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Introduction: The accurate and timely diagnosis of skin diseases is a critical concern, 
as many skin diseases exhibit similar symptoms in the early stages. Most existing 
automated detection/classification approaches that utilize machine learning or 
deep learning poses privacy issues, as they involve centralized computing and 
require local storage for data training.

Methods: Keeping the privacy of sensitive patient data as a primary objective, in 
addition to ensuring accuracy and efficiency, this paper presents an algorithm 
that integrates Federated learning techniques into an IoT-based edge-computing 
environment. The purpose of the proposed technique is to protect the sensitive 
data by training the model locally on the edge device and transferring only the 
weights to the central server where the aggregation takes place. This process 
ensures data security at the edge level and eliminates the need for centralized 
storage. Furthermore, the proposed framework enhances the network’s real-time 
processing capabilities using IoT-integrated sensors, which in turn facilitates swift 
diagnoses. In addition, this paper also focuses on the design and execution of 
the federated framework, which includes the processing power, memory, and 
the number of nodes present in the network.

Results: The accuracy and effectiveness of the proposed algorithm are demonstrated 
using precise parameters, such as accuracy, precision, f1-score, and recall, along 
with all the intricacies of the secure federated approach. The accuracy achieved by 
the proposed algorithm is 98.6%. As the model was trained locally, the bandwidth 
utilization was almost negligible.

Discussion: The proposed model can assist skin specialists in diagnosing conditions. 
Additionally, with federated learning, the model continuously improves as new 
input data accumulates, enhancing the accuracy of subsequent training rounds.
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1 Introduction

They span a broad variety of demographic and geographic regions. 
These diseases are very common, making accurate assessment 
challenging, which is crucial for developing successful treatment and 
management programs (Li et  al., 2021). Skin diseases range from 
common conditions, such as dermatitis and acne to complex conditions 
including melanoma and autoimmune disorders. Skin conditions not 
only cause physical discomfort but also affect a person’s psychological 
health and overall quality of life (Ahmad et al., 2020). Accurate and 
timely diagnostic techniques are essential as these disorders can manifest 
in various ways and degrees of severity. Statistics show that about 
one-fifth of Americans may develop skin cancer at some point in their 
life (Lim et al., 2017). Skin cancer is the most common type of cancer in 
the United States (Toğaçar et al., 2021), with melanoma having the 
highest mortality rate of any skin cancer, at 1.62% (Jowett and Ryan, 
1985). According to American Cancer Society, there will be around 100, 
350 new instances of melanoma in the US in 2020, resulting in 6,850 
deaths (Hay et al., 2014). However, the most common type of skin cancer 
is the basal cell carcinoma (BCC). Although it is usually not fatal, it 
imposes a heavy burden on medical resources (Fried et al., 2005). The 
five-year survival rate for skin cancer may increase by approximately 14% 
with early detection and treatment (Fleischer et al., 2000).

Traditional approaches for the categorization and diagnosis of skin 
disorders have included visual inspections, manual exams by 
dermatologists, and, in certain cases, invasive procedures such as 
biopsies. Two fundamental challenges presented by these systems are the 
subjectivity in visual judgments and the potential for delays in receiving 
findings, particularly when relying on expert consultations (Ginsburg, 
1996). While these approaches have proven to be somewhat effective, 
they also come with drawbacks. Furthermore, the increasing prevalence 
of skin conditions, combined with a global shortage of dermatologists, 
has spurred research into more efficient and advanced diagnostic 
techniques. It is quite challenging to diagnose a skin disease accurately 
because it involves several visual cues, such as the appearance, size 
distribution, color, scale, and arrangement of lesions (Karimkhani et al., 
2017). The four most commonly used clinical diagnostic methods for 
Melanoma include the ABCD principles, pattern analysis, Menzies 
method, and 7-Point Checklist (Thanh et al., 2020). These methods 
require skilled medical professionals to make a reliable diagnosis 
(Diepgen, 2003). The practical accuracy ranges from 0.75 to 0.84 when 
an inexperienced practitioner tries to diagnose melanoma using 
dermoscopy pictures (Seth et al., 2017). A drawback of using human 
specialists for diagnosis is that they usually rely on subjective evaluations, 
which causes considerable differences across the experts (English et al., 
2003; Ruiz et al., 2011). While these approaches often prioritize certain 
categories, they may not be adaptable enough to provide a comprehensive 
diagnosis across a range of skin disorders (Allugunti, 2022). Handcrafted 
features are less adaptable to various dermatological diseases because of 
their limited design (Srinivasu et al., 2021; Cai et al., 2023). A possible 
solution to this is feature learning, which automatically extracts useful 
features and eliminates the requirement of human feature engineering 
(Elston, 2020). In this context, many feature learning algorithms have 
been introduced in recent years (Siddique et al., 2024; Razmjooy et al., 
2020), however most of them were designed with processing dermoscopy 
or histopathology pictures in mind, namely mitosis detection as a sign of 
malignancy (Goceri, 2021).

In this sense, a new era in the identification of skin disorders and 
associated medical issues has been brought about by the development 

of methods using deep learning (DL), machine learning (ML) (Dildar 
et al., 2021). These technologies utilize massive datasets to develop 
algorithms that can recognize patterns and anomalies that indicate 
various skin diseases (Siddique et al., 2023).

It is projected that the use of AI and machine learning in 
dermatology will increase the accessibility, precision, and speed of 
skin disease detection (Nahata and Singh, 2020). However, these 
technologies pose serious concerns about the privacy of the sensitive 
patient data being utilized to train the models (Pacheco and Krohling, 
2020). Medical imaging data contains sensitive patient information, 
which should be  protected and comply with ethical and legal 
standards such as GDPR and HIPAA (Vidya and Karki, 2020). 
Centralized learning algorithms require data to be trained on the 
single location can heighten the risk of data breaches. Federated 
learning offers a promising solution by enabling collaborative model 
training without the need to share raw data (Monika et al., 2020; 
Zghal and Derbel, 2020). Through this process, the dataset for the 
training model never leaves the device and the training process takes 
place locally on the device. Federated learning is incorporated with 
an IoT-enabled environment to share their trained weights with the 
cloud or central server where it aggregates all the model weights and 
ultimately generates the global model that is both secure and accurate 
as required for the proposed work. IoT-enabled edge devices, 
connected within the network, are used to gather real-time data, 
allowing the system to utilize the algorithm and analyze it in real time 
(Tabrizchi et al., 2023).

In section 5 of this paper, the process of implementing federated 
learning integrated with IoT-enabled procedures is discussed in detail. 
In addition, the consideration of diverse edge devices with varying 
storage and processing capabilities are discussed. The proposed model 
is able to adapt to the increasing edge devices with minimum latency 
and if the number of nodes increases in the network, the aggregated 
model generated will be more accurate as it will have more diverse 
model weights trained on various nodes. It provides a resilient and 
robust solution to provide security for the dataset and at the same time 
train the model using the localized trained weights.

In Figure  1, the integrated IoT key enabling technologies are 
illustrated, showcasing the intricate framework employed in this 
research. In this framework, cloud computing plays a vital role by 
utilizing shared computing resources for model aggregation, ultimately 
obtaining a comprehensive global model.

2 Literature review

Several articles can be found in recent literature that focus on ML/
AI-based skin disease diagnosis, for instance, an auto encoder-based 
DL model consisting of spiking and convolutional neural networks is 
proposed in Bhatt et al. (2023), which works as a clinical assistance 
tool (Bhatt et al., 2023). A publicly available ISIC skin cancer dataset 
has been utilized. It contains 1,497 photographs of malignant tumors 
and 1,800 images of benign tumors. To diagnose skin cancer, the 
standard biopsy method is used, which is a procedure that is not only 
time-consuming but also expensive. Similarly, a complete examination 
of a variety of cutting-edge machine-learning approaches that are used 
for the diagnosis of skin cancer is presented by Thurnhofer-Hemsi and 
Domínguez (2021). Following the compilation of a number of studies, 
an inquiry into the efficacy of the k-nearest neighbors, support vector 
machine, and convolutional neural network approaches on benchmark 
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datasets is carried out at the conclusion of the research. Besides, 
Kumar et al. (2020) present a deep learning method for skin cancer 
diagnosis. In order to construct a basic and a hierarchical (with two 
layers) classifier that is capable of distinguishing between seven 
distinct types of moles, transfer learning is used in five convolutional 
neural networks that are considered to be state-of-the-art. For testing 
purposes, the HAM10000 dataset, which is a massive collection of 
dermatoscopic images, is employed. Additionally, data augmentation 
techniques have been applied to improve the efficiency of 
investigations. In addition, an enhanced method is presented by 
Nawaz et  al. (2022) to detect skin melanoma. The authors utilise 
region-based convolutional neural networks (RCNN) in conjunction 
with fuzzy k-means (FKM) and tested the proposed model on clinical 
images. Furthermore, an ensemble CNN approach combining Shifted 
GoogleNet and MobileNetV2 for skin lesion classification is proposed 
in Thurnhofer-Hemsi et al. (2021).

Han et al. utilize a deep convolutional neural network to classify 
12 distinct skin disorders using a clinical dataset and the maximum 
reported accuracy is between 96 and 97%. In spite of the fact that this 
research does not have the capacity to conduct a full analysis of 
classifiers, a comprehensive analysis of explainable deep learning 
classifiers can be found in Barata et al. (2021).

3 Refining dataset for training: 
selection and augmentation

The data acquired, can be vague and possess subpar characteristics, 
leading to a trained model that does not produce outputs with high 
accuracy and low error rates. This problem can be addressed through 
data augmentation. Data augmentation can improve image quality or 
increase the size of the dataset, facilitating more effective model 
training (Mondal et al., 2020). If the acquired dataset is not appropriate 
for training, it is necessary for it to pass through some pre-processing 

algorithms, this makes the dataset more comprehensive with added 
features that may facilitate the training procedure. The dataset used in 
this research is available on Kaggle named ISIC (Razzak et al., 2020). 
An illustration of a selection of image samples that were retrieved 
from the dataset is shown in Figure 2. In addition to the ISIC dataset, 
other publically available datasets such as HAM1000 and DermNet 
were also reviewed and some samples were selected from them to 
make the acquired dataset more diverse with different ethnicities and 
age groups. Synthetic data generation was employed using state-of-
the-art techniques to replicate lesion characteristics from diverse 
populations. These synthetic images were created using generative 
algorithms trained on publicly available data.

In this paper, the dataset is subjected to uniform scaling, which 
ensures that the resolution remains constant at 299 × 299. During the 
process of image analysis, each image in the dataset is subjected to 
adjustments to continue maintaining the impartiality of individual 
pixels. Images are translated using the coordinate values (u, v), which 
represent the positions of pixels in the initial image. Obtaining new 
coordinates for the translated image is accomplished by subtracting 
the translation amounts (δx, δy) from the original coordinates (u − δx, 
v − δy) given in Equation 1. Substituting these new coordinates into 
the original image allows for the calculation of the pixel values that 
correspond to the translated image. Typically, the image coordinate 
system starts in the upper-left corner of the image and continues 
horizontally to the right and vertically downward. This is the 
conventional method. The amounts of translation, which are 
represented by the symbols δx and δy, respectively, are those which 
specify the amount of movement along the x-axis and the y-axis, 
respectively. The movement to the right is brought about by positive 
dx values, while the shift to the left is brought about by negative values. 
The contrary is also true: δy values that are positive bring about a 
downward movement, whereas δy values that are negative bring about 
an upward shift. It is because of this purposeful translation that the 
data have a larger degree of variability. This is helpful in computer 

FIGURE 1

IoT key enabling technologies.
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vision, which is where tasks such as picture categorization are carried 
out (Razmjooy et al., 2020).

 ( ) ( ), ,I u v I u x v yδ δ= − −′  (1)

Image scaling is a technique that involves altering its size, which 
may either result in it being much bigger or significantly smaller than 
it was originally. This approach has a wide range of potential 
applications in several different areas. This can be performed using 
several different methods, some of which are Nearest Neighbor, 
Bilinear Interpolation, and Bicubic Interpolation, amongst others. The 
process of augmentation is performed on the dataset selected for this 
research using Bilinear interpolation. Bilinear interpolation produces 
better results as compared to the other more popular algorithms such 
as nearest-neighbor; it produces better results when it comes to the 
process of upscaling images in the dataset (Vidya and Karki, 2020).
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To provide the mathematical basis for bilinear interpolation 
provided in Equation 2, complex computations are performed based 
on the pixel values of points that are next to one another. An original 
image I with dimensions (u, v) and a target image I′ with dimensions 
(u′, v′) to upscale, where u′ is more than u and v′ is greater than v. 
Bilinear interpolation makes use of the four pixels that are next to one 
another in the initial image and makes use of scaling factors Su and Sv 
to ascertain the value of a pixel I′ (u′, v′) in the newly reconstructed 
image. Where α and β are interpolation coefficients, Su and Sv 
represent scaling factors for the u and v axes, respectively, and α and 
β are interpolation coefficients as given in Equations 3, 4. Within the 
context of the enhancement of datasets for a wide range of applications, 
this in-depth description highlights the adaptability and accuracy of 
bilinear interpolation, which makes it a very important tool. Figure 3 
represents the augmented image samples used for the proposed model.

Table 1 provides a detailed overview of how the dataset changed 
before and after augmentation, showing the different classes and their 
quantities. Each row has a number, showing the order. In the first part 
of the table, it lists the types of skin lesions and how many there were 
before augmentation. In the second part, it shows the same classes but 
with more instances after augmentation, all set to 600. This helps 

FIGURE 2

Single sample of each of the nine categories.
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balance the dataset by making sure each class has the same amount 
of data.

4 Data distribution among nodes 
facilitating edge computing

To execute the proposed federated framework approach, four edge 
devices are set up and modified to guarantee seamless connection with 
the server that had hosted the base model. In this setting, the central 
server serves as the coordinator, and the edge nodes are the ones 
synchronized with the server and can take part in the learning process. 
The central server is the one that receives the request for the model 
updates from the edge devices and performs the learning procedure 
collaboratively. The representation of the collaborative learning 
procedure is given in Figure 4 as it learns from a variety of data sources 
in the form of nodes.

A distributed technique to improve edge device data allocation is 
needed to solve the data imbalance problem for an individual node. 

This technique assigns variable and distributed data to edge nodes for 
more precise, efficient, and balanced processing. The key challenge in 
federated learning is to ensure that devices in the networks are not 
overburdened with excessive data. To cater this issue, the proposed 
algorithm also incorporates adaptive model partitioning so selective 
identify nodes with less computational capacity and distribute data 
accordingly. By doing so, the devices with less computational power 
are assigned with adequate load to reduce the latency and 
computational bottlenecks.

Probabilistically distributing data over several edge nodes is 
Stochastic Data Distribution. Unlike deterministic allocation 
approaches, stochastic allocation distributes data to edge nodes 
randomly. Randomness gives edge nodes diverse data to analyze, 
helping them comprehend the data distribution. Network devices 
may have limited computing capacity. We partition the dataset 
into batches and give each edge device a batch to make training 
more efficient. However, dividing data into batches and sending 
them to edge devices may not be an ideal approach. Some edge 
nodes may contain simpler data than others, causing unequal task 

FIGURE 3

Samples of augmented dataset.

TABLE 1 Original Dataset and Augmented Dataset.

S. No Class Original dataset 
quantity

Augmented dataset 
quantity

Added variability considerations

1 Actinic keratosis 114 600
Included diverse skin tones, age groups, and environmental 

impacts.

2 Basal cell carcinoma 376 600 Added variations for older populations and lighter skin tones.

3 Dermatofibroma 95 600 Augmented with data from individuals in tropical regions.

4 Melanoma 438 600
Represented across various ethnicities and environmental 

exposures.

5 Nevus 357 600 Ensured equal representation from different skin types.

6 Pigmented benign keratosis 462 600 Incorporated synthetic data for dark skin tones.

7 Seborrheic keratosis 77 600 Focused on variations across age groups

8 Squamous cell carcinoma 181 600
Added samples from datasets focused on outdoor 

environmental exposures.

9 Vascular lesion 139 600 Augmented data for lighter and darker skin tones.
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distribution and poor performance. Each training cycle 
randomizes and batches the dataset using stochastic data 
distribution. Edge nodes are randomly assigned to batches to 
ensure data complexity is distributed evenly among devices. This 
improves training and means edge nodes may work together to 
boost performance (Ganaie and Sheetlani, 2019). All edge devices 
maintain data integrity for correct outcomes. The data that is 
subject to random chance may be represented by a Probability 
Distribution Function (PDF) as given in Equations 5 and 6, which 
shows the chances of certain values occurring. If the data follows 
a normal distribution, for example, the PDF will also follow a 
normal distribution (Volos et al., 2018).
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Edge nodes are chosen based on data source proximity, 
communications capabilities, and resource availability. The network’s 
edge devices are represented by Equations 7 and 8, where i  is the 
number of devices.
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Each row in Table 2 represents a distinct kind of skin lesion, 
such as Actinic keratosis, Basal cell carcinoma, Dermatofibroma, 

Melanoma, Nevus, Pigmented benign keratosis, Seborrheic 
keratosis, Squamous cell carcinoma, and Vascular lesion. The 
numerical values shown in the table cells indicate the number of 
data points attributed to each node for the relevant skin lesion 
category. Actinic keratosis is associated with 199 data points 
allocated to Node (1), 51 to Node (2), 189 to Node (3), and 161 to 
Node (4). Likewise, different kinds of skin lesions are distributed 
differently throughout the nodes, indicating the various 
characteristics of the dataset. This allocation technique guarantees 
that every node gets a representative portion of data for thorough 
analysis while evenly distributing the burden throughout the 
computer resources. However, some nodes are not provided with 
any images to display the efficient behavior of the federated learning 
approach when it aggregates the different models acquired from the 
nodes. Table 3 illustrates the distribution of data for both training 
and testing purposes. Dataset within each node is distributed in the 
training set and testing set, 85% is allocated for training and 15% is 
set for testing.

Table 4 represents the validation dataset allocated for the globally 
trained model at the centralized server, which will be transferred to 
the edge devices for edge-based classification. All the nine distinct 
classes have their specific number of validation samples; for example, 
Actinic keratosis has 49 validation samples, Melanoma has 46, Nevus 
has 48, and vice versa. These samples are the main source of evaluating 
the global model as it will use these very samples to predict their 
classes and generate a confusion matrix which is displayed in the 
result section.

The training data is further divided into batches and each 
batch contains 32 image samples; this indicates the amount of 
samples processed in each iteration during the training procedure. 
It is important to randomize the order of the samples, otherwise, 
the model may learn the sequence of the input data. To cater to 
this, a shuffle buffer of size 100 elements is utilized. Tensorflow 
provides this feature to use a shuffle buffer and maintain a buffer 
size of 100 elements throughout the training process. It randomly 
shuffles through the dataset to create shuffled batches that can 
be  used to train the model. The total number of epoch 
selected is 14.

FIGURE 4

Federated learning in edge computing domain.
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5 Proposed skin disease classification 
technique integrating IoT-enabled 
federated approach

In this paper, an approach to classify skin diseases is introduced 
that makes use of IoT-enabled edge computing in a federated 
environment. The framework comprises three essential components 
that work together to make a federated system. The three components 
are: edge devices, a core federated server, and a joint federated learning 
system. The aim of the proposed algorithm is to fill the gaps in the 
traditional classification techniques that are based on a centralized 
computing model and replace it with the decentralized computing 
model, this feature of federated computing simultaneously promotes 
data security and confidentiality.

5.1 Selection of base model for federated 
process

In the proposed scenario of federated learning, the base model 
selected is InceptionV3. It is a pretrained Deep learning CNN classifier 
specifically designed for image classification. It is widely utilized for 
numerous tasks based on applications related to computer vision. 
Table 5 represents an overview of the InceptionV3 base model used 
for the federated approach.

Basically, InceptionV3 is made up of multiple convolutional layers 
that are used to extract features from an input image. It requires an 
image of resolution 299 × 299 × 3, where 3 represents the RGB color 
channel. These layers have distinct filters to detect low-level features 
like edges, textures, etc. that helps the model learn more abstract 
features when entering the deeper layers. Within each Inception 
module, the network performs a convolutional process having 
different size of kernels like 1 × 1, 3 × 3, and 5 × 5. The output of these 
modules is combined using concatenation or dimensionality reduction.

5.2 Implementation of federated averaging 
with secure aggregation

Federated learning offers more advantages as compared to the 
conventional centralized learning algorithms, particularly in areas 
where data must be  kept private, and in areas with distributed 
infrastructure. Unlike centralized approaches, federated learning 

facilitates continuous model updates at the edge node without the need 
to transfer data to the central server. This feature can take new data on 
continuous bases and update the model with new dataset. This can 
alleviate concerns regarding communication delays and workload 
escalation. However, it is important to acknowledge that these 
advantages are context-dependent and come with trade-offs, such as 
increased computational demands on edge devices and challenges in 
handling heterogeneous data. The proposed framework promotes a 
swift response in mobile computing-based applications facilitated by 
low-latency network issues in real-time. Each edge device present in the 
network is equipped with an image sensory source capable of acquiring 
images in real time for classification and acts as a local training node 
that facilitates local model training on the available dataset. As soon as 
the base model is dispatched to the edge devices, they train their locally 
assembled dataset and intend to capture the intricate features of their 
respective datasets while customizing the model to the specific 
environment of each device. There is a possibility that one edge device 
may differ from the other edge device within the same network in terms 
of computational power, storage, or any other hardware-based feature. 
The edge device transmits the trained model weights to the central 
federated server where it aggregates the updated model parameters and 
refines the global model. The federated learning process exhibits a 
collaborative nature which enables it to enhance the model iteratively 
by utilizing the inputs from the edge devices and this process continues 
until the model converges and attains the optimal solution that contains 
the collective knowledge of all the edge devices within the network. The 
proposed model enables collaborative learning by decentralizing the 
training process to edge devices; this in turn allows the data to be locally 
on the edge devices. Only weights are transferred to the central server 
instead of the raw information such as medical images. While this 
approach significantly enhances privacy by keeping data localized, it is 
important to recognize that federated learning is not entirely immune 
to vulnerabilities, such as data reconstruction attacks or model 
inversion risks. To mitigate these concerns, the framework incorporates 
secure aggregation and differential privacy techniques, ensuring that 
data privacy and security are upheld throughout the training process 
while promoting collaborative efficiency. The reason of choosing Secure 
Aggregation is to make sure that the individual model updates remain 
private and only the centralized server receives the aggregated sum of 
encrypted gradients. This method effectively protects sensitive data 
without requiring additional techniques like Differential Privacy (DP). 
Given the computational and communication constraints of 
IoT-enabled edge devices, secure aggregation provides a balanced 

TABLE 2 Distributed data among the four distinct nodes.

No Class Node (1) Node (2) Node (3) Node (4)

1 Actinic keratosis 199 51 189 161

2 Basal cell carcinoma 74 129 196 201

3 Dermatofibroma 118 110 68 304

4 Melanoma 295 – 201 104

5 Nevus 54 236 111 199

6 Pigmented benign keratosis – – 404 196

7 Seborrheic keratosis 242 99 172 87

8 Squamous cell carcinoma 164 115 103 228

9 Vascular lesion 323 198 – 79
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approach to prioritize security without any additional computational 
overheads, thus, significantly boosting the real-time processing 
capabilities of the model. Since the server never has access to raw model 
updates, gradient-based attacks such as model inversion become 
infeasible, ensuring robust privacy preservation.

Equation 9 demonstrates the cross-entropy loss function in which 
φ denotes the base model parameters, N is the total number of training 
samples, ( )if xϕ  is the predicted probability of the positive class for 
input ix , and iy  is the true label (0 or 1) for input ix .

The process of forward propagation is typically utilized to 
calculate this function through different neural network layers given 
in Equation 10. Every layer in the network uses the input information 
and applies transformation on it with the specified weights and biases, 
and the activation function. The output of each layer is obtained by 
passing it through the activation function with the sum of all the input 
data passing through the function. This process of iteration continues 
until the final layer that generates the desired output of the network 
is achieved.

 
( ) ( )( ) ( ) ( )( )

1

1 log 1 log 1
N

CE i i i i
i

L y f x y f x
N ϕ ϕϕ

=
= − + − −∑

 
(9)

 ( )( )( )1 1 1 1; ; ;i L L i L Lf x f f f xϕ ϕ ϕ ϕ− −=    (10)

Equation 11 demonstrates the gradient descent approach mostly used 
in the problem based on federated averaging. The symbol θ is the 
parameter that changes in every iterative process and η represents the 
learning rate which makes the process converge swiftly and robustly 
depending on its value and dictates the magnitude of each weight. The 
symbol ( )( )k

local tF θ∇  represents the gradient of the local cost function 
depicts the current parameter values ( )k

tθ  at the edge node, and it indicates 
the direction in which the gradient is increasing in each iteration. The 
procedure changes the parameter at each iterative process by subtracting 
η times the gradient from tθ  making it shift toward the optimal solution 
by minimizing the local cost function. It is possible for the cost function 
to shift the gradient to the opposite end by minimizing it in each iterative 
process by learning rate. Equation 12 demonstrates the model updates 
from various edge devices in the network to be aggregated and generate 
the global classification model. Here, K represents the total number of 
edge devices present in the network, Nk is the number of samples at edge 
node k and N represents the total number of samples in the entire dataset.

 
( ) ( )( )1
k k

t local tt Fθ θ η θ+ = − ∇
 

(11)

 

( )
1 1

1

K kk
t t

k

N
N

θ θ+ +
=

= ∑
 

(12)

The central server typically receives the differences or updates Δθ 
between the current and prior model parameters instead of the model 
parameters directly being delivered. This helps in minimizing 
communication overhead. Equations 13 and 14 are crucial in federated 
learning as they illustrate the fundamental updating mechanism 
carried out by each client device in the training phase. This equation 
demonstrates how each client changes its local model parameters ( )

1
k

tθ +  
using its own dataset in federated learning. The updated parameters 
are then sent to a central server for aggregation. The update includes 
removing a portion of the gradient of the local loss function 

( )( )k
local tF θ∇  from the current parameters tθ , which is then scaled by 

TABLE 3 Selecting test and train data for the four distributed nodes.

Categories Node (1) Node (2) Node (3) Node (4)

Train Test Train Test Train Test Train Test

Actinic keratosis 169 30 43 8 161 28 137 24

Basal cell carcinoma 63 11 110 19 167 29 171 30

Dermatofibroma 100 18 93 17 58 10 258 46

Melanoma 251 44 – – 171 30 88 16

Nevus 46 8 201 35 94 17 159 30

Pigmented benign 

keratosis
– – – – 343 61 167 29

Seborrheic keratosis 242 36 84 15 146 26 74 13

Squamous cell 

carcinoma
139 25 98 17 88 15 194 38

Vascular lesion 275 48 158 30 – – 67 12

TABLE 4 Allocating validation dataset for the global model.

S. No Categories Quantity

1 Actinic keratosis 49

2 Basal cell carcinoma 44

3 Dermatofibroma 41

4 Melanoma 46

5 Nevus 48

6 Pigmented benign keratosis 180

7 Seborrheic keratosis 30

8 Squamous cell carcinoma 46

9 Vascular lesion 48
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the ratio of the client’s dataset size kN  to the overall dataset size across 
all clients N, and finally adjusted by the learning rate η. Raw data is 
kept on local devices, and only model updates are sent.

 1t tθ θ θ+∆ = −  (13)

 
( ) ( )( )1
k kk

t local tt
N F
N

θ θ η θ+
 = − ∇ 
   

(14)

Each client calculates its model update Δθk based on its local data 
and model parameters. Before sending the update to the central 
server, it encrypts the update using cryptographic techniques, 
expressed as Encrypt (Δθk) in Equation 15. The encrypted updates 
from all clients are transmitted to the central server. The server 
performs the aggregation operation, denoted as Encrypted_
Aggregation, on the encrypted updates to obtain the aggregated 
encrypted update Δθ represented in Equation 16. After receiving the 
aggregated update Δθ, the central server decrypts it using the 
corresponding decryption keys, represented as Decrypt (Δθ) in 
Equation 17. This leads to the final model update that may 
be implemented on the global model parameters for the subsequent 
training cycle.

 ( )k kEncryptθ θ∆ → ∆  (15)

 

1
1

_ ( ( ),
( ), , ( ))K Agg

Encrypted Aggregation Encrypt
Encrypt Encrypt

θ
θ θ θ

∆
∆ … ∆ → ∆  (16)

 ( )Decryptθ θ∆ → ∆  (17)

By using differential privacy, noise is introduced to the client updates 
in order to safeguard the privacy of individual data given in Equation 18. 
The noise is drawn from a distribution that provides differential privacy 
guarantees with a specified privacy budget ϵ. The proposed approach 
involves adding a proximal term to the local goal function as shown in 
Equation 19 to encourage model parameters to remain near their prior 
values, which helps in achieving smoother updates and stability.

 ( ) ( )_ ,Client Update Flocal noiseθ θ η θ= − ∇ +ò  (18)
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1 2
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2
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∑
 

(19)

Basically, MPC is considered to be a cryptographic technique that 
enables different nodes present in the network to collaboratively 
compute a specific function or a task over their own private set of data 
while keeping them secure and confidential at the same time. The true 
aim of the MPC is to ensure privacy in collaborative processing where 
it is essential for all the nodes involved to keep their data confidential as 
it may be sensitive information and they do not wish to disclose it with 
other involved parties. MPC allows the involved nodes to perform 
computation on their own data without revealing it to the other parties 
involved. In the proposed scenario, N parties are taking part in the 
computation process which is denoted by ( 1 2, , , NP P P…… ), each of 
these parties has its own set of data denoted by ( 1 2, , , Nx x x…… ) 
respectively. In the proposed collaborative scheme, these nodes are 
trying the train a model that would distinguish between skin diseases, 
let ( )1 2, , , Nf x x x……  be the function these nodes are trying to perform 
which is to acquire a trained model for skin disease classification given 
in Algorithm 1. It displays the process of secure aggregation performed 
using TensorFlow Federated.

TABLE 5 Base architecture of the InceptionV3 model.

Layer type Output size Kernel/stride Activation Details

Input (None, 3, 299, 299) – – RGB Image (3 channels, 299 × 299 pixels)

Convolution (None, 32, 149, 149) 3 × 3/2 ReLU 32 filters, 3 × 3 kernel, stride 2, padding 0

Convolution (None, 32, 147, 147) 3 × 3 ReLU 32 filters, 3 × 3 kernel, stride 1, padding 0

Convolution (None, 64, 147, 147) 3 × 3 ReLU 64 filters, 3 × 3 kernel, stride 1, padding 1

Max Pooling (None, 64, 73, 73) 3 × 3/2 – 3 × 3 max pooling, stride 2, padding 0

Convolution (None, 80, 73, 73) 1 × 1 ReLU 80 filters, 1 × 1 kernel, stride 1, padding 0

Convolution (None, 192, 71, 71) 3 × 3 ReLU 192 filters, 3 × 3 kernel, stride 1, padding 0

Max Pooling (None, 192, 35, 35) 3 × 3/2 – 3 × 3 max pooling, stride 2, padding 0

Inception Module * 11 Varies
– – Multiple parallel convolutional operations with 

different kernel sizes and features

Global Average Pooling (None, 2,048) – – Global average pooling layer

Fully Connected
(None, 1,000) – – Fully connected layer with 1,000 output units 

(ImageNet classes)

Softmax (None, 1,000) – Softmax Softmax activation function for classification
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 • Secret sharing: All the involved Nodes iP splits their confidential 
input data ix  into n number of shares.

 • Secure computation: All the involved parties are now engaged 
in a protocol to collaboratively compute the function f. This 
process is done securely which ensures that the data of each node 
is kept private.

 • Reconstruction: As soon as the reconstruction is complete, all 
the involved parties are now able to reconstruct the encrypted 
information by computing their share of the output generated 
through the function. This only reveals the output of the function 
and keeps the subsequent input of each node private.

The secret-sharing method ensures that all the involved nodes 
iP holds n shares denoted by ijx  of the input ix , denoted in 

Equation 20, where ⨁ represents the bitwise XOR operator. 

Subsequently, the output of the function f can be computed as given 
in Equation 21.

 1 2i i i inx x x x= ⊕ ⊕……⊕  (20)
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……  (21)

6 Results

In this paper, extensive evaluation has been performed to validate 
the effectiveness of the proposed federated learning algorithm 

ALGORITHM 1

Federated averaging procedure utilizing multi-party computation (MPC) a secure aggregation process.
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integrated with IoT-enabled edge computing. Evaluation is performed 
between the classification accuracy of the proposed federated 
approach and other centralized classification algorithms. The objective 
of the proposed technique is to accurately classify skin disease and at 
the same time make the patient’s confidential data secure. The 
protection of patient’s confidential information is of utmost 
importance thus the utilization of the federated algorithm is justified 
in this regard as it facilitates decentralized training as its trait. 
Scalability of the federated approach may become challenging if the 
node far exceeds the desired quantity, it may cause communication 
delay or latency. The network’s ability to cater to the increasing 
number of edge nodes is crucial and it must accommodate them and 
ascertain their suitability for diverse network settings. Evaluating the 
federated learning algorithm’s ability to generate a globally optimally 
performing model, including convergence speed and efficiency, was a 
critical component of this paper. For the evaluation of the proposed 
framework, we have utilized accuracy, precision, f1-score, and recall 
as the key performance parameters to understand the model behavior 
within the federated learning environment. The framework is built on 
the Python platform utilizing tools like TensorFlow for model 
generation and also for orchestration. The dataset used for this 
research is sourced from Kaggle and its name is ISIC which contains 
a diverse range of images in nine different skin disease classes. 
Preprocessing is an important aspect of the deep learning process as 
it is used to standardize image resolution, eliminate artifacts, and also 
ensure the consistent representation of the dataset across all edge 
devices in the network.

The trajectory of the global model’s training and validation 
accuracy is visually depicted in Figure  5 (left), providing a 
comprehensive illustration of the federated learning process 
across multiple epochs. Along the x-axis lie the epochs of training, 
while the y-axis showcases accuracy metrics. The training 
accuracy curve vividly showcases the model’s iterative refinement 
on the training dataset, highlighting a consistent improvement 
trend over successive epochs. Complementing this, the validation 
accuracy curve serves as a testament to the model’s ability to 
generalize to new validation data, affirming its robust performance 
across diverse input images. Figure  5 (right) presents a 
representation of the training and validation loss patterns of the 
global model throughout all federated learning cycles. Here, the 
x-axis delineates the training epochs, while the y-axis denotes the 
loss value. The training loss curve perceptibly illustrates the 

progressive reduction in loss across epochs, indicative of model 
parameter refinement and consequent minimization of prediction 
errors within the training data. Concurrently, the validation loss 
curve serves as a critical tool for monitoring the model’s 
performance on validation data, effectively detecting potential 
issues related to overfitting or underfitting. The convergence 
observed between the training and validation loss curves signals 
successful model training, striking a balance between model 
complexity and generalization capacity. The accuracy of 98.68% 
was reported which highlights the model’s promising potential. 
However, accuracy alone does not factor in performance based on 
real world data which is influenced by factors such as data 
representativeness and the ability to handle edge cases while 
generalization of unseen data. To address these considerations, 
our study includes a diverse dataset and emphasizes rigorous 
testing across varied conditions to enhance the model’s robustness 
and applicability. Figure 6 represents the accuracy and loss of each 
individual node that participated in the training process.

The confusion matrix depicted in Figure  7 depicts the 
classification performance of the proposed federated approach. It 
shows the distribution of the positive classification in diagonal 
entries with false positive or false negative classification presented 
in non-diagonal form within each distinct category. Actinic 
keratosis and basal cell carcinoma achieved the classification 
count of 49 and 44 which is amongst the highest in the confusion 
matrix. There are also cases of misclassification, such as 
dermatofibroma being wrongly classified as nevus, and melanoma 
samples wrongly classified as Nevus. Although there are few 
misclassifications, the model achieved high performance with 
minimum error. Accuracy, precision, f1-score, and sensitivity are 
among the performance parameters used to evaluate the proposed 
model and demonstrated in Equations 22–25. Precision measures 
the positive predictions as compared to the total number of 
positive samples. Recall assesses the proportion of genuine 
positive predictions among the total number of actual positive 
cases. F1-score considers both accuracy and recall in the event of 
class imbalance. A detailed evaluation matrix is provided in 
Table 6 demonstrating the performance of the proposed model in 
classifying different skin disease categories.

 
TPPrecision

TP FP
=

+  
(22)

FIGURE 5

(Left) Global model accuracy; (Right) Global model loss.
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FIGURE 6

Model accuracy and loss for the four nodes in the network.

FIGURE 7

Confusion matrix for global model classification.
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Table 7 demonstrates the comprehensive comparison of the skin 
disease classification algorithm. There is different algorithms proposed 
by researchers around the world in this particular field, for instance, 
the SENet154 architecture (Li et al., 2020) successfully attained a an 

accuracy of 0.87 indicating the successful classification of the positive 
category and achieving a high level of overall accuracy. The Ensemble 
CNN  algorithm presented in Thurnhofer-Hemsi et al. (2021) 
demonstrates an accuracy of 0.84. I. Goitis (Giotis et al., 2015) 
proposed a system MED-NODE, which achieved good results with an 
accuracy of 0.81 and a sensitivity of 0.80. D. Ruiz in Ruiz et al. (2011) 
utilised a multilayer perceptron (MLP) approach that exhibited an 
classification rate of 0.806 and classifies melanoma accurately with 
sensitivity of 0.745. R. Amelard in Amelard et al. (2012) utilised a 
high-level intuitive feature extraction approach for skin lesion 
classification with an accuracy and sensitivity of 0.873 and 0.907, 
respectively. The modified CNN model in Inthiyaz et al. (2023) 
achieved an accuracy of 0.874 and an AUC of 0.87, on the other hand, 
Mobile net in Hossen et al. (2022) achieved a sensitivity of 0.931, 
f1-score of 0.901 and an accuracy of 0.963 showcasing its better 
performance as compared to the VGG model. The proposed federated 
framework achieved an accuracy of 0.986 demonstrating its 
effectiveness in classifying positive categories Table 7.

In order to evaluate the practicality of the proposed model in this 
setting we performed an analysis based on computational overhead 
and energy utilization of the edge device, given in Table 8. To measure 
these parameters, we have used a Raspberry Pi 4 as one of the edge 
node. In IoT-based edge computing environments, resource 
constraints such as energy consumption and computational capacity 
play a critical role in determining the feasibility of deploying machine 
learning frameworks. Energy usage was measured in watts (W) during 
both the training and inference phases of the model on Raspberry Pi 
4 edge devices. The time required for training, inference, and 
communication with the central server was recorded to assess the 
computational burden on the edge devices. The transfer of data 
between the edge node and the central server was also monitored to 
estimate the bandwidth requirement and some potential bottlenecks 
in the environment where resources are less.

 • Energy consumption: Measures the power usage during training 
(5.6 W), inference (3.2 W), and communication (2.8 W).

TABLE 6 Performance parameters of each class.

S. 
No

Classes Precision Sensitivity/
recall

f1-
Score

1 Actinic keratosis 1 1 1

2
Basal cell 

carcinoma
0.98 1 0.99

3 Dermatofibroma 1 0.93 0.96

4 Melanoma 1 0.98 0.99

5 Nevus 0.96 0.98 0.97

6
Pigmented benign 

keratosis
0.96 1 0.98

7
Seborrheic 

keratosis
1 0.97 0.98

8
Squamous cell 

carcinoma
1 0.91 0.95

9 Vascular lesion 1 1 1

TABLE 7 Comparative analysis of the proposed model with similar work.

Algorithms Sensitivity/recall f1-Score Precision Accuracy

SENet154 (Li et al., 2020) – – – 0.87

Ensemble CNN (Thurnhofer-

Hemsi et al., 2021)
– – – 0.84

MED-NODE (Giotis et al., 2015) 0.80 – – 0.81

MLP (Ruiz et al., 2011) 0.745 – – 0.806

R. Amelard (Amerald et al., 2012) 0.907 0.65 – 0.873

Modified CNN (Inthiyaz et al., 

2023)
– – – 0.874

FL based IoMT (Hossen et al., 

2022)
– – – 0.94

CNN and FL based approach 

(Divya Anand and Sharma, 2024)
– – – 0.93

Federated DCNN (Al-Rakhami 

et al., 2024)
– – – 0.95

Proposed (GMA) 0.974 0.98 0.99 0.986
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 • Computational time: Shows the time required for training (120 s 
per epoch), inference (1.5 s per prediction), and communication 
(0.8 s per data batch).

 • Bandwidth usage: Evaluates network data usage, with no 
bandwidth required for local computation during training, 
0.5 MB per prediction for inference, and 2.2 MB per data batch 
during communication.

7 Conclusion

This paper presented a privacy-preserving framework to 
accurately classify skin disorders. The proposed framework integrated 
federated learning into an IoT-enabled edge-computing environment. 
In addition to offering accurate and timely skin disease classification, 
it ensured the security of the patient’s confidential information. It used 
distributed computing to facilitate the training process at the edge 
nodes in the network, unlike centralized computing where the data is 
collected at the server to commence the training procedure. Through 
rigorous testing and evaluation, the proposed algorithm achieved an 
accuracy of 98.6% outperforming the different centralized learning 
models. Federated learning makes use of the collective intelligence of 
the existing edge devices that contain distinct datasets in the network 
to train the global model. It strives to achieve an optimal model 
through each iterative process by sharing the trained updates with the 
centralized federated server where they are aggregated to generate a 
global model. These features of the proposed federated learning 
process demonstrate promise in real-world applications including skin 
disease classification and other disease diagnoses. By sharing the 
workload with the edge devices and aggregating model updates at the 
central server in a privacy-preserving manner makes the proposed 
algorithm scalable, efficient, and a model solution for skin disease 
classification. This approach holds significant potential for driving 
meaningful progress in dermatological healthcare practices.
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TABLE 8 Energy, computational, and communication metrics for edge 
device performance.

Metric Training 
phase

Inference 
phase

Communication 
phase

Energy 

consumption 

(W)

5.6 W 3.2 W 2.8 W

Computational 

time (s)

120 s (per 

epoch)

1.5 s (per 

prediction)

0.8 s (per 

communication)

Bandwidth 

usage (MB)

N/A (local 

computation)

0.5 MB per 

prediction
2.2 MB per data batch
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