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We present ‘NeuralConstraints,’ a suite of computer-assisted composition tools 
that integrates a feedforward neural network as a rule within a constraint-based 
composition framework. ‘NeuralConstraints’ combines the predictive generative 
abilities of neural networks trained on symbolic musical data with an advanced 
backtracking constraint algorithm. It provides a user-friendly interface for exploring 
symbolic neural generation, while offering a higher level of creative control compared 
to conventional neural generative processes, leveraged by the constraint solver. 
This article outlines the technical implementation of the core functionalities of 
‘NeuralConstraints’ and illustrates their application through specific tests and 
examples of use.
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Introduction

Music is a field where intellect and emotion converse. Music theorists emphasize the 
importance of structure as a foundation for creating coherence and meaning within musical 
works. At the same time, being immersed in a musical culture allows us to intuitively1 
appreciate music as an expression beyond our intellect. This duality between the mind’s need 
for structure and its response to emotional depth lies at the heart of musical communication.

Composers use many varied strategies when creating music: some look at structure as a 
starting point for a new composition, while others lean toward an intuitive approach (Wiggins, 
2012; Pohjannoro, 2016; Pohjannoro, 2021). Computer-assisted composition (CAC) has 
traditionally served to leverage the structural foundations of music composition. These 
methods potentially assist in the creative process by reducing the cognitive load associated 
with structural details, freeing composers to concentrate on artistic intent and expression 
(Xenakis, 1992; Koenig, 1970). The use of symbolic AI and rule-based methods in CAC dates 
back to some of the earliest experiments in computer-generated music (Brooks et al., 1957; 
Hiller and Isaacson, 1958). Other approaches include corpus-based methods, such as Markov 
Chains (Ames, 1989; Pachet and Roy, 2011; Ramanto and Maulidevi, 2017; Vassallo, 2024) and 

1 Intuition, often described as the ability to understand something without the need for conscious 

reasoning, is a concept usually echoed in artificial intelligence, with researchers illustrating how these 

systems can mimic human-like pattern recognition and instinctive decision-making processes. See for 

example Frantz (2003), Simon and Mellon (1995).
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Neural Networks (Todd, 1989; Voisin and Meier, 2009), as well as 
grammars, evolutionary methods, and more2.

With the rise of connectionist techniques for symbolic music 
generation, it is not necessary to formalize rules or algorithms to 
generate music. Instead, a computational model such as a Neural 
Network (NN) can be trained with a corpus of example scores to learn. 
After this training phase, the NN can generate new scores with similar 
musical properties to the examples it was trained on. This approach 
closely resembles the intuitive methods composers often use, 
grounded in experiential processes shaped by the musical cultures in 
which they are immersed (Pearce and Wiggins, 2007; Wiggins, 2006; 
Boden, 2004). The strength of this method is also its weakness; since 
it is based on statistical predictions, we should not expect any output 
that substantially differs musically from the training set. For a 
composer who wants to use a generative tool to explore new musical 
ideas, a NN might not be an ideal method.

Research inquiry

We explored the potential for a generative tool that merges rule-
based and inferential approaches, building on suggestions from 
researchers in the field that emphasize the need to bridge the gap 
between symbolic and sub-symbolic frameworks for developing 
innovative creative tools (Briot et al., 2020). For that, we investigated a 
method for combining NNs with constraint solving techniques to 
create a tool for compositional experiments, incorporating a NN as a 
rule within the workflow of the constraint solving algorithm. This 
approach allows the generation of a musical sequence that follows a 
rule guided by NN predictions while simultaneously being constrained 
by additional rules, such as desired or allowed notes at certain time 
points, allowed interval movements, patterns of repetition or 
non-repetition, and so on. Consequently, these predictions are adjusted 
to align with a desired musical behavior, even if that behavior deviates 
from the patterns present in the training dataset. The constraint solver 
would provide the logical framework to support these more structural 
aspects of music, while the NN would offer an inferential method 
where learned musical examples can influence the generation.

Overview and goal

In this article, we present the CAC library ‘NeuralConstraints’ as 
the result of our work toward implementing this approach. First, 
we discuss constraint solvers in the context of music composition. 
Next, we  discuss neural networks for symbolic music generation. 
We then detail the technical implementation of ‘NeuralConstraints’ 
and provide examples of its use. Finally, we outline its limitations and 
explore potential future enhancements. Importantly, our goal was not 
to evaluate the success of these combined techniques in 
‘NeuralConstraints’ based on their ability to replicate existing styles 
but rather on how effectively two distinct computational paradigms—
and, ultimately, compositional approaches—can be integrated into a 

2 For comprehensive surveys on research on computer-generated music, 

see Fernández and Vico (2013) and Papadopoulos and Wiggins (1999).

single unified creative environment that can be deployed on a standard 
computer without requiring large-scale computational infrastructure.

Constraint solvers and rules

A constraint algorithm, or constraint solver (CS) algorithm, is a 
computational method that searches for values for a set of variables 
that satisfy a defined set of constraints. The basic idea of constraint 
programming is that the user specifies the constraints, and a CS is 
employed to resolve them, ensuring that all conditions or rules are 
met. Constraints represent relations, and a constraint satisfaction 
problem defines the relations that should hold among the given 
variables (Rossi et al., 2006).

In CAC, a CS algorithm allows the generation of sequences of 
musical elements such as pitches, durations, dynamics, instrumental 
techniques, articulations, or any other musical information encoded 
as symbols (Laurson, 1996). The composer can formalize a set of rules 
to govern the local organization of these elements in the resulting 
sequence and how they relate to each other globally (Schilingi, 2009; 
Sandred, 2009; Sandred, 2010; Sandred, 2021).

The primary components of a musical CS algorithm include:

 1. Variables: These are the elements that need values assigned. In 
its application for music composition, for example, a simple 
melody can be seen as a sequence of n pitch variables, each to 
be assigned by the CS.

 2. Domains: Each variable has a domain, which is the set of 
candidate values that the variable can take. For the same 
melody, the domain for each variable could be constrained by 
the melodic or harmonic context at different points in time.

 3. Constraints: These are rules that restrict the values that the 
variables can take. Again, for a melody, we might allow certain 
notes to follow others, prohibit others in specific positions 
within the sequence (such as strong or weak beats), or use only 
notes that fit the specific range of an instrument, etc.

Constraint rules are typically expressed as logical statements in 
computer code and fall into two categories: strict or heuristic. Strict 
rules (also known as ‘True/False’ rules) evaluate combinations of 
elements depending on whether they satisfy the rule and return True 
or False in each case. These rules are always enforced unless it is 
logically impossible, and the evaluation of the rule returns False. 
Consequently, a combination of strict rules can significantly reduce 
the number of possible combinations of musical elements for a desired 
sequence. Heuristic rules, by contrast, express a preference toward 
certain solutions, by assigning them higher weights. Normally, the 
solution with the highest weight is picked by the engine; however, if 
another strict rule prevents the choice of the solution with the highest 
weight, the constraint solver will pick a solution with a lower weight 
so that the strict rule is met. In music applications, heuristic rules play 
a distinct role in significantly influencing the musical quality of the 
solution. Strict rules typically establish the framework for an 
acceptable solution, while heuristic rules often function as musical 
directions within the generated music (Ebcioğlu, 1990).

The nature of a musical CS algorithm for creative purposes is that 
the composer needs to define these rules. The rules can be borrowed 
from traditional musical theory, or created according to a composer’s 

https://doi.org/10.3389/fcomp.2025.1543074
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own theories or experimental practice. In any case, they must find ways 
to describe the properties and relations of the musical situation they 
are looking for in the form of a logical statement expressed as computer 
code, in terms that the CS system can understand and enforce.

While rule formalizations, such as those governing polyphony, 
counterpoint, and harmony, have been fundamental in music theory 
long before computers, applying these rules efficiently in 
computational systems has proven to be a highly complex challenge. 
The initial Monte Carlo approach—generating random sequences of 
musical elements and repeatedly trying until an acceptable solution 
meeting predefined rules was found—proved inefficient, even for 
moderately complex scores. In current days, CS algorithms typically 
use some version of backtracking, where the software can go back and 
reconsider earlier decisions without having to try every combination 
of values. While this dramatically increases the efficiency of the 
algorithm, it can still be a challenge for a computer to find solutions 
to more complex musical problems3.

NNs and predictions

A NN operates fundamentally differently from a CS. After a 
training phase, the NN can be used to predict the continuation of a 
musical sequence. Various techniques have been developed for 
symbolic music generation using NNs that essentially rely on these 
models learning the structure of existing musical examples and 
generalizing from these learned structures to compose new pieces. 
More recently, with the advent of Deep Learning4, common 
approaches include:

 1. Recurrent Neural Networks (RNNs): RNNs, particularly Long 
Short-Term Memory (LSTM) networks, are well-suited for 
modeling longer time dependencies of music (Conner et al., 
2022; Kumar Arya et al., 2022).

 2. Convolutional Neural Networks (CNNs): CNNs have been 
applied to symbolic music generation tasks. They are often 
employed within generative adversarial networks (GANs) 
(Yang et al., 2017).

 3. Variational AutoEncoders (VAEs) in combination with RNN 
architectures have been used for music generation, employing 
an encoder-decoder structure with latent probabilistic 
connections to capture musical structure (Koh et al., 2018).

Despite producing compelling results, these methods often rely on 
local temporal structures that span only a few bars. They also require 
complex software implementations and potentially large-scale 
computing infrastructure for training. Furthermore, these methods 
primarily aim to replicate the musical characteristics of a dataset 

3 For an in-depth review on CS techniques in music composition, see 

Anders (2018).

4 Unlike ‘shallow’ learning, which involves neural networks with a limited 

number of layers and often requires manual feature extraction, deep learning 

utilizes neural networks with multiple layers to learn complex feature 

representations. Deep learning is also well-suited for large datasets as it 

captures complex patterns and dependencies through its layered architecture.

rather than support an interactive compositional process, which limits 
creative agency for composers.

A simple feedforward NN can be implemented without extensive 
computational infrastructure or advanced Machine Learning 
knowledge. However, once trained, it remains deterministic; the same 
input will always yields the same output. This assumes a singular, ‘best’ 
solution for constructing a musical sequence, an assumption that 
rarely aligns with the realities of composition. Additionally, we might 
want other criteria to influence the behavior of our melody, such as 
changes in the harmonic, or rhythmic context or to correctly fit in a 
polyphonic texture.

Combining rules and predictions

To address some of the issues discussed above, we  propose a 
system that involves using a feedforward NN as a heuristic rule within 
a CS algorithm. In this configuration, the temporal structures of the 
generated music, both shorter and longer, as well as its local and global 
scope, can be  shaped by constraint rules. This approach affords a 
higher level of creative agency to the composer compared to other 
systems without requiring complex software implementation or large 
computational infrastructure.

At first glance, using a deterministic NN would limit the 
application of other compositional rules during the generative process, 
as these NNs typically output the highest confidence prediction 
without an alternative. However, they can also offer an error metric 
for predictions, which can serve as a weighting factor for heuristic 
rules. Predictions with lower error values indicate more favorable 
solutions, while those with higher error values are considered less 
favorable but are not entirely excluded. This approach introduces 
flexibility to the CS process, akin to conventional heuristic methods.

Materials

We use two existing algorithms in Common Lisp as starting 
points for our research: the music constraint solver ‘Cluster-Engine’ 
(CE) and the library ‘Simple-Neural-Network’ (SNN).

Cluster-Engine

CE is a Lisp-based constraint solver designed to address complex 
musical problems by integrating rhythm, pitch, and meter across 
multiple voices within a unified sequential search process (Sandred, 
2021). Initially developed as a library for the composition environment 
PWGL (Laurson et al., 2009), CE has since been ported to Max5, built 
on the ‘Bach’6 ecosystem (Agostini and Ghisi, 2012), and is now 
distributed as part of the external package ‘MOZ’Lib’7. A key feature 
of ‘MOZ’Lib’ is its ability to execute Lisp code directly within the Max 
environment (Vincenot, 2017), facilitating the use of CE and other 
Lisp-based functionalities in Max.

5 https://cycling74.com

6 https://bachproject.net

7 https://github.com/JulienVincenot/MOZLib
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CE enables the codification of musical rules beyond the capacity of 
monophonic systems, allowing for the reciprocal influence of harmony, 
rhythm, beat structure, or melodic movement across multiple voices. 
It supports the use of domains encompassing individual pitches or 
groups (melodic motifs), intervals or interval groups (intervallic 
motifs), and individual durations or groups (rhythmic motifs).

CE represents each musical voice using two distinct sequences: 
one for durations and another for pitches. For a two-voice score, for 
example, this results in four sequences. Additionally, a global sequence 
is used to represent metric structure (time signature and subdivision). 
As a result, solving constraints for two voices would require five 
engines in total.

CE solves constraints sequentially, selecting candidate values for 
variables and evaluating them one at a time. Unlike traditional 
constraint systems, CE splits a problem among various search engines 
working in parallel, sharing partial solutions. Additionally, they can 
prompt one another to backtrack during the search process. The 
advantages of dividing the problem across multiple engines become 
apparent when logical conflicts arise, and backtracking becomes 
necessary. CE can identify which variable caused a given conflict, 
enabling a direct backjump to that position, bypassing intermediate 
steps. While respecting the variable visitation order, backtracking can 
occur within any independent sequence, leaving others undisturbed. 
This significantly improves the process efficiency (Figure 1).

Cluster-Engine rules

A CE rule consists of two parts. The first is the rule accessor, which 
accesses elements in a musical sequence -such as the pitch or duration 
of a note- or a succession of notes in one or more voices. Accessors 
vary based on the specific musical information they can access. For 
instance, one accessor may access pitch or rhythmic information 
sequentially for a single voice, another may access both pitch and 
rhythm across multiple voices, while another might be  limited to 
accessing information from different voices only at certain time points 
in the sequence. The second part is a logical statement that defines the 
relation between the score elements returned by the rule accessor. This 
is implemented as a Lisp anonymous (lambda) function.

Rules can be applied in three distinct ways: (1) Index rules: These 
are applied to musical events at specific, fixed positions within the 

sequence, where each position is represented as a sequentially 
increasing index number; (2) Sequence rules: These rules check the 
entire sequence of events as it is being built, from the beginning to the 
current variable being checked; and (3) Wildcard rules: Here, the rule 
is applied stepping through the sequence and accessing events 
one-by-one or in groups of n adjacent variables (Figure 2).

Simple-Neural-Network8

‘Simple-Neural-Network’ (SNN) is a Common Lisp open-source 
library that allows for the construction, training, and application of 
feedforward NNs trained using backpropagation. Users can create 
NNs for specific prediction or classification tasks by specifying the 
number of input and output neurons along with the architecture of 
hidden layers. SNN supports training optimization functions like 
batch processing and momentum coefficient and provides functions for 
retrieving the Mean Absolute Error (MAE) for a single or a set of 
predictions, or accuracy values for tasks of classification. In addition, 
it allows for parallel computation support and simple functions for 
saving and restoring models. The activation function used by the 
neurons is:

 ( ) ( )= ∗ ∗1.7159 tanh 0.66667A x x

Methods

To establish a bridge between the CS and NN paradigms, we have 
developed ‘NeuralConstraints’ (NC) in the Max environment. NC 
provides a user-friendly visual interface for SNN’s training and 
prediction functionalities using symbolic music datasets. It also works 
as an add-on to CE, allowing the deployment of trained NNs as rules 
applicable to the constraint-solving process.

8 Simple-Neural-Network was developed by Guillaume Le Vaillant, and the 

source code can be  found here: https://codeberg.org/glv/

simple-neural-network

FIGURE 1

(a) Example of CE’s normal search process; (b) Example of the sequential backtracking method used in other constraint solvers. In the event of a 
conflict between two variables in a two-voice musical scenario (e.g., variables 3 and 11 in the rhythm sequence for voice 2), all intermediate values are 
erased; (c) CE’s backtracking method employs backjumping, which directly targets the source of the conflict. Once variable 3 is reassigned, only 
variable 7 requires recalculation.
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Musical domains

As of now, NC accepts datasets of pitch and rhythmic values. 
Regarding pitch representation, the NC interface is optimized to 
receive values in MIDI cents. For the encoding, users can choose 
between intervals (I), as signed integer values representing the 

distance in semitones between successive pitches, or pitch class + 
octave (PC8va) where a pitch is represented by two integers: one for 
the pitch class (modulo 12) and another for the register, specified by 
the octave number. For example, the values (0 4) represent a middle 
(C). The model also supports rhythmic durations (R) expressed as 
rational numbers (fractions), which are encoded as two integers: the 

FIGURE 2

The user interface of Cluster-Engine showing examples of four different types of accessors and three different types of rules.
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FIGURE 4

Sequential organization of inputs and targets.

numerator and the denominator. Rests are indicated by a negative 
numerator. Each domain can be  encoded independently or in 
combination with another. For example, PC8va + R, or I + R.

Encoding and normalization

In the initial step of encoding a dataset for training a NN, each 
numeric value in the input and target series is converted into a binary 
representation, with each bit corresponding to an individual neuron 
in the NN. In the second step, these binary inputs and targets are then 
normalized to double-float vectors and finally fed into the NN for 
training. Conversely, when given an input, the NN predicts values as 
normalized double-float vectors. To return this result to the original 
scale of the inputs and targets, an inverse transformation is applied: 
the prediction must be first denormalized and then converted from 
binary digits back to the original scale. Below is a scheme of the 
structure of the prediction function (Figure 3).

Training

Inside the ‘NC-train’ module, the data is organized into lists9 of 
inputs and targets. A key concept is that ‘NC-train’ arranges the 
training dataset  sequentially to simulate the causality inherent in 
music. A customizable windowing size determines the number of 
consecutive input values that lead to a subsequent target, with the 
target windowing size also customizable. For example, with a 
windowing size of n = 4 inputs and n = 1 target, each input list will 
contain four values, and each corresponding target list will contain 
one value. This setup enables the neural network to learn—and 
subsequently predict—values step-by-step, advancing incrementally 
by one position with each prediction (Figure 4).

The user interface of NC allows for the selection and adjustment 
of several options for training the NN, such as the windowing size of 
inputs and targets, the domain (I, R, PC8va, PC8va + R, I + R), the 
number and size of the hidden layers and the learning rate and 
number of epochs. In addition, a file name for saving the NN model 
file on the hard drive must be  specified. Other optimization 
parameters, such as the batch size and momentum coefficient, can also 
be adjusted. Once all these parameters are set, the training can begin. 
While it takes place, the ongoing epoch number as well as the 

9 In Lisp., the list is a fundamental data structure consisting of a sequence 

of elements: values, symbols, or other lists. This structure is enclosed in 

parentheses and supports recursive nesting. The quasi-Lispian ‘llll’ data structure 

provided by the ‘Bach’ library provides the integration of Lisp-style nested lists 

into a Max patch. This structure can theoretically handle nested lists of any 

length and depth, something not possible by default in Max.

corresponding Mean Absolute Error (MAE) of the dataset for that 
epoch is printed in the Max console. Once the training is complete, 
the whole sequence of MAE values is displayed as a break-point 
function. When a NN file is created, it is loaded automatically for 
testing predictions with original inputs from the model. This facilitates 
comparing predictions with the real targets, along with the 
corresponding MAE value (Figure 5).

Chaining NN and logic rules

In order to apply the NN as a constraint rule, first, it is necessary 
to load a model file generated by the training module into the CE. The 
loaded file will be stored in a global variable to be accessed by the 
engine rule during the search. After this step, it is now possible to add 
NN rules to the classic chained flow of rules of the CE. NN rules are 
available as modules that must be connected to a CE accessor pointing 
to the same musical parameter as the one originally used to train the 
NN. The example below shows a flow diagram of CE using two rules: 
a conventional logic rule applied over the rhythmic domain and a NN 
rule applied over the pitch domain (Figure 6).

MAE rules

SNN provides a function to calculate the Mean Absolute Error 
(MAE) for a NN over a set of inputs and targets, ranging from the 
entire dataset to a single data point:

 = =
= −

× ∑∑
1 1

1 ˆ
N M

ij ij
i j

MAE y y
N M

∣ ∣

Where N is the number of input samples, M is the size of the 
output, ijy  is the actual target value and ˆijy is the predicted output value.

FIGURE 3

Scheme of the structure of the prediction function.
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To obtain the MAE, the function iterates over each input-target 
pair, where the neural network generates a predicted output for each 
input, and the corresponding target value (true value) is retrieved. The 

absolute value of this error is taken and these absolute errors are 
summed up. Once all inputs are processed, the final MAE is 
computed as:

FIGURE 5

The user interface of the module ‘NC-Train’.
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FIGURE 6

Example of a classic chained flow of rules for Cluster-Engine, with 
two rules at work: a NN rule that accesses pitch information and 
another logic rule that accesses rhythm.

FIGURE 7

Diagram illustrating the sequential and iterative operation of the 
system using a MAE rule.

TABLE 1 Example of how CE selects the best candidate solution using 
two versions of the MAE rule in heuristic mode.

Two examples of MAE heuristic rules

Input 
list

Candidates 
from the 
domain

Weight 
(negated MAE 

value)

Weight (MAE 
after 

optimization 
function)

(1 2 3 4) (3) −0.93 1.52

(1 2 3 4) (4) −0.48 2.55

(1 2 3 4) (5) −0.05

(solution picked by CE)

20.49

(solution picked by CE)

The first version uses the negated MAE value as the weight, while the second applies an 
optimization function to the MAE value that penalizes higher values and rewards lower ones.

 
=

  
   

total absolute errorMAE
total number of outputs

When the MAE function is applied to a single input-target pair, 
the mean calculation simplifies to the absolute error for that 
specific pair:

 i iMAE output target= −∣ ∣

Since CE solves constraints sequentially and the SNN is trained to 
generate outputs in sequence, we experimented with a rule design that 
uses the negated Mean Absolute Error (MAE × −1) of a single data 
point as a heuristic weight. At each sequential step, the MAE rule 
iteratively computes the MAE for each candidate in the CE domain, 
treating it as the output for the given input list. Since heuristic rules 
rank solutions based on the highest weight, the MAE must be negated 
so that values closer to zero correspond to higher weights. As a result, 
the candidate with the lowest MAE—when negated, yielding the largest 
weight—is selected as the optimal solution (Figure 7).

In a subsequent refinement of the rule, we replaced the negated 
MAE value with an optimization function that penalizes higher MAE 
values and rewards lower ones:

 ( ) −
=

+ + 6
1

log 1 10
weight

MAE

The Table 1 provides an example of the process for selecting the 
best candidate solution using a heuristic rule that calculates the 
negated MAE, along with another MAE rule that applies the 
optimization function discussed above to the MAE value.

Prompting
It is recommended to initialize the generation process with a fixed 

set of domain values corresponding to existing inputs in the dataset. This 
initialization step helps guide the NN rule toward results resembling the 
dataset. The module ‘NC-Prompt’ facilitates this process by allowing the 
selection of an initial prompt10 from the training dataset. It uses index 

10 The word ‘prompt’ here refers to an initial input that shapes the model’s 

response. While the idea of prompting is typically connected to written 

instructions for large language models (LLMs), it can also encompass other forms 

of information, such as symbolic representations in musical domains. In the 

context of ‘NeuralConstraints,’ a prompt specifically denotes an input that 

determines the NN’s output. Although our prompting mechanism essentially 

relies on fixing certain variables using index rules—a longstanding approach in 

CS techniques—we believe the term is particularly fitting, as it aligns with the 

idea of generating musical continuations, making the concept intuitive for users.
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rules to fix certain variables of the solution (such as the initial ones) to 
predefined values that the NN takes as input. Additionally, the 
‘NC-Inputs-Targets’ helper module can be used to select a score fragment 
from the training dataset itself and provide it directly to the ‘NC-Prompt’ 
module. Below is a schematic representation of the workflow of NC, 
including the ‘NC-prompt’ module, a MAE rule with an optimization 
function and subsequent evaluation:

Results

For our tests, we trained several NNs using the ‘Schubert Winterreise’ 
dataset (Weiß et  al., 2021), consisting of the 24 songs of the cycle 
Winterreise, with the music of Franz Schubert (1797–1828) and poetry 

of Willhelm Müller (1794–1827). In addition, we trained several other 
NNs using the ‘Weimar’ dataset of folk melodies (Pfleiderer, 2017).

Using the ‘Winterreise’ dataset

We trained the model on a corpus of vocal melodies, selected 
for their adherence to tonal rules11, focusing solely on the vocal 

11 We understand, nevertheless, that a drawback of employing a feedforward 

NN to predict tonal melodies is that it restricts the analysis to relatively short 

sequences of inputs, whereas tonality relies on vertical harmonic constructions, 

as well as possibly longer-span melodic structures.

FIGURE 8

(a) Continuation predicted using the first 6 pitch classes from the song ‘Gute Nacht’. (b) Original vocal melody of the song Gute Nacht (first 13 
measures). Observe that the neural network accurately predicts the melodic structure of the original piece, with the exception of the repetition in 
measures 3–4 and the final beat in m. 10/first beat in m. 11.
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FIGURE 9

(a) shows the original sequence generated using the six first notes of the song Der Lindembaum; (b) shows the result of applying an index rule 
preventing pitches 0 and 14 to be the same; (c) result of applying a rule to prevent repeating patterns longer than length 14, alongside two additional 
rules: one limiting interval leaps to 12 semitones and another restricting more than five consecutive repetitions.

melodies and excluding the piano accompaniments. Since 
we trained the model using the information of pitch class + octave 
(PC8va), part of the normalization of the dataset involved 
transposing all the songs to a unique key. This subset of the dataset 
comprised 4,358 lists of inputs paired with an equal number of 
targets. The architecture of the network was configured with six 
inputs (48 neurons), one output (8 neurons), and four hidden layers 
containing 96, 48, 24, and 16 neurons, respectively. The SNN 
training function was configured with a batch size of 32, a 
momentum coefficient of 0.95, and a learning rate of 0.001. The 
training process ran for 50,000 epochs and the MAE for the dataset 
converged to approximately 0.07.

It is worth noting that in our pitch-related tests, the domain -the 
pool of pitches that CE can pick from- spans all pitches from MIDI 
note 53 to 84, a range that covers the full ‘Winterreise’ dataset. 
Although the NN was trained using a normalized key across the entire 
dataset, it would be possible, in theory, to bias it toward more coherent 
outcomes by constraining the range of possible pitch choices.

We tested the system by applying a MAE heuristic rule and, in place 
of a prompt, using the first six PC8va from the vocal part of Gute Nacht, 
the opening song of the cycle Winterreise. The NN yielded a coherent 
melodic pattern that spanned up to 62 pitches. The contour of the 
prediction matched the opening four phrases of the original song, except 
for inner repetitions. Beyond this point, the melody entered a loop 
(Figure 8). We observed this as a common occurrence when generating 
with NN rules. The reason for the looping, as we understand it, comes 
from the natural behavior of the CE when using a heuristic rule (in this 
case, a MAE rule), which picks candidates that yield the higher weight, 
disregarding other potential candidates that, despite yielding lower 
weights, are also suitable in the musical context.

Combination with logic rules

As an initial step in testing the interaction between the NN and other 
logic rules, we focused on addressing the issue of the looping occurring 
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recurrently when using solely NN rules for generation. To tackle this, 
we explored two approaches. The first, localized in scope, introducing an 
index rule to ensure that the pitch at the beginning of a loop differs from 
that picked by the CS, thereby preventing the sequence from restarting:

 ≠_ _ _ _x ypitch at index pitch at index

Using a different prompt—the six initial pitch classes of Der 
Lindenbaum (the fifth song of Winterreise)—a loop would begin on 
pitch 14 (see Figure 9a). By constraining the pitch at index 14 to differ 
from index 0, the looping at this position was prevented. While this 
approach avoided looping at position 14 and the new generation 
continued the original contour of the song, it inevitably led to another 
loop shortly thereafter (see Figure 9b).

Our second approach introduced a rule based on the function 
ptrn-find from the CAC library ‘OM Morphologie’ (Baboni Schillingi 
et al., 1999)12, designed to detect repeated patterns within a list of 
symbols. This rule establishes a maximum threshold for the length of 
any repeated pattern. For example, setting the maximum length to 14 
permits patterns with up to 14 elements but prevents longer repetitions 
(see Figure  9c). This method offers a global and more adaptive 
approach to addressing the looping issue. However, its drawback is the 
increased computational cost when dealing with larger patterns, as the 
algorithm must identify patterns in every temporary solution for each 
random pick.

While the first approach was less effective in this particular 
musical context, it is computationally more efficient than the 

12 https://github.com/openmusic-project/morphologie/releases/tag/v1.1

second. Its flexibility to combine with other rules, such as 
index-specific constraints applied at various points, still makes it a 
viable option for experimentation. Ultimately, combining different 
types of rules yields diverse outcomes, allowing the composer to 
select the most effective constraint strategies to achieve 
desired results.

Using the ‘Weimar’ dataset

We used a subset of the first 100 folk melodies of the ‘Weimar’ 
dataset to train a NN on melodic intervals (I). This subset of the 
dataset comprised only the first 100 melodies. The number of inputs 
paired with an equal number of targets was 4,391. The network was 
designed with eight inputs (48 neurons), one output (6 neurons), 
and four hidden layers containing 96, 48, 24, and 12 neurons, 
respectively. This time, we  allowed the process to run for 
100,000 epochs.

Using this model, we  tested the system’s ability to generate 
intervallic profiles without an initial prompt. To prevent the CE from 
randomly selecting values to fill the required number of inputs and 
targets based on the model’s training configuration for MAE 
calculation—which would result in a randomized profile until the 
MAE rule begins to influence the generation—we refined the MAE 
rule so that it incrementally calculates MAE values with a growing list 
of inputs and a single target (Figure 10).

Two simultaneous NN rules

We explored the application of multiple NN rules concurrently 
by loading two independent model files into CE. Specifically, 

FIGURE 10

Comparison between an intervallic profile generated with a MAE rule without a prompt and a randomly generated profile.
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FIGURE 11

Schematic representation of the data flow of inputs with NC-prompt, 
and the algorithm of a MAE rule.

we combined the two previously discussed NNs—the ‘Winterreise’ 
model (PC8va) and the ‘Weimar’ model (I)—as simultaneous MAE 
rules, each influencing an independent musical voice. Additionally, 
we  used a CE accessor for pitch information on simultaneous 
independent voices, incorporating a rule to constrain the harmonic 
intervals between them. These intervals, expressed as pitch class 
(modulo 12) differences, were restricted to 3, 4, 7, 8, 9, or 0 at the start 
of every beat:

 { }− =0 1_ _ _ _ 0,3,4,7,8,9pitch class voice pitch class voice

Another rule ensured that the ‘Winterreise’ voice consistently 
remained above the ‘Weimar’ voice:

 ≥0 1_ _ _ _pitch in voice pitch in voice

For initialization, the ‘Winterreise’ model was prompted with 
the first six pitches of Gute Nacht (Figure 11), while the ‘Weimar’ 
model was initialized without a prompt. The rhythmic domain for 
each voice was restricted to quarter-notes (‘Winterreise’) and 
sixteen-notes (‘Weimar’). The result of this test is shown in 
Figure 12.

Using NN rules trained on integrated 
domains

NC facilitates the training of a NN using an encoding that 
integrates two musical domains, such as pitch class/8va + rhythm 
(PC8va + R) or intervals + rhythm (I + R). This model can then 
function as a rule for a CE accessor capable of simultaneously 
accessing pitch and rhythm information. To test this type of rule, 
we  trained a model using a reduced version of the ‘Weimar’ 
dataset, which included only the first ten songs, comprising 505 
input-target pairs. The information from PC8va and rhythmic 
duration (PC8va + R) was integrated and encoded for each value 
in the input-target lists. The NN was designed with six inputs (84 
neurons), one output (14 neurons), and four hidden layers 
containing 168, 84, 42, and 28 neurons, respectively.

In our tests using this model, we  found that the MAE 
heuristic rule was too weak, either having no observable impact 
on the solution or resulting in different solutions for each 
generation. This behavior is peculiar because, even though the 
NN rule is heuristic, it should consistently favor a preferred 
solution as the best candidates’ weight prevails. To address this, 
we  experimented with setting MAE thresholds to determine 
acceptable results, effectively turning the MAE heuristic rule into 
a True/False rule. It’s important to note that heuristic rules are 
not backtracked in the CE; only True/False rules have 
this capability.

We established a threshold of 0.15 for non-negated MAE 
metrics without computing the optimization function, forcing the 
engine to select only predictions below this threshold. In this 
scenario, the impact of the rule was observable; however, the CE 
often experienced excessively long iterations or became stuck in 

backtracking loops. Below are some results using PC8va + R 
prompts (Figure 13).

While MAE metrics for these integrated models dropped 
significantly during extended training, and the prediction/test results 
in the ‘NC-train’ module were generally accurate, handling pitch and 
rhythm simultaneously with an NN rule in heuristic mode poses 
challenges for the CE. Although we did not notice issues with weak 
heuristic rules when using single-domain rules, these problems 
became evident when using a CE accessor for both pitch and rhythm 
information simultaneously. Using the MAE rule in strict mode by 
setting MAE thresholds worked as expected, however, the options for 
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the CE became significantly restricted, as error values vary largely 
across the dataset, often forcing it to backtrack and become stuck in 
backtracking loops.

Discussion

One of the main challenges when generating music sequences 
is the necessity of modeling coherent both long- and short-span 
structures. While constraint rules can introduce some control on 
the longer-term musical behavior, the current architecture of 
SNN can only learn relatively short-term musical patterns. 
Therefore, we  view our current tests as a starting point, 
potentially directed toward implementing more advanced NNs13 

13 For example cf. https://github.com/melisgl/mgl

as rules that can better account for longer-term musical aspects. 
However, handling longer-span structures can introduce 
limitations on the CE side, as these can become computationally 
expensive, as observed when using the ‘OM Morphologie’ 
function.

Currently, the rhythmic domain learns sequences of durations but 
lacks awareness of their metric structure. Upcoming refinements to 
the system include to enhance the system’s ability to recognize a metric 
domain—a domain already manageable by the CE—that could 
enhance the NN’s ability to recognize musical patterns based on 
metric structures.

We considered introducing a parameter to the neural network 
rule—similar to the ‘temperature’ parameter in some stochastic 
networks—to inject randomness and reduce looping behavior. 
We  believe this effect can be  achieved on the CE rule side by 
incorporating an operation that acts directly on the weights, 
closely aligned with our approach to implementing the 
optimization function.

FIGURE 12

Example of using two simultaneous NN rules for independent musical voices, establishing harmonic intervallic constraints between them.

FIGURE 13

Various results using a NN trained on combined domains (PC8va + R) setting a MAE threshold of 0.15.
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A promising approach could involve using NN rules trained 
on parameters beyond pitches, durations, and meter, such as 
dynamics, articulations, or other musical metadata. This is feasible 
as CE can establish constraint relations between these using an 
experimental feature currently in development. However, a 
significant challenge is the increased computational demand of 
training high-dimensional models, as NC is not built to rely on 
large-scale computational infrastructure. Additionally, this may 
require refinements to the CE architecture to enhance its 
effectiveness and efficiency when exploring integrated 
musical domains.

In future implementations, we  aim to investigate the 
system in real-time musical contexts such as improvisation or 
interactive installations. Although the NN must be  trained 
offline, rules can be adjusted in real-time, providing flexibility 
to the process. CE has already shown robust performance in 
several live situations14, indicating its viability for real-
time applications.

Conclusion

In this article, we  introduced ‘NeuralConstraints,’ a 
computer-assisted composition library that combines symbolic 
neural generation and constraint-based computation. Our primary 
objective was to explore a tool that could enhance compositional 
control over a neural generative process. To achieve this, we integrated 
two Lisp-based algorithms: the music constraint solver ‘Cluster-
Engine’ and the feedforward neural network ‘Simple-Neural-
Network,’ positioning the latter as a heuristic rule within a constraint-
based composition workflow. Our tests, using the ‘Schubert 
Winterreise’ dataset and the ‘Weimar’ dataset of folk melodies, 
involved training models on musical parameters like pitch 
class + octave, intervals, rhythm, or combinations of these. Our results 
demonstrated that the NN effectively integrated into CE as a heuristic 
and strict rule, shaping musical sequences based on the training data. 
Furthermore, the interaction between NN rules and logical constraint 
rules successfully produced coherent musical outcomes, as shown in 
the examples. Although our goal was not primarily to assess their 
musical quality, the system yielded coherent and potentially 
interesting results that could inspire further compositional 
exploration. Still, challenges remain in its present form, such as 
dealing with longer-term music patterns, including meter and other 
music parameters for the training of more complex models, and 
further research is needed around using the system for real-time 
artistic endeavors.
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