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Advanced articulated motion
prediction

Anthony Belessis*, Iliana Loi and Konstantinos Moustakas

Department of Electrical and Computer Engineering, Visualization and Virtual Reality Group, University

of Patras, Patras, Greece

Motion synthesis using machine learning has seen rapid advancements in

recent years. Unlike traditional animation methods, utilizing deep learning to

generate human movement o�ers the unique advantage of producing slight

variations between motions, similar to the natural variability observed in real

examples. While several motion synthesis methods have achieved remarkable

success in generating highly varied and probabilistic animations, controlling the

synthesized animation in real-time while retaining stochastic elements remains

a serious challenge. The main purpose of this work is to develop a Conditional

Generative Adversarial Network to generate real-time controlled motion that

balances realism and stochastic variability. To achieve this, three novel Generative

Adversarial models were developed. The models di�er in the architecture of

their generators that utilize: a Mixture-of-Experts method, a Latent-Modulated

Noise Injection technique, and a Transformer-based architecture respectively.

We consider the latter to be the main contribution of this work, and we evaluate

our method by comparing it to the other models on both stylized locomotion

data and complex, aperiodic dance sequences, assessing its ability to generate

diverse, realistic motions, being able to mix between di�erent styles while

responding to motion control. Our findings highlight the trade-o�s between

motion quality, variety and motion generalization in real-time synthesis by

comparing by exploring the advantages and disadvantages of each architecture,

contributing to the ongoing development of more flexible and varied animation

techniques.

KEYWORDS

motion synthesis, GANS, transformers, mixture of experts, deep learning, character

control

1 Introduction

As the demand for 3D animation grows across several domains, from video games or

virtual reality applications to robotics, there is an increasing need for motion generation

techniques that can capture the full range of human motion variability. In this work, we

develop a novel probabilistic deep learning architecture in pursuit of generating highly

stochastic and varied movements controlled in real-time.

Conditional Generative Adversarial Networks or cGANs (Mirza and Osindero, 2014)

are used for their stochastic nature and relatively low computational cost during inference

compared to other generative models. We propose a conditional GAN model relying on

a transformer-based generator and a discriminator using a Mixture-of-Experts technique

to generate realistic yet diverse motion. We show the model’s capabilities by training it on

highly varied dancing motion data, which deterministic models fail to replicate, as well as

different styles of locomotion that we attempt to blend using style mixing. We compare

our transformer-based model to two different GANs, each based on well-established and

successful architectures: a Mixture-of-Experts (MoE) approach, and a model that injects

the modulated latent code directly into the intermediate layers. These models are trained

in a subset of the 100STYLE dataset from Mason et al. (2023), which is a comprehensive

collection of motion capture information, which consists of 5 distinct styles of locomotion.
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The contributions of this work are summarized as follows:

1. We developed a novel generative transformer-based architecture

using dot product self-attention for motion generation in real-

time without using a latent vector (we use the terms latent vector

and latent code interchangeably).

2. Two additional stochastic models, built upon existing

successful methods, are used in order to assess our main

framework’s performance. These different approaches to real-

time stochastic motion synthesis, trained alongside the same

novel discriminator network, are explored and evaluated in

order to compare and achieve a balance between realism and

motion variability.

3. A final, hybrid model is developed and explored, utilizing

a transformer architecture alongside Latent-Modulated Noise

Injection for varied stochastic motion generation.

The models are evaluated using objective metrics, namely

Maximum Mean Discrepancy (MMD) introduced by Gretton

et al. (2012), which calculates the distance between the probability

density functions of the generated data and the training data,

and MiVo by Arnout et al. (2021), which calculates the mean of

incoming and the variance of outgoing samples to evaluate the

realism and variety of produced samples related to the training

data. We also evaluate our models using metrics more common

to motion matching such as Dynamic Time Warping (DTW),

which measures the distance between two temporal signals, and L2

distance between the bones of the generated pose versus the target

pose. Finally, a subjective qualitative evaluation of the motion is

discussed, as this is the final judge of whether a generated result is

satisfactory.

2 Related work

In this section, we discuss differentmotion synthesis techniques

that utilize deep learning. We focus separately on deterministic

and probabilistic methods of generating motion and analyze the

benefits and detriments of each approach.

2.1 Deterministic motion synthesis

Deterministic approaches to motion synthesis have shown

success in producing coherent and controllable character

animations. Usually, recurrent networks like LSTMs are used for

time-series data like motion. One such example is by Aristidou

et al. (2023) which utilizes a three-level framework for dance

animation that preserves the global structure and choreography of

specific dance genres. The three levels are (1) an auto-conditioned

LSTM to generate temporally coherent poses, (2) a motif level that

ensures short movements belong to specific motion clusters using a

motion perceptual loss, and (3) a choreography level that controls

the global structure of the dance by selecting motifs to match the

overall dance signature.

However, LSTMs are not without their drawbacks. Despite

being effective at capturing temporal dependencies, they tend to

suffer from error accumulation over long sequences as noted by

Mourot et al. (2022). LSTMs have also shown limited success

in controlled motion synthesis in real-time, displaying undesired

behavior like foot-skating. Architectures like the Phase-Functioned

Neural Network (PFNN) by Holden et al. (2017) overcome this

limitation, producing realistic motion, controlled in real-time, by

utilizing a simple network that is fed by the character’s state

for a current frame, and produces the state for the next frame.

This method uses a single-phase parameter to modulate network

weights, effectively utilizing multiple parallel neural networks that

blend their weights to produce varied movements for user-specified

tasks. This concept was further developed in the Neural State

Machine from Starke et al. (2019), which introduced a Mixture of

Experts (MoE) approach, replacing the phase function with a gating

network for more adaptive state transitions.

Subsequent advancements, such as Starke et al. (2020),

improved motion quality and complexity by introducing separate

local motion phase features for each body segment. The phase

feature was calculated by the contacts of the character with the

environment, using a genetic algorithm in addition to convolutions

and low-pass filtering. This approach enabled the synthesis

of asynchronous motion for different body parts, significantly

enhancing the realism of the produced motion. Further work by

the same authors in Starke et al. (2022) changes the phase feature so

that it no longer depends on the contacts of the character with the

geometry, instead being represented as a multi-dimensional phase

space extracted from the character’s motion curves.

As highlighted in the work from Loi et al. (2023), while

deterministic models offer reliability and ease of training, they

often struggle to generate varied character behaviors, potentially

resulting in repetitive animations. The same work showcases that

probabilistic motion synthesis methods do not suffer from this

problem.

2.2 Probabilistic motion synthesis

Probabilistic approaches to motion synthesis aim to generate

diverse yet contextually plausible motions, which can result in

different movements even with identical input conditions. GANs

have been widely adopted in this domain. For instance, the system

proposed in Men et al. (2022) uses GANs to synthesize character

reactions to another virtual character’s motion by utilizing a

recurrent network that uses an attention mechanism. Another

GAN approach in Mourot et al. (2021) uses a deep convolutional

architecture for both its generator and discriminator to enhance

the quality of animated skeletal representations in a 2D character

as well as predict the locations of joints absent in the original

input. A common practice in generative networks is upsampling

at multiple stages of the feed forward network of the generator,

starting with processing the coarse features and progressively

tune the finer details of the output by increasing the resolution

of the layers. A prime example is Li et al. (2022), which uses

multiple discriminators - one for each resolution of the progressive

generator network. This allows the framework to be able to produce

realistic motion by training on a single sequence instead of a large

dataset.

Impressive results have also been achieved by MoGlow in

Henter et al. (2020), a generative and autoregressive controllable
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motion-data model based on normalizing flows. The model

generates highly varied locomotion using a pre-determined path

as a control input. This is achieved by iteratively producing the

next pose of the character’s movement by drawing a random

sample from a simple distribution and then passing it through

a neural network for a non-linear but invertible transformation.

The method uses both auto-regression and a hidden state from an

LSTM, which ensures stability and realistic outputs.

Variational Autoencoders (VAEs) have also shown promise in

probabilistic motion synthesis. The work in Hassan et al. (2021)

aims to synthesize character movement for realistic interaction

and navigation in indoor scenes with complicated geometry. The

framework consists of three main components: two conditional

VAEs, one autoregressive model utilizing a MoE method similar to

Starke et al. (2020) for generating stochastic motion sequences, and

a second for predicting goal positions and orientations on object

surfaces respectively. The third component is a path planning

algorithm which computes a navigation mesh from the scene

geometry. This system reinforces that MoE methods are very

successful with motion generation, even in non-deterministic

approaches.

A recent trend in probabilistic motion synthesis is the use of

diffusion models. These approaches, such as Tevet et al. (2022),

offer great learning capacity and can express complex motion given

text or actions as input. Further improvements to this work were

made by Karunratanakul et al. (2023) by adding spatial constraints

to the motion, for example defining a trajectory, effectively

introducing a better-defined and objective level of control, although

not in real-time. A similar work using diffusion is by Kulkarni

et al. (2024), which uses an object-centric interaction field to guide

the diffusion generator’s output for automatic complex character-

object interactions depending on the object geometry. The process

of diffusion consists of several forward passes, making it unsuitable

for real-time control, since inference time is usually more than a

few seconds long.

Several of the previous approaches, both probabilistic and

deterministic, utilize an attention mechanism. Attention layers,

mainly popularized for Natural Language Processing (NLP)

problems, have shown impressive results in learning complex

relationships between vectors, by assigning uni-directional

weighted parameters that connect all vectors to each other.

Transformer architectures (Vaswani et al., 2017) in deep neural

networks exploit the attention layers, alongside fully-connected

components, layer normalization and residual connections to

produce a meaningful representation of the data without changing

the dimensions of the input, making them a powerful tool for

encoder or decoder networks.

Due to their increased complexity, probabilistic approaches

to motion synthesis are more computationally expensive than

deterministic approaches in general, making inference a slow

operation. There is a noteworthy lack of approaches that can

produce novel movement not present in the training dataset

(e.g., mixing different styles of motion from the dataset), and are

controlled by the user in real-time, responding to both previous

character’s states and to user input. This is a limitation that

this work addresses, by experimenting with several generative

frameworks that generate motions that respond instantly to

conditions provided by the user input in a probabilistic manner.

3 Methodology

In this section, we discuss a general overview of our framework,

first focusing on the dataset that was used, the pre-processing

of the training data, and the network inputs. Then, we analyze

our conditional transformer-based GAN framework that was

developed for the task of stochastic generation of motion data,

alongside the models that are used for evaluation. All generator

architectures were trained using the same discriminator model.

3.1 Dataset

The 100STYLE dataset that was chosen for training

encompasses more than 4 million frames while the subset we

used contains about 170 thousand frames or 90 minutes of

footage. The 100STYLE dataset showcases 100 distinct locomotion

styles, all performed by a single actor. For each style, the dataset

includes several different movements like forward, backward or

sidestepping locomotion, as well as walking or running variations.

The subset of the dataset that we used consists of 5 styles, namely

angry, skipping, and hopping locomotion, as well as movements

where the character moves while mimicking a chicken and finally,

mimicking an airplane with both arms raised as wings—tilting

from side to side.

3.2 Pre-processing and network input

The motion processing module of this work was heavily based

on the framework from Starke et al. (2020), and has the role of

extracting features for every frame i of the raw motion capture files.

These features are:

• Root Trajectories XT
i : the positions, directions and velocities

for the hips of the character for the current frame in the XZ

plane (the Y axis being the up-direction).

• Action Labels XA
i : the action labels include states for

standing, moving, character speed, left-hand height, and right-

hand height–which are all calculated automatically–and the

manually set labels for the five styles. Standing and moving

actions are floating point variables that always add up to one

and depend on the speed of the character root. The speed

action calculates the value of the root’s speed by dividing the

total distance traveled in each time window by the time value,

and the hand heights calculate the vertical distance of the

hands from the hips.

• Contacts for feet XC
i : for every frame the contacts for each foot

joint with the floor plane are captured and a binary state for

each sensor is created.

• Local Phases XP
i : the local phases are calculated by

normalizing, filtering, and then fitting the contacts to a

sinusoidal function using a genetic algorithm, in an identical

fashion to Starke et al. (2020).

These values, along with the character’s state XS
i , which

describes the position, rotation, and velocity for each character
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FIGURE 1

The transformer-based generator learns the dependencies between the vectors of the input and passes the transformed tensor to the final dense

layers.

joint at frame i are exported in two binary files, as inputs and

outputs. The conditional inputs Xi describe the features for a

window of 13 frames centered at i. The 13 frames choice was also

inherited from Starke et al. (2020) since it balances a relatively small

amount of data (necessary for real-time inference) while also being

enough to represent a reasonably long time for expressing motion

(about 0.5 seconds). The corresponding outputs Yi+1 contain the

updates for all the same information, for the next frame i + 1,

without containing information for the past frames since those are

not useful for prediction. Using Xi as the condition and Yi+1 as

real/target samples, our models can be trained to generate synthetic

samples Ŷi+1 that approach the probability distribution of the real

samples for a given condition Xi.

3.3 Transformer generator

Our proposed framework was designed to generate diverse

motion in real-time, enabling fast inference while simultaneously

having the ability to extrapolate a meaningful understanding of the

relationships between input vectors to produce realistic motion.

We considered a transformer’s architecture using dot product self-

attention to be ideal for that purpose. The architecture begins

with an input processing stage where various motion features—

that consist of root trajectories, action labels, character’s states,

contacts, and phases—are separated and uniformly formatted.

These inputs are zero-padded to create a fixed-size tensor of

dimensions N × D, effectively representing N input vectors,

each of length D. In the case of our dataset, D = 12

and N = 70.

At the core of our architecture lie five sequential transformer

blocks, each employing self-attention mechanisms with a single

head. This design choice allows the model to efficiently capture

intricate dependencies between different aspects of motion,

enabling a deep understanding of complexmovement patterns. The

use of transformer blocks represents a departure from previous

approaches to real-time motion generation, offering a more flexible

and potentially more powerful way to model motion dynamics.

Following the transformer blocks, (as shown in Figure 1) the

architecture flattens the output tensor into a single vector. This

flattened representation then passes through a series of three dense

layers.

3.4 Mixture-of-experts generator

Methods using MoE techniques, in essence utilizing a gating

component that uses a meaningful parameter to modulate the

weights of the main network, have proven successful for motion

synthesis. This method can be thought of as emulating multiple

parallel neural networks—dubbed “experts” each specializing in

different cases of the gating component’s input; this component

is typically a multi-class classification neural network, which

produces an output activated with a SoftMax function. The gating

network’s output dictates the blending ratio for each set of expert

weights, effectively controlling the degree to which each expert
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FIGURE 2

The MoE generator utilizes a gating network that uses the phase parameter to decide how much each expert of the motion generator contributes to

the produced motion.

influences the final outcome. To simulate multiple experts, the

weights of the main component of the neural network usually have

an additional dimension, equal to the number of experts.

The MoE generator (Figure 2) we use to evaluate our proposed

method, uses a latent vector Z which is sampled from a Gaussian

distributionN (0, 1). This latent vector is what makes this network

probabilistic in nature, while the generator’s training being based

on the discriminator’s predictions, by minimizing Binary Cross-

entropy loss as showcased in the original GANpaper byGoodfellow

et al. (2020) (instead of training directly from a loss function) is

the main cause of its generative properties. The vectors {XT
i , X

A
i ,

XS
i , X

C
i } are the condition of the generator and are concatenated

along with Z to produce the full input of the main component of

our generator. The local phase feature XP
i is the input of the gating

network, making it an implicit condition. The gating component

itself is deterministic, as we chose to not have the latent code affect it

directly, instead having the stochastic factor only affect the motion

component. Before each layer, a dropout operation is performed

during training to prevent over-fitting.

3.5 LMNI generator

The MoE generator is stochastic in nature, however, the

latent vector is a lot smaller than the condition, making a minor

contribution to the final output. For our second approach, we

opted to increase the stochasticity of our generator, by injecting

the latent code (sampled from a normal distribution as before)

directly into the generator’s layers instead of the input. This is

exactly the approach introduced by Karras et al. (2019), creating

a very successful framework for image generation. Our second

architecture aims to use similar techniques, with a different

approach to account for the differences between time series data

and images, to produce highly stochastic motion. We refer to this

model as our Latent-Modulated Noise Injection (LMNI) approach.

A difficult balance to achieve in our motion synthesis

framework is one between stochasticity and cohesion. While

movement tha32,t has stochastic characteristics is preferable

to purely deterministic motion that has no variation between

iterations, the pose Yi+1 of a frame must necessarily be highly

dependent on the pose of the previous frame (the condition Xi)

for the motion to be cohesive. This is why using the condition

as the input of the generator network was considered the best

solution (Figure 3), instead of it being concatenated with the

latent vector. For the same reason, we opted to use dense layers

with a constant number of parameters throughout the network,

instead of convolutions with upscaling like the original StyleGAN

implementation.

The mapping network (consisting of 8 layers) learns to extract

a meaningful representation W of the latent code Z which is

then appropriately transformed linearly for each layer of the main

network. The weights of the main network are controlled by

the intermediate latent space W through the AdaIN operation.

Before each layer, learned noise scaling is applied to the network

to add controlled randomness and stochastic variation to the

generated motion. Furthermore, dropout is applied before each

dense layer, after the linearly transformed vector W, modulates

and normalizes the previous layer’s output. The affine transforms’

weights are initialized by sampling from a normal distribution

while the learned noise scaling weights are initialized to zero.
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FIGURE 3

The LMNI generator uses a mapping network in addition to a�ne transforms (notated as “A”) to modulate each layer separately according to the

latent code Z. A total of 9 dense layers were used in the main network.

3.6 Hybrid generator

Lastly, we experimented using a novel architecture (Figure 4)

inspired both by our main contribution and the LMNI generator

inspired by the work in Karras et al. (2019). Our reasoning behind

this choice of hybrid architecture was to see the transformer’s

behavior if a stochastic input element is introduced.

By combining key elements from both the transformer and

LMNI architectures, we hope to gain a better understanding of

their respective contributions. This approach not only enhances our

insight of each component’s role but also provides deeper insights

into the structural differences and broader implications of various

machine learning architectures.

3.7 The discriminator

We designed the discriminator to somewhat mimic the MoE

generator’s operations by using the phase condition of the GAN

to blend the weights of the next layer which takes the motion

condition as an input (Figure 5). This layer’s output also blends the

final layer’s weights, this time the input being the motion vector

Yi+1 which can be a motion vector sampled from the training

set, or synthesized by the generator. The discriminator finally

performs a 1D Convolution followed by a dense layer using a

sigmoid activation function that results in a binary classification

output. Using convolutional layers is a traditional operation for

discriminator networks and experimentally, it proved necessary

for the network to perform the classification task well. The

discriminator has a far simpler task than the generator, having to

only perform binary classifications instead of synthesizing complex

data. This is our reasoning behind choosing to have only one layer

for each expert blending operation.

4 Results

4.1 Implementation choices

Our inference environment is built using the Unity Engine

(Haas, 2014). During runtime, locomotion is controlled in real-

time via the keyboard, allowing the user to adjust movement

direction and toggle between running and walking motions

(increasing/decreasing the speed by a factor of 3). Motion styles

can be customized within the engine environment, supporting

floating-point values from 0 to 1, determining the weight for

each style. The network has only been trained on data where

one style is 1 and the remaining are 0, thus the consequences

of intermediate values for the styles during inference are

limited and we restrict ourselves to only the edge values for

our tests.

All the models were trained for 100 epochs on a desktop

computer with an NVIDIA GeForce RTX 3060 with 12GB of video
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FIGURE 4

The Hybrid generator uses a mapping network for the latent code Z similar to the LMNI model, but passes the condition through five transformer

blocks in identical fashion to our main generator model. Due to the increased computational needs of the transformer architecture, only two

intermediate dense layers were used for the main component (notated as “Style Network”).

FIGURE 5

The network architecture of the Discriminator utilizes two separate expert blends: one for the conditions similar to the MoE generator, and a second

for the motion vector to be classified as real or fake.

memory. The batch size was equal to 128 for both the LMNI

and transformer-based model and 64 for the MoE model, due to

its increased memory requirement. The generator’s learning rate

for all models was initialized to 0.0001, while the discriminator’s

learning rate was set lower by a factor of ten. All the architectures

were trained with the Adam (Adaptive Moment Estimation)

optimization algorithm by Kingma and Ba (2014) using a binary

cross-entropy loss.

The dense layers of both the MoE and LMNI main components

have a width of 512 units (being the closest power of 2 to the

input size), while the Transformer and Hybrid architectures have

a width of 1,024 units to accommodate the increased input size.

It is generally considered common practice for the intermediate

layers to be wider than the input and output layers. The larger

width proved to work much better experimentally as well. All

layers incorporate both weights and biases. The Transformer
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FIGURE 6

(a) The MiVo metric during training for all the GAN architectures on 100 epochs (lower values indicate better results). The LMNI architecture seems to

stay relatively flat on this metric in particular, presumably due to its poor quality in finer motion features. (b) Mean Maximum Discrepancy for all

models tested for 100 epochs of training (lower scores indicate a better performance). All models except the MoE approach, display a slight

overshooting in the early epochs before converging, indicating that the generator tends toward mode dropping, before the discriminator learns to

better distinguish between the real and generated samples. This hypothesis is also supported by the generator’s and discriminator’s loss scores (See

Appendix). (c) L2 distance for the four models on all 100 epochs. The measurements were done after training by inferencing the model for every

epoch. The distance is calculated for the pose segment of the output vectors YS
i+1. Smaller scores mean closer distance between generated and

target samples (d) Two-dimensional Dynamic Time Warping (DTW) for all models on all 100 epochs. The measurements were done after training by

inferencing the model for every epoch. DTW is used on only the vectors that express a future state for the model (YT
i+1,Y

P
i+1). Lower values express

closer distance between generated and target samples.

model was designed with five blocks, as experiments demonstrated

this configuration to be the most effective without significantly

slowing down during inference. Additionally, we tested various

discriminator architectures, including those utilizing transformer

blocks and convolutional layers. However, across all generator

architectures, the MoE discriminator consistently outperformed

all attempted alternatives, which is why we chose to keep it

for all frameworks. Despite having a similar architecture with

the first generator architecture, we noticed no related bias

during training.

4.2 Observations

According to the objective metrics MMD, MiVo (See

Appendix) the transformer-basedmodel surpasses the performance

of all other architectures, with the hybrid model closely behind

followed by the MoE method (Figures 6a, b, Table 1). For the

distance-measuring metrics (L2 distance and DTW) the results

are similar; however, the hybrid architecture achieves slightly

lower (i.e., better) scores (Figures 6c, d). Training times—although

varied between experiments—tend to be shorter for the LMNI and
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TABLE 1 The metrics scores for all architectures after 100 epochs of

training.

MoE LMNI Transformer Hybrid

MMD 1.831 3.241 1.687 1.825

MiVo 15.007 21.116 13.103 13.890

DTW 23.077 27.664 22.932 22.257

L2 6.889 8.712 6.909 6.825

The lowest (best) score for each metric is displayed in bold text.

TABLE 2 The timings for training all architectures.

MoE LMNI Transformer Hybrid

Training time 23h 14m 10h 6m 10h 10m 10h 45m

Inference time 37ms 50ms 42ms 53ms

The fastest times for inference and training are displayed with bold text. The inference time is

calculated by taking the average inference time from 60 seconds of total runtime.

Transformer architectures (Table 2), as the MoE method uses a

lot more parameters. The MMD score seems to overshoot in the

first few epochs for most networks, indicating a tendency toward

mode dropping in the early training. This may result in lower

(i.e., better) values in the MMD metric but not necessarily in

the MiVo score, since the latter also takes sample variety into

account. The pure LMNI architecture, while producing highly

stochastic results, falls behind the rest in producing realistic

motion. For the subjective qualities of the resulting animation,

apart from Figure 7, please watch the accompanying video for

a more comprehensive demonstration. Some basic observations

about the different architectures are the following:

• The MoE model produces realistic motion while retaining

stochastic characteristics, although it requires a larger amount

of videomemory and was generally shown to train slower than

the other approaches. The balance between the generator and

the discriminator also was found to be hard tomaintain during

training, especially for smaller batch sizes.

• The LMNI approach results in highly stochastic movements

but falls short of realism, instead producing artifacts such

as foot skating. This method proved to be comparatively

lightweight for training, but performance during inference

is not optimal due to its increased depth requirements and

the time-consuming noise injection process using the AdaIN

operation.

• The transformer-based model produces both realistic motion

and is capable of combining different styles of locomotion

specified by the user, to produce realistic samples that strongly

differ from any examples present in the training set, which we

consider the main contribution of this work. This approach is

also relatively computationally inexpensive, making it faster to

train and to implement during inference.

• The hybrid model, using elements of both the transformer

and the LMNI approach is very stochastic in nature, and by

far the most stable to train. However, it does not converge

to as low a minimum as the pure transformer approach. The

motion produced is more realistic than the LMNI model, but

still suffers from occasional foot-skating and an inability to

smoothly transition between different styles.

4.3 Ablation studies

Some ablation studies were performed to test the robustness of

our framework.

• We opted to remove the transformer blocks entirely, to see

the performance of just the dense layers, and assess the

transformer blocks’ contribution.

Surprisingly, even without the transformer blocks, the

network can score very close to the original contribution.

However, the final produced motion is lacking in energy, fails

in style-mixing, and is stiff-looking in general. Due to the

attention mechanism of the transformer blocks, it is better

suited to encode the intricate relationships between the vectors

describing the motion. We believe this is why the transformer

blocks are required for the ability to mix styles.

We theorize that the two generators score similarly as the

metrics used may not be able to entirely capture perpetual

quality, especially not fine-grained features and variations in

motion. It is also worth noting that a single sample only

contains about 0.5 seconds of temporal data, so this might

be another contributor to the metrics failing to capture the

transformer’s contribution in this instance.

• We ran experiments using different latent vector sizes on the

MoE generator to evaluate the differences in the final result.

Specifically, we experimented with a vector of size 256, and a

lack of a latent vector altogether.

All architectures scored similarly in the objective

metrics. However, the model without a latent vector, while

generating relatively realistic motion, exhibited repetitive

patterns, particularly noticeable in recurring artifacts during

locomotion cycles (such as unnaturally prolonged durations

in certain phases). The architecture with a larger latent vector

(256) producedmore energetic motion, but was more prone to

unnatural angles of the joints and was subjectively considered

to be the least realistic of the three. It is important to note that

training the network is not a deterministic process, meaning

that multiple runs with the same hyperparameters may lead

to slight differences in final scores.

• The mapping network was discarded in order to confirm its

contribution to the LMNI framework.

Without the mapping network, with the latent vector

being linearly transformed and fed directly into the network,

the LMNI generator is entirely unable to train. Our hypothesis

is that this is due to the GAN model suffering from mode

collapse, due to the unstructured nature of the unmapped

latent vector.

5 Discussion and limitations

Going into further detail, as is shown in Figure 7, the generator

with the transformer architecture generally has a better structured

motion, showing very few unnatural artifacts. In the rightmost
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FIGURE 7

Samples from every motion style including a mix of styles (chicken and jump) by all architectures for comparison. The rows indicate the architecture

while the columns describe the style of motion. We can see that the MoE and transformer networks produce relatively similar poses in regards to

realism. The LMNI architecture is expressive, but often results in unrealistic or exaggerated poses. One notable feature of the networks utilizing a

transformer, is their ability to produce the mixed motion instead of replicating only one of the styles unlike the MoE and LMNI architectures.

column, it is also notable that only the transformer and hybrid

models can mix between styles, while the first two architectures

can only arbitrarily choose between one of the two styles. As can

bee seen in the figure, the LMNI architecture seems the most

expressive of the four. However, in the accompanying video the

motion appears less refined than the rest, with fluctuations in

speed and unnatural transitions between different styles. Some

slightly unnatural joint positions can also be seen in the MoE

network, however the motion is quite smooth, producing an

overall realistic result as is indicated in the objective metric

scores. Finally, in the figure, we see that most networks had

a difficult time replicating running motion in the style of

the first column, tending to prefer walking motion instead.

This was a general tendency in all of our experiments. The

transformer surpasses the rest of the networks in that regard,

indicating its capability of generating samples that better fit

the condition.

Our results are also compared with similar deterministic

methods formotion generation in real-time. Specifically, we trained

the framework from Starke et al. (2020) with the same dataset for

100 epochs. The regressivemodel produces livelier samples, that are

generally considered more realistic and can seamlessly transition

between styles. However, unlike our transformer-based model, it

fails to mix between styles, as is showcased in the accompanying

video and Figure 8.

Some additional qualitative tests were performed on the

frameworks of Starke et al. (2020), Li et al. (2022), and Henter

et al. (2020) respectively, alongside with our framework as is

showcased in Table 3. We also experimented with training our

transformer model on a single sequence (Figure 9), however, the

motion produced is relatively stiff and unvaried, unresponsive to

control inputs, and scores much lower on objective metrics than

GANimator (Li et al., 2022), a model specialized for this task, which

however does not offer motion control, or generation in real-time,

unlike our proposed framework.

Since the transformer-based architecture does not utilize a

latent vector to generate motion, it can be trained as a regression

model using Mean Square Entropy loss in a similar fashion to

Starke et al. (2020). The experiment produced relatively realistic

motion but failed to surpass the original regressive MoE method

lacking its vigor and fast, energetic movements. The models were

also trained on several Greek and Cypriot traditional dances from

the Dance Motion Capture Database (Stavrakis et al., 2012) of

the University of Cyprus. The dataset consists of aperiodic, highly

energetic and impulsive dance sequences. Themotion of the dataset

proved to be a real challenge for the networks, which either failed

to produce realistic results or generated a small periodic subset of

the motion of the dataset, indicating mode collapse. A possible

workaround would be to examine an alternative pre-processing

method for the phase feature similar to Starke et al. (2022).
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FIGURE 8

Comparison between the transformer network and the framework in Starke et al. (2020). Our transformer model is capable of mixing between three

di�erent styles of motion, producing a relatively novel set of poses, while the motion produced by the deterministic framework replicates only the

“chicken” style. It is important to note that, during mixing, all three styles were assigned a value of 1. However, since the network was trained with only

one active style per sample, it tends to predict lower values when multiple styles are present, resulting in the lower percentages seen in the “Current

Styles” sliders. These values help showcase how our network distributes style influences and contribute to a better understanding of its behavior.

TABLE 3 Qualitative comparison between some motion synthesis frameworks that were tested to evaluate our model’s performance.

Real-time generation Style-mixing Single-sequence training Controllable

Ours ✓ ✓ ✗ ✓

GANimator ✗ ✓ ✓ ✗

Starke 2020 ✓ ✗ ✗ ✓

MoGlow ✗ ✓ ✗ ✓

The frameworks are compared on their ability to perform certain tasks, thus showcasing the unique capabilities of our own GAN model.

6 Conclusions and future work

We developed a novel GAN architecture, utilizing dot product

self-attention transformers for generating plausible and stochastic

motions that are controlled in real-time. We compare our model

against two other architectures based on Mixture of Experts, and

Latent Modulated Noise Injection respectively. We explored the

advantages and disadvantages of each architecture and showed that

the transformer-based architecture surpasses the other methods in

metric scores and, more importantly, is able to combine different

styles of motion to produce novel movements not present in the

training data. A limitation our method is its inability to generate

realistic motion for highly aperiodic and varied motions such as

traditional dances, and its failure to train on limited data (e.g., a

single motion sequence) highlighting the strong case-specific use of

artificial neural network architectures.

In future work, we aim to generalize the use of this network

for pure motion prediction, given only the previous state of the

character, as well as explore different pre-processing frameworks

to achieve realistic and varied results regardless of the nature and

periodicity of the motion provided in the training data. We also

aim to investigate training on larger sets of data, in order to be able
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FIGURE 9

Comparison between the training sequence (green armature), the output recorded from our framework (red) and the framework of Li et al. (2022)

(blue). Both frameworks were trained on just the training sequence, but our model scored worse on objective metrics, indicating an inability to

perform well on specialized tasks such as training on limited data.

to synthesize our own styles of locomotion using a latent vector,

generated by compressing the style of the training data.
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Appendix

MiVo

TheMiVometric (Arnout et al., 2021) was designed specifically

for evaluating GANs that generate time series data. It can evaluate

the performance of a GAN by taking in account both the similarity

between the two series, as well as the diversity of the samples

produced. This is achieved by first computing the matrix that

denotes the distances dij between the two sets of time series Sg and

Sr :

D =













d11 d12 ... d1n
d21 d22 ... d2n
...

...
. . .

...

dn1 dn2 ... dnn













(A1)

A row of the matrix indicates the distance between a generated

series in the set Sg and every series of Sr , while a column is the

distance between a real-time series and every generated series.

MiVo can be finally calculated as follows:

MiVo(Sr, Sg) = µ(D1)+ σ
2(D2) (A2)

whereD1 andD2 are the set of minimal distances over the rows

and columns of D respectively. By keeping the mean value of D1

low, we can surmise that the generated outputs are realistic as they

remain close to at least one real-time series of Sr. Similarly, having

the variance ofD2 low,means every real-time seriesmust be close to

at least one corresponding generated sample, thus ensuring that the

generator produces diverse data, that covers as much of the training

set as possible.

MMD

MaximumMean Discrepancy is equal to the following:

MMD(X,Y) = ||µX − µY || (A3)

where µX and µY are the embedded mean values of the

probability distributions in the Reproducing Kernel Hilbert Space

(RKHS)H. Since we don’t have access to the underlying probability

distributions of the data, we can map any sample to the RKHS

using a kernel function. In this feature space, we can calculate

the distance between the embedded means of the two mapped

sample sets. The larger this distance, the bigger the difference

between the two distributions. For this application we use the

gaussian kernel function: k(X,Y) = e−||X−Y||2 . Given samples x =

{x0, x1, ..., xn}, y = {y0, y1, ..., yn} belonging to the distributions X

and Y respectively, the MMD between the two distributions can be

computed as:

MMD2(X,Y) =
1

m2

∞
∑

ij

k(xi, xj)+
1

n2

∞
∑

ij

k(yi, yj)−
2

mn

∞
∑

ij

(xi, yj)

(A4)

GAN training loss

In this section the balance between the generator and

discriminator are discussed during training. A strong correlation

between a large batch size and stability between the generator

and discriminator was noticed, as with a lower batch size,

all models would diverge sooner in the training. This can

also be noticed in Figure A1, as the MoE network, which is

the only one with a smaller batch size (64 instead of 128),

was shown to be the more unstable of the four. Another

noteworthy observation is that all of our tests, including different

discriminator architectures, ended in the discriminator loss

decreasing and the generator’s lost increasing over time, meaning

that after a sufficient amount of training, all discriminator

architectures managed to tell apart generated samples from

real ones.

As with Goodfellow et al. (2020), all of our GAN networks are

trained by minimizing Binary Cross-entropy loss, described by the

equation:

LBCEGAN = EY∼pdata(Y)[logD(Y|X)]+EZ∼pZ(Z)[log(1−DY (G(Z|X)))]

where the functions D(Y|X) and G(Z|X)

represent the process of the discriminator and

generator respectively.
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FIGURE A1

The costs for the generators and discriminators across all of our frameworks during the training of 100 epochs.
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