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This study presents a novel and e�cient approach to accurately assess post-

sowing rice plant density by leveraging unmanned aerial vehicles (UAVs)

equipped with high-resolution RGB cameras. In contrast to labor-intensive

and spatially limited traditional methods that rely on manual sampling

and extrapolation, our proposed methodology uses UAVs to rapidly and

comprehensively survey entire paddy fields at optimized altitudes (4, 6, 8,

and 10m). Aerial imagery was autonomously acquired 17 days post-sowing,

following a pre-defined flight path. The robust rice plant density estimation

process incorporates two key innovations: first, a dynamic system of 12

adaptive segmentation thresholding blocks that e�ectively detects rice seed

presence across diverse and variable background conditions. Second, a

tailored three-layer convolutional neural network (CNN) accurately classifies

vegetative situations. To maximize the training e�ciency and performance, we

implemented both a pretrained model and a deep learning model, conducting

a rigorous comparative analysis against the state-of-the-art YOLOv10. Notably,

under favorable imaging conditions, our findings indicate that a 6-m flight

altitude yields optimal results, achieving a high degree of accuracy with

rice plant density estimates that closely align with those obtained through

traditional ground-based methods. This investigation unequivocally highlights

the significant advantages of UAV-based monitoring as an economically viable,

spatially comprehensive, and demonstrably accurate tool for precise rice field

management, ultimately contributing to enhanced crop yields, improved food

security, and the promotion of sustainable agricultural practices.

KEYWORDS

UAV, multiple flight altitudes, rice plant density, detection and classification, precision

agriculture

1 Introduction

The cultivation of paddy fields holds paramount significance in the realm of

agriculture, contributing significantly to global food production and ensuring food security

for vast populations. Among the key factors influencing the success of paddy cultivation

is the accurate evaluation of rice plant density in these fields. The meticulous assessment

of rice plant density not only plays a pivotal role in optimizing crop yield but also

aids in resource management, informing decisions related to seed distribution, irrigation,

and fertilization.

In traditional agricultural practices, crop researchers and agronomists assess the

emergence rate through manual field monitoring and recording, a method known for its

time-consuming nature and susceptibility to statistical inaccuracies (Oard et al., 2020).
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Currently, unmanned aerial vehicles (UAVs) are utilized in the

context of agricultural monitoring, such as in the study estimating

the above-ground biomass of potatoes (Yang et al., 2024) and potato

yield (Liu et al., 2025). Additionally, UAV-based spectral images

are used to predict chili yield by utilizing hyperspectral images

(Zhang et al., 2025a), as well as by integrating meteorological data

and thermal infrared images (Zhang et al., 2025b). In the domain

of land utilization and surface topography assessment, UAVs have

been deployed to acquire high-resolution imagery for vegetation

mapping (Feng et al., 2015; Zhou et al., 2021), as well as integrating

UAV-mounted Light Detection and Ranging (LiDAR) technology

(Trepekli and Friborg, 2021; Kellner et al., 2019; Sankey et al., 2018),

to facilitate comprehensive data acquisition and analysis.

In recent years, a camera with ultra-high resolution has been

commonly used in the agricultural monitoring process. Image

processing and computer vision are highly versatile and can be

applied to a wide range of tasks, including crop monitoring, disease

detection, weed control, and yield prediction. The domain of

computer vision methods, notably including edge detection and

thresholdingmethods, has been documented in scholarly studies by

García-Martínez et al. (2020), Li et al. (2019), and Zhao et al. (2018).

It is important to note that these methods are primarily focused

on the identification of pixels corresponding to individual seeds,

which presents challenges when dealing with scenarios involving

high-density planting. The estimation of wheat plant density and

the assessment of the quantity of wheat seeds have been addressed

in scholarly studies (Liu et al., 2017, 2018; Ma et al., 2020).

However, it is noteworthy that the data collection processes in

these studies have predominantly relied on manual data-gathering

techniques, which may not be suitable for the requirements of

large-scale agricultural areas. In the method of image processing,

particularly through the application of deep learning techniques,

there has been noteworthy academic exploration of the utility of

UAV imagery for diverse agricultural monitoring tasks. These tasks

encompass the investigation of pine wilt disease (Yu et al., 2021),

the assessment of chlorophyll content in peanut leaves (Qi et al.,

2021), and the detection of blackgrass weed presence (Su et al.,

2022). Furthermore, the enhancement of image classification and

monitoring quality can be achieved through the application of deep

learning techniques. Notably, the identification and tracking of

crop pests and diseases have been extensively explored using the

deep learning methods in previous studies (Jung et al., 2023; Zhang

et al., 2023; Bezabih et al., 2023).

In addition, it is important to acknowledge that, in the

context of maize seedling analysis, including aspects such as

maize plant density, emergence rate evaluation (Gao et al., 2023;

Xu et al., 2023), and leaf counting (Velumani et al., 2021),

the efficacy of deep learning methods may be influenced by

specific characteristics of the maize plant. Notably, maize has

a relatively larger plant size, and the environmental conditions

under which it thrives are comparatively less complex, which

may have implications for the performance of these image

processing techniques.

In the context of rice cultivation, there exists a body of research

that has examined the application of drones for the purposes of

seed sowing and growth stage classification (Adeluyi et al., 2022).

However, it is noteworthy that these investigations have primarily

concentrated on the methodologies associated with seed planting

and have primarily evaluated the intermediate and later stages

of plant development. An alternative approach can be found in

a study by Ma et al. (2019) and Liang et al. (2019), which uses

CNN methods to detect weeds in rice seedlings and rice blast

diseases. Nonetheless, the applicability of this method to extensive

agricultural areas may be challenging. In addition, the previous

study proposed by the authors (Guo et al., 2021) introduced an

innovative approach utilizing deep learning algorithms to compute

sowing density based on rice seed setting rates. Nonetheless, this

method necessitates the collection of ripened rice plants at the

end of the crop season, making it unsuitable for helping farmers

control fertilizers and pesticides. Furthermore, in previous studies

(Wu et al., 2019; Tseng et al., 2022), unmanned aerial vehicles

(UAVs) were used for the purpose of rice seedling detection and

quantification using CNN techniques. While these methodologies

have demonstrated efficacy in accurately enumerating rice

plants, their scope is limited to transplanted rice configurations

characterized by block arrangements. Notably, these approaches

primarily target rice plants at a developmental stage marked

by the initiation of panicle growth, indicative of robust growth

and maturity.

There are two methods of rice cultivation, namely,

transplanting and sowing. In transplanting, rice seeds are

first germinated in a nursery and then transplanted into the field

at ∼30–35 days old. Transplanting allows for more controlled

planting distances and arrangements, leading to a uniform plant

size and growth. Besides, sowing is also a popular cultivation

method, where rice seeds are planted directly onto the field surface,

with three to five seeds in each hole. Their growth depends on the

weather conditions, which affect germination, resulting in each

hole having nothing, a single rice plant, or clusters of rice plants.

In contrast to the earlier research and as the first attempt, we

focus on counting seedlings from the sowing cultivation method.

Seedling growth and distribution vary across the field; thus, a new

dataset for sowing plants and an optimal altitude for counting

should be discussed. Traditionally, determining a plant population

involves manually counting the total number of rice plant

tillers within a 50 × 50 cm square frame. However, this method

included samples from various locations within a plot, making

it time-consuming, labor-intensive, and expensive. This study

proposed a method to evaluate the rice plant density when rice

plants are in the transplanting and tillering stages using a camera

mounted on the UAV. The UAV flights are conducted at varying

altitudes, enabling the assessment of the most suitable altitude

for capturing small plant details. To remove the uncertainties

arising from environmental conditions and the inherently random

germination process, the study proposes a thresholding method in

conjunction with a three-layer CNN. This proposed methodology

is compared with YOLOv10 to evaluate its overall performance.

We also validated the result manually in the paddy field. Based

on the detection results, we can achieve a rapid and cost-effective

assessment of rice plant density, allowing for early detection of

areas with lower plant density. This approach not only reduces

labor costs but also provides visual representations of sparse areas,

enabling farmers to make informed decisions regarding the need

for recultivation.
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FIGURE 1

Observation location area.

TABLE 1 Flight plan information.

Altitude Number of photos Speed (m/s) Ground distance sample (GSD) Photo size

4-m height 83 2 x-axis: 0.09 cm/px

y-axis: 0.074 cm/px

11.65 m2

6-m height 92 1.5 x-axis: 0.16 cm/px

y-axis: 0.153 cm/px

45.4 m2

8-m height 101 1 x-axis: 0.208 cm/px

y-axis: 0.201 cm/px

76.15 m2

10-m height 107 0.5 x-axis: 0.274 cm/px

y-axis: 0.268 cm/px

131.42 m2

2 Materials and methods

2.1 Experimental site and data acquisition

Data acquisition was conducted on 6 June 2023 in Thu Thua,

Long An province, Vietnam (Figure 1).

Subsequently, the seed rate and tiller numbers were

meticulously measured 17 days after sowing. To facilitate this

evaluation, a Phantom Pro 4 equipped with a DJI-FC6310S camera

(providing images with dimensions of 4,864 × 3,648 pixels) was

used. The ground sample distance (GSD) of the aerial photo at

each height was calculated manually before flight, with the flight

specification shown in Table 1.

Images were collected at 8:40 am on the observation day

(Figure 2). The wind is quite strong and blowing the inverse

direction of the flight path; the light condition is suitable for

capturing images. Considering the changes in the environmental

background, the data collection area was randomly selected within

the field. These conditions included backlighting, water, dark

backgrounds, and uncertain objects.

2.2 Rice plant seedling trait

The experimental field was∼2 ha, with a planting density of 40

kg/ha. The sowing configuration used a relatively fertilizer depth at

7 cm and a wider spacing of 13 × 20 cm, with approximately three

rice seedlings planted in each hill. By following Yoshida (1981), in

one crop cycle, the rice plant must follow three stages (Figure 2),

which are the vegetative growth stage, the reproductive stage, and

the ripening stage. In vegetative growth stage, rice plants are of

a very small size, and they develop leaves and stems. Depending
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FIGURE 2

Rice crop cycle and data acquisition time. Figure adapted from “Growth stages of rice” by IRRI Photos, licensed under CC BY-NC-SA 2.0 DEED (URL:

https://www.flickr.com/photos/ricephotos/13597007274/in/album-72157643341257395/).

on the rice variety, nutrients, and weather conditions, the time

of tillering may change. In this study, a sowing machine was

employed to sow rice seeds of the IR4625 variety precisely 1 day

after germination.

In addition to the utilization of advanced imaging technology,

traditional methods were employed for the assessment of rice

plant density 17 days after sowing. Four distinct squares, each

measuring 50 × 50 cm², were strategically placed in the four

corners of the paddy fields, spanning the plow path of the tractor,

as depicted in Figure 3. Evidently, it is discernible that a range of

conditions characterize the state of the rice seeds, encompassing

both the presence of tillered rice and instances of non-germination.

Consequently, we have categorized the rice plants into three distinct

groups: “1 rice plant,” “clusters of rice plants,” and “undefined

object.” As illustrated in Figure 4, the observed hill density

was recorded at 33 hill/m2. Furthermore, we also assessed the

quantification of tiller numbers, wherein three canopies equate to

one rice branch. Concurrently, an evaluation of rice germination

conditions was conducted, with detailed information provided in

Table 2.

2.3 Overall view of the system

The comprehensive depiction of the system is shown in

Figure 4. At the initial stage (Step 1), the localization of rice seed

positions is accomplished through the implementation of two

distinct techniques: segmentation thresholding and the utilization

of YOLOv10. Subsequently, a three-layer CNN architecture is

introduced and employed to discern the quantity of rice seeds

within each respective cavity. Finally, a comparative evaluation

is performed, contrasting the efficacy of the two methodologies

against the traditional practices of counting and interpolation, as

applied to the context of paddy field analysis.

2.4 Rice seed holes detection using the
segmentation threshold method

Aerial imagery is susceptible to a multitude of environmental

variables, encompassing scenarios such as backlighting,

water reflections, and background uncertainty. In this

study, we introduce a comprehensive approach to address

various environmental conditions, featuring a structured

framework composed of 12 successive segmentation threshold

blocks, as illustrated in Figure 5. The initial step involves

the transformation of aerial images from the RGB color

space to the HSV color space. Subsequently, these 12

segmentation threshold blocks, each defined by 9 distinct

maximum and minimum threshold values, are systematically

applied. Moreover, a noise reduction procedure is executed

three times, with the primary objective of mitigating

uncertainty-induced noise. It is noteworthy that following

the initial noise reduction operation, subsequent thresholding

processes are exclusively reserved for the preservation of

rice seed positions, thereby obviating the need for further

thresholding iterations.

To detect rice hole positions, the RGB channel is first converted

into HSV. After that, 12 adaptive threshold parameters are

implemented. For the sake of clarity and effective evaluation,
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FIGURE 3

Rice germination status 17 days after sowing.

FIGURE 4

Flowchart of rice seed density using RGB imagery.

these parameters are categorized into three distinct sets, each

denoting popular environmental conditions encountered in the

field, namely: backlit lighting, underwater lighting, and normal

lighting. Within each category, three unique combinations of HSV

maximum and minimum values are applied. As a result of these

segmentation thresholding operations, the resultant images display

a binary representation where the background is rendered in black,

while rice seeds and uncertainty-induced artifacts [defined by their

respective coordinates x, y, (h) height, and (w) width; Figure 6] are

depicted in white. To eliminate unwanted noise, the size of each

delineated area is rigorously assessed (Figure 6). Subsequently, the

areas failing this size criterion, indicative of noise, are eliminated.

The remaining regions, representing potential rice seed locations,

are then channeled as input data for subsequent classification

techniques. Notably, these retained positions are exempt from

any further thresholding processes. The 12 adaptive threshold

parameters are specifically defined in terms of minimum and

maximum HSV values, as delineated below:

• Under_water_1: minimum (32, 28, 0), maximum (57,

255, 255);

• under_water_2: minimum (30, 245, 0), maximum (76,

186, 186);

• backlit_1: minimum (31, 0, 0), maximum (64, 100, 180);

• remove_noise_1;

• normal_1: minimum (21, 48, 48), maximum (106, 151, 151);

• normal_2: minimum (45, 30, 30), maximum (89, 115, 190);

• backlit_2: minimum (47, 0, 82), maximum (85, 255, 255);

• remove_noise_2;

• backlit_3: minimum (58, 0, 72), maximum (95, 255, 255);

• backlit_4: minimum (47, 0, 82), maximum (85, 255, 255);

• backlit_5: minimum (47, 0, 82), maximum (85, 255, 255);

• remove_noise_3;

• normal_3: minimum (39, 13, 80), maximum (90, 255, 255);

• under_water_3: minimum (0, 0, 104), maximum (110,

157, 255);

• under_water_4: minimum (35, 0, 0), maximum (179,

255, 255).
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TABLE 2 Evaluation of agronomics traits at di�erent treatments.

Treatment position Hill/m2 (in ideal conditions) Hill/m2 (in site field) Tiller number (17 DAS/m2)

1 48 33 188

2 48 45 220

3 52 42 196

4 52 38 224

Average 50 39.5 207

Plant density: evaluate manually in the field.

DAS: day after sowing.

2.5 Rice seed detection and classification
using YOLOv10

To evaluate the effects of our proposed method, we compare

it with the deep learning method YOLOv10. It is developed

in 2024 by researchers at Tsinghua University (Wang et al.,

2024) using the Ultralytics Python package, with the newest

improvement in real-time object detection. The backbone of

YOLOv10 is responsible for extracting features and uses an

improved version of the cross-stage partial network (CSPNet)

to make computations more efficient. The neck connects

features from different scales using path aggregation network

(PAN) layers, helping the system understand objects better.

The head produces multiple predictions per object during

training, thereby improving accuracy. Key features of YOLOv10

include non-maximum suppression (NMS), holistic model

design (HMD), and enhanced model capabilities (EMC).

Unlike traditional models, YOLOv10 avoids duplicate bounding

boxes naturally during training, saving time and reducing

computational costs.

Holistic model design (HMD) optimizes YOLOv10’s

components for both efficiency and accuracy. It

includes lightweight classification heads, spatial-

channel decoupled downsampling, and rank-guided

block design. Enhanced model capabilities (EMCs)

use large-kernel convolutions and partial self-attention

modules to improve performance without adding much

computational cost.

Spatial channel decoupled downsampling makes feature

maps smaller in spatial size while increasing their channel

depth. The usual method of using 3 × 3 convolutions with

a stride of two can be expensive. YOLOv10 improves this

by separating spatial and channel operations. Point-wise

convolutions adjust the number of channels without changing

the spatial size, while depth-wise convolutions reduce the

spatial size but keep the channels unchanged. This separation

lowers the computational cost and retains more information in

the process.

The dataset was created manually from 25 images at

different altitudes. It includes a total of 30,000 images,

with training sets and validation sets divided into a ratio

of 8:2. In total, 24,000 images were used for the training

model, and 6,000 images were used for the testing and

validated models.

2.6 Rice seed classification using a
three-layer CNN

Given the variable field conditions in which rice seeds initiate

the process of tillering, the development of a classification

model to assess germinated rice becomes imperative. A

noteworthy consideration is that a single seed hole can

potentially harbor anywhere from one to three individual

rice seeds, and the subsequent growth patterns may vary

accordingly. To account for these multifaceted phenomena, we

have introduced a dataset consisting of three distinct labels,

namely: “1 rice plant,” “clusters of rice plants,” and “undefined

object.” This comprehensive dataset enables a more nuanced

and accurate evaluation of germinated rice under a range of

real-world scenarios.

We propose a three-layer CNN for the purpose of quantifying

the number of rice entities. The CNN architecture comprises

three fundamental types of layers: convolutional layers, pooling

layers, and fully connected layers, as depicted in Figure 7. This

particular network offers several distinct advantages, rendering it

well-suited to specific scenarios. Notably, it excels in terms of

simplicity and interpretability, effectively reducing computational

complexity and facilitating efficient feature extraction. These

attributes align with our objectives, as they facilitate swift model

training and effective classification. To ensure compatibility

with our input data, the dataset is resized to dimensions

of 224 × 224 × 3 pixels, while each convolution layer

incorporates a 32 × 32 filter, enabling the generation of

feature maps with subsequent max pooling applied at a 2 ×

2 scale.

In the process of dataset creation, a total of 25 images were

deliberately selected at random across various height settings.

The dataset construction aimed to account for the inherent

variability in environmental conditions, particularly the diverse

surface roughness scenarios characteristic of rice field settings. As

a result, the dataset encompasses a range of challenging conditions,

including instances of images exhibiting conditions such as backlit

scenes, isolated rice holes, diminutive rice holes, clusters of rice

plants, submerged rice plants, the presence of rice dust, and objects

that elude straightforward classification, as visually depicted in

Figure 8.

For dataset annotation, each image containing rice plants was

meticulously labeled manually. Subsequently, these images were

standardized to a uniform dimension of 224 × 224 × 3 pixels,
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FIGURE 5

Rice seed detection using the threshold method step by step.

FIGURE 6

Rice seed detection with noise filtering using the thresholding mask.

and the rice plants within them were categorized into one of three

distinct groups, specifically denoted as “1 rice plant,” “clusters of

rice plants,” and “undefined object.”

To augment the dataset’s diversity and enhance its suitability

for comprehensive training, an image enhancement methodology

was systematically applied. This method involved blending

one original image with another (termed “original image 1”

and “original image 2”). Both of these images underwent a

series of image transformations, encompassing rotation, blurring,

denoising, blending, and further iterations of blurring and rotation,

as depicted in Figure 9. These enhancement techniques contributed

to a more comprehensive and robust dataset, encompassing a

broader spectrum of visual characteristics and complexities for

subsequent model training and evaluation.

In the context of the pretrained model, Table 3 provides a

comprehensive breakdown of the class distribution within the

dataset. Subsequently, the output of the model was subjected to

manual testing, employing distinct images selected for the purpose

of evaluating the performance across different classes. During

this evaluation, it became apparent that the “undefined object”

class exhibited suboptimal performance. In pursuit of enhancing

accuracy, we augmented the number of images in this class to equal

the combined number of images in the other two classes, as outlined

in Table 4.
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FIGURE 7

Three-layer CNN architecture.

FIGURE 8

Representative images of rice seedlings captured under various lighting conditions, manually classified into di�erent categories.

After finishing training, parameter metrics, including

accuracy, precision, recall and F1score, as Equations 1–4 were

calculated from the confusion matrix to evaluate the model

performance as below:

accuracy =
TPn + TNn

TPn + FPn + TNn + FNn
(1)

precision =
TPn

TPn + FPn
(2)

recall =
TPn

TPn + FNn
(3)

F1_score = 2∗
precison ∗ recall

precision+ recall
, (4)

where TP
TN represents true positive and true negative class, FP

FN

represents false positive and false negative class, and n represents

the count.

Python programming language, along with the TensorFlow

machine learning platform, was used to structure the proposed

method. Figure 10 illustrates the model accuracy and model loss

of the proposed method. Using a training duration of 20 epochs

for the pretrained model (refer to Figures 10a, b), the results reveal

a convergence point of 85.55% for accuracy and 0.3 for loss.

However, it is noteworthy to mention that these values do not

indicate an optimal performance level for the training dataset.

Subsequently, the model loss and model accuracy of the deep

learning model are presented in Figure 10c, d. In model loss

and model accuracy, the network becomes convergence to ∼0 at
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FIGURE 9

Dataset augmentation.

TABLE 3 Pretrained dataset.

1 rice seed plant Clusters of rice
seed plants

Undefined
object

1,000 1,000 1,000

TABLE 4 Deep learning dataset.

1 rice plant Clusters of rice
seed plants

Undefined
object

1,500 1,500 3,000

epoch ∼20, reaching an optimal performance level around the

25th epoch. Leveraging pre-trained techniques, the model rapidly

converged to an impressive accuracy of 98.8%. This achievement

holds significant relevance, not only in terms of model performance

but also in the optimization of model training time.

The performance of the model classification of the pretrained

model and the deep learning model is assessed using the confusion

matrix (Figure 11) and statistical metrics (Table 5). In the case of

the pretrained model, the undefined object class is misclassified in

37 out of 130 samples as either “1 rice seed plant” and “clusters

of rice seed plant classes.” Additionally, 1 rice seed plant and

clusters of rice seed plant classes share mistaken classification with

20 and 22 out of 130 samples, respectively. They also share a

similar ratio of the accuracy and precision model, with values

around 86.6% and 80.3%, respectively. Turning to the deep learning

model, 1 rice seed plant and undefined object classes share the same

misclassified samples, with four out of 200, while the remaining

class has only wrong three out of 200 samples. In case of statistics,

the “clusters of rice seed plant” class has the highest ratio of

all parameters, while the “undefined object” class has the highest

increase rates in all parameters. Moreover, the average of the deep

learning performance parameters has an accuracy of 98.77%, while

precision, recall, and F1_score share accuracy at 98.17%. The last

three parameters also share a similar increase rate compared to the

pretrained model, with a value of∼18.4%.

3 Results and analysis

3.1 Evaluation of rice seed density using the
segmentation threshold method

To assess the efficiency of the proposed methodology, we

randomly chose a number of aerial imageries characterized by

varying altitudes (4, 6, 8, and 10m above ground level) and

distinct background conditions, including dark soils, underwater,

backlit scenarios, as well as typical conditions, as illustrated in

Figure 12. The red dot presents the central location of rice plants,

while the green and yellow boxes are indicative of individual rice

seeds and clusters of rice seeds, respectively. The findings show

that, even though the plants’ size changes at various heights, the

suggested method can estimate the number of seedlings on each

aerial image well. However, certain parts of the images present

challenges in accurately identifying the exact locations of the rice

seeds. This challenge arises particularly when dust or unknown

object cover rice plants, or when the rice seeds are very small

and traditional techniques might misidentify them as part of

the background. Additionally, advanced learning systems might

classify these positions as undefined objects, particularly at heights

higher than 8 m.
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FIGURE 10

Training and validation error of the three-layer CNN model. (a) mModel accuracy of pretrained-model. (b) Model loss of pretrained-model. (c) Model

accuracy of deep learning model. (d) Model loss of deep learning model.

FIGURE 11

Confusion matrix of the proposed method. (a) Confusion matrix of the pretrained model. (b) Confusion matrix of the deep learning model.

3.2. Evaluation of rice seed density using
YOLOv10 method

In the context of assessing rice plant density utilizing the

YOLOv10 object detection model, the initial procedure entails

the incorporation of the image data into the model’s processing

framework. The outcomes of this process are graphically depicted

in Figure 13. Notably, at this early stage of analysis, the model

provides accurate spatial localization of rice seed voids within the

image. However, it is imperative to note that the model’s capability

is confined to the determination of void locations, without the

capacity to discern whether these voids represent individual rice

seeds or clusters of seeds.

Evidently, YOLOv10 exhibits a high degree of proficiency

in accurately detecting the spatial coordinates of individual rice

seeds. Nevertheless, when dealing with scenarios involving groups
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TABLE 5 Performance metrics of the proposed model evaluated on the test dataset.

Model Class Accuracy (%) Precision (%) Recall (%) F1 score (%)

Pretrained model 1 rice seed plant 86.63% 80.59% 83.08% 81.82%

Clusters of rice seed plants 86.87% 80.29% 84.16% 82.4%

Undefined object 83.16% 78.15% 71.52% 79.64%

Average 85.55% 79.68% 79.74% 79.51%

Deep learning model 1 rice seed plant 98.33% 97.03% 98% 97.51%

Clusters of rice seed plants 99.32% 99.5% 98.5% 99%

Undefined object 98.66% 98% 98% 98%

Average 98.77% 98.17% 98.17% 98.17%

of rice plants where the canopies overlap, the detection results

become notably challenged, rendering it incapable of identifying

the positions of rice seeds within such densely vegetated areas.

It is essential to underscore that this issue persists across varying

observation altitudes, thus constituting a recurrent challenge in the

application of the YOLOv10 model for rice seed detection.

The output of the YOLOv10 model, denoting the positions of

rice seed holes, serves as the primary input for a three-layer CNN

model employed to discern both individual instances of rice plants

and the aggregation of rice plants within the image, as illustrated in

Figure 14. Regrettably, this configuration results in a pronounced

misclassification rate for a significant number of objects, which are

erroneously categorized as “undefined objects.” This phenomenon

underscores the substantial challenges encountered by the CNN

model when integrating the information provided by YOLOv10

into its classification process.

This phenomenon is attributed to the outcomes generated

by the YOLOv10 model. Specifically, this model employs object

cropping techniques with aspect ratios of either 1:2 or 1:3 in relation

to the original object dimensions. Following this cropping process,

the resultant images are resized to a standardized format of 224 ×

224× 3, which serves as the input data for a three-layer CNN. This

transformation is intended to condense the salient features within

the images (see Figure 15). Consequently, it is our contention that

the integration of YOLOv10 and the CNN architecture is not

suitable for the accurate classification of single rice plants and

clusters of rice plants.

4 Discussion

In order to assess the effectiveness of unmanned aerial vehicle

(UAV) technology in comparison to conventional methods, our

primary focus lies on two key targets: “hill/m2” and “tiller

number/m2.” However, due to overlapping canopies resulting from

germination, only the parameter “hill/m2” is measured. Multiple

images were analyzed at different altitudes to enhance the diversity

of data, with each image position varying for each respective

altitude. It is important to note that only two methods were applied

to the same set of photographs, ensuring a focused and rigorous

comparative analysis (as in Table 6).

Table 6 distinctly illustrates that the recommended altitude

for the evaluation of rice plant density is 6m. The discrepancies

between the UAV method and the traditional approach are

minimal, with both the thresholding and YOLOv10 method

yielding average values of hill/m2, amounting to 37.62 and 35.85,

respectively, as compared to the conventional manual calculation

of 39.5 hill/m2, indicating a difference of only 2–4 hill/m2. At the

altitudes at 8 and 10m, the variations in data are less pronounced

when compared to manual calculations. This phenomenon can

be attributed to the limitations of the two proposed methods

in effectively detecting all rice seeds present in each image. In

contrast, at a 4-m altitude, errors in data accuracy stem from the

segmentation method. The lower altitude results in an apparent

enlargement of rice seed size within each photograph, with some

being misidentified as noise (in the form of large objects) or leading

to instances of overlapping in detection.

The findings of various state-of-art studies on detecting and

counting seedling are presented in Table 6 and compared with our

achievement in the current research. Wu et al. (2019) count the

number of seedling plants to predict the agronomical component

of yield using the combination of segmentation and VGG-16.

This research used UAV at a 20-m height to collect 40 seedling

images, with an accuracy higher than 93%. Moreover, Xu et al.

(2023) used a Canon IXUS 1000 HS camera to detect and classify

seedling and weed. Fully convolution network (FCN) and U-net

model attained a precision of 89.5 and 70.8% on classification

achievement. In addition, Yang et al. (2021) and Tseng et al. (2022)

used the same UAV Open Dataset setup of UAV flight at a height of

40m to detect transplanting plants. The detection area measured

8×8m, and various deep learning method were used, achieving

an accuracy of 99%−100%. Besides, in a previous study, Bai et al.

(2023) improved the accuracy of rice plant counting by proposing

a RiceNet network. Compared to other networks, this research

reached the lowest value of mean absolute error (MAE) at 8.6 and

root mean square error (RMSE) at 11.2. Prior research primarily

focused on improving detection methods for transplanting plants,

while neglecting to assess the germination rates of rice sowing, as

well as the density of plants on the paddy field and flight altitude.

As a comparison, our study approached behavior recognition by

examining the germination situation of sowing rice on the paddy

field and considering flight height. We developed a combination of

thresholding and the CNN network to directly process raw aerial

photos taken by UAV in the field. Our finding suggests that, with a

height of 4–10m, an altitude of 6 might be the optimal choice for

data acquisition.
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FIGURE 12

(Continued)
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FIGURE 12 (Continued)

Rice seed detection and evaluation at di�erent heights. (a) At 4-meter height. (b) At 6-m height. (c) At 8-m height. (d) At 10-m height.
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FIGURE 13

(Continued)
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FIGURE 13 (Continued)

Rice seed position classified by YOLOv10. (a) At 4-m height. (b) At 6-m height. (c) At 8-m height. (d) At 10-m height.
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FIGURE 14

(Continued)
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FIGURE 14 (Continued)

Rice seed density using YOLOv10. (a) At 4-m height. (b) At 6-m height. (c) At 8-m height. (d) At 10-m height.

Our segmentation method demonstrates a notable strength

in its impressive accuracy for rice plant identification. However,

a key limitation lies in its susceptibility to noise interference,

particularly when encountering variations in rice plant size at

altitudes exceeding 8m. In contrast, our thresholding method

offers a unique capability to quantify tillering rice seeds and

cluster densities, a strength not shared by YOLOv10. Nevertheless,

while excelling in this specific quantification, it may present a
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FIGURE 15

Comparison of crop image sizes using two methods.

TABLE 6 Comparison of rice seed density evaluation at di�erent altitudes

and methods.

Altitude Average number of hill/m2

YOLO + CNN
method

Threshold + CNN
method

4-m height 80 93

6-m height 37.63 35.85

8-m height 22 22.2

10-m height 16 11

limitation in broader object detection capabilities compared to

YOLOv10. For optimal data acquisition, scheduling UAV flights

between 14- and 20-days post-sowing is advisable, aligning with

the critical seedling growth stage, representing a strategic strength.

However, this recommendation’s sensitivity to local climate and

rice variety growth patterns could be a limitation requiring

adaptive adjustments. At a 6-m altitude, both our thresholding

and YOLOv10methodologies exhibit strength in achieving optimal

accuracy for average yield per square meter, showing relatively

low variances compared to traditional methods. However, the

significant variation in rice density across different altitudes (4, 6,

8, and 10m) highlights a limitation concerning the consistency

of data acquisition based on flight altitude, suggesting 6m as

potentially the most suitable but underscoring altitude’s impact.

Finally, the efficient performance of both pretrained and training

models significantly reduced the time for label identification, a

clear strength. However, a current limitation is the dataset’s origin

within a single crop season, indicating that future research should

prioritize incorporating multi-seasonal data to enhance the model’s

robustness and generalizability.

5 Conclusion

This study introduces a methodology for assessing rice plant

density at varying altitudes, employing a camera mounted on

an unmanned aerial vehicle (UAV). Manual observations were

conducted on the same day in a paddy field exhibiting tillering.

The phenomenon observed is categorized into three distinct labels:

“1 rice seed plants,” “clusters of rice seed plants,” and “undefined

objects.” The UAV operated autonomously with flight altitudes

adjusted to 4, 6, 8, and 10m to capture aerial images. The

evaluation of rice plant density entails a two-step process: the

detection of rice plant positions and their subsequent classification

into labels.

In the initial step, we propose two methods: the

segmentation thresholding method and You Only Look

Once (YOLOv10). In the subsequent stage, a three-layer

CNN is introduced. The segmentation method is equipped

with 12 segmentation blocks, tailored to address three

primary environmental conditions: backlit, normal, and

underwater scenarios, each complemented by three noise

removal steps. In the case of YOLOv10, a dataset of 30,000

manually labeled images was compiled across various altitudes.

For the CNN model, a pretrained model was developed to

evaluate the accuracy of the proposed labels, subsequently

enhancing the training model’s speed, convergence, accuracy,

and efficiency.
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