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Providing cyber-resilient IoE systems has become the need of modern times.

In particular, IoT drones are prone to several cyber attacks while navigating in

the air. Deliberate transmission of deceptive GPS signals targeted at commercial

applications can misdirect global positioning system (GPS)-guided drones,

causing them to deviate from their intended paths. Thus, e�cient anti-spoofing

technology is required to guarantee the safety measures of drone operations.

Many techniques for identifying GPS spoofing are available, but most of them

need extra hardware, which may not be feasible for tiny or resource-constrained

drones. In this regard, this study introduces a specialized method to identify

GPS signal spoofing in these drones, called MobileNet. The MobileNet is a

convolutional neural network-based transfer learning model that is adopted in

this study for drone security along with Chi-square-selected features. The initial

phase involves a series of steps to acquire and prepare the GPS signal dataset.

Afterward, the dataset is prepared for modeling through preprocessing, data

cleaning, and feature extraction. Extensive comparison analysis is performed to

evaluate deep learning and transfer learning models. The experimental findings

demonstrate the remarkable accuracy of 98.49% by the MobileNet model using

Chi-square feature selection. This demonstrates the suitability and capability of

the model to perform well in preventing GPS signal spoofing in the context of

tiny drone operations.

KEYWORDS

internet of everything, cyber security, GPS signal spoofing, intrusion detection,machine

learning

1 Introduction

In today’s world, technology is progressing at a fast pace, particularly with the Internet
of Everything (IoE) paradigm, where everything is being connected. Due to a large number
of connected devices, threats to cyber security have increased exponentially. In particular,
drones have become targets ofmalignant users due to lesser security protocols against cyber
attacks. Drones commonly incorporate a variety of sensors, with global positioning system
(GPS) receivers being more crucial and sensitive. By receiving signals from satellites, these
devices play a crucial role in accurately tracking the drone’s position, including its latitude
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and longitude, as well as its height above the ground. This
enhances the drone’s navigation accuracy and mission execution
efficacy. Despite its crucial role, the inherent susceptibility of GPS
signals to manipulation presents a significant threat across various
critical domains, encompassing public safety, military operations,
air travel, and navigation. Numerous studies have documented GPS
signal spoofing-related security flaws (Liu et al., 2018; Liang et al.,
2019).

Initially conceived for military purposes, the drones have
been adopted into a multitude of civilian and commercial
applications. One such instance is Germany DHL’s logistics, which
uses drones to deliver medicines to Juist island (Benarbia and
Kyamakya, 2021). Additionally, the United States (US) Federal
Aviation Administration has given Alphabet, and Google’s parent
firm, permission to use drones to carry meals (Moshref-Javadi
and Winkenbach, 2021). Drones are used in different domains
other than logistics, such as agriculture and natural resource
management, emergency rescue, medicine, wildlife control, and
photography (Mohsan et al., 2023). Drones and Internet of Things
(IoT) sensors may be integrated to provide a variety of benefits,
such as crop and land surveys, energy companies monitoring
power infrastructure, and insurance companies inspecting assets
and property (Motlagh et al., 2016).

The GPS tracking device industry is expanding rapidly and
by 2025 it is expected to have a worth of around 3.38 billion
(Jiang et al., 2022). GPS signals are essential for autonomous
car safety since the navigation system uses them to calculate the
current latitude, longitude, acceleration, and orientation. Malicious
GPS assaults are becoming more likely despite their significance
due to the proliferation of GPS-enabled gadgets and the reduced
expenses of spoofing equipment. Malicious actors can interfere
with legitimate GPS signals by using programmable radio devices
such as HackRF or USRP. This might cause problems for the
targeted vehicles’ navigation systems. Using programs like HackRF,
researchers have shown that they can change the routes taken
by self-driving cars (Souli et al., 2021). Apart from navigation,
numerous services and applications based on GPS data improve
their efficacy and interaction styles (Kim et al., 2021).

Multiple research works have been conducted for GPS
spoofing detection. In Kwon and Shim (2020), the authors
utilized acceleration error analysis techniques received from inertial
measurement units (IMUs) and GPS receivers. In another research
work (Feng et al., 2020), the authors utilized both GPS data
and IMU data for accurate detection of GPS spoofing of attacks.
Furthermore, Manesh et al. (2019) utilized artificial intelligence
(AI) methods to analyze GPS signal features like distance errors,
signal strength, and frequency shifts for promising results of GPS
spoofing detection. This research highlights the importance of
using AI techniques in this domain.

The study Qiao et al. (2017) further utilized techniques like
motion detectors and cameras to check if someone physically
tampered with the drone architecture. Researchers utilized both
GPS data and sensor data for accurate detection. In research
(Varshosaz et al., 2019), authors rely solely on the drone’s camera
to detect spoofing. This research utilizes motion camera sensor
data with GPS coordinates to check the attack’s exact location.
Both these research works are focused on the detection of physical

tampering with drone architecture. Similar ideas are explored in
other recent studies (Arafat et al., 2023; Prasanna Srinivasan and
Sathyadevan, 2023). These research works keep the dataset simple
avoid mixing GPS data with sensor data and analyze both types of
datasets separately.

Some previous studies (Mehdi et al., 2022) witness that small
drones are more likely to become GPS spoofing attacks. To tackle
this problem, researchers developed somemethods like cooperative
navigation, multiple positioning system integration, redundant
antennas, and signal verification (Balador et al., 2018). Regardless
of the development of multiple ways to deal with the spoofing
problem, each technique comes with certain limitations like the
requirement of complex hardware systems, environmental hazards,
clock synchronization, etc. Another way of GPS spoofing attack
detection and classification is done utilizingmachine learning (ML)
models (Feng et al., 2020).

This study also follows an ML-based approach for spoofing
detection. The objective of this research work is to make use of
transfer learning and deep learning models for GPS spoofing attack
detection in small drones. The datasets used for training and testing
these models consist of 13 characteristics extracted from real-time
experiments involving GPS signals. Notable contributions of this
study are the following:

• The study introduces a transfer learning technique, leveraging
multiple types of data to enhance the accuracy and efficiency
of detecting GPS signal spoofing in small drones.

• The study creates a systematic methodology for acquiring,
preparing, and conducting controlled simulation tests on
datasets, ensuring the reliability and validity of experimental
data and strengthening the robustness of findings in GPS
signal spoofing detection analysis.

• The study enhances GPS signal spoofing detection in
small drones by employing the Chi-Square feature selection
technique during data preprocessing, identifying important
features and significantly improving the efficiency and overall
performance of the detection process.

Section 2 presents a summary of current literature and
notable advancements in IoT-driven methods. Section 4.1 outlines
the dataset and methodologies employed in the carried-out
experiments, whereas Section 3 provides details on the utilized
feature selection technique and models. Section 4 delivers a
thorough understanding of the experimental results, paired with
a comprehensive analysis, and Section 5 is a conclusion Section,
summarizing the paper.

2 Related work

This segment presents the latest developments, methods, and
breakthroughs from diverse research works focused on unraveling
the complexities associated with detecting and combating
the manipulation of GPS signals. This section establishes
the groundwork for the distinctive contributions discussed
in the current research work by reviewing various methods,
methodologies, and results documented in previous literature.
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Multiple research studies have been carried out to detect spoofed
signals and other types of signals that can cause GPS spoofing.
Intrusion detection in sensor networks has been a critical research
area due to the increasing deployment of wireless sensor networks
(WSNs) in security-sensitive applications. Various studies have
proposed methods to safeguard these networks from malicious
attacks (Ashraf and Ahmed, 2020). Traditional approaches rely
on statistical anomaly detection or signature-based methods,
which can fail in dynamic environments or against new attack
patterns. Recent advancements in ML have introduced adaptive
and intelligent intrusion detection systems (IDS) that leverage
supervised and unsupervised learning techniques to identify
anomalous behavior in real time (Saleem et al., 2020). Multiple
studies highlight innovative cybersecurity-enhancing approaches.
In Shala et al. (2017), optimized trust-based security in P2P
M2M applications, while in Tanimu et al. (2024) authors utilized
blockchain for collaborative intrusion detection. In Kolokotronis
et al. (2022), advanced IoMT threat mitigation, complementing
(Peratikou et al., 2021) work on federated cyber range networks
and Gurung et al. (2022) feature elimination techniques for
phishing detection.

2.1 Machine learning-based categorization
of spoofing attacks

In research work (Meng et al., 2021), researchers developed a
computer-based system to estimate and predict drone movement
without extra hardware. This greatly helps in the detection of GPS-
spoofed signals. Similarly, Schmidt et al. (2020) employed multiple
learning models to classify real and spoofed signals, improving
detection accuracy and reducing false positive rates.

An ensemble learning approach is utilized in Shafique et al.
(2021) where a voting classifier is used to classify spoofed
GPS signals and shows robustness across different techniques.
Meanwhile, Yoon et al. (2019) presents a simple ML-based
approach for small drone attack detection. Researchers in Zhu et al.
(2021) make use of support vector machines (SVM) for spoofed
signal detection while in Dang et al. (2020), the authors focused
on signal strength to enhance location accuracy while giving less
importance to classifying real and spoofed signals. Furthermore,
Khoei et al. (2022) compared multiple ML models for drone paths,
affirming the efficacy of ML in detecting spoofed signals across
various circumstances.

2.2 Detection of GPS spoofing using deep
learning techniques

The implementation of deep learning (DL) techniques makes
it easy to analyze the pattern of GPS spoofing. The DL technique
is not only suitable for judging large-scale patterns and making
decisions but it is also utilized for small drone attacks by Agyapong
et al. (2021). By training the DL model to analyze the drone’s
movement and comparing it to expected patterns, researchers were
able to detect inconsistencies. In Dang et al. (2022), the authors
used DL models for signal strength detection and based on that

accurately determined the drone’s precise location and successfully
classified real and spoofed signals. Moreover, DL models are being
utilized for security applications other than drones. Researchers
are investigating their use in protecting phasor measurement units
(PMUs) from spoofing attacks (Almutairy et al., 2023), which shows
the wide-ranging potential of deep neural networks (DNNs) in
detecting and preventing anomalies across various applications.

Detection of fake GPS signals has become a top priority,
particularly for drones. Researchers are investigating various
techniques using multilayer perceptron (MLP). In Shafiee et al.
(2017), researchers use the MLP model to check the timing and
strength of the signal, for accurate identification of suspicious
activity in drone security. In Jullian et al. (2022), researchers
compared multiple learning models and found that the MLP
attained better performance than all other models for accurately
detecting spoofed signals in drones with over 80% accuracy.
Furthermore, the usage of MLP models is not limited to drone
signal spoofing detection but has also been used for cellular
network tower signals (Dang et al., 2022). ML and DL models are
further explored to combat fake GPS signals. For example, Sung
et al. (2022) found that the ResNet model outperformed SVM in
identifying fake signals. Another study Wu et al. (2023) developed
a real-time cyberattack detection method using a combination of
convolutional neural networks (CNN) and bidirectional long short-
term memory (BiLSTM) models, achieving over 99% accuracy
in simulations.

2.3 Combining models for detecting GPS
spoofing

Despite several research efforts, there is still room for
improvements in GPS detection and now the researchers are
striving to design a framework that is not only accurate but
also robust and less computationally complex for spoofing attack
detection in small drones. Ensemble learning approaches are
investigated that allow systems to learn from multiple models
for enhanced adaptability as utilized in research works (Goudos
and Athanasiadou, 2019; Rajadurai and Gandhi, 2020) for better-
identifying attacks in wireless networks. This shows the importance
of ensemble learning approaches in addressing complex spoofed
GPS threats, as demonstrated by a framework that utilizes multiple
models to detect spoofing in small drones (Sun et al., 2023).

Researchers are exploring a variety of ML and DL algorithms
combined with a learning technique to find fake GPS signals in
drones. These approaches show good results but have limitations
and may not fully address all the different and complex ways,
the intruders attack. Table 1 summarizes these studies and their
limitations by following the pattern given in Ashraf et al. (2020).
Table 1 describes the limitations of the existing work along with
summarized details like the dataset, proposed model, and results.

3 Materials and methods

This section provides a detailed explanation of themethodology
employed in detecting GPS spoofing. The experiments incorporate
DL and transfer learning models.
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TABLE 1 Overview of previous research on detecting GPS spoofing.

References Data source Methodology Results Limiting factors

Meng et al., 2021 Real-time GPS data LR anti-spoofing
model

Improved resilience against GPS deception,
without incurring extra expenses for hardware,
and straightforward implementation.

Limited evaluation of diverse attack
scenarios.

Prasanna Srinivasan and
Sathyadevan, 2023

MPU9250 data Motion processing
units

Leverages information from each of the three axes
for the recognition of GPS deception and the
retrieval of accurate GPS positions.

Dependency on specific IMU hardware;
effectiveness in complex spoofing
scenarios not addressed.

Schmidt et al., 2020 TEXBAT data LASSO Analyzes correlation profiles and individual
component contributions from desired and
spoofed signals.

Assessment restricted to particular
deceptive test data; apprehensions
regarding generalizability.

Goudos and
Athanasiadou, 2019

Real time dataset Hybrid model Weight optimization technique improves results. Concerns about scalability across
different attack types; the
comprehensive addressing of
generalizability is lacking.

Zhu et al., 2021 TEXBAT data SVM Presents an accurate and efficient automated
detection technique employing a broad Gaussian
function.

Absence of assessment across varied
deceptive scenarios; scalability concerns.

Khoei et al., 2022 Real-time dataset ML models Dynamically selects the model for identifying
attacks.

Generalizability concerns; lack of
extensive real-world testing.

Agyapong et al., 2021 UAV flight logs LSTM Utilizes Long Short-Term Memory classifier and
autoencoder for classifying GPS deception attacks.

Performance on complex spoofing
scenarios not discussed; scalability
concerns.

Dang et al., 2021 Real time dataset MLP Tests MLP models under different base stations. Lack of evaluation under various
environmental circumstances;
scalability issues.

Mykytyn et al., 2023 Real-time dataset IR-UWB
measurement

Suggests a technique for using IR to find GPS
spoofing attempts in swarms.-UWB.

Larger UAV swarm scalability issues;
practical validation is needed.

3.1 Chi-square feature selection

In chi-square feature selection, observed and expected values
are key components used to determine the significance of the
relationship between predicting features and the target variable in
a dataset (Narra et al., 2022). Its application aids in discerning the
most relevant features for predicting the target variable. The output
of chi-square feature selection in our case is the selection of the best
features among 13 features. The best results are obtained when we
select the 8 features which are “DO, PRN, PD, CN0, PIP, RX, TOW,
and LC.” The overview of the feature selection is provided here.

Observed values (O): Observed values are the actual
frequencies or counts of occurrences observed in the data. When
dealing with a feature and a target variable, the observed values
represent the number of times a particular combination of feature
value and target value occurs in the dataset.

Expected values (E): Expected values are the theoretical
frequencies that would be expected if there were no association
between the feature and the target variable. These values are
calculated based on the assumption that the feature and the target
variable are independent.

Calculating expected values: The expected value for a specific
cell in a contingency table (which cross-tabulates the feature and
target values) can be calculated using the formula:

Eij =
(Ri × Cj)

N
(1)

Where

• Eij is the expected frequency for the cell in the ith row and
jth column.

• Ri is the total number of observations in the ith row.
• Cj is the total number of observations in the jth column.
• N is the total number of observations in the dataset.

The critical value for evaluating correlation hypotheses in
the chi-square contingency table is determined by the chi-square
distribution and depends on two key factors:

Degrees of freedom (df): This is calculated based on the
dimensions of the contingency table. For a contingency table with r
rows and c columns, the degrees of freedom are given by:

df = (r − 1)× (c− 1) (2)

Significance level (α): This is the probability threshold below
which the null hypothesis (that there is no association between the
variables) is rejected. Commonly used significance levels are 0.05
(5%) and 0.01 (1%).

Basis for setting the critical value

To set the critical value, you follow these steps:

i Determine the degrees of freedom: Calculate the degrees of
freedom for the contingency table. For example, if you have a
3× 2 table, the degrees of freedom would be:

df = (3− 1)× (2− 1) = 2 (3)
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ii Choose a significance level: Decide on the significance level you
want to use. The most commonly used level is 0.05. This means
you are accepting a 5% chance of rejecting the null hypothesis
when it is actually true (Type I error).

iii Find the critical value from the chi-square distribution table:
Using the degrees of freedom and the chosen significance
level, you can look up the critical value in the chi-square
distribution table.

3.2 Supervised learning models used for
GPS spoofing attack detection

Advanced ML has shown substantial potential across diverse
medical sectors, encompassing the prognosis and diagnosis of
various health conditions. In the context of predicting GPS
spoofing attacks, sophisticated algorithms facilitate the thorough
analysis of extensive data related to system behavior, contributing
to the early and precise identification of potential threats. The
effectiveness of these models heavily depends on the quality
and quantity of the training data used to develop them. The
availability of varied and representative datasets proves crucial in
constructing reliable predictive models for GPS spoofing attack
detection. This research employs a variety of advanced machine
learning architectures, including CNN, MLP, ResNET, long short-
term memory (LSTM), Inception, EfficientNetB4, MobileNet,
and Xception.

3.2.1 Multilayer perceptron
An advanced form of the feed-forward neural network model

that has more than one layer of neurons is called MLP (Juna et al.,
2022). After passing through the input layers and hidden layers that
introduce different degrees of abstraction, information is finally
combined into predictions at the output layer. Three main layers
are usually included in an MLP model: input, hidden, and output.
In this instance, 64 neurons make up the hidden layer and 32
neurons are integrated with rectified linear unit (ReLU) activation
in the input layer. The output layer uses a dropout layer (rate: 0.2)
in conjunction with a single neuron that has a sigmoid activation
function. Throughout 100 epochs, the Adamoptimizer and a binary
cross-entropy loss function are used for training.

3.2.2 Convolutional neural network
CNNs are recognized as resilient deep neural networks, adept

at handling data preprocessing and computational complexities
(Alturki et al., 2023). Essential elements encompass convolutional,
pooling, flattening, activation, and dropout layers. Convolutional
layers extract distinctive features from input images, and pooling
layers diminish feature sizes to prevent overfitting. The activation
function, ReLU, introduces non-linearity, while dropout layers
help counteract overfitting. The model integrates max-pooling
and dropout with rates of 0.2 and 0.5, respectively, for
enhanced efficiency.

3.2.3 Long short-term memory
LSTMs demonstrate proficiency in capturing prolonged

temporal dependencies, a crucial aspect in tackling various learning
challenges linked with sequential data (Cascone et al., 2023). The
gate mechanisms embedded within LSTM cells effectively regulate
information flow, enabling efficient utilization of context. Despite
concerns regarding the complexity of its architecture, LSTM’s
effectiveness in analyzing sequential data is widely acknowledged.

3.3 Transfer learning models

Aligned with the techniques outlined above, the principles of
transfer learning and few-shot learning highlight the significance
of transferring prior knowledge from a source task to a few-shot
task. Two predominant transfer learning approaches encompass
fine-tuning solely the classifier layers while maintaining the fixed
weights of other model layers, and fine-tuning all layers to permit
comprehensive weight adjustments.

3.3.1 ResNET
ResNet introduces residual connections, which maintain layer

weights during the backpropagation process (Wang et al., 2019).
ResNet variations, such as ResNet101, ResNet152, and ResNet50,
are differentiated by their layer count, prioritizing depth over width
to achieve parameter efficiency.

3.3.2 E�cientNetB4
EfficientNet utilizes compound scaling to harmonize network

width, depth, and resolution, thereby improving both accuracy and
efficiency (Zulfiqar et al., 2023). Variants such as B0, B3, and B4
incorporate Softmax activation and Adam optimization, utilizing
convolutional layer weights derived from ImageNet.

3.3.3 Inception-V3
An improved version of Inception-V1, Inception-V3 has a large

architecture and maximizes network depth (Mujahid et al., 2022).
The last layer is modified to make task-specific modifications while
the earlier layers are preserved in transfer learning.

3.3.4 Xception
Xception uses depthwise and pointwise separable convolutions,

taking inspiration from InceptionV3 (Salim et al., 2023). Xception
is a computationally efficient model with a depth of 71 layers and
a parameter count of 22.9 million, but it requires large datasets for
efficient training.

3.3.5 MobileNet
A CNN architecture called MobileNet was created to operate

effectively on mobile devices. It makes use of an inverted residual
structure with bottleneck layer residual connections. MobileNetV2
tackles information degradation in deep networks by utilizing
inverted residual bottleneck layers (Srinivasu et al., 2021). Its
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FIGURE 1

Schematic representation of the proposed methodology.

specifications include 32 initial filters, 19 bottleneck layers, dropout,
batch normalization, and a kernel size of 3 × 3. Segmentable by
Depth Convolution efficiently reduces processing and model size
by splitting the convolution process into depthwise and pointwise
convolutions. By adjusting the number of channels, the Width
Multiplier option is intended to further reduce computing costs.
The resolution multiplier affects both computing cost and model
size simultaneously by giving control over picture resolution.
Together, these methods help to maximize the convolutional neural
network architecture’s effectiveness and resource use.

3.4 The proposed approach

This research work proposes an innovative approach for GPS
spoofed signals detection utilizing chi-square significant features
and a MobileNet transfer learning model. The dataset is based on
13 features of signals that are gathered in a controlled simulated
environment. The experiments are conducted using two scenarios
with and without chi-square significant features. Results reveal that
utilization of feature extraction technique as pre-processing gives
notably better results with all learning models especially MobileNet
for securing small drones. The proposed approach of this research
is presented in Figure 1.

The proposed methodology begins with the utilization of a
GPS spoofing dataset, which includes data on both spoofed and
legitimate signals under various conditions, such as urban and
rural environments and different weather scenarios. This dataset
is then subjected to a data preprocessing stage, where noise and
irrelevant entries are removed, missing values are handled, and
the data is normalized to ensure consistency and uniformity. The
cleaned dataset is then processed using the Chi-square feature
selection technique to identify the most statistically significant

features relevant to distinguishing spoofed signals from legitimate
ones. This step reduces computational complexity while enhancing
the model’s focus on the critical aspects of the data.

Following feature selection, the dataset is split into training and
testing subsets with a 70%–30% split. The training data is used to
train the MobileNet model, leveraging transfer learning techniques
to adapt pre-trained weights for the task of GPS spoofing detection.
Once trained, the model is evaluated using the reserved testing
dataset to assess its performance on unseen data. Key performance
metrics, such as accuracy, precision, recall, and F1 score are
computed to quantify the model’s effectiveness.

4 Experiments and results

This section performs a thorough examination of the
performance demonstrated by the MobileNet model on a dataset
related to GPS spoofing. This study applies a variety of DL and
transfer learning models for identifying GPS spoofing attacks.
In order to train the predictive models, 70% of the dataset is
used as training data while 30% is used for testing the trained
models. Model performance evaluation utilizes a variety of metrics.
All experiments are conducted within a Python environment,
leveraging various libraries. A comprehensive assessment is
conducted, involving various metrics together. These metrics
function as evaluation criteria to determine the effectiveness of the
model compared to established methodologies as presented under:

Accuracy =
TP + TN

TP + TN + FP + FN
(4)

Precision =
TP

TP + FP
(5)

Recall =
TP

TP + FN
(6)

F1 Score = 2×
Precision× Recall

Precision+ Recall
(7)

where TP, TN, FP, and FN denote true positive, true negative,
false positive, and false negative, respectively.

4.1 Dataset

This research work used a collection of genuine and spoofed
GPS signals (dataset) (Aissou et al., 2022). Genuine signals are
gathered from different places involving both stationary and
moving vehicles. While collecting the data, 13 different features are
obtained from 8 different parts of the device at different stages (like
tracking, figuring out location, and finding the signal). They also
created fake signals in three different ways: simple, medium, and
hard. In total, they collected 158,170 records of data, with an equal
mix of real and fake signals including all three difficulty levels of
fake signals. Table 2 describes each of the 13 features of the dataset.

4.2 Data preprocessing

Effective preprocessing of the data improves the accuracy of
features and model performance. The chi-square approach is used
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TABLE 2 Dataset description.

Attributes Detailed description

DO Carrier-Doppler in Hz

PRN Satellite Vehicle Number

PD Pseudo range(in-meters)

TOW Time of Week(in-seconds)

RX Receiver Time

CP Carrier-Phase-Cycles

LC Late Co-relator Magnitude

EC Early Co-relator Magnitude

PC Prompt Co-relator Magnitude

PQP Prompt-Quadrature-Component

PIP Prompt in-phase co-relator

CN0 Carrier-to-Noise-Ratio(in-dBHz)

TCD Carrier Doppler in Tracking loop in Hz

TABLE 3 All learning models results using complete feature set.

Models Accuracy Precision Recall F1 score

CNN 80.43 84.74 84.58 84.64

MLP 79.77 78.37 79.75 79.78

LSTM 78.43 78.37 79.79 79.38

EfficientNetB4 86.47 88.43 87.47 87.21

ResNet 85.72 86.72 85.63 86.24

Inception 87.78 88.42 89.31 88.87

MobileNet 90.78 90.45 91.53 91.02

Xception 91.52 90.43 91.25 91.05

in the analysis, cleaning, and feature selection phases of data
preparation. To begin, the .shape() function is used to inspect the
size and general details of the GPS spoofing dataset like the number
of rows and columns. The use of the .info() function yields data
types and the number of missing values for variables. After that,
the distributions of variables are explored. After that, the dataset
is examined for missing values, and Chi-square feature selection is
used to maximize pertinent features.

4.3 Results using all features

A thorough examination contrasts the performance of transfer
learning and DL classifiers utilizing the entire feature set of the
GPS spoofing detection dataset. While certain classifiers exhibit
suboptimal performance, others surpass expectations. This study
employs transfer learning and DL models for GPS spoofing
detection. Assessment of these models’ performance using all 13
features is shown in Table 3.

As per the findings, Xception surpasses others when utilizing
all features, attaining an accuracy of 91.88%, along with 91.25%

TABLE 4 Results of DL models with chi-square significant features.

Model Accuracy Precision Recall F1 score

CNN 86.36 88.35 88.63 88.46

MLP 89.49 83.78 82.74 82.35

LSTM 82.45 84.68 81.96 82.48

EfficientNetB4 91.58 93.76 95.24 94.75

ResNet 90.99 92.64 92.48 92.35

Inception 92.67 94.38 95.07 94.85

MobileNet 98.49 99.13 99.27 99.20

Xception 95.37 97.48 95.67 96.48

TABLE 5 5-fold cross-validation results of the proposed framework.

Model Accuracy Precision Recall F1 score

1st-fold 99.48 99.78 99.63 99.71

2nd-fold 98.58 98.68 98.38 98.51

3rd-fold 99.72 99.76 99.35 99.45

4th-fold 98.75 99.78 98.45 98.97

5th-fold 99.68 98.48 98.96 98.72

Average 99.64 99.72 98.51 99.13

recall, 90.43% precision, and a 91.05% F1 score. MobileNet achieves
an accuracy of 90.78% and an F-Score of 91.02%. The Inception
classifier records an accuracy of 87.78%, with recall at 89.31%,
precision at 88.42%, and an F-Score of 88.87%. The CNN achieves
an accuracy score of 80.43%. However, LSTM demonstrates the
lowest performance for GPS spoofing prediction, with an accuracy
of 78.43%, recall of 79.79%, a precision of 78.37%, and an F-Score
of 79.38%.

4.4 Results utilizing selective features

This research also illustrates the significance of features by
utilizing selective features through Chi-square for feature selection.
The best results are obtained when we select the 8 best features
which are “DO, PRN, PD, CN0, PIP, RX, TOW, and LC.” The
outcomes of DL and transfer learning models are presented in
Table 4. The MLP model outperformed CNN and LSTM, achieving
an accuracy of 89.49%, precision of 83.78%, recall of 82.74%,
and an F1 score of 82.35%. Similarly, the other models have
their corresponding performance metrics listed in the table. The
Inception classifier secures a 95.07% recall, a 94.85% F1-Score,
94.38% precision, and 92.67% accuracy. The deep learning model
CNN records an accuracy score of 86.36%. However, LSTM exhibits
the lowest performance for GPS spoofing prediction, with an
accuracy of 82.45%, recall of 81.96%, precision of 84.68%, and an
F-Score of 82.48%.MobileNet demonstrated superior performance,
surpassing all other models with an accuracy of 98.49%, precision
of 99.13%, recall of 99.27%, and an impressive F1 score of 99.20%
on features selected through Chi-square.
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FIGURE 2

Comparative analysis of classifier accuracy.

4.5 Five-fold cross-validation results

Measures are implemented to validate the reliability of the
model through the utilization of K-fold cross-validation. The
outcomes of 5-fold cross-validation are presented in Table 5,
revealing the superior performance of the suggested framework
compared to other models in terms of recall, accuracy, precision,
and F1 score. Theminimal standard deviation indicates a stable and
consistent performance of the proposed model. These outcomes
support the robustness, dependability, and reliability of the
suggested strategy by confirming its consistently good performance
across several folds.

Figure 2 compares the performance of models evaluated on
all 13 features vs. Chi-square-based selective features. It can be
observed that utilizing selective features which are statistically more
significant, produces better accuracy. Chi-squares-based features
proved to be more effective in training DL and transfer learning
models and showed better performance.

4.6 Discussion

In the analysis of results utilizing all features, the transfer
learning model Xception emerged as the top-performing classifier,
achieving an accuracy of 90.88%. This outcome suggests that
leveraging transfer learning with Xception can significantly
enhance GPS spoofing detection when considering the complete
feature set. Notably, MobileNet also demonstrated competitive
performance with an accuracy of 89.67%, indicating its effectiveness
in this context. However, conventional deep learning models, such
as CNN, exhibited comparatively lower accuracy, emphasizing the
advantage of transfer learning approaches. When examining results
utilizing selective features through Chi-square, the performance
dynamics shifted. The MLP model outperformed CNN and
LSTM, achieving an accuracy of 88.38%. This notable increase in
the accuracy of spoofed signal detection shows the importance
of chi-square significant features. In this scenario of utilizing
chi-square features, InceptionNet and MobileNet both transfer
learning models show great improvement in terms of accuracy,

f1-score, recall, and precision. These early and accurate results
with significant features show that this framework works well in
the real-world environment. Figure 2 provides a visual depiction
of the performance differences, aiding in a thorough grasp of the
classifiers’ effectiveness in diverse scenarios.

4.7 Limitations of the current study

The proposed method, while effective for small drones, may
face scalability challenges when applied to large-scale drone
networks with varying hardware capabilities and operational
complexities. Furthermore, the dataset used in this study, though
diverse, may not fully encompass all real-world scenarios, such as
extreme weather conditions or complex urban environments with
high GPS interference.

5 Conclusion

In this study, an innovative approach is proposed for global
positioning system (GPS) spoofing signal detection. The dataset
analyzed in this research work for GPS spoofed signals detection is
gathered in a controlled simulation environment. The uniqueness
of this research work lies in the usage of significant chi-square
features for accurate and early detection of spoofed signals.
Subsequently, a transfer learning model was developed to identify
spoofed GPS signals. Confusion matrices are a reliable assessment
tool that was essential in determining the computational efficiency
of the model. Experimental results highlight the exceptional
performance of the proposed model, achieving an impressive
accuracy rate of 98.49%. Notably, actual GPS spoofing signal data
were employed, preserving crucial data features essential for GPS
signal manipulation, thereby enhancing reliability compared to
simulation-based datasets. The proposed MobileNet demonstrated
significant efficacy in identifying spoofing actions in drones.
Future work will explore and implement adversarial training
techniques to enhance the model’s robustness against sophisticated
spoofing attacks.
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