digit. Art Design Assoc. 21,
19–24. doi: 10.20668/adada.21.1_19

Rossi, F., Van Beek, P., and Walsh, T. (2006). Handbook of constraint programming.
Chantilly, The Netherlands: Elsevier Science & Technology.

Sandred, Ö. (2009). Approaches to using rules as a composition method. Contemp.
Music. Rev. 28, 149–165. doi: 10.1080/07494460903322430

Sandred, Ö. (2010). Pwmc, a constraint-solving system for generating music scores.
Source. Comput. Music. J. 34, 8–24. doi: 10.1162/comj.2010.34.2.8

Sandred, Ö. (2021) in Constraint-solving Systems in Music Creation. ed. E. R.
Miranda (Cham: Springer International Publishing).

Schilingi, J. B. (2009). Local and global control in computer-aided composition.
Contemp. Music. Rev. 28, 181–191. doi: 10.1080/07494460903322455

Simon, H. A., and Mellon, C. (1995). Explaining the ineffable: Ai on the topics of
intuition, insight and inspiration. Ijcai 1, 939–949.

Todd, P. M. (1989). A connectionist approach to algorithmic composition. Comput.
Music. J. 13, 27–43. doi: 10.2307/3679551

Vassallo, J. S. (2024). Exploring musical procedural rhetoric: computational influence
on compositional frameworks and methods in the piece “elevator pitch”. Int. J.Music Sci
Technol. Art 6, 1–16. doi: 10.48293/IJMSTA-114

Vincenot, J. (2017). Lisp in max: exploratory computer-aided composition in real-
time. Icmc 2017 proceedings (Shanghai, 2017).

Voisin, F., and Meier, R. (2009). On analytical vs. schizophrenic procedures for
computing music. Contemp. Music. Rev. 28, 205–219. doi: 10.1080/07494460903322489

Weiß, C., Zalkow, F., Arifi-Müller, V., Müller, M., Koops, H. V., Volk, A., et al. (2021).
Schubert Winterreise dataset: A multimodal scenario for music analysis. J. Comput. Cult.
Herit. 14, 1–8. doi: 10.1145/3429743

Wiggins, G. A. (2006). A preliminary framework for description, analysis and
comparison of creative systems. Knowl.-Based Syst. 19, 449–458. doi: 10.1016/j.knosys.
2006.04.009

Wiggins, G. A. (2012). Defining inspiration? Modelling the non-conscious creative
process. The Act of Musical Composition: Studies in the Creative Process. UK:
Routledge.

Xenakis, I. (1992). Formalized music: Thought and mathematics in composition.
Hillsdale, N.Y: Pendragon Press.

Yang, L.-C., Chou, S.-Y., and Yang, Y.-H. (2017). MidiNet: A convolutional generative
adversarial network for symbolic-domain music generation. doi: 10.48550/arXiv.1703.
10847

https://doi.org/10.3389/fcomp.2025.1543074
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org
https://doi.org/10.2307/1575226
https://doi.org/10.1109/TEC.1957.5222016
https://doi.org/10.48550/arXiv.2203.12105
https://doi.org/10.1016/0743-1066(90)90055-A
https://doi.org/10.1613/jair.3908
https://doi.org/10.1016/S0167-4870(02)00207-6
https://doi.org/10.1016/S0167-4870(02)00207-6
https://doi.org/10.48550/arXiv.1810.03226
https://doi.org/10.3233/ATDE220793
https://doi.org/10.1162/comj.2009.33.1.19
https://doi.org/10.1007/s10601-010-9101-4
https://doi.org/10.1177/1029864915625727
https://doi.org/10.1177/03057356211034916
https://doi.org/10.20668/adada.21.1_19
https://doi.org/10.1080/07494460903322430
https://doi.org/10.1162/comj.2010.34.2.8
https://doi.org/10.1080/07494460903322455
https://doi.org/10.2307/3679551
https://doi.org/10.48293/IJMSTA-114
https://doi.org/10.1080/07494460903322489
https://doi.org/10.1145/3429743
https://doi.org/10.1016/j.knosys.2006.04.009
https://doi.org/10.1016/j.knosys.2006.04.009
https://doi.org/10.48550/arXiv.1703.10847
https://doi.org/10.48550/arXiv.1703.10847

	NeuralConstraints: integrating a neural generative model with constraint-based composition
	Introduction
	Research inquiry
	Overview and goal
	Constraint solvers and rules
	NNs and predictions
	Combining rules and predictions

	Materials
	Cluster-Engine
	Cluster-Engine rules
	Simple-Neural-Network�

	Methods
	Musical domains
	Encoding and normalization
	Training
	Chaining NN and logic rules
	MAE rules
	Prompting

	Results
	Using the ‘Winterreise’ dataset
	Combination with logic rules
	Using the ‘Weimar’ dataset
	Two simultaneous NN rules
	Using NN rules trained on integrated domains

	Discussion
	Conclusion

	References

