
TYPE Original Research

PUBLISHED 23 May 2025

DOI 10.3389/fcomp.2025.1549761

OPEN ACCESS

EDITED BY

Tisni Santika,

Universitas Pasundan, Indonesia

REVIEWED BY

Abdallah Qusef,

Princess Sumaya University for Technology,

Jordan

Reyes Juárez-Ramírez,

Universidad Autónoma de Baja California,

Tijuana, Mexico

*CORRESPONDENCE

Shariq Bashir

sbmirza@imamu.edu.sa

RECEIVED 21 December 2024

ACCEPTED 29 April 2025

PUBLISHED 23 May 2025

CITATION

Bashir S (2025) Using pseudo-AI submissions

for detecting AI-generated code.

Front. Comput. Sci. 7:1549761.

doi: 10.3389/fcomp.2025.1549761

COPYRIGHT

© 2025 Bashir. This is an open-access article

distributed under the terms of the Creative

Commons Attribution License (CC BY). The

use, distribution or reproduction in other

forums is permitted, provided the original

author(s) and the copyright owner(s) are

credited and that the original publication in

this journal is cited, in accordance with

accepted academic practice. No use,

distribution or reproduction is permitted

which does not comply with these terms.

Using pseudo-AI submissions for
detecting AI-generated code

Shariq Bashir*

College of Computer and Information Sciences, Imam Mohammad Ibn Saud Islamic University (IMSIU),

Riyadh, Saudi Arabia

Introduction: Generative AI tools can produce programming code that looks

very similar to human-written code, which creates challenges in programming

education. Students may use these tools inappropriately for their programming

assignments, and there currently are not reliablemethods to detect AI-generated

code. It is important to address this issue to protect academic integrity while

allowing the constructive use of AI tools. Previous studies have explored ways

to detect AI-generated text, such as analyzing structural di�erences, embedding

watermarks, examining specific features, or using fine-tuned language models.

However, certain techniques, like prompt engineering, can make AI-generated

code harder to identify.

Methods: To tackle this problem, this article suggests a new approach

for instructors to handle programming assignment integrity. The idea is for

instructors to use generative AI tools themselves to create example AI-

generated submissions (pseudo-AI submissions) for each task. These pseudo-AI

submissions, shared along with the task instructions, act as reference solutions

for students. In the presence of pseudo-AI submissions, students aremade aware

that submissions resembling these examples are easily identifiable and will likely

be flagged for lack of originality. On one side, this transparency removes the

perceived advantage of using generative AI tools to complete assignments, as

their output would closely match the provided examples, making it obvious to

instructors. On the other side, the presence of these pseudo-AI submissions

reinforces the expectation for students to produce unique and personalized

work, motivating them to engagemore deeply with the material and rely on their

own problem-solving skills.

Results: A user study indicates that this method can detect AI-generated code

with over 96% accuracy.

Discussion: The analysis of results shows that pseudo-AI submissions created

using AI tools do not closely resemble student-written code, suggesting that the

framework does not hinder students from writing their own unique solutions.

Di�erences in areas such as expression assignments, use of language features,

readability, e�ciency, conciseness, and clean coding practices further distinguish

pseudo-AI submissions from student work.

KEYWORDS

programming code plagiarism detection, detecting AI-generated code, generative AI

tools, large language models (LLMs), programming code similarity

1 Introduction

With the rise of advanced large language models (LLMs), programmers increasingly
use generative AI tools, such as ChatGPT, to assist with coding tasks (Bucaioni et al., 2024;
Xu and Sheng, 2024). These tools, trained on extensive datasets, are highly proficient in
understanding multiple programming languages. They excel at identifying bugs, offering
solutions, and explaining complex programming concepts, which enhances productivity
and facilitates learning (Ribeiro et al., 2023; Denny et al., 2022; Sarsa et al., 2022).
However, these tools also present significant risks. A primary concern is their potential
to generate code with security vulnerabilities (Tóth et al., 2024; Pearce et al., 2022).

Frontiers inComputer Science 01 frontiersin.org

https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org/journals/computer-science#editorial-board
https://www.frontiersin.org/journals/computer-science#editorial-board
https://www.frontiersin.org/journals/computer-science#editorial-board
https://www.frontiersin.org/journals/computer-science#editorial-board
https://doi.org/10.3389/fcomp.2025.1549761
http://crossmark.crossref.org/dialog/?doi=10.3389/fcomp.2025.1549761&domain=pdf&date_stamp=2025-05-23
mailto:sbmirza@imamu.edu.sa
https://doi.org/10.3389/fcomp.2025.1549761
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fcomp.2025.1549761/full
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Bashir 10.3389/fcomp.2025.1549761

Since the tools often prioritize syntax and functionality over
secure practices, they may inadvertently produce code that exposes
sensitive data or is susceptible to cyberattacks. Additionally, there
are legal and ethical concerns regarding the use of these tools,
particularly around potential copyright infringement.1 Because
generative AI tools learn from vast repositories of existing
code, there is a risk that they might produce code that closely
resembles proprietary or copyrighted material,2 leading to possible
legal disputes (Bucaioni et al., 2024; Xu and Sheng, 2024). To
mitigate these risks, programmers and educators must implement
safeguards, such as conducting thorough code reviews and tests to
ensure the security and legality of AI-generated code. Promoting
awareness of ethical coding practices and intellectual property laws
among users can also help reduce the likelihood of these challenges.

In addition to this, another growing concern in the education
sector is the use of generative AI tools by students to complete
programming assignments and other homework tasks (Ghimire
and Edwards, 2024; Becker et al., 2023; Denny et al., 2024).
Although these tools can provide valuable assistance in generating
code snippets, which can be especially helpful for beginners
or students struggling with programming concepts (Biswas,
2023; Estévez-Ayres et al., 2024), they also pose significant
risks. One key issue is that over-reliance on these tools can
hinder the development of critical thinking and problem-
solving skills, which are essential for tackling coding challenges
independently (Jukiewicz, 2024). If students solve and submit
programming tasks through generative AI tools without
understanding the underlying concepts, it raises ethical concerns,
as this could be considered academic dishonesty–students receiving
credit for work they didn’t genuinely complete. In response, some
educational institutions have banned the use of generative AI tools
for programming assignments. However, distinguishing between
human-written and AI-generated code remains a challenge due to
the lack of advanced detection frameworks. This differentiation is
essential not only to ensure code quality, reliability, and security
but also to address legal and ethical standards. Educators must
find effective ways to identify instances of cheating and plagiarism
enabled by these tools, as such detection is critical for upholding
academic integrity.

Current AI text detection tools, such as GPTZero3 and OpenAI
Text Classifier,4 face challenges in accurately distinguishing
between AI-generated and human-written code (Xu et al.,
2024). One reason for this limitation is that these tools are
primarily trained on natural language text, not programming
code. Traditional plagiarism detection tools like MOSS and
JPlag (Orenstrakh et al., 2023), which compare submissions for
direct copying, also struggle with the rise of generative AI. Modern
AI tools can produce numerous unique solutions for the same
problem in a non-deterministic manner, making it difficult for
conventional methods to reliably identify cases of cheating. Recent

1 https://felixreda.eu/2021/07/github-copilot-is-not-infringing-your-

copyright/

2 https://www.techtarget.com/searchsoftwarequality/news/252526359/

Developers-warned-GitHub-Copilot-code-may-be-licensed

3 https://gptzero.me/

4 https://platform.openai.com/ai-text-classifier

advancements have explored the use of AI itself to detect AI-
generated code, showing promise for improved accuracy (Nguyen
et al., 2024; Xu and Sheng, 2024; Hoq et al., 2024). However,
there remains a pressing need for new frameworks and tools
specifically designed to identify AI-generated code to uphold
fairness and integrity in academic assessments and software
development practices.

Earlier research has largely focused on identifying structural
differences between human-written and AI-generated code using
supervised classification techniques (Nguyen et al., 2024; Xu
and Sheng, 2024; Hoq et al., 2024). However, this process
is complicated by students’ ability to manipulate AI outputs
through prompt engineering, disabling features that make the code
classifiable (Hoq et al., 2024). To address these challenges, this
paper introduces a novel framework for programming instructors
aimed at preserving assignment integrity in the era of generative
AI tools. The framework involves instructors using generative
AI tools to produce a set of pseudo-AI submissions for each
programming task (see Figure 1). These submissions, along with
task descriptions, are shared with students as reference solutions.
On one side, this transparency removes the perceived advantage
of using generative AI tools to complete assignments, as their
output would closely match the provided pseudo-AI submissions
making it obvious to instructors. On the other side, the presence
of these pseudo-AI submissions reinforces the expectation for
students to produce unique and personalized work, motivating
them to engage more deeply with the material and rely on their
own problem-solving skills. Instructors can also integrate pseudo-
AI submissions into plagiarism detection tools, allowing students
to compare their work against these examples at submission. This
approach encourages students to use the pseudo-AI submissions as
a benchmark for originality rather than as a source for copying,
fostering independent problem-solving skills. The framework is
designed to shift student reliance from generative AI tools toward
genuine engagement with the material and development of unique
solutions. To evaluate the effectiveness of this framework, three key
research questions need to explore:

• Research question 1: Do pseudo-AI submissions restrict the
range of possible solutions, making it harder for students to
produce distinct and non-similar work? We addressed this
question in Section 3.1.

• Research question 2: given the non-deterministic nature of
AI-generated code, howmany distinct pseudo-AI submissions
does an instructor need to provide in order to determine
whether students have used generative AI tools to complete
their work? We addressed this question in Section 3.2.

• Research question 3: What is the effectiveness of this
framework for shorter or longer programming tasks? We
address this question in Section 3.3.

2 Related word

Generative AI tools like ChatGPT and Claude,5 while primarily
designed for natural language tasks, have proven highly effective in

5 https://claude.ai/

Frontiers inComputer Science 02 frontiersin.org

https://doi.org/10.3389/fcomp.2025.1549761
https://felixreda.eu/2021/07/github-copilot-is-not-infringing-your-copyright/
https://felixreda.eu/2021/07/github-copilot-is-not-infringing-your-copyright/
https://www.techtarget.com/searchsoftwarequality/news/252526359/Developers-warned-GitHub-Copilot-code-may-be-licensed
https://www.techtarget.com/searchsoftwarequality/news/252526359/Developers-warned-GitHub-Copilot-code-may-be-licensed
https://gptzero.me/
https://platform.openai.com/ai-text-classifier
https://claude.ai/
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Bashir 10.3389/fcomp.2025.1549761

FIGURE 1

The architecture of the pseudo-AI submission framework.

code-related applications. This effectiveness is due to their training
on vast datasets of source code and technical documentation.
These tools can handle tasks such as code completion, debugging,
and synthesizing new code. Among these, OpenAI’s Codex is
particularly noteworthy. As a specialized extension of GPT-3
tailored for programming, Codex excels in code generation and
understanding, making it a valuable resource for developers (Brown
et al., 2020). A practical application of Codex is GitHub
Copilot,6 co-developed by GitHub, OpenAI, and Microsoft.
Copilot provides real-time code suggestions based on the user’s
context, analyzing active files and related files to generate relevant
solutions. Other tools like CodeGen (Nijkamp et al., 2022),
Amazon CodeWhisperer,7 and CodeGeeX (Zheng et al., 2023) also
contribute to the field, showcasing the growing integration of AI in
software development by converting natural language inputs into
efficient code snippets. These advancements are revolutionizing
how developers approach coding, making processes faster and
more accessible.

Traditional methods in machine learning have played
a significant role in distinguishing human-generated text
from machine-generated content. Approaches such as bag-of-
words combined with logistic regression have been effective,
as demonstrated in Solaiman et al. (2019), where researchers
differentiated GPT-2 outputs from human writing. Other methods,
like log probability-based approaches, also show promise. For
instance, TGM and GLTR (Chowdhery et al., 2023) leverage
statistical techniques to identify patterns unique to AI-generated
text. DetectGPT (Mitchell et al., 2023) further refines this process
by combining log probabilities with random perturbations from
pre-trained models like T5. Another widely used technique
is fine-tuning pre-trained language models, exemplified by

6 https://github.com/features/copilot

7 https://aws.amazon.com/q/developer/

GROVER (Zellers et al., 2019) and RoBERTa (Uchendu et al.,
2020), both of which achieve high accuracy in detecting AI-
generated content. For example, a fine-tuned RoBERTa model has
demonstrated ∼95% accuracy in distinguishing GPT-2-generated
web pages. Additionally, researchers have introduced innovative
methods like watermarking frameworks for large language models
(LLMs), which embed detectable signals into generated content
while keeping them imperceptible to human readers (Kirchenbauer
et al., 2023).

In the realm of code plagiarism detection, tools like MOSS
and JPlag remain popular among educators (Prechelt et al., 2002).
These tools compare token similarities between programs to
identify cases of copying. For example, the CloSpan data mining
algorithm, proposed in Kechao et al. (2012), enhances plagiarism
detection by analyzing similar code segments and visualizing
results, offering greater precision than traditional tools like MOSS.
Another advanced tool uses the XGBoost incremental learning
algorithm, which reaches high accuracy when detecting plagiarism
in academic and industry scenarios (Huang et al., 2019). However,
these traditional tools face limitations in detecting code generated
by generative AI tools. Since AI-generated code is produced
through stochastic processes, it lacks the deterministic structure
that traditional models rely on for similarity detection. Despite
recent advances in identifying AI-generated text (Nguyen et al.,
2024; Xu and Sheng, 2024; Hoq et al., 2024), there remains
a gap in effectively distinguishing between human-written and
AI-generated code. Addressing this challenge is critical as the
use of generative AI tools becomes increasingly prevalent in
programming and education.

3 Pseudo AI submission framework

In our proposed framework, instructors use generative AI tool
to create a set of pseudo-AI solutions for each programming task

Frontiers inComputer Science 03 frontiersin.org

https://doi.org/10.3389/fcomp.2025.1549761
https://github.com/features/copilot
https://aws.amazon.com/q/developer/
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Bashir 10.3389/fcomp.2025.1549761

assigned to students. These pseudo-AI submissions, along with the
task descriptions, are then provided to the students as reference
solutions (see Figure 1). By making these pseudo-AI submissions
available, the instructors discourage students from using generate
AI tools to generate their programming solutions directly. If they
do, their submissions will have a high similarity to the pseudo-AI
solutions, making detection straightforward. The aim is to prevent
students from relying on generative AI tools for their work and
instead encourage them to engage with the material and develop
their own code.

We use student-written code from a publicly available
dataset (Ljubovic, 2020) to analyze the effectiveness of the proposed
framework. This dataset contains code from an introductory
programming course in the C language, covering 48 different
programming problems. For our experiment, we selected 28
problems from this collection: 22 are long problems requiring more
than 15 lines of code, and six are short problems with less than
16 lines of code. These programming problems cover fundamental
C language concepts, such as functions, variable declarations,
data types, conditional statements, string (char array), arrays, and
iterations. To analyze the effectiveness of our framework, we
developed a dataset containing the following three sets:

• Descriptions of programming tasks provided by instructors to
their students.

• Original student submissions for these programming tasks. To
ensure a fair analysis, we selected student submissions from
the years 2016 and 2017, before the availability of popular
generate AI tools.

• Pseudo-AI submissions for each programming task generated
by a generative AI tool (ChatGPT8) using different prompts.

To generate the pseudo-AI submissions, we used the ChatGPT
GUI, as students of introductory programming are more likely to
use the online ChatGPT interface rather than the GPT API. A
basic ChatGPT prompt consists of: “Generate C/Java code using the
following problem description: [problem statement]. The function
prototype is given: [function prototype].”We included the function
prototype if it was provided along with the problem statement to
ensure ChatGPT had the same information as the students when
constructing the solutions. Table 1 lists all prompts we used for
generating pseudo-AI submissions.

To generate each instance of a solution for a specific task, the
last two prompts of Table 1 regenerate the solutions using the code
from the first prompt with the following instruction: “Regenerate
C/Java code using the given [C/Java code]. The regenerated code
should not be similar to the given C/Java code.” We used prompt
13 to regenerate code multiple times. However, we observed that
only the first regeneration produced code different from the given
code. Subsequent regenerations did not result in significantly
different code. We collected ChatGPT-generated solutions for each
task, which are used for comparison with the student written
submissions. Our objective is solely to discourage students from
directly generating solutions using generative AI tools, so we
did not verify whether the ChatGPT produced correct code for
the tasks.

8 https://chatgpt.com/

TABLE 1 Prompts used for generating the pseudo-AI submissions from

generative AI tool.

Prompt ID Prompt statement

Prompt 1 Generate C/Java code using the following problem
description [problem description] and function prototype
[function prototype]

Prompt 2 Prompt 1 + The code should look like how early
programming students write code

Prompt 3 Prompt 1 + Write the code as a novice programmer

Prompt 4 Prompt 1 + Avoid complications while writing the code

Prompt 5 Prompt 1 + Do not compact the code. Generate a long code

Prompt 6 Prompt 1 + Write it as an introductory programming
student would

Prompt 7 Prompt 1 + Do not compact the code. The code should look
like how early programming students write code

Prompt 8 Prompt 1 + Create many functions. Create an individual
function for each subtask

Prompt 9 Prompt 1 + Create a separate function for each mathematical
statement used in the code

Prompt 10 Prompt 1 + Write the conditional statements using only the
switch statement. Do not use if statements

Prompt 11 Prompt 1 + Write the conditional statements using the
ternary operator. Do not use if statements

Prompt 12 Prompt 1 + Generate the code without creating any function
or procedure

Prompt 13 Regenerate C/Java code using the given [C/Java code]. The
regenerated code should not be similar to the given C/Java
code

Prompt 14 Regenerate again C code using the given [C/Java code] of
Prompt 13. The regenerated code should not be similar to
the given C/Java code

3.1 Code similarity between
student-written codes and AI-generated
codes (research question 1)

An important research question we need to address is whether
the presence of pseudo-AI submissions impact the range of
student solutions, making it harder for students to come up
with unique and different solutions. To address this research
question, we compared the code similarity between the pseudo-
AI submissions and actual student-written submissions using
Dolos (Maertens et al., 2024, 2022). Dolos converts the codes
into abstract syntax trees (ASTs) and calculates similarity based
on the coverage of unique AST fingerprints. High similarity
scores indicate that the pseudo-AI submissions are too similar
to student-written codes, potentially restricting the students’
creative space. Tables 2, 3 show the results. The results indicate
that pseudo-AI submissions do not have high similarity with
student-written codes. Figure 2 shows a sample code similarity
using Dolos of a pseudo-AI submission with a student-written
code. To further understand why the pseudo-AI submissions,
have low similarity with student-written codes, we analyzed their
codes and observed several key structural differences between
two types:

Frontiers inComputer Science 04 frontiersin.org

https://doi.org/10.3389/fcomp.2025.1549761
https://chatgpt.com/
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Bashir 10.3389/fcomp.2025.1549761

TABLE 2 Code similarity between student-written codes and pseudo-AI submissions.

Comparison type Avg. of minimum similarity Avg. of median similarity Avg. of maximum similarity

Student code -to- student code 23% 39% 100%

Student code -to- pseudo code 3% 11% 22%

Pseudo code -to- pseudo code 38% 65% 86%

TABLE 3 Code similarity of each (AI generative tool) prompt with the student-written submissions.

Prompt Avg. of minimum similarity Avg. of median similarity Avg. of maximum similarity

Prompt 1 2% 10% 20%

Prompt 2 2% 16% 27%

Prompt 3 3% 17% 28%

Prompt 4 2% 13% 25%

Prompt 5 2% 12% 24%

Prompt 6 2% 12% 23%

Prompt 7 2% 11% 21%

Prompt 8 2% 9% 16%

Prompt 9 2% 8% 14%

Prompt 10 2% 8% 14%

Prompt 11 2% 9% 16%

Prompt 12 2% 9% 18%

Prompt 13 2% 10% 19%

Prompt 14 2% 10% 20%

FIGURE 2

The figure shows a sample code similarity using Dolos of a pseudo-AI submission with the student-written codes.

• Compact code: codes generated from generated AI tool
are typically more compact and concise, effectively utilizing
fewer lines and minimizing redundant code structures. In

contrast, student-written codes often exhibit less compactness,
with verbose implementations that include unnecessary lines
and repetitive constructs. Figure 3 shows an example of

Frontiers inComputer Science 05 frontiersin.org

https://doi.org/10.3389/fcomp.2025.1549761
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Bashir 10.3389/fcomp.2025.1549761

student-written code and pseudo-AI submission using prompt
1 for a pattern drawing task. The pseudo-AI submission
generated from a generated AI tool is more compact than the
student-written code.

• Expression assignment: pseudo-AI submissions often assign
complex expressions to variables before using them as
conditions in later if-statements, whereas students tend to
use the expressions directly, often duplicating them across
multiple if-statements. Additionally, pseudo-AI submissions
use a direct return statement following an if-return statement,
omitting the need for an else-return statement that is common
in student codes.

• Language features: pseudo-AI submissions are more likely to
utilize newer language features. For instance, in Java, it favors
the “foreach” loop over the traditional “for” loop, and in C++,
it frequently uses the “auto” keyword for type inference.

• Readability: pseudo-AI submissions emphasize readability
by employing meaningful words for identifiers, whereas
student-written codes may use abbreviations or letters with
ambiguous meanings.

• Efficiency: unlike student-written codes, which often assign
a value to a Boolean variable before returning it, pseudo-AI
submissions directly return the expression, eliminating the
need for an additional assignment statement and enhancing
code efficiency.

• Conciseness: Pseudo-AI submissions frequently use ternary
operators as an alternative to multiple if-else conditions,
allowing for more concise and streamlined code.

• Clean code: student-written codes often exhibit remnants of
development iterations, such as commented out code snippets,
which are absent in the pseudo-AI submissions. Additionally,
pseudo-AI submissions do not include extraneous code,
while student-written codes sometimes contains unreferenced
variables or methods.

In short, pseudo-AI submissions simplify control flow and
reduce overall code length. In our experiments, the similarity
analysis between pseudo-AI submissions and student-written codes
for a set of programming tasks demonstrates that codes generated
from generative AI tools have a different structure than code
written by early-year students. Thus, the proposed framework does
not limit the solution space or create additional challenges for
the students.

3.2 Number of pseudo AI submissions
(research question 2)

The analysis of our initial question reveals that codes generated
from generative AI tools are significantly different from student-
written codes. This finding leads us to our next question: How
feasible is it for students to complicate the detection process
by prompting generative AI tools to generate solutions distinct
from pseudo-AI submissions? Specifically, we aim to determine
the number of pseudo-AI submissions an instructor would need
to generate to encompass the range of possible AI-generated
code variations.

FIGURE 3

The figures show an example of student-written code and

pseudo-AI submission using prompt 1 for the pattern drawing task.

The pseudo-AI submission generated from a generative AI tool is

more compact than the student-written code. (a) Student-written

code. (b) Pseudo-AI submission using Prompt 1.

Frontiers inComputer Science 06 frontiersin.org

https://doi.org/10.3389/fcomp.2025.1549761
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Bashir 10.3389/fcomp.2025.1549761

FIGURE 4

Pairwise prompts similarity using Heat Matrix.

To study this, we analyzed the similarity between student-
written code and pseudo-AI submissions, which were created
using prompt engineering with the prompts shown in Table 2.
Table 2 presents the maximum, median, and minimum
similarity scores between the pseudo-AI submissions for
various programming tasks. High similarity between the
pseudo-AI submissions indicates that, even if students
attempt to complicate the detection process through prompt
engineering to generate codes different from pseudo-AI
submissions, the resulting codes would still be similar to the
pseudo-AI submissions.

Next, we want to determine how many pseudo-AI submissions
an instructor needs to maintain to discourage students from
utilizing generative AI tools for generating programming solutions.
According to the results shown in Figure 4, prompts 1 to 5
exhibit a strong code similarity of 83% among them. Therefore,
it is unnecessary to keep all the AI-generated codes from these
prompts; the instructor can retain just one. Similarly, prompts
6 and 7, as well as prompts 8, 9, 10, and 12, show strong code
similarities within their respective clusters. Prompt 11 stands alone

because it asks the generative AI tool to generate code using the
ternary operator, which involves more complex logic compared to
conditional statements like if, if-else, and switch. Figure 4 shows
strong similarities between prompt 13 and prompt 14 because both
prompts instruct the generative AI tool to regenerate the code
using the code from prompt 1. While prompt 13 generates a code
different from prompt 1, the regenerated code from prompt 14
has high similarity with prompt 13. This indicates that further
regenerating the code does not provide any benefit.

Table 4 lists all the clusters among prompts. From the results,
we can infer that even if an instructor retains a single prompt from
each of the five clusters, they can still effectively prevent students
from relying on generative AI tool to generate their programming
solutions. In another experiment, we created a prompt designed to
test whether a student can complicate the pseudo-AI submissions
by asking the generative AI tools to generate code with extra
features not requested in the problem description. The goal of this
prompt was to produce longer andmore complex code by including
additional features. Examples of extra features requested from the
generative AI tool include:

Frontiers inComputer Science 07 frontiersin.org

https://doi.org/10.3389/fcomp.2025.1549761
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Bashir 10.3389/fcomp.2025.1549761

TABLE 4 (Generative AI tool) prompts clusters.

Cluster # Prompts in the
cluster

Minimum similarity
between prompts

1 Prompt 1, Prompt 2, Prompt
3, Prompt 4, Prompt 5

72%

2 Prompt 6, Prompt 7 100%

3 Prompt 8, Prompt 9, Prompt
10, Prompt 12

74%

4 Prompt 11 100%

5 Prompt 13, Prompt 14 98%

The third column shows minimum similarity between prompts of the cluster.

TABLE 5 E�ectiveness of the proposed framework on short and long

programming tasks.

Similarity

Code length Minimum Maximum

Short code [1−15] 12% 48%

Long code [>15] 2% 18%

• Sorting arrays after every insertion or access to the array.
• Creating an option menu for starting, quitting, and handling

each task described in the problem.
• Adding code to search for a specific number in each array after

every access or insertion.
• I/O file handling code, if the instructor did not specify it in the

programming task description, such as saving data to a file or
reading data from a file.

The prompt used for this experiment was: “Generate the
C/Java code based on the following problem description [problem
description] and function prototype [function prototype]. Include
the following extra features in the generated code [list of extra
features].” We tested this prompt on all programming tasks and
found that the codes generated by this prompt show an average
maximum similarity of 42% with the 14 prompts listed in Table 1.
This low similarity occurred because the resulting AI-generated
code contains extra features that are not present in the other
pseudo-AI submissions.

To address this issue, instructors can review the code and
remove any unnecessary functionality not specified in the problem
description. To test this, we developed another prompt for the
instructor with the following instruction: “Given the following
[C/Java code], remove any extra features or functions that are not
present in the problem description [problem description]. Do not
modify the given code; simply remove the additional features.” We
applied this prompt to AI-generated code with extra features and
compared the similarity of the generated code with the pseudo-AI
submissions. The results showed an average maximum similarity of
90% with prompt 1. This indicates that even if students complicate
the AI-generated code by adding extra features, the instructor
can still detect AI-generated code by reviewing the codes of
the tasks.

TABLE 6 E�ectiveness of the proposed framework on user study.

Similarity

Submission type Minimum Median Maximum

Assignment 1 + students
implementations

3% 14% 25%

Assignment 1 +
AI-generated codes

21% 59% 87%

Assignment 2 + students
implementations

3% 13% 24%

Assignment 2 +
AI-generated codes

20% 60% 88%

3.3 E�ectiveness of proposed framework
on short and long programming tasks
(research question 3)

For this research question, we aim to evaluate the effectiveness
of our framework with respect to the length of the programming
task. Table 5 presents the results with varying code lengths.
According to these results, smaller programming tasks, those with
less than 16 lines of code, exhibit significantly higher similarity
between student-written codes and pseudo-AI submissions. This
is because the solution space for these smaller problems is more
limited, leading to fewer possibilities for variation and consequently
higher similarity with the AI-generated codes. Thus, detecting
differences in these cases becomes more challenging, particularly
when the code size is very small, as AI-generated code may share
similar code structures. Despite this, novice programming students
still exhibit distinct code structures that experts and educators can
easily recognize. These structures include placing values before
variable names in expressions, using multiple if conditions instead
of else-if conditions, and other novice patterns mentioned earlier in
Section 3.1.

However, the scenario changes for longer programming tasks
with more than 15 lines of code, which show low similarity
between student-written codes and pseudo-AI submissions. This
is because, for longer programming codes, student-written codes
often exhibit unoptimized programming practices. In contrast,
pseudo-AI submissions are more optimized and compact (see
Figure 3). The generative AI tools tend to use more efficient
return statements, avoid unnecessary else statements, and eliminate
unreachable else statements in conditional structures, resulting in a
more professional and expert-like programming style.

4 User study

To analyze the effectiveness of the proposed framework,
we conducted a user study in the “Introduction to Computer
Programming” course with 43 students across two sections.
The participants in our study were students who had not
yet taken any data structures or algorithms courses. However,
they had completed an “Introduction to Computer Science”
course, which covered foundational topics such as software and
hardware concepts, input/output devices, HTML, cybersecurity,

Frontiers inComputer Science 08 frontiersin.org

https://doi.org/10.3389/fcomp.2025.1549761
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Bashir 10.3389/fcomp.2025.1549761

artificial intelligence, databases, and operating systems. The
students were familiar with using generative AI tools to generate
programming assignment solutions. Specifically, they knew how
to construct prompts to direct AI tools in generating solutions
but lacked advanced knowledge of programming concepts beyond
introductory topics. The study focused on two assignments. Both
assignments were lengthy, requiring more than 16 lines of code.

The programming tasks assigned to students were designed
to cover fundamental programming concepts typically introduced
in an introductory programming course. Each task consisted
of a problem statement requiring students to implement a
solution in the C programming language. These tasks varied in
complexity, ranging from simple computational problems to more
structured problems requiring modularization and efficient code
organization. For example, some tasks involved basic arithmetic
calculations, string manipulations, and data processing, while
others required implementing iterative and conditional logic
to solve pattern generation or sorting problems. The primary
goal of these tasks was to assess students’ understanding of
fundamental programming constructs and their ability to write
logical, structured, and efficient code. The programming concepts
involved in these tasks included variable declarations, data
types, input and output handling, conditional statements (if-
else, switch), loops (for, while, do-while), functions, arrays, and
string manipulations. Some tasks required students to break down
problems into multiple functions, reinforcing modularity and code
reusability. Additionally, certain problems encouraged students
to implement simple algorithmic logic, such as searching for
elements in an array or processing string inputs according to
specified rules.

Although the students at this level do not have data
structure or algorithm skills, they were still advised to submit
the assignment in C language without using any advanced data
structures such as linked lists, hashing, binary search trees,
etc. Students were asked to submit two versions of their code
for each assignment: one based on their own work and the
other generated through a generative AI tool. Additionally, they
were required to submit the AI-generated code along with the
prompt they used to generate it. For a fair analysis, students
were informed that their submissions would be compared with
the AI-generated codes (pseduo AI-submissions) through code
similarity. The instructor advised the students to use the generative
AI tool for one of their submissions and assured them that
it would not be considered academic dishonesty if their AI-
generated submissions matched with the pseudo-AI submissions.
Furthermore, to make pseudo-AI submissions detection more
challenging, the instructors informed students that they would
receive bonus marks if their AI-generated submissions had low
similarity to the pseudo-AI submissions.

The students submitted their assignments on the due dates. For
the submissions where students used their own implementations,
we found low similarity between their work and the pseudo-AI
submissions. However, for the submission that were generated
from generative AI tool, the code similarity detection tool
showed high similarities between the student submissions and
the pseudo-AI submissions. Table 6 presents the results of both
submissions. Table 7 shows a list of the top five prompts

from the students where we found low similarity between
the pseudo-AI submission and the students’ codes generated
from generative AI tool. The lowest similarity was found
with the prompt “Generate a correct C program given the
following assignment description. Declare and use only two-
dimensional arrays while implementing the code.” In this prompt
the students asked generative AI tool to implement the code
using only two-dimensional arrays. Nevertheless, this code still
had high similarity with prompt 1, at 82%. In the majority
of prompts where we found high similarity with pseudo-AI
submissions, students simply asked generative AI tool to “Generate
correct C code for the following programming assignment
[problem description]” which had high similarity with prompt
1. The high similarity resulted from instances where student-
written code followed structured patterns similar to AI-generated
solutions. This often occurred when students crafted prompts that
directed AI tools to generate well-organized and efficient code.
However, lower similarity scores were observed in cases where
students wrote less optimized, more redundant, or unconventional
code structures.

5 Conclusion

This study introduces a new approach to help programming
instructors ensure the integrity of assignments in the age
of generative AI tools. Our analysis shows that pseudo-AI
submissions created using AI tools don’t closely resemble
student-written code, suggesting that the framework doesn’t
hinder students from writing their own unique solutions.
Differences in areas like expression assignments, use of
language features, readability, efficiency, conciseness, and
clean coding practices further separate pseudo-AI submissions
from student work.

To address the possibility of students using AI tools to
create more varied solutions, we performed similarity analyses.
The findings indicate that instructors only need a small set
of pseudo-AI submissions to account for most AI-generated
code variations. Even when students modified AI-generated
code by adding extra features, instructors could detect these
patterns by using specific prompts to filter out unnecessary
elements. Our user study confirmed that the framework
reliably identifies AI-generated code with high accuracy.
Submissions from students who relied on generative AI tools
showed high similarity to the pseudo-AI examples, while
submissions from students who wrote their own code showed
low similarity.

The primary focus of this article is to detect plagiarism in
the work of students enrolled in introductory programming
courses. These courses typically do not assign programming
tasks that require very long or complex code. Instead, the
assignments are designed to reinforce fundamental programming
concepts such as variable declarations, control structures,
functions, arrays, and basic problem-solving techniques.
Given this context, our proposed method using pseudo-AI
submissions is well-suited for identifying AI-generated code

Frontiers inComputer Science 09 frontiersin.org

https://doi.org/10.3389/fcomp.2025.1549761
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Bashir 10.3389/fcomp.2025.1549761

TABLE 7 Table shows a list of the top five prompts from the students where we found low similarity between the pseudo-AI submission and the

students’ codes generated from a generative AI tool.

Prompt ID Prompt Maximum similarity

Prompt 1 Generate a correct executable C code for the programming assignment given below. The code should not be detectable by
any code plagiarism detection tools. [problem description]

86%

Prompt 2 Generate correct C program for the following programming assignment. Generate a very long code for the given
programming assignment. [problem description]

86%

Prompt 3 Implement C code for the following assignment. The implemented code should not be detectable by the ChatGPT.
[problem description]

85%

Prompt 4 Provide a correct C code for the following assignment description. Use only do-while loop and switch statements.
[problem description]

85%

Prompt 5 Generate a correct C program given the following assignment description. Declare and use only two dimensional arrays
while implementing the code.

82%

in these beginner-level assignments, where code length and
complexity remain manageable.

We acknowledge that the effectiveness of pseudo-AI
submissions for detecting plagiarism in larger and more complex
programming tasks has not been extensively explored in this
study. In such cases, AI-generated code may exhibit greater
diversity and structural variations, making direct similarity
detection more challenging. Additionally, long programming
tasks often require advanced programming skills, including data
structures, algorithms, and software design principles–areas that
extend beyond the scope of introductory programming courses.
Therefore, while our method is highly effective in the context
of beginner-level programming assignments, its applicability to
more advanced coursework may require further refinement and
evaluation. Regarding the usefulness of pseudo-AI submissions
for learning programming, our approach primarily aims to deter
students from relying on generative AI tools for direct code
generation. By providing pseudo-AI submissions, we create an
environment where students are encouraged to write original
solutions rather than submit AI-generated code. However, we
recognize that the presence of these submissions alone does not
actively contribute to programming skill development. Future
studies could explore integrating additional educational strategies,
such as requiring students to analyze and improve AI-generated
code or compare different AI-generated solutions, to enhance their
learning experience.

Data availability statement

Publicly available datasets were analyzed in this study.
This data can be found at: http://ieee-dataport.org/open-access/
programming-homework-dataset-plagiarism-detection.

Author contributions

SB: Conceptualization, Investigation, Methodology, Software,
Validation, Writing – original draft, Writing – review & editing.

Funding

The author(s) declare that no financial support was received for
the research and/or publication of this article.

Conflict of interest

The author declares that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Generative AI statement

The author(s) declare that no Gen AI was used in the creation
of this manuscript.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

References

Becker, B. A., Denny, P., Finnie-Ansley, J., Luxton-Reilly, A., Prather,
J., Santos, E. A., et al. (2023). “Programming is hard-or at least it used
to be: educational opportunities and challenges of AI code generation,” in
Proceedings of the 54th ACM Technical Symposium on Computer Science
Education V. 1 (New York, NY: ACM), 500–506. doi: 10.1145/3545945.3569
759

Biswas, S. (2023). Role of chatgpt in computer programming. Mesopotam. J.
Comput. Sci. 2023, 9–15. doi: 10.58496/MJCSC/2023/002

Brown, T., Mann, B., Ryder, N., Subbiah,M., Kaplan, J. D., Dhariwal, P., et al. (2020).
Language models are few-shot learners. Adv. Neural Inf. Process Syst. 33, 1877–1901.
doi: 10.5555/3495724.3495883

Frontiers inComputer Science 10 frontiersin.org

https://doi.org/10.3389/fcomp.2025.1549761
http://ieee-dataport.org/open-access/programming-homework-dataset-plagiarism-detection
http://ieee-dataport.org/open-access/programming-homework-dataset-plagiarism-detection
https://doi.org/10.1145/3545945.3569759
https://doi.org/10.58496/MJCSC/2023/002
https://doi.org/10.5555/3495724.3495883
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Bashir 10.3389/fcomp.2025.1549761

Bucaioni, A., Ekedahl, H., Helander, V., and Nguyen, P. T. (2024).
Programming with chatgpt: how far can we go? Mach. Learn. Appl. 15:100526.
doi: 10.1016/j.mlwa.2024.100526

Chowdhery, A., Narang, S., Devlin, J., Bosma, M., Mishra, G., Roberts, A., et al.
(2023). Palm: scaling language modeling with pathways. J. Mach. Learn. Res. 24, 1–113.
doi: 10.5555/3648699.3648939

Denny, P., Prather, J., Becker, B. A., Finnie-Ansley, J., Hellas, A., Leinonen, J., et al.
(2024). Computing education in the era of generative AI. Commun. ACM 67, 56–67.
doi: 10.1145/3624720

Denny, P., Sarsa, S., Hellas, A., and Leinonen, J. (2022). Robosourcing educational
resources-leveraging large language models for learnersourcing. arXiv [Preprint].
arXiv:2211.04715. doi: 10.48550/arXiv.2211.04715

Estévez-Ayres, I., Callejo, P., Hombrados-Herrera, M. Á., Alario-Hoyos, C.,
and Delgado Kloos, C. (2024). Evaluation of LLM tools for feedback generation
in a course on concurrent programming. Int. J. Arti. Intell. Educ. 1–17.
doi: 10.1007/s40593-024-00406-0

Ghimire, A., and Edwards, J. (2024). “Coding with AI: how are tools like chatgpt
being used by students in foundational programming courses,” in International
Conference on Artificial Intelligence in Education (Cham: Springer), 259–267.
doi: 10.1007/978-3-031-64299-9_20

Hoq, M., Shi, Y., Leinonen, J., Babalola, D., Lynch, C., Price, T., et al. (2024).
“Detecting chatgpt-generated code submissions in a cs1 course using machine learning
models,” in Proceedings of the 55th ACM Technical Symposium on Computer Science
Education V. 1 (New York, NY: ACM), 526–532. doi: 10.1145/3626252.3630826

Huang, Q., Fang, G., and Jiang, K. (2019). “An approach of suspected code
plagiarism detection based on xgboost incremental learning,” in 2019 International
Conference on Computer, Network, Communication and Information Systems (CNCI
2019) (Dordrecht: Atlantis Press), 269–276. doi: 10.2991/cnci-19.2019.40

Jukiewicz,M. (2024). The future of grading programming assignments in education:
the role of chatgpt in automating the assessment and feedback process. Think. Skills
Creat. 52:101522. doi: 10.1016/j.tsc.2024.101522

Kechao, W., Tiantian, W., Mingkui, Z., Zhifei, W., and Xiangmin, R. (2012).
“Detection of plagiarism in students’ programs using a data mining algorithm,” in
Proceedings of 2012 2nd International Conference on Computer Science and Network
Technology (Changchun: IEEE), 1318–1321. doi: 10.1109/ICCSNT.2012.6526164

Kirchenbauer, J., Geiping, J., Wen, Y., Katz, J., Miers, I., Goldstein, T., et al. (2023).
“A watermark for large language models,” in International Conference on Machine
Learning (Cambridge, MA: PMLR), 17061–17084.

Ljubovic, V. (2020). Programming Homework Dataset for Plagiarism Detection.
Piscataway, NJ: IEEE Dataport.

Maertens, R., Van Neyghem, M., Geldhof, M., Van Petegem, C., Strijbol, N.,
Dawyndt, P., et al. (2024). Discovering and exploring cases of educational source code
plagiarism with dolos. SoftwareX 26:101755. doi: 10.1016/j.softx.2024.101755

Maertens, R., Van Petegem, C., Strijbol, N., Baeyens, T., Jacobs, A. C., Dawyndt, P.,
et al. (2022). Dolos: language-agnostic plagiarism detection in source code. J. Comput.
Assist. Learn. 38, 1046–1061. doi: 10.1111/jcal.12662

Mitchell, E., Lee, Y., Khazatsky, A., Manning, C. D., and Finn, C. (2023).
“Detectgpt: zero-shot machine-generated text detection using probability curvature,”
in International Conference on Machine Learning (Cambridge, MA: PMLR),
24950–24962.

Nguyen, P. T., Di Rocco, J., Di Sipio, C., Rubei, R., Di Ruscio, D., and Di Penta, M.
(2024). Gptsniffer: a codebert-based classifier to detect source code written by chatgpt.
J. Syst. Softw. 214:112059. doi: 10.1016/j.jss.2024.112059

Nijkamp, E., Pang, B., Hayashi, H., Tu, L., Wang, H., Zhou, Y., et al. (2022).
Codegen: an open large language model for code with multi-turn program synthesis.
arXiv [Preprint]. arXiv:2203.13474. doi: 10.48550/arXiv.2203.13474

Orenstrakh, M. S., Karnalim, O., Suarez, C. A., and Liut, M. (2023). Detecting LLM-
generated text in computing education: a comparative study for chatgpt cases. arXiv
[Preprint]. arXiv:2307.07411. doi: 10.48550/arXiv.2307.07411

Pearce, H., Ahmad, B., Tan, B., Dolan-Gavitt, B., and Karri, R. (2022). “Asleep at
the keyboard? Assessing the security of github copilot’s code contributions,” in 2022
IEEE Symposium on Security and Privacy (SP) (San Francisco, CA: IEEE), 754–768.
doi: 10.1109/SP46214.2022.9833571

Prechelt, L., Malpohl, G., and Philippsen, M. (2002). Finding plagiarisms
among a set of programs with JPLAG. J. Univers. Comput. Sci. 8:1016.
doi: 10.3217/jucs-008-11-1016

Ribeiro, F., de Macedo, J. N. C., Tsushima, K., Abreu, R., and Saraiva, J. (2023).
“GPT-3-powered type error debugging: investigating the use of large language
models for code repair,” in Proceedings of the 16th ACM SIGPLAN International
Conference on Software Language Engineering (New York, NY: ACM), 111–124.
doi: 10.1145/3623476.3623522

Sarsa, S., Denny, P., Hellas, A., and Leinonen, J. (2022). “Automatic generation
of programming exercises and code explanations using large language models,” in
Proceedings of the 2022 ACM Conference on International Computing Education
Research, Vol. 1 (New York, NY: ACM), 27–43. doi: 10.1145/3501385.3543
957

Solaiman, I., Brundage, M., Clark, J., Askell, A., Herbert-Voss, A., Wu, J., et al.
(2019). Release strategies and the social impacts of language models. arXiv [Preprint].
arXiv:1908.09203.doi: 10.48550/arXiv.1908.09203

Tóth, R., Bisztray, T., and Erdodi, L. (2024). LLMs in web-development: evaluating
LLM-generated PHP code unveiling vulnerabilities and limitations. arXiv [Preprint].
arXiv:2404.14459. doi: 10.48550/arXiv.2404.14459

Uchendu, A., Le, T., Shu, K., and Lee, D. (2020). “Authorship attribution
for neural text generation,” in Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP) (Stroudsburg, PA: Association for
Computational Linguistics (ACL)), 8384–8395. doi: 10.18653/v1/2020.emnlp-main.
673

Xu, Z., and Sheng, V. S. (2024). Detecting AI-generated code assignments using
perplexity of large language models. Proc. AAAI Conf. Artif. Intell. 38, 23155–23162.
doi: 10.1609/aaai.v38i21.30361

Xu, Z., Xu, R., and Sheng, V. S. (2024). Chatgpt-generated code assignment
detection using perplexity of large language models (student abstract). Proc. AAAI
Conf. Artif. Intell. 38, 23688–23689. doi: 10.1609/aaai.v38i21.30527

Zellers, R., Holtzman, A., Rashkin, H., Bisk, Y., Farhadi, A., Roesner, F., et al. (2019).
Defending against neural fake news. Adv. Neural Inf. Process. Syst. 32.

Zheng, Q., Xia, X., Zou, X., Dong, Y., Wang, S., Xue, Y., et al. (2023). “CodeGeeX:
a pre-trained model for code generation with multilingual evaluations on humaneval-
x,” in Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and
Data Mining (New York, NY: Association for Computing Machinery), 5673–5684.
doi: 10.1145/3580305.3599790

Frontiers inComputer Science 11 frontiersin.org

https://doi.org/10.3389/fcomp.2025.1549761
https://doi.org/10.1016/j.mlwa.2024.100526
https://doi.org/10.5555/3648699.3648939
https://doi.org/10.1145/3624720
https://doi.org/10.48550/arXiv.2211.04715
https://doi.org/10.1007/s40593-024-00406-0
https://doi.org/10.1007/978-3-031-64299-9_20
https://doi.org/10.1145/3626252.3630826
https://doi.org/10.2991/cnci-19.2019.40
https://doi.org/10.1016/j.tsc.2024.101522
https://doi.org/10.1109/ICCSNT.2012.6526164
https://doi.org/10.1016/j.softx.2024.101755
https://doi.org/10.1111/jcal.12662
https://doi.org/10.1016/j.jss.2024.112059
https://doi.org/10.48550/arXiv.2203.13474
https://doi.org/10.48550/arXiv.2307.07411
https://doi.org/10.1109/SP46214.2022.9833571
https://doi.org/10.3217/jucs-008-11-1016
https://doi.org/10.1145/3623476.3623522
https://doi.org/10.1145/3501385.3543957
https://doi.org/10.48550/arXiv.1908.09203
https://doi.org/10.48550/arXiv.2404.14459
https://doi.org/10.18653/v1/2020.emnlp-main.673
https://doi.org/10.1609/aaai.v38i21.30361
https://doi.org/10.1609/aaai.v38i21.30527
https://doi.org/10.1145/3580305.3599790
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

	Using pseudo-AI submissions for detecting AI-generated code
	1 Introduction
	2 Related word
	3 Pseudo AI submission framework
	3.1 Code similarity between student-written codes and AI-generated codes (research question 1)
	3.2 Number of pseudo AI submissions (research question 2)
	3.3 Effectiveness of proposed framework on short and long programming tasks (research question 3)

	4 User study
	5 Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Generative AI statement
	Publisher's note
	References


