
TYPE Review

PUBLISHED 25 April 2025

DOI 10.3389/fcomp.2025.1557977

OPEN ACCESS

EDITED BY

Barkaoui Kamel,

Conservatoire National des Arts et Métiers

(CNAM), France

REVIEWED BY

Sabina Rossi,

Ca’ Foscari University of Venice, Italy

Raul Sena Ferreira,

Continental, France

Narjes Ben Rajeb,

National Institute of Applied Science and

Technology, Tunisia

*CORRESPONDENCE

Zohra Sbai

z.sbai@psau.edu.sa

RECEIVED 09 January 2025

ACCEPTED 27 March 2025

PUBLISHED 25 April 2025

CITATION

Sbai Z (2025) Model checking deep neural

networks: opportunities and challenges.

Front. Comput. Sci. 7:1557977.

doi: 10.3389/fcomp.2025.1557977

COPYRIGHT

© 2025 Sbai. This is an open-access article

distributed under the terms of the Creative

Commons Attribution License (CC BY). The

use, distribution or reproduction in other

forums is permitted, provided the original

author(s) and the copyright owner(s) are

credited and that the original publication in

this journal is cited, in accordance with

accepted academic practice. No use,

distribution or reproduction is permitted

which does not comply with these terms.

Model checking deep neural
networks: opportunities and
challenges

Zohra Sbai1,2*

1Department of Computer Science, College of Computer Engineering and Science, Prince Sattam bin

Abdulaziz University, Al-Kharj, Saudi Arabia, 2Department of Information and Communication

Technology, National Engineering School of Tunis, Tunis El Manar University, Tunis, Tunisia

Deep neural networks (DNNs) are extensively used in both current and future

manufacturing, transportation, and healthcare sectors. The widespread use of

neural networks in highly safety-critical applications has made it necessary to

prevent catastrophic issues from arising during prediction processes. In fact,

misreading a tra�c sign by an autonomous car or performing an incorrect

analysis of medical records could put human lives in danger. With this awareness,

the number of studies related to deep neural network verification has increased

dramatically in recent years. In particular, formal guarantees regarding the

behavior of a DNN under particular settings are provided by model checking,

which is crucial in safety-critical applications where network output errors could

have disastrous e�ects. Model checking is an e�ective approach for confirming

that neural networks perform as planned by comparing them to clearly stated

qualities. This paper aims to highlight the critical need for and present challenges

associated with using model-checking verification techniques to verify deep

neural networks before relying on them in real-world applications. It examines

state-of-the-art research and draws the most prominent future directions in the

model checking of neural networks.

KEYWORDS

deep neural network, formal models, specification, model checking, robustness, safety,

consistency

1 Introduction

Deep learning powers several artificial intelligence products and programs that
promote automation by carrying out both physical and computational operations without
requiring any intervention from humans. Essentially, it’s a three or more-layer neural
network that is able to learn from massive information sets in order to predict some
results by imitating the activity of the human brain. The current widespread use of neural
networks in daily life activities has made clear the seriousness of their deployment in highly
safety-critical applications (Amodei et al., 2016). Eykholt et al. (2018) documented an issue
with self-driving cars when a vehicle ran through a stop sign due to slight sign fading,
resulting in an accident. This increases awareness of the necessity to prevent catastrophic
issues from arising during prediction processes.

In order to raise awareness among contemporary businesses and organizations
regarding the grave consequences of implementing deep neural networks without first
confirming their functionality, readers are directed to Huang et al. (2017, 2020) for an
extensive analysis of neural network safety and reliability, along with a detailed description
of the problems that could arise in the most sophisticated deep neural network applications
within safety-critical domains.

Frontiers inComputer Science 01 frontiersin.org

https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org/journals/computer-science#editorial-board
https://www.frontiersin.org/journals/computer-science#editorial-board
https://www.frontiersin.org/journals/computer-science#editorial-board
https://www.frontiersin.org/journals/computer-science#editorial-board
https://doi.org/10.3389/fcomp.2025.1557977
http://crossmark.crossref.org/dialog/?doi=10.3389/fcomp.2025.1557977&domain=pdf&date_stamp=2025-04-25
mailto:z.sbai@psau.edu.sa
https://doi.org/10.3389/fcomp.2025.1557977
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fcomp.2025.1557977/full
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Sbai 10.3389/fcomp.2025.1557977

Given these conditions and prior reports of DNN errors [e.g.,
those reported in Eykholt et al. (2018) and Makino et al. (2022)],
it is imperative to guarantee the proper behavior of deep neural
networks prior to their exploration, particularly in safety-critical
applications where human lives are involved. It has been underlined
by safety-focused organizations, such as NASA (Dutta et al., 2018),
how important it is to validate and confirm neural network models
before using them in safety-sensitive applications.

Formal methods (Woodcock et al., 2009) offer a feasible
approach to ensure system correctness, particularly in critical
applications. They use mathematical tools to examine the
correctness and other characteristics of systems. In a logical and
comprehensive manner, formal methods can be used to evaluate
and analyze models against formal specifications, refine high-level
requirements, and create test scenarios. Formal verification, the
foundation of formal methods, is a methodical checking process
that can detect extreme case problems and design inconsistencies
while considering all inputs.

Two strategies exist for formal verification: model checking
(Clarke, 1997a) and theorem proving (Cook, 2023). The former
reduces the problem to a finite state space and tests exhaustively.
The latter consists of creating a formal axiomatic proof of
correctness. In theorem proving, most tools necessitate human
interaction and thus require time and expertise. However, model
checkers use a brute force approach to solve a problem, and
the process is fully automatic. Moreover, in the model checking
process, if a property is not satisfied, a counterexample is
available for possible use in fixing the fault. This explains why
model-checking research has drawn significant attention from a
variety of scientific communities. That is why we choose, in this
paper, to rely on model checking to explore the verification of
neural networks.

To apply model checking, a system is formally described by
a model on which the correctness is evaluated. A mathematical
representation of a system, called a transition system, is usually used
as the model. The model’s compliance with a set of properties is
checked as part of the verification process. The correctness qualities
in question are generally related to safety or liveness. Safety refers
to the fact that something negative will never occur, and liveness
states that something positive will eventually occur. In a neural
network setting, model checking can be used to explicitly verify its
correctness properties by creating a formal model of the network
and comparing it to specific formal specifications that provide the
necessary criteria.

One example of how model checking may be used with deep
neural networks is the application of Counter-Example Guided
Abstraction Refinement (CEGAR) (Hajdu and Micskei, 2020).
Using counterexamples, CEGAR is a model-checking technique
that iteratively refines the network’s representation until a claim
appears valid or invalid. By evaluating the degree to which deep
neural networks meet specific requirements, this method can be
used to assess how robust they are.

Even though model checking has a vast and useful body of
literature at its disposal, there have not been many studies or
advancements in its application to deep neural network-based
technologies until recently. In this respect, the current work
attempts to review the various approaches to model checking deep
neural networks and consequently discuss the potential challenges

and future research directions necessary to advance the topic
toward maturity.

It is important to note that correctness, as it relates to neural
networks, is the degree to which the network generates outcomes
correctly given a certain input. All it takes to determine whether a
neural network is correct is for it to produce the expected result
for a given input. Neural networks are becoming increasingly
complex and require more training data, making it harder to ensure
their correctness. In general, researchers are not investigating the
proof of the functional correctness of neural networks. Instead,
they focus on characterizing one of the three main classes of
correctness properties: robustness, safety, and consistency, which
will be categorized later.

1.1 Paper contributions

The present study aims to achieve the following objectives by
conducting a comprehensive assessment of the literature on deep
neural networks’ model checking:

• Summarize the current proposals for neural network
model checking, aiming to provide a guide for researchers
investigating this subject.

• Analyze the weaknesses of the current approaches and tools
available to check the robustness, safety, and consistency of
neural networks.

• Explore the challenges faced and the possible applications of
existing techniques to tackle these challenges.

• Examine the potential avenues for future research to
support the use of model checking in ensuring the secure
implementation of neural networks in practical applications.

1.2 Related work

While focusing on formal specifications, the authors of Seshia
et al. (2018) listed various properties that may attract researchers
interested in deep neural networks. They demonstrated that
formal specification is used not only for verifying DNNs but
also for their retraining. The methods for testing, adversarial
attacks, verifiability, and interpretability of neural networks that
emerged between 2017 and 2020 are examined in Huang et al.
(2020). In Liu et al. (2021), the authors mathematically defined
the neural network verification problem and described various
algorithms from the perspective of current neural network verifiers.
Although the paper covered different existing procedures published
before 2021, ranging from testing to constraint fulfillment to
search and optimization, it does not present works addressing
the formal models and specifications of neural networks, nor the
algorithms for model checking. Urban and Miné (2021) discussed
the applications of formal methods to machine learning in general
and gave a glimpse on model checking application to verify neural
networks used in the context of embedded critical software. The
work inMeng et al. (2022) examined various adversarial robustness
verification methods from a formal basis. It provided insightful
explanations of the mathematical modeling of property reduction

Frontiers inComputer Science 02 frontiersin.org

https://doi.org/10.3389/fcomp.2025.1557977
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Sbai 10.3389/fcomp.2025.1557977

FIGURE 1

(a) Structure of a multilayer neural network; (b) One neuron’s output calculation with xi and wi (1 ≤ i ≤ n) the outputs and weights respectively of the

previous n neurons, b the bias and f the activation function.

and formalizationmethods. A recent review of abstractionmethods
for verifying neural networks is published in Boudardara et al.
(2023). The present study differs from existing review papers on
neural network verification, making it the first to focus on model
checking approaches by examining their findings, detailing their
limitations, and considering their possible integration with various
approaches.

1.3 Paper outline

Section 2 presents an overview of the application of
model checking to deep neural networks while providing some
preliminaries about DNNs and the model-checking process.
Sections 3 and 4 explore, respectively, the different specification
formalisms and models applied in the existing works. A
categorization of the various approaches investigated according to
the model-checking algorithm is given in Section 5. A discussion
of the main findings of this study is presented in Section 6, and
a statement of the main challenges that neural networks’ model
checking is currently facing is presented in Section 7. The work
is concluded, and some potential research directions are listed in
Section 8.

2 Model checking DNNs: an overview

To check the correctness of a neural network, it is beneficial
to refer to formal verification as a rigorous process for confirming
the properties of software and hardware by utilizing logical and
mathematical tools to construct statements in precise mathematical
terms. Formal verification strategies for neural networks seek
to mathematically verify their correctness by ensuring that their
behavior satisfies certain requirements. Belonging to formal
methods tools, model checkers use a brute force approach to solve
a question in a fully automatic process. Moreover, in the model

checking process, if a property is not satisfied, a counterexample
is available for possible use in fixing the fault. The application
of model checking in deep learning in general has numerous
advantages. Verifying the correctness of algorithms in a brute-force
manner is one of its primary advantages. This can be crucial in
making sure the prediction process is carried out as planned and
does not lead to undesirable outcomes. Moreover, tests for safety
and liveness qualities, naturally conducted by model checking,
are in direct conformance with correctness properties of neural
networks.

2.1 Preliminaries on DNNs

Inspired by the human brain, a neural network (Aggarwal,
2018), also known as an artificial neural network, is an
interconnected network of nodes or artificial neurons, where each
node performs an operation based on the inputs resulting from the
previous nodes in order to perform a global complex operation.
This way, neural networks can solve complex problems such as
object recognition or medical diagnosis. As illustrated in Figure 1a,
a neural network is a chain of relationships between a set of inputs
(input layer) and a set of outputs (output layer). There are layers
of units in between (hidden layers), where each one is computing a
weighted sum sigmoided from the layer before it.

The simple idea behind computing the outputs is that each
neuron receives values from its preceding nodes x1, .., xn, where
each node xi has a weight wi. This weight value may be seen
as a score of the importance of this node for computing the
corresponding output. The inputs xi are multiplied by their weights
wi and then summed. The resulting sum, added to a certain bias
b (or threshold), is then passed to an activation function f , which
determines the output in a predictable form (see Figure 1b). The
most popular activation function is the rectified linear activation
function, or ReLU: f (x) = max(0, x). This output will be passed to

Frontiers inComputer Science 03 frontiersin.org

https://doi.org/10.3389/fcomp.2025.1557977
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Sbai 10.3389/fcomp.2025.1557977

the next layer and will serve as input for the specified neurons. This
method of data propagation between layers characterizes the neural
network as “a feedforward neural network” (Yalçın, 2021).

Formally, a feedforward neural network can be defined as
follows: The network contains an input layer L0 with n0 nodes,
m−1 hidden layers L1, ..., Lm−1 with n1, ..., nm−1 nodes respectively,
and an output layer Lm containing nm nodes. The values of the
nodes in the input layer are given by the input to the neural network
(denoted V1, ...,Vn0), and the values of the nodes in the other layers
are computed as follows:

∀j ∈ 1..m, ∀p ∈ 1..nj, V
j
p = f (

nj−1∑

i=1

(W
pj
i V

j−1
i)+ b

j
p),

whereV
j
a denotes the value of the neuron number a on the layer

number j, f is the activation function, b
j
a denotes the bias of the node

a on the layer j, andW
bj
a denotes the weight of the connection from

neuron a of layer j− 1 to neuron b of layer j.
Neural networks can enhance the quality of outputs thanks to

backpropagation algorithms. Backpropagation executes a reversal
run across the network after each forward run while revising
the weights and biases. A neural network with multiple hidden
layers that processes and learns from a large amount of data by
capturing complex patterns is called a deep neural network. Deep
neural networks may be classified according to their structure and
function. The architectures studied in papers dealing with model
checking of neural networks are FNNs, RNNs, and LSTMs.

FNNs (feedforward neural networks) (Yalçın, 2021) are a type
of neural network in which data flow in one direction, from the
input layer through the hidden layers to the output layer. Neurons
within the same layer are not interconnected, and information does
not return from any node to previous layers. The network is fully
connected, meaning each neuron in the input and hidden layers is
connected to all neurons in the next layer.

Deep neural networks that use sequential data are called
recurrent neural networks (RNNs) (Sherstinsky, 2020). They seek
to retain information from previous inputs to affect present
input and output. Thus, recurrent neural networks rely on the
previous elements in the chain to determine their output, in
contrast to typical deep neural networks, which expect inputs
and outputs to be unrelated. RNNs are further differentiated
by the fact that their settings are shared across all network
layers. They carry one identical weight parameter throughout the
network layers, compared to feedforward networks, which rely on
distinct weights.

Long Short Term Memory networks (LSTM) (Sherstinsky,
2020) are RNNs that introduce a new unit known as a memory
cell, enabling the network to store and retrieve data for a longer
duration. An LSTM’s memory cell consists of an input gate,
an output gate, and a forget gate. These gates control what
information is recalled and what is forgotten by governing the flow
of information inside the cell that holds data. As a result, LSTMs
can remember extended sequences of significant information while
ignoring irrelevant details.

Modern DNNs frequently contain a large number of
parameters, and deploying them on embedded devices with
limited resources can, therefore, be difficult. Quantization appears

to be a potential method to lessen resource requirements in
order to address this problem. Quantization transforms 32/64-bit
floating points to tiny bit-width numbers with low accuracy loss.
Specifically, utilizing the bipolar binaries ± 1, binarized neural
networks (BNNs) reflect the case of 1-bit quantization. By using
bit-wise operations, BNNs may substantially decrease storage
capacity requirements and processing periods, which significantly
increases both energy and time efficiency.

2.2 Model checking process

Verifying certain properties of a system by model checking
(Clarke, 1997b) generally involves checking if the property is
ensured by the systemmodel. As shown in Figure 2, a mathematical
illustration of the system, such as a transition system, could serve
as the model in this case. Typically, the property to be verified
is stated in a particular language, commonly a temporal logic. In
a transition system T, all accepted system runs are stated. The
system progresses by taking steps that move it from one state
to another. All the states reachable from the system’s original
state by taking legitimate actions define the state space. The
algorithm ensuring model checking takes as input the system
model (commonly a transition diagram) and the specification of
the property (commonly a formula written in temporal logic) and
checks if the model satisfies the specification, i.e., the property is
satisfied in all the possible executions of the system. In general, this
satisfaction relation is formulated asM |H ϕ, stating that the model
M satisfies the property ϕ. Now, depending on how to describe all
the possible system executions, the model checking algorithm may
be explicit (Holzmann, 2018) or implicit (also known as symbolic)
(Burch et al., 1992). Other variations exist, such as bounded and on-
the-fly model checking, aiming to optimize the process and save
computational costs. These model checking algorithms and their
application to DNN will be sketched in Section 5.

Since applying model checking requires defining a model and a
specification (Figure 2), we propose in the next sections to study the
various models and specifications defined in the literature to ensure
the model checking of deep neural networks. However, before this,
we provide a general overview of the existing applications of model
checking to DNNs to give the reader insight into the comparative
study we are presenting.

2.3 Applications of model checking to
DNNs

Verifying a neural network poses the challenge of clearly
demonstrating that the neural network meets a characteristic
corresponding to its semantic function. Checking adversarial
robustness, for example, involves showing that a neural network
is resilient to minor perturbations of its inputs, meaning that the
output remains unaffected by minor modifications of an input.
Inputs that influence the outputs are referred to as adversarial
examples, and finding these adversarial examples is crucial because
they highlight safety issues regarding DNNs if they exist. To ensure

Frontiers inComputer Science 04 frontiersin.org

https://doi.org/10.3389/fcomp.2025.1557977
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Sbai 10.3389/fcomp.2025.1557977

FIGURE 2

Model checking of neural networks.

safety in property, it suffices to show that the output of a neural
network remains unaffected by specific features such as gender.
Consistency checking may refer to confirming that the outputs for
any two inputs that are close to one another are also similarly close.

As we aim to analyze the existing approaches to model checking
neural networks against all correctness properties, we provide a
general synopsis in Table 1 to give the reader a glance at the studied
approaches and the criteria for their distinction in this survey.
In particular, for each proposal, we are looking for the following
details:

• The language used or proposed to model the neural network
(Model)

• The formal language proposed for properties specification
(Specification)

• The class of model checking algorithm (MC algorithm)
• The tool applied or implemented to evaluate the approach
• The properties of interest: robustness, consistency, or safety
• The architecture of neural networks studied (DNN type)
• The benchmarks/datasets used for experimental evaluation if

any.

3 Formal models of DNNs

Formal models are conceptual depictions of the neural network
examined in model checking. Through the use of straightforward
and understandable language, these models encapsulate the
fundamental behavior of the network, facilitating automated
property verification. A model is keen to represent either explicitly
or implicitly the transition system to be checked by a model
checker against a formal specification of the desired property.
In the following subsections, we categorize the different models

used in the papers dealing with DNNs model checking, which are
summarized in Figure 3.

3.1 Finite automata

Numerous studies (Khmelnitsky et al., 2021; Mayr et al.,
2021; Sälzer et al., 2022; Muškardin et al., 2022; Tao et al.,
2023) propose modeling a deep neural network using a finite
automaton. Finite automata provide a strong and effective
method for capturing the dynamic behavior of DNNs.
Although they might not be able to handle every type of
property, their interpretability, simplicity of use, and effective
verification techniques make them invaluable tools in the model-
checking process. We detail some of these approaches in the
following sections.

In Sälzer et al. (2022), the authors demonstrate how to
transform a deep neural network into a finite automaton that
can recognize words as pairs between inputs and outputs based
on theoretically promising results. More specifically, they convert
the network into an eventually-always weak nondeterministic
Büchi automaton (WNBAFG) (Sistla et al., 1987), which is used
to recognize patterns in infinite sequences, thus allowing for
the verification of complex properties, for which minimization
and determinization are easy. The transformation of a DNN
to a WNBAFG is carried out by capturing the input/output
behavior. Based on a white-box technique, the authors show that
a WNBAFG is defined for each computation performed on a
node of the network (as defined in Figure 1b). This automaton
can be obtained by combining three WNBAFG derived from the
three operations depicted in a neuron’s computation, namely
addition, multiplication, and the activation function (ReLU in their

Frontiers inComputer Science 05 frontiersin.org

https://doi.org/10.3389/fcomp.2025.1557977
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Sbai 10.3389/fcomp.2025.1557977

TABLE 1 Analysis of the works on model checking deep neural networks.

References Model Specification MC
algorithm

Tool Properties DNN type Benchmarks/
datasets

Sena et al., 2019 Interval
arithmetic

Formal logic Bounded ESBMC-GPU Safety FNN Authors character
recognition dataset

Liu et al., 2020 Interval
arithmetic

ReLU temporal
logic

Explicit Authors’
prototype tool

Local
robustness

FNN Randomly generated
models

Wang et al., 2020 MSVL PPTL temporal
logic

Explicit MC compiler Robustness FNN Custom dataset

Zhang et al., 2021 BDD Formal logic Bounded BDD4BNN Robustness BNN MNIST

Khmelnitsky et al.,
2021

FSM FSM Explicit and
statistical model
checking

Authors’
prototype

Adversarial
robustness

LSTM Randomly generated
FSMs

Mayr et al., 2021 FSM FSM On the fly Authors’
prototype

Safety RNN Different existing
datasets

Muškardin et al.,
2022

FSM FSM Explicit DyNet, AALpy Safety RNN Tomita grammars

Gros et al., 2022 MDP MDP Explicit Modest toolset Safety FNN Racetrack

Sena et al., 2022 Interval
arithmetic

Formal logic Bounded ESBMC Safety FNN UCI Iris, vocalic
character recognition

Sälzer et al., 2022 FSM FSM Explicit Author’s
prototype

Robustness BNN Randomly generated
BNN

Tao et al., 2023 FSM BLTL temporal
logic

On-the-fly Author’s
prototype

Robustness
and
consistency

BNN MNIST, UCIAdult

Naseer et al., 2023 Kripke
structure

Temporal logic Implicit FANNet+ Robustness
and safety

FNN Health datasets and
Acas Xu

FIGURE 3

Formal models applied to DNNs.

work). Figure 4 illustrates a WNBAFG that recognizes the binary
equality relation.

Muškardin et al. (2022) proposes a formal description of
the behavior of recurrent neural network classifiers based on
deterministic finite automaton (DFA) extraction. Their method
is applied independently of the RNN inner workings (black-box
technique) and is based on active automata learning along with
conformance testing guided by the model. To capture the input-
output behavior of the RNN, they describe how equivalence oracles
may be used in active automata learning. They examine learning
within the probably approximately correct (PAC) framework,
utilizing the refinement-based oracle suggested in Weiss et al.

(2018), along with coverage-guided validity checking. Through
several steps, they apply an input word component to the
RNN and subsequently examine the results on the output layer.
Since the automata learning may not halt because of the RNN
modeling non-regular languages, the authors introduce a stopping
condition for continuous learning, thereby achieving automata
that accept a regular approximation of a non-regular language
simulated by the RNN. An example of DFA extraction is illustrated
in Figure 5, which shows the learning procedure of an RNN
trained on a dataset generated for Tomita grammars on the
right, with the extracted DFA from the trained RNN depicted on
the left.

Frontiers inComputer Science 06 frontiersin.org

https://doi.org/10.3389/fcomp.2025.1557977
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Sbai 10.3389/fcomp.2025.1557977

FIGURE 4

WNBAFG that recognizes the binary equality relation [figure from Sälzer et al. (2022)].

FIGURE 5

Example of DFA extracted from a RNN trained on Tomita 3 grammar [figure from Muškardin et al. (2022)].

3.2 Markov decision process

By expanding the capabilities of ordinary finite-state models,
Markov Decision Processes (MDPs) prove useful in probabilistic
model checking. Models with probability incorporated into state
transitions are known as MDPs. There exists a specific probability
associated with every state transition. This makes it possible to
simulate systems that have inherent uncertainty or unpredictability,
which is common in real-world situations. This fact helps to
produce more reliable and insightful verification findings. Equally,
in the domain of machine learning and neural networks, MDPs are
gaining popularity, and recent developments have concentrated on
resolving issues and investigating novel methods for MDP-based

modeling of deep neural networks (DNN). Neural network safety
features (e.g., the network’s inability to produce control actions that
result in collisions) can be explicitly verified using MDP models.
Furthermore, it is possible to interpret how the neural network
makes decisions by examining the learned probability of transitions
within the MDP.

Simplified models of stochastic transitions, known as Markov
chains, are represented by a collection of states S and a transition
probability matrix P, which expresses the probabilities of changing
states. By allowing an agent to make decisions that affect the
results, MDPs expand upon the basic structure of Markov chains.
In addition to S and P, they define a set of potential actions A
that the agent may perform in each condition, a reward function

Frontiers inComputer Science 07 frontiersin.org

https://doi.org/10.3389/fcomp.2025.1557977
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Sbai 10.3389/fcomp.2025.1557977

R describing the instant reward the agent receives for acting
in a particular situation, and a discount factor regulating the
significance of future rewards. This explains how promising it is
to use MDPs in specifying the setting and arrangement of rewards
in reinforcement learning, which is used to train neural networks.

MDP can abstract that during neural network training, the
weights are updated based on the gradients calculated from the loss
function. This abstraction allows for modeling the configurations
of the neural network (weights, activations, and so on) as states and
the operations related to weight updates as actions. The rewards can
be determined by the network’s performance on the training data
(the smaller the loss, the larger the reward). Transition probabilities
depend on the optimization technique. Finally, the neural network,
referred to as the agent in MDP, optimizes its predicted cumulative
reward by examining various weight updates.

In the context of neural network model checking based
on MDP modeling, the authors of Gros et al. (2022) consider
Racetrack (Gardner, 1970) as an expandable, discrete, and basic
representation of real-world stochastic events that is used as a
benchmark in various verification methods (Baier et al., 2021). The
authors show how to obtain the automaton from a deterministic
version of the game. With an edge for each of the nine distinct
acceleration vectors, the vehicle automaton begins at a certain
point. Every edge provides the collision test machine with the start
and end locations after updating the velocity appropriately. Three
response options are possible from the collision test: “valid,” “crash,”
or “reached goal.” The vehicle automaton returns to its starting
position if the trajectory is “valid.” If not, it moves into a final state
from which it cannot move afterward. Subsequently, the authors
define the actions necessary to deal with collisions and compute
the trajectory. They explain the trajectory discretization used to
determine if the vehicle succeeded in passing the goal or crashed
into a wall and outline all the computational work necessary for
them to use the JANI framework (Budde et al., 2017). However, two
possible downsides appear: reaching high confidence could require
a significant number of experiment runs, and the computational
cost of calling the neural network could significantly reduce its
usefulness in real-time situations.

In the literature, it has been proven that there is a relation
between MDP and neural networks regarding reinforcement
learning.MDP specifies the environment in which a neural network
functions as an agent. The states, actions, transitions, and rewards
that the agent experiences are all described in the MDP. Within the
MDP structure, the neural network is able to learn via trials and
mistakes. It acts, then monitors the states and rewards that follow,
and then modifies its actions to maximize rewards.

3.3 Binary decision diagram

In model checking, states of the transition diagram can be
compactly expressed as a directed acyclic graph using binary
decision diagrams (BDDs). In this graph, the nodes denote the
variables, and the edges show the possible values of the variables. In
relation to neural networks, BDDs can be used to represent the logic
of a single neuron or a layer. BDD models are able to capture the
decision-making process inside that particular unit by effectively

capturing the connections between the inputs, the weights, and the
activation functions.

It is possible to convert the intricate network behavior into a
more readable and understandable BDD representation. In Shih
et al. (2019), the authors use the BDD to run queries that perform
different analyses after encoding a binarized neural network (BNN)
and an input region as a BDD.

To efficiently build BDDs from BNNs, Zhang et al. (2021)
directly converts a BNN and its corresponding input area into
BDDs. A BNN is an ordered structure comprising several inner
blocks and one output block. Each inner block consists of three
layers: the batch normalization layer (BN), the binarization layer
(BIN), and the linear layer (LIN). The output block contains
two layers: one linear and the other argmax. The function
f :{+1,−1}n → {+1,−1}m is captured by each block, which
consists of three layers (where n represents the number of inputs
in a block and m the number of outputs). Given that the ith output
yi of the block may be represented by a cardinality constraint of the
form

∑n
j=1 lj ≥ k (where k is a constant and lj is either xj or ¬xj for

input xj), this cardinality constraint is encoded as a BDDwithO((n-
k)·k) nodes. This way, they encode the input-output relation of
each block as a BDD, the composition of which results in the BDD
for the whole BNN. Such composition allows for the support of
incremental encoding and the reusability of constructed BDDs for
blocks. An example illustrating their approach is shown in Figure 6.

Although an exact translation may not be possible, BDDs may
be utilized to roughly represent the logic of particular network
layers or more compact networks.

3.4 Petri net

Petri nets are graphical modeling tools that are primarily
used for distributed systems, manufacturing processes, and the
analysis and modeling of other concurrent systems. They are a
powerful tool for modeling concurrent behavior, which allows
for the simultaneous occurrence of several events. This feature
is helpful in simulating specific aspects of neural networks,
particularly concerning neuron activation or parallel computation.
The parallelism present in neural network structures can be
assessed using Petri nets. One can examine the simultaneous
interactions and influences between various neural network
components (neuron, layer, computing unit, and so on) by
modeling them as Petri net fragments.

For the verification of neural networks, Petri net analysis
approaches can be used to assess qualities such as liveness (will
certain neurons constantly be activated?) and reachability (can a
given output be reached?). This aids in locating possible problems
with the operation of the network. Additionally, for recurrent
neural networks, Petri net analysis may be able to detect deadlocks
(stuck in a vicious cycle in which data circulates but does not
advance).

The authors of Albuquerque et al. (2023) present a model
named HTCPN-MLP, which consists of four subnets modeled in
transitions named “Load dataset,” “Training,” “Validation,” and
“Test.” In the first transition, the dataset is loaded and transferred
to the place dataset as tokens, initiating the second stage, which

Frontiers inComputer Science 08 frontiersin.org

https://doi.org/10.3389/fcomp.2025.1557977
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Sbai 10.3389/fcomp.2025.1557977

FIGURE 6

Example of BNN encoding in DBB (Zhang et al., 2021). Bottom-left shows the BNN which has one inner block t1 and one outgoing block t2. The

components of the Weight matrix are connected to the edges, and the additional variables are listed in the up-left table. The bottom-right section

lists the cardinality restrictions for the conversion operations on blocks t1 and t2, whereas the up-right table includes the transformation methods for

those pieces.

is “Training.” Tokens with the input attributes and intended
outputs are provided to the HTCPN-MLP during the training
phase of the network. In the third step, the weights and thresholds
are passed to the subnet that models the network validation
by modifying the training process. Lastly, the transition “Test”
initiates network testing. The four subnets are then explained in
the paper, demonstrating the power of Petri nets to model the
processes of training the neural network, as well as validation and
testing. Different benchmarking datasets are used to evaluate the
performance of the proposed model.

3.5 Kripke structure

A Kripke structure is a mathematical model used to depict
how a system behaves over time. It is a basic concept in model
checking and formal verification, as it effectively represents the state
transition system. A Kripke structure is defined by a tuple (S, T, L)
where S is a collection of states and T is a transition function defined
from S to S. Each state is given a collection of atomic propositions
by the labeling function L, which defines the attributes that hold in
that state. A subset of S defines the possible input states.

In Naseer et al. (2023), examining the networks tolerance to
adversarial attacks, the authors define the Kripke structure of the
trained neural network with reference to the number of these
adversarial options, denoted as n. They need one initial state
representing the initial atomic propositions plus x nodes, where
x is the number of possible adversarial options multiplied by the
number of output classes, also containing the necessary atomic
propositions. They suggest a Kripke structure with 1 + nC nodes,
where C is the number of outputs. According to the authors, the
hidden nodes will not appear in the Kripke structure because of the
use of jump transitions that allow for regrouping the states with

the same collection of atomic propositions. As for the transitions
between these nodes, there will be nC(1+nC) transitions. The
general issue when using a Kripke structure is that the number of
states may grow exponentially, especially when working with a wide
input domain. To cope with this problem, the authors of Naseer
et al. (2023) propose some reduction techniques.

3.6 Interval arithmetic

To investigate how a model behaves when its input remains
uncertain, one approach is to employ interval arithmetic, even
though it does not fully represent the entire neural network
structure or its operations. Given that real-world data tends to
include some noise or uncertainty, interval arithmetic enables
interval expression rather than describing these inputs as distinct
values. The input intervals are processed through the layers of the
network until an output interval is attained. The latter represents
a spectrum of values that the network could generate as outputs
while taking input uncertainty into account and will be utilized
in the verification process. The output intervals allow us to assess
if, for any particular input range, the result of the network stays
within acceptable boundaries (safety requirements). An easy way
of checking the robustness of neural networks is to compare the
bounds of their outputs. Given the NP-hardness of finding exact
bounds of the outputs (Katz et al., 2017), various approaches, such
as those in Bunel et al. (2020); Lan et al. (2022) and Fatnassi et al.
(2023), have been developed to propose tight over-approximations
of the network’s outputs.

Using interval arithmetic, the authors of Wang et al. (2018)
calculate accurate boundaries on the neural network outputs. They
also implemented a number of adjustments in ReluVal to reduce the
output range overestimates while propagating the bounds through

Frontiers inComputer Science 09 frontiersin.org

https://doi.org/10.3389/fcomp.2025.1557977
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Sbai 10.3389/fcomp.2025.1557977

the layers of the network. Mainly, they apply symbolic intervals to
allow accurate handling of input connections, which helps lower
the errors of range estimation. Additionally, they apply “iterative
interval refinement” when the output domain is too wide to be
definitive; namely, ReluVal performs bounds spreading on the
shorter input values after repeatedly splitting the source range. For
greater efficiency, they propose other optimizations to examine
how the network outputs are affected by the input parameters by
calculating the gradients of each layer with respect to the value of
the input.

A useful technique for neural network model checking is
interval arithmetic, which is especially useful for examining the
network’s behavior when input uncertainty is present. However,
it’s important to take into account its limitations, which include
conservative estimates, scaling issues, and restricted reasoning
capabilities.

4 Formal specification

It is crucial to ensure that safety-critical systems function
properly, as any malfunction could have disastrous effects. The
term correctness of a function generally refers to verifying that
the function’s result is the expected one; in other words, it truly
performs its intended task. This problem was first addressed by
Alan Turing when he attempted to prove that the factorial function
works correctly by creating a proof of correctness based on logic,
which shows that the function’s implementation corresponds to its
mathematical definition.

Given that neural networks are becoming increasingly complex
and require more training datasets, ensuring their functional
correctness is a difficult, if not impossible, task. However, to ensure
the reliability and trustworthiness of neural networks, it is sufficient
if we can verify that bad outputs are not encountered or good
outputs are obtained. Researchers, in particular, have looked into
various aspects of the correctness of neural networks and offered
different methods for validating a variety of interesting properties.
The main categories of these properties are robustness, safety, and
consistency.

• Robustness properties. The term robustness (Li et al., 2022;
Lin R. et al., 2022) describes a neural network’s capacity to
retain accuracy in the face of opposing instances. Let’s take an
example where we wish to confirm that a neural network can
withstand slight changes in the input data (the input being in a
certain domain D). An epsilon ball surrounding the input data
(denoted by region R) can be used to represent the robustness
property, which states that the neural network’s output should
not vary noticeably for any input that falls inside the ball. We
can formulate this as follows:

∀x ∈ D, ∃ a region R around it such that ∀y ∈ R, f (y) = f (x)

Adversarial robustness (Meng et al., 2022; Yu et al., 2023)
is a stricter form of robustness that necessitates the network
to retain accuracy in the face of deliberately designed inputs
intended to trick it. When we examine a neural network’s
ability to withstand minor disruptions within a given range

of inputs, we are addressing local robustness. However, when
we consider a network’s capacity to continue functioning as
planned under a wide range of circumstances or inputs, we are
addressing global robustness.

• Safety properties. First mentioned in Kurd and Kelly (2003),
the safety of neural networks describes their capacity to
generate accurate and credible outcomes when carrying out
a specific activity. In other words, a neural network is safe if
it does not exhibit unanticipated actions or other outcomes
that could endanger its surroundings, including its users.
In theory, a neural network is safe if it can forecast the
outputs accurately for all potential inputs. Locating adversarial
instances generally ensures that these properties are checked.
Safety properties, also known as pointwise robustness (Huang
et al., 2017), can be expressed for a point x in the input domain
D over a certain region R by the following:

∄y ∈ R such that f (y) 6= f (x)

• Consistency properties. Neural networks are said to be
consistent (Ye et al., 2017; Lin S.-B. et al., 2022) when they
can generate equivalent results for inputs that are alike. In
other words, two inputs should have matching outputs that
are close to each other if they are similar in any way. For
neural networks, consistency is a crucial characteristic since
it guarantees their durability and dependability in a range of
scenarios, including autonomous vehicles, natural language
processing, and image categorization. If x is an input and y

is its corresponding output, Ri is an input region, and Ro is an
output region, the consistency can be formalized as follows:

x ∈ Ri → y ∈ Ro

The region around a point x comprises all the points within a
certain distance from x. This distancemay bemeasured using either
Manhattan or Euclidean distance, and it may be defined according
to various norms, such as infinity norms.

To make the verification of these properties most relevant and
viable, formal specification of deep neural networks is tremendous
Formal specification provides a rigorous mathematical framework
for accurately defining the behavior of DNNs. It serves not only
for verification but also for retraining, utilizing counterexamples,
for instance. While various properties need to be tackled when
verifying DNNs, we focus in this paper on exploring the techniques
and languages used in the literature to formally specify these
properties. In particular, we explain in the following subsections
how formal specification is applied to check the properties tacked in
state-of-the-art papers, namely robustness, safety, and consistency.
The formal languages used in the literature to formally specify
one or more of the aforementioned properties are summarized in
Figure 7.

4.1 Formal logic

A key tool in formal specification is formal logic, which
provides a clear and concise language for describing the behavior

Frontiers inComputer Science 10 frontiersin.org

https://doi.org/10.3389/fcomp.2025.1557977
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Sbai 10.3389/fcomp.2025.1557977

FIGURE 7

Formal specifications applied to DNNs.

of systems. It enables precise expression of the characteristics
and connections between system elements. Numerous varieties of
formal logic exist, each with distinct syntax, meaning, and uses.
Propositional Logic, First-Order Logic, Temporal Logic, and Fuzzy
Logic are some of the types of formal logic that can be used
depending on the problem being solved. In the context of model
checking, temporal logic is the first that comes to mind, prompting
us to devote the next subsection to demonstrating how temporal
logic is used to specify neural networks. In the remainder of this
subsection, we provide a brief overview of the use of first-order
logic in the formal specification of neural networks.

In Sena et al. (2022), the safety property is specified using first-
order logic. To each input variable, a non-deterministic float is
assigned as prescribed by the SMT-based model checker ESBMC
(Monteiro et al., 2017). Then, pre-conditions and post-conditions
regarding these variables are specified via the two operators, assume
and assert, supported by ESBMC.

An example of two input variables is as follows:

float x1 = nondet_float()
float x2 = nondet_float()

Then, the authors define the preconditions they assume for the
domains of the input variables:

assume(x1 >= 0 && x1 =< 2)
assume(x2 >= −0.5 && x2 =< 0.5)

Finally, they specify the property with the following post-
condition, which verifies whether the classifier consistently predicts
the second output class; for example, in the case of binary
classification with two possible outputs, y1 and y2:

assert(y2 > y1)

To ensure sufficient validation for safety-critical software,
covering methods use a set of logical statements that utilize an
improved Condition/Decision approach. In the context of neural
networks, the preceding layer’s neurons represent conditions, while
the subsequent layer’s neurons represent decisions. In Sena et al.
(2019), the adversarial nature of two images with respect to the
network neurons is measured using covering methods. There are

four covering methods, each treated as a property. All of the
properties specifically state that an image collection must result in
the method covering every neuron in the network. Utilizing every
covering method, their approach assesses whether the adversarial
behavior of a group of pairs of images reaches a specific percentage
of all neurons. The covering methods are described via logical
expressions, which will be used in the two operators, assume and
assert, supported by ESBMC. The authors demonstrate that they
can search for an adversarial example in an image classifier by
checking the following formula:

limage_misclassified ↔ (n3,C < V) ∧ (n3,i > V)

Where limage_misclassified serves as evidence for the correctness of
the initial classification of the image. The parameter V indicates
the reference value, while the variable C denotes the expected
classification, representing the neuron’s position in the output.
Finally, i reflects any additional neuron locations besides C. The
notations np,q refer to the value of the neuron at position q in layer
p.

4.2 Temporal logic

In situations that require sequential information or when
temporal restrictions are significant, neural network behavior can
be specified and verified using temporal logic. Application-specific
tasks may include ensuring the network adheres to temporal
limitations set by the system, performs adequately across sequences,
or interacts appropriately with time-dependent components. In
general, when reasoning about the dynamic features of systems that
evolve over time, temporal logic is employed. This is accomplished
through the use of temporal connectors (eventually, always, and so
on) to express the concept of time in the desired properties. An
example of a safety property in image classification can be expressed
in temporal logic as: “G ¬(output = dangerous),” which states that
“always” (or globally G), a dangerous output is not reached.

Verifying that a neural network satisfies its intended
requirements and is safe and dependable can be done by
utilizing temporal logic. Important uses, such as self-driving
cars and medical diagnosis, may benefit greatly from this. Linear

Frontiers inComputer Science 11 frontiersin.org

https://doi.org/10.3389/fcomp.2025.1557977
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Sbai 10.3389/fcomp.2025.1557977

Temporal Logic (LTL; Hustiu et al., 2023) and Computation
Tree Logic (CTL; Nayak et al., 2024) are two popular temporal
logics that are frequently applied and extended in numerous
variants to enlarge their application scope. LTL is a framework for
defining the characteristics of linear state sequences. To represent
temporal features, it makes use of operators such as “always” (G),
“eventually” (F), “until” (U), and “next” (X). For CTL, it is used to
characterize features of branching-time systems, where different
future routes are feasible. To express temporal features, it makes
use of LTL operators as well as the path quantifiers “for all” (A) and
“exists” (E).

For a variety of reasons, traditional temporal logics such as
LTL and CTL are not necessarily adequate to describe the behavior
of neural networks. First, due to random initialization and the
intrinsic difficulty of learning, neural networks can behave in
non-deterministic ways. Second, it can be difficult to describe
the intricate relationships between neurons and layers in neural
networks using traditional temporal logics. Third, neural networks
are able to learn and adapt over time, altering their behavior in
response to the data they receive. Therefore, it may be challenging
to define their behavior using static temporal logics because of
their dynamic nature. To overcome these limitations, extensions
of traditional temporal logics have been created, offering a more
appropriate framework for describing the behavior of neural
networks (Liu et al., 2020; Wang et al., 2020; Tao et al., 2023).

4.2.1 ReTL
Rectified Linear Temporal Logic (ReTL) (Liu et al., 2020) is

a variation of LTL that incorporates the semantics of rectified
linear units (ReLU). This approach can provide continuous-
valued attributes, making it suitable for modeling and validating
systems with continuous dynamics, such as neural networks.
Its syntax closely resembles LTL, incorporating terms that
represent ReLU activation functions and continuous values. The
basic syntax defines atomic propositions (p,q,..), which represent
Boolean-valued properties, continuous variables (x, y, ..), which
represent continuous-valued signals, and the ReLU function
[relu(x)], which represents the rectified linear unit activation
function. It also defines Boolean operators (¬, ∧, ∨, →),
and (negation, conjunction, disjunction, implication, equivalence)
temporal operators (G: always, F: eventually, U: until, X: next
known also as �, ♦, U, and ◦ respectively). The comparison
operators (<,≤,>,≥) and arithmetic operators (+,−, ∗, /) are
used for continuous values. For ReLU activation, relu(x) represents
the rectified linear unit activation function, defined as: relu(x) =
max(0, x). In a simple example, the ReTL formula G relu(output) ≥
0 indicates that the output of a neural network will always be
positive. However, the ReLU function does not appear in the
formulas used because of the proposed ReLU elimination.

The ReTL formulas are defined using the following syntax:

ϕ : : = T | ⊥ | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | ϕ → ϕ | ∃x ∈ R.ϕ

| Ax ∈ R.ϕ | Xϕ | Gϕ | Fϕ | ϕUϕ | t ∼ t,

where t is an expression and∼∈ {>,≥,=, 6=,<,≤}

The expressions used in ReTL formulas are defined by the
following:

t : : = v | x | ©k t | t[i] |Mt | t + t,

where i, k ∈ N, andM is some constant matrix compatible with
t.©k abstracts the result of ReLU activations over the layers.

Adversarial robustness, for example, is formulated in ReTL as
follows:

∃x ∈ R2. (x[1] < 5) ∧ (©2x[1] = ©2x[2])

This specification shows that there exists an adversarial example
for which the first feature does not reach 5.

4.2.2 PPTL
InWang et al. (2020), the authors propose specifying the neural

network’s robustness and the samples’ correctness in Propositional
Projection Temporal Logic (PPTL) (Duan et al., 2008). This is a
variant of PTL that abstracts predicates, variables, and quantifiers
in the formulas. PTL is originally applied to make decisions
regarding the functioning of systems projected onto a simpler,
lower-dimensional domain. The syntax of PPTL formulas is defined
as follows:

P : : = p | ◦ P | ¬P | P1 ∨ P2 | (P1, .., Pm) prj P,

where p is an atomic proposition, P1, .., Pm as well as P are
PPTL formulas, ◦ (next) and prj(projection) are basic temporal
operators.

For example, the PPTL formula for the robustness property
(Wang et al., 2020) is as follows:

p ∧ q ∧ r,

where, for example, p states that the number of iterative attacks
is fewer than 1,000, q suggests that the initial forecast error exceeds
the average error, and r shows that when the program runs, the
prediction error is greater than the average one.

4.2.3 BLTL
In Tao et al. (2023), the authors define a temporal logic

known as BLTL, which serves as a specification language for
binarized neural network features. BLTL results from applying LTL
to BNNs.

The following grammar outlines the syntax of
BLTL formulas:

ψ : : = T | t ∼ t | ¬ψ | ψ ∨ ψ | Xψ | ψ ∪ ψ ,

where ∼∈ {≤,≥,<,>,=}, X and U are Next and Until
operators. The Boolean and temporal operators ∧,→, F, and G, as

Frontiers inComputer Science 12 frontiersin.org

https://doi.org/10.3389/fcomp.2025.1557977
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Sbai 10.3389/fcomp.2025.1557977

well as the quantifiers ∀ and ∃, can be derived from the defined
operators similarly to LTL temporal logic.

According to Tao et al. (2023), the local robustness can be
specified by the following BLTL formula:

∀x ∈ Bn,
|u|∑

i=1

(x[i]⊕ u[i]) ≤ ǫ → N (x) = N (u)

This formula states that the neural network N is robust for an
input u with width n if all the inputs in the region B(u, ǫ) yield the
same result of classification for u. The region B(u, ǫ) regroups the
set of vectors that differ from u in at most ǫ positions.

4.3 Finite state machine

Neural network features can be precisely specified using
deterministic finite automata, also known as Finite State Machines
(FSMs). By abstracting the ongoing values and intricate dynamics
of the network through a limited collection of states and transitions,
FSMs can be employed in neural networks. They can model how
information transits across a neural network, where states represent
various neuronal activation patterns and transitions model updates
to these activations. Reachability (can a particular output state be
reached?) and liveness (will a particular neuron always fire?) are two
examples of properties of the neural network that may be verified
using FSMs. By using transitions to represent changes to weights
and biases, FSMs can also mimic the learning process of a neural
network. Finite automata can be created by compiling several
abstracted specification languages, including regular expressions
and temporal logics.

In Khmelnitsky et al. (2021), the authors consider an RNN
R for binary classification over a limited alphabet 6. R classifies
a given string w as positive if w ∈ 6∗. The set of all positive
strings is denoted by L(R) ⊆ 6∗ and is said to be the language
of R. In order to validate the adversarial robustness of recurrent
neural networks, they check if a small modification in a word of L
does not change the classification result. They employ Angluin’s L∗

learning algorithm (Berg et al., 2005) to extract a finite automaton
(denoted H) and then check if L(H) ⊆ L(A) using traditional
model checking procedures. Moreover, in Mayr et al. (2021) and
Muškardin et al. (2022), the authors extract a finite automaton
during RNN classification to be used to check the intended property
with the help of Angluin’s L∗ algorithm.

FSMs might be a helpful tool for formally defining specific
features of neural networks, but they may not be appropriate
for representing every facet of intricate contemporary networks.
With numerous layers and neurons, and since neural networks
frequently work with continuous values, it can be challenging
to express them with FSMs. Although discretizing continuous
numbers is feasible, doing so may limit the model’s accuracy and
introduce approximations. Other formalisms, such as temporal
logic or Petri nets, might be more suitable for networks with a
higher level of complexity.

5 Algorithms to check models against
specifications

This section is dedicated to exploring existing approaches to the
formal verification of neural networks based on model checking.
Model checking is a method that examines a system’s behavior in
response to a set of formal specifications to confirm its correctness.
It can be used to ensure that deep neural networks meet certain
specifications, including robustness, consistency, and safety. This
process involves thoroughly examining the network’s state space
to determine if it fulfills the requirements that should be formally
stated.

Model-checking algorithms fall into two main categories:
explicit and implicit model checking. Additional variations exist
within these two main categories: bounded, on-the-fly, and
probabilistic model checking. Hybrid model checking is also
possible when integrating explicit and symbolic techniques. The
system’s size, the properties that need to be confirmed, and the
availability of tools are some of the variables that influence the
category selection.

The works studied in this article align with the direct
application of the model-checking process and are classified in
the following subsections according to the class of model-checking
algorithm used. Figure 8 illustrates the model-checking algorithms
applied to neural networks.

5.1 Explicit model checking

In the case of explicit model checking, the algorithm looks
for a desirable (or undesirable) state that relates to the checked
property when traversing all the runs of the transition system. A
suitable language for formulating such behaviors is temporal logic,
as it provides tools to express a formula P through propositional
variables, Boolean operators, universal quantifiers, and specifically
temporal operators. Given a transition system T and a formula P,
the model checking procedure determines if T |H P (where |H is
known to be the satisfaction relation). Technically, the problem
is reduced to determining if the language of an automaton A is
empty, given that A results from the Cartesian product of the
automaton modeling the system and the automaton resulting from
the negation of the property. If the language is empty, meaning that
there is no run of the system for which the property is invalid, then
the algorithm returns yes (property satisfied). If not, meaning there
is an intersection between the runs of the system and the negation
of the property, the algorithm returns no (property unsatisfied),
and the example found in the intersection may be used as a
counterexample.

Liu et al. (2020) presents a thorough application of model

checking in neural network verification. The authors of this
research introduce ReLU Temporal Logic (ReTL), which is based
on ReLU neural networks and applies LTL (Hustiu et al., 2023)
enhanced with data properties. They explicitly define the ReTL

logic and design a procedure for model checking a portion of this
logic. By converting a formula fromReLU into a system of equalities

Frontiers inComputer Science 13 frontiersin.org

https://doi.org/10.3389/fcomp.2025.1557977
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Sbai 10.3389/fcomp.2025.1557977

FIGURE 8

Model checking algorithms applied to DNNs.

and inequalities and then searching for solutions to the system
primarily using the Moore-Penrose inverse (Courrieu, 2008), they
demonstrate the decidability of ReTL model checking. They use
the parameter emptiness approach and the suggested ReLU-
elimination technique to achieve this. Since the study addresses
only a small portion of ReTL, not all desired properties may be
expressed. Furthermore, scalability for very large networks may be
limited by the EXPSPACE complexity. Based on their approach, the
authors developed a prototype tool and tested it on a range of ReLU
networks. Although the outcomes demonstrate how feasible and
promising their strategy is, future studies could explore expanding
the expressive capabilities of ReTL, enhancing the effectiveness of
model-checking methods, and utilizing the technique to different
kinds of neural networks.

In Wang et al. (2020), the Message Compiler (MC) Yang
et al. (2017) is used to interactively verify the DNN accuracy and
robustness properties. Initially, the MSVL programming language
is used to generate the neural network (Zhang et al., 2016).
This construction can be done directly or indirectly by using the
C2MSVL translation tool to translate a C-language model into an
MSVLmodel [which is also used for CNN in (Zhao L. et al., 2022)].
Next, the neural network’s robustness and accuracy attributes are
described in PPTL (Duan et al., 2008). Specifically, each detail can
be represented by an atomic proposition, and a PPTL formula
can be obtained by combining the atomic propositions that are
derived. Lastly, the MSVL model and the PPTL formula are
passed to MC for satisfiability checking. If this satisfiability is not
guaranteed, MC will produce a counterexample demonstrating the
anomaly that occurred when the model was running. The paper
discusses the approach by studying an example of a linear model
fitting procedure with data automatically generated by a Python
script. However, the work lacks a general demonstration of the
applicability of the approach to different neural networks and an
evaluation of its performance.

In Khmelnitsky et al. (2021), the authors consider an RNN,
R, as a binary classifier over a limited alphabet 6 in order to
validate the robustness of recurrent neural networks. This means
that R represents the set of strings that fall into the acceptable

category. They denote this set by L(R) (L(R) ⊆ 6∗) and call it the
language of R. The aim of their research is to determine whether
two specifications, A and R, are compatible, where A is a finite state
machine (FSM). Therefore, they want to know if L(R) ⊆ L(A).
They employ black-box checking, which is based on Angluin’s
L∗ learning algorithm (Berg et al., 2005), to accomplish this. L∗

generates a set of hypothesis automata (denoted H) by utilizing R’s
queries. Assessing whether L(H) ⊆ L(A) using traditional model
checking procedures now solves the original problem. Statistical
model checking (Legay et al., 2019) is used by the authors to
verify if L(R) ⊆ L(H) in order to confirm the outcome if the
response is yes. In case it is not, a counterexample will be utilized
to enhance H; even better, a group of counterexamples may be
located. Based on statistical model checking, this approach may be
employed in the analysis of complex systems’ behavior, especially
those with extensive and complicated state spaces. However, the
paper is limited to binary classifiers and, in general, to LSTMs with
less expressive languages. Additionally, the paper’s findings are not
compared to state-of-the-art approaches, and scalability to large
networks is not demonstrated.

In Sälzer et al. (2022), the authors demonstrate how to
transform a neural network into a finite automaton that can
recognize words as pairs of inputs and outputs based on
theoretically promising results. More specifically, they convert the
network to an eventually-always weak nondeterministic Büchi
automaton (WNBAFG) (Sistla et al., 1987), for which minimization
and determinization are straightforward. This results in improved
algorithmic features. Subsequently, the neural network verification
procedure is converted into an emptiness check of a decidable
automaton. The practicality of the approach is shown through
several use cases involving the abstract interpretation of real
numbers and symbolic optimizations using a nondeterministic
finite automaton. Further development is needed to prove the
efficacy of the proposal and its adaptability to other deep neural
networks.

Muškardin et al. (2022) presents a recent black-box technique
for RNN verification based on FSM extraction. The method
successfully proposes a formal description of the behavior of

Frontiers inComputer Science 14 frontiersin.org

https://doi.org/10.3389/fcomp.2025.1557977
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Sbai 10.3389/fcomp.2025.1557977

the RNN classifier without regard to its inner workings. The
authors uncover counterexamples that refute false premises about
arguments that were picked up from earlier methods. This
means that testing based on learned automata can be a useful
method for detecting inputs that are misclassified due to incorrect
generalization or that are irrelevant. They describe how equivalence
oracles may be used in active automata learning. They examine
learning within the PAC framework, learning using the refinement-
based oracle suggested in Weiss et al. (2018), and coverage-guided
validity checking in their studies. The strategy yielding the model
that most closely resembles the actual model, which captures the
input-output behavior of the RNN, is determined by measuring
the size of the learned models. The reason for this is that each
counterexample discovered by an equivalence query alters the
size of the premise. By contrasting their approach with existing
black-box and white-box techniques, the authors demonstrate the
potential of their methodology in identifying counterexamples.
However, a rigorous application of formal methods and concrete
automata learning is postponed to future investigations.

The authors of Gros et al. (2022) present a scalable verification
method called Deep Statistical Model Checking (DSMC), which
is a simple variation of statistical model checking based on
Markov decision processes (Garcia and Rachelson, 2013) and
neural networks. The method aims to address decisions in the
context of a bigger picture with uncertainty. Thus, they have used
DSMC to confirm the efficacy of a trained neural network. The
authors use the Modest Toolset to implement the neural network
examination, demonstrate its scalability, and provide case studies
from Racetrack to prove its practicality. Even though the DSMC
approach is open-ended, generic, and scalable for the examined
case studies, scaling becomes more difficult when dealing with
systems that have larger state spaces.

A recent theoretical study presented in Tao et al. (2023) defines
a temporal logic known as BLTL as a specification language for
binarized neural network (BNN) features. After characterizing the
data attributes of BNNs, a BLTL specification is transformed into
an automaton to ensure verification by tracing a path from the
starting state to the end state. The authors employ a tableau-
based technique to quickly determine whether a path leads to a
final state, thus preventing the state explosion problem. If a path
does not lead to a final state, they carefully reverse it to avoid
backtracking on failed attempts. The solver’s solution provides
the BNN’s hyperparameters, including the network’s length and
significant block input-output relations. A suitable BNN can then
be produced by performing block-wise learning. The authors
employ a prototype combining tool and test their approach on local
robustness and consistency. The MNIST and UCI Adult (Frank,
2010) datasets are used to assess the prototype’s performance.

Although explicit model checking has achieved considerable
success and offers many benefits for verifying software, its primary
issue is the state explosion problem, which results in significant
demands on memory and computational complexity.

5.2 Implicit model checking

Symbolic or implicit model checking aims to address
the issue of state space explosion by regrouping states and

succinctly describing formulas and relationships. Suitable
rigorous representations for these formulas include Binary
Decision Diagrams (BDDs) (Burch et al., 1992). BDDs are data
structures that represent implicit, compact arrangements of sets or
connections, which can be utilized to express Boolean expressions.
The use of BDDs significantly reduces the set of states, leading
to a more manageable model-checking process. However, for
complex software, even in the symbolic case, a very large transition
system is generated, and the number of symbolic states can become
enormous, making it challenging for the verification algorithm,
which requires a thorough examination of all these states.

To improve robustness testing and network interpretability, the
authors of Zhang et al. (2021) offer the prototype BDD4BNN to
ensure the quantitative verification of binarized neural networks
by encoding them in binary decision diagrams. They present a
method to gradually calculate the maximum Hamming distance
(Ruan et al., 2019) to ensure that the network satisfies the necessary
robustness requirements. To address network interpretability, the
authors investigate the characteristics that all samples categorized
in a given class have in common, as well as the reasons certain
inputs are misclassified. The method is tested using BNNs that are
larger than those considered in Shih et al. (2019), demonstrating a
faster qualitative analysis. In Zhang et al. (2022), the authors further
explore new parallelization techniques designed to accelerate BDD
encoding.

The difficulty of large-scale verification of deep neural networks
is addressed in Naseer et al. (2023), where the authors present
FANNet+, an enhanced framework that expands on FANNet
(Naseer et al., 2019), an earlier DNN model-checking tool. To
increase scalability, FANNet+ uses input segmentation and state-
space reduction. The former technique seeks to control the size of
the model representation utilized in the verification process. The
latter makes it possible to verify smaller subproblems instead of the
complete input space by segmenting the input space into smaller
parts. Due to these enhancements, FANNet+ can verify networks
with up to 80 times more parameters than FANNet and can
check them in up to 8,000 times less time. Furthermore, FANNet+
broadens the analysis range by allowing the validation of safety
attributes in addition to current functions such as input sensitivity,
noise tolerance, and robustness analysis. The study demonstrates
the potential of FANNet+ for large-scale DNN verification by
showing its effectiveness on multiple DNNs, including the well-
known ACAS Xu benchmark.

5.3 Bounded model checking

Bounded Model Checking can save computing costs by
avoiding the exploration of unneeded states, only going as far as a
bounded level in the state space. A bounded model is produced by
unrolling the transition system to a fixed length. The behavior of the
system is represented by this limited model through a given depth.
A satisfiability modulo theories (SMT) solver is used to encapsulate
the bounded model and the falsification of the attributes that need
to be proved as a Boolean formula. It then checks if the formula
is satisfiable (SAT) or unsatisfiable (UNSAT). SAT means that the
property is infringed, and thus a counterexample can be retrieved. If
the formula is UNSAT, this indicates that the property holds for the

Frontiers inComputer Science 15 frontiersin.org

https://doi.org/10.3389/fcomp.2025.1557977
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Sbai 10.3389/fcomp.2025.1557977

model up to the fixed depth; in this case, the bound is raised, and the
procedure is repeated until the formula becomes SAT or a prefixed
limit is reached. SMT-based model checking may be superior to
other types because it can be fully automated and performs well
for large models.

A method for assessing safety qualities based on this type
of verification is presented in Sena et al. (2019), involving the
investigation of adversarial scenarios with various inputs. They
suggest leveraging CUDA (Luebke, 2008) to create neural networks
and utilize SMT solvers to accomplish incremental bounded
model checking. Their experimental results demonstrate that
the methodology successfully evaluates safety characteristics and
produces adversarial instances in neural networks when used with
the SMT-based Context Bounded Model Checker for Graphical
Processing Units (ESBMC-GPU) (Monteiro et al., 2017). The
authors expand their approach in Sena et al. (2021) by offering the
possibility to validate networks that go beyond the function known
as ReLU by decoding fixed-point computations and efficiently
treating non-linear activation functions. Although more case
studies, benchmarks, and comparisons are discussed in their new
paper, the authors claim uncertainty regarding which combination
of methods performs best when scaling to large networks and that
subsequent work will compare their verification strategy to existing
methods as well as improve verification efficacy.

The authors of Sena et al. (2022) propose a method based
on model checking and SMT for artificial neural network
(ANN) verification. Instead of viewing the ANN as an abstract
mathematical model, it is considered a real piece of software that
performs various fixed- or floating-point arithmetic operations.
From this vantage point, they can easily translate numerous
software verification techniques to ANN verification. Their
verification process is based on Software Model Checking, and
they show through experiments the effectiveness of techniques
such as interval analysis, constant folding, tree balancing, and
slicing in reducing the overall verification time. Moreover, they
propose a specific discretization strategy for non-linear activation
functions, enabling them to verify ANNs beyond the piecewise-
linear assumptions that underlie many existing techniques.

5.4 On-the-fly model checking

For large or sophisticated systems with parallel or real-time
aspects, on-the-fly verification of models is a powerful tool for
confirming their correctness. This method relies on assessing the
property while the state space is being computed, allowing for the
early detection of potential violations of the property. In other
words, on-the-fly checking (Holzmann, 1996) is based on the
concept that an automaton can be built concurrently alongside the
model’s creation, enabling results to be obtained before all reachable
states are created in the event that the property is violated.

In Mayr et al. (2021), on-the-fly checking through learning
is suggested. During an RNN classification task, an automaton
is extracted and then used to verify the intended property.
The authors evaluate language membership and any assessing
challenges that can be reduced to proving emptiness, in order to
avoid state explosion issues during model checking and to prevent

false counterexamples. The authors technically address potential
limitations of the L* algorithm by constraining the state space of
hypotheses and the length of membership queries. Additionally,
they introduce a novel on-the-fly property-checking approach that
utilizes an automaton approximation of the intersection between
the RNN language and the complement of the property to be
verified. By applying their algorithms to various use cases, they
demonstrate significant outcomes.

6 Discussion

According to Table 1, despite the limited number of approaches
addressing model-checking neural networks, the proposed
methods greatly differ in the techniques used for model-checking.
Indeed, the system model and property specifications vary across
all the proposed works. If we focus on FNNs, for example, different
formalisms are used for specifications: formal logic, MDP, PPTL,
and ReTL. For BNNs, the three papers that propose the model-
checking of these networks adopt three distinct specification
languages. The same diversity is evident in the models applied
as well as the benchmarks and datasets used to evaluate the
various approaches. These observations highlight the difficulty
of comparing the existing approaches, and clearly, this diversity
hinders the progress of model-checking deep neural networks.

According to the previous sections, there is a set of clear
difficulties with the current specifications. (1) They are informal
and ambiguous: Many definitions of neural networks are imprecise
and informal, lacking the precision and coherence required for
trustworthy validation. This uncertainty could lead to errors and
inconsistencies in interpretation during the verification process.
(2) They lack standardization: The lack of a common language
to describe neural network behavior makes it difficult to compare
and communicate verification results across different frameworks
and research projects. (3) They have limited expressiveness: It is
plausible that current specification languages are unable to fully
capture the details and intricacies of neural network behavior,
which may result in the absence of important information required
for verification.

Every verification technique currently in use provides an
abstraction of the neural network models that are presented.
Instead of investigating novel specifications, a concentration
on precisely characterizing fewer specification languages would
encourage more researchers to focus on improving the current
verification techniques. Since temporal logics have always been
efficient in specifying properties to be verified by model checkers,
it is promising to look for extensions of the existing temporal logics
to specify the intrinsic attributes to be considered during neural
network training. Another opportunity to study states that, by
incorporating logical reasoning ability and accounting for domain
experience, it is intriguing to expand on the limited work on DNN
formal specifications. One way is to build on the existing works on
mining specifications (Fan and Wang, 2024; Bensalem et al., 2024).

Apart from the specification concerns, it should be noted that
many papers consider neural networks as black boxes. Black-box
models can be easier to depict and may simplify the verification
process by concentrating solely on the input-output behavior of
the network, thus lowering the complexity of the verification

Frontiers inComputer Science 16 frontiersin.org

https://doi.org/10.3389/fcomp.2025.1557977
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Sbai 10.3389/fcomp.2025.1557977

process and possibly simplifying the analysis. In certain instances,
black-box models may require less computing power to validate
than techniques that necessitate an in-depth understanding of
the internal workings and decision-making procedures. However,
using a black-box method makes validating complicated attributes
that rely on the internal behavior of the network difficult or
perhaps impossible. Additionally, it is challenging to troubleshoot
issues and enhance the network’s performance due to the lack of
interpretability. In general, black-box models may pose difficulties
in guaranteeing that the network operates consistently and reliably
in real-world situations, particularly when it comes to figuring out
and clarifying the justification behind the network’s choices.

7 Open challenges

The purpose of the ongoing research on model-checking
techniques for neural networks is to develop techniques that are
more complex, efficient, and varied. However, these approaches
often come with their own set of challenges, such as scaling to
large networks and managing the non-linear properties of neural
networks. Even though the number of papers in this field has
significantly increased, particularly over the last three years, the
community still faces significant obstacles to moving the field
of study closer to maturity. Some of the challenges are related
to complexity and scalability, interpretability, and verification
completeness.

7.1 Complexity and scalability

Neural networks comprise millions or even billions of variables,
making them incredibly complex systems. Due to the high
dimensionality and non-linear nature of these systems, formal
verification, in general, poses significant challenges. Creating
formal models that accurately capture the behavior of such intricate
networks is a difficult task. To detect complex patterns, neural
networks are often trained on large datasets. As a result, the
verification process must be scalable to accommodate increasing
computational demands and network sizes. Significant obstacles
arise when using these techniques on real-world networks.

On the one hand, the exploding state space is always the
first obstacle. With increasing network size and depth, a neural
network can occupy an exponential number of states. Even
with moderate network dimensions, exhaustively searching all
these states becomes computationally difficult. Although symbolic
execution provides a streamlined method for illustrating state
spaces, it continues to encounter difficulties with scaling when
applied to massive networks. Its symbolic capacity for reasoning
may be easily overwhelmed by complicated activation mechanisms
and elaborate network structures.

On the other hand, simplifying networks through abstraction
methods such as abstract interpretation enhances scalability.
However, this reduction may introduce errors that lead to over-
approximations or the omission of important details, potentially
affecting the accuracy of the verification findings (Eramo et al.,
2022). One can also consider applying compositional checking,
which is the process of breaking down large networks into smaller,

verifiable pieces. However, this requires careful design of modules
and efficient property decomposition.

Additional difficulties may arise in cases of uncertain treatment,
which involve unreliable activation functions combined with
inherent uncertainty resulting from unpredictability in training
data and weights. For verification procedures to provide significant
assurance, these uncertainties must be taken into consideration
(Xiao et al., 2023). Statistical model checking may be applied to
estimate the probability that certain properties will hold for a neural
network.

Although numerous approaches to explore scalability
challenges in neural network verification are being developed,
the real-world networks utilized in safety-critical applications
are frequently too complex for existing verification techniques
to manage. Indeed, constraints on scalability may lead to a focus
on confirming immediate characteristics or discrete network
elements, thereby overlooking the examination of long-term and
overall behavior. Furthermore, analyzing violations in a large state
space can be challenging, making improvements and efficient
debugging more difficult for networks.

To address scalability issues in the development of model
checking algorithms for neural networks, it is promising to
explore the formal technique of compressing neural networks while
preserving their semantics, as introduced in Ressi et al. (2024).
The presented method is supported by solid mathematical proofs
and has been shown to be applicable to two neural network
architectures: CNN and Autoencoder. Thus, its extension and
adaptation for use in the context of model checking for neural
networks is advantageous.

It is also recommended to leverage hardware innovations so
that rapidly verifying processes can be achieved by employing
GPUs and other parallel computing architectures. Additionally,
it is conceivable to formalize uncertainty while establishing
probabilistic promises by integrating uncertainty quantification
methods into testing tools. Finally, for rigorous work on scalability
and precision, combining several verification techniques, such as
compositional verification or symbolic execution with abstraction,
may be significant.

7.2 Interpretability

Given that neural networks are considered black-box models,
comprehending their workings may be challenging. Their lack
of interpretability makes it difficult to grasp their functions and
verify the reasoning behind their predictions. Creating formal
verification techniques that can reason about and interpret the
operation of these black-box models remains a constant challenge.
Numerous methods such as LRP and LIME have been created
to improve the interpretability (Samek et al., 2021; Camacho and
McIlraith, 2019) in the DNN verification and their integration
within the model checking techniques of DNN may be promising.
By assigning significant scores to provided features, the Layer-wise
Relevance Propagation (LRP) approach (Montavon et al., 2019)
seeks to explain the guesses made by neural networks. The method
determines which input properties have the most influence on
the network’s output by propagating relevance backward over the
network.

Frontiers inComputer Science 17 frontiersin.org

https://doi.org/10.3389/fcomp.2025.1557977
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Sbai 10.3389/fcomp.2025.1557977

To provide integrated support for analyzing verification
results, LRP can be integrated into current model-checking tools.
Scientists and developers can improve their understanding of
neural network activity and ensure the accuracy and reliability
of neural networks in safety-critical applications by incorporating
LRP alongside model-checking methods. In summary, LRP can
be scaled to enhance DNN model checking by providing neuron-
level explanations through relevance scores assigned to individual
neurons. This approach offers insights into their roles in the final
output or any property violation detected by model checking.
Additionally, it facilitates error analysis, as examining variations
in LRP scores for different inputs can reveal characteristics
essential for preventing violations, thereby aiding in debugging and
improvement. Finally, it may be used in various model-checking
contexts due to its compatibility with different networks.

On the other hand, Local Interpretable Model-agnostic
Explanations (LIME) (Zafar and Khan, 2021) can be used to
offer justifications for each unique prediction made by machine
learning models, such as neural networks. For every prediction,
it creates models that can be understood locally to describe how
the input features affect the prediction. To offer built-in assistance
for interpreting verification findings, LIME can be incorporated
into currently used model-checking frameworks. Researchers and
practitioners can achieve important insights into neural network
activity and guarantee the accuracy and dependability of neural
networks in safety-critical applications by integrating LIME with
model-checking approaches. In particular, since LIME is intended
to help explain why a certain forecast came true rather than provide
thorough verification, it can be integrated with the model-checking
process to explain why a certain violation occurred and to track the
routes that lead to violations, emphasizing the particular neurons
or activation processes that are engaged.

While combining formal verification with interpretability
techniques, Explainable Model Checking (XMC) tools
(Abeywickrama and Ramchurn, 2024) can assist users in
comprehending the behavior of the network and developing
confidence in its safety and dependability by offering concise
explanations for violations. This may be applied to a self-driving
car network, for example, where an XMC tool could point out a
particular set of sensor readings that result in a safety lapse. The
behavior of the network might then be improved by considering
erroneous explanations, which could propose different sensor
readings that would not cause the violation. Another example of
when a natural language processing model fails on a particular
text is that attention analysis may highlight words or phrases
that are misclassified. With the help of more varied instances,
the model might be retrained, or its attention mechanism may
be modified.

7.3 Verification entirety

The aim of neural network formal verification is to assess
behavioral properties, such as safety and accuracy. However, due
to the complexity and flexibility of neural networks, it is often
challenging to achieve complete verification (Xu et al., 2021).

Neural networks’ high dimensionality greatly affects how
comprehensively formal verification can be completed. In fact,
as dimensionality increases, traditional verification methods that
primarily rely on analytical reasoning or thorough exploration
become less successful. The intricate relationships between high-
dimensional characteristics and network outputs are difficult for
these methods to grasp. Due to resource constraints, the formal
verification techniques that are currently in use may not scale well
to high-dimensional issues, becoming computationally costly or
producing results that are insufficient. To address this difficulty,
verification methods that incorporate interpretability techniques
can help identify any infractions and provide information for
additional network investigation or improvement. Furthermore,
complex networks have inherent uncertainty (Gawlikowski et al.,
2023), which may be more effectively addressed by probabilistic
verification methods that provide promises with trust intervals
rather than absolutes.

Another crucial factor that affects verification completeness
is the non-linearity of neural networks (Kulathunga et al., 2021).
Non-linearity in neural networks describes how information
moves and changes throughout the network. Non-linear networks
exhibit more intricate interactions than linear systems, which
demonstrate that changes in input cause changes in output
to be proportional. Although this complexity is essential for
their strong learning capabilities, it also makes it difficult to
comprehend and validate their behavior. To minimize the effect
of non-linearity on verification completeness, researchers in the
field are encouraged to further explore relaxation techniques
(Lan et al., 2022), probabilistic verification (Fazlyab et al.,
2019), XMC (Abeywickrama and Ramchurn, 2024), as well as
the use of hardware (Dlugosz and Dlugosz, 2018). Another
promising approach is to investigate the results achieved in deep
reinforcement learning and formal verification (Boudi et al., 2023).

To achieve verification completeness, an important number of
works (Pulina and Tacchella, 2010; Katz et al., 2017; Ehlers, 2017;
Dethise et al., 2021; Song et al., 2021) utilize satisfiability solvers
to verify the existence of an execution that does not satisfy the
specification. The applicability of these solvers is limited because
they require specialized techniques to convert the neural networks
into a specification and provide white-box access to the networks.
Furthermore, the use of non-linear constraints significantly
deteriorates the performance of the primary practicality solver,
resulting in evaluations that cannot adapt to larger structures.

To mitigate these issues and others, a number of approaches
based on abstract interpretation have been proposed (Singh et al.,
2018, 2019c; Li et al., 2019; Gehr et al., 2018; Sotoudeh and
Thakur, 2020; Baader et al., 2020; Wang et al., 2022; Zhao Z. et al.,
2022; Müller et al., 2022). Generally, abstract interpretation places
too much emphasis on the network’s potential outputs, which
might lead to false positives (over-approximation), or it might
be overly conservative, resulting in overlooked potential errors or
false negatives (under-approximation) (Gehr et al., 2018; Singh
et al., 2019b; Eliyahu et al., 2021; Ryou et al., 2021; Henriksen and
Lomuscio, 2021; Bonaert et al., 2021; Liu et al., 2022; Mao et al.,
2023). Additionally, these works suffer from incompleteness and
challenges in handling non-linearity.

Frontiers inComputer Science 18 frontiersin.org

https://doi.org/10.3389/fcomp.2025.1557977
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Sbai 10.3389/fcomp.2025.1557977

8 Conclusion and future outlook

The application of model checking to the verification of deep
neural networks has been thoroughly researched recently. Model
checking is a method used to verify the properties of deep neural
networks, such as their ability to withstand adversarial attacks and
to maintain specific input qualities.

This study presents a comprehensive survey that is valuable
for researchers interested in model checking of neural networks.
It explores various state-of-the-art contributions to the field and
reviews the challenges that may arise in the process of verifying
neural networks. Improvements in formal methods, computational
approaches, and interpretability tools are required to increase the
resilience, scalability, and reliability of neural networks’ model
checking. There is a promising amount of research being done
in this area to tackle these issues and develop more effective
techniques for formal verification of neural networks. But there still
important not answered questions and challenges about scalability
and complexity of the proposed approaches.

To advance the state of the art in neural network formal
verification, it is wise to focus on strengthening the formal
specification of the networks (Seshia et al., 2018), which will
help guarantee the neural networks correctness, dependability, and
explainability (Samek et al., 2021; Biecek and Samek, 2024). Formal
specification, especially in critical scenarios, can contribute to the
development of trust in DNN integration within complex systems
by offering a rigorous mathematical framework. One idea would
be the formalization of activation functions, as in Aleksandrov
and Völlinger (2023), that can be rigorously reasoned about in
relation to their influence on network behavior during verification
by providing a mathematical definition with exact attributes.
Another direction is to clearly describe the intended input and
output ranges of the network (Dutta et al., 2018; Xu et al., 2023)
to ensure that verification stays focused on pertinent situations
and steers clear of unforeseen edge cases. Moreover, verification
techniques that address the inherent noise and ambiguity in real-
world data (Anderson and Sojoudi, 2023) may be made possible
by incorporating uncertainty quantification into the specification
(Abdar et al., 2021). It would be possible to take advantage of
the emergence and ongoing use of the ONNX format (Shridhar
et al., 2020) to propose a formal specification language that is
standardized and portable across the different DNN verification
frameworks.

Moreover, while being well-known as very effective automatic
verification techniques that have been shown to be reliable
in safety-critical systems, successful model checkers are
relatively underutilized in DNN verification because of the
nature of neural networks. It is worthwhile to explore applying
more complex findings to model checking. Using complex
outcomes in model checking, such as probabilistic model
checking (Jawaddi et al., 2022), is a direction that is valuable
to pursue.

Moreover, it is important to focus on the standardization of
benchmarks and to insist on continuing the efforts that are being
made for this purpose (Brix et al., 2023). Standardized metrics
and benchmarks are vital for tackling certain major issues in the
model checking of neural networks. In fact, developing realistic

benchmarks that accurately reflect the intricacies of various real-
world settings will lead to greater confidence in the reliability of
certified networks.

In conclusion, developing ideas for neural network verification
using model-checking tools focuses on scalability and hybrid
approaches. Researchers are encouraged to investigate neuro-
symbolic methods, which combine learning with symbolic
reasoning, to bridge the gap between formal guarantees and data-
driven models (Baheri and Alm, 2025). There is an urgent need
for more effective abstraction approaches that take advantage of
network structure and sparsity when tackling larger, more intricate
networks.

Author contributions

ZS: Conceptualization, Data curation, Formal analysis, Funding
acquisition, Investigation, Methodology, Project administration,
Resources, Software, Supervision, Validation, Visualization,
Writing – original draft, Writing – review & editing.

Funding

The author(s) declare that financial support was received
for the research and/or publication of this article. The author
extends her appreciation to Prince Sattam bin Abdulaziz University
for funding this research work through the project number
(PSAU/2024/01/29842).

Acknowledgments

The author expresses gratitude to Prince Sattam bin Abdulaziz
University for funding this research work.

Conflict of interest

The author declares that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Generative AI statement

The author(s) declare that no Gen AI was used in the creation
of this manuscript.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Frontiers inComputer Science 19 frontiersin.org

https://doi.org/10.3389/fcomp.2025.1557977
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Sbai 10.3389/fcomp.2025.1557977

References

Abdar, M., Pourpanah, F., Hussain, S., Rezazadegan, D., Liu, L., Ghavamzadeh,
M., et al. (2021). A review of uncertainty quantification in deep learning:
techniques, applications and challenges. Inform. Fusion 76, 243–297.
doi: 10.1016/j.inffus.2021.05.008

Abeywickrama, D. B., and Ramchurn, S. D. (2024). Engineering responsible
and explainable models in human-agent collectives. Appl. Artif. Intellig. 38:2282834.
doi: 10.1080/08839514.2023.2282834

Aggarwal, C. C. (2018). Neural Networks and Deep Learning. Cham: Springer.

Albuquerque, R., Júnior, C., Barroso, G., and Barreto, G. (2023). A novel fully
adaptive neural network modeling and implementation using colored petri nets.
Discrete Event Dynam. Syst. 33, 129–160. doi: 10.1007/s10626-023-00377-9

Aleksandrov, A., and Völlinger, K. (2023). “Formalizing piecewise affine activation
functions of neural networks in COQ,” in NASA Formal Methods, K. Y. Rozier, and S.
Chaudhuri (Cham: Springer Nature Switzerland), 62–78.

Amodei, D., Olah, C., Steinhardt, J., Christiano, P. F., Schulman, J., and Mané,
D. (2016). Concrete problems in AI safety. arXiv [preprint] arXiv:1606.06565.
doi: 10.48550/arXiv.1606.06565

Anderson, B. G., and Sojoudi, S. (2023). Certifying Neural Network Robustness to
Random Input Noise from Samples.

Baader, M., Mirman, M., and Vechev, M. T. (2020). “Universal approximation with
certified networks,” in 8th International Conference on Learning Representations, ICLR
2020 (Addis Ababa: OpenReview.net).

Baheri, A., and Alm, C. O. (2025). Hierarchical Neuro-Symbolic Decision
Transformer. arXiv preprint arXiv:2503.07148.

Baier, C., Christakis, M., Gros, T. P., Groß, D., Gumhold, S., Hermanns, H.,
et al. (2021). “Lab conditions for research on explainable automated decisions,” in
Trustworthy AI - Integrating Learning, Optimization and Reasoning, F. Heintz, M.
Milano, and B. O’Sullivan (Cham. Springer International Publishing), 83–90.

Bensalem, S., Huang, X., Ruan, W., Tang, Q., Wu, C., and Zhao, X. (2024). Bridging
formal methods and machine learning with model checking and global optimisation. J.
Logical Algeb. Methods Program. 137:100941. doi: 10.1016/j.jlamp.2023.100941

Berg, T., Jonsson, B., Leucker, M., and Saksena, M. (2005). Insights
to angluin’s learning. Electron. Notes Theor. Comput. Sci. 118, 3–18.
doi: 10.1016/j.entcs.2004.12.015

Biecek, P., and Samek, W. (2024). Explain to Question not to Justify.

Bonaert, G., Dimitrov, D. I, Baader, M., and Vechev, M. (2021). Fast and Precise
Certification of Transformers, in Proceedings of the 42nd ACM SIGPLAN International
Conference on Programming Language Design and Implementation (PLDI ’21) (New
York, NY: ACM), 18. doi: 10.1145/3453483.3454056

Boudardara, F., Boussif, A., Meyer, P.-J., and Ghazel, M. (2023). A review of
abstraction methods towards verifying neural networks. ACM Trans. Embedded Comp.
Syst. 23, 1–19. doi: 10.1145/3617508

Boudi, Z., Wakrime, A. A., Toub, M., and Haloua, M. (2023). A deep reinforcement
learning framework with formal verification. Formal Aspects of Comp. 35, 1–17.
doi: 10.1145/3577204

Brix, C., Müller, M. N., Bak, S., Johnson, T. T., and Liu, C. (2023). First three years
of the international verification of neural networks competition (VNN-COMP). Int. J.
Softw. Tools for Technol. Transfer 25, 329–339. doi: 10.1007/s10009-023-00703-4

Budde, C. E., Dehnert, C., Hahn, E. M., Hartmanns, A., Junges, S., and Turrini, A.
(2017). “Jani: quantitative model and tool interaction,” in Tools and Algorithms for the
Construction and Analysis of Systems: 23rd International Conference, TACAS 2017, Held
as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS
2017 9 (Uppsala: Springer), 151–168.

Bunel, R., Turkaslan, I., Torr, P. H. S., Kumar, M. P., Lu, J., and Kohli, P. (2020).
Branch and bound for piecewise linear neural network verification. J. Mach. Learn. Res.
21:1. doi: 10.48550/arXiv.1909.06588

Burch, J., Clarke, E., McMillan, K., Dill, D., and Hwang, L. (1992).
Symbolic model checking: 1020 states and beyond. Inform. Comp. 98, 142–170.
doi: 10.1016/0890-5401(92)90017-A

Camacho, A., andMcIlraith, S. A. (2019). “Learning interpretable models expressed
in linear temporal logic,” in Proceedings of the International Conference on Automated
Planning and Scheduling, 29, 621–630. doi: 10.1609/icaps.v29i1.3529

Clarke, E. M. (1997a). “Model checking,” in Foundations of Software Technology
and Theoretical Computer Science: 17th Conference Kharagpur, India (Kharagpur:
Springer), 54–56.

Clarke, E. M. (1997b). “Model checking,” in Foundations of Software Technology and
Theoretical Computer Science, eds. S. Ramesh, and G. Sivakumar (Berlin, Heidelberg:
Springer Berlin Heidelberg), 54–56.

Cook, S. A. (2023). “The complexity of theorem-proving procedures,” in Logic,
Automata, and Computational Complexity: The Works of Stephen A. Cook, 143–152.

Courrieu, P. (2008). Fast computation of Moore-Penrose inverse matrices. arXiv
[preprint] arXiv:0804.4809. doi: 10.48550/arXiv.0804.4809

Dethise, A., Canini, M., and Narodytska, N. (2021). “Analyzing learning-based
networked systems with formal verification,” in IEEE INFOCOM 2021 - IEEE
Conference on Computer Communications (Vancouver, BC: IEEE), 1–10.

Dlugosz, Z., and Dlugosz, R. (2018). “Nonlinear activation functions for artificial
neural networks realized in hardware,” in 2018 25th International Conference "Mixed
Design of Integrated Circuits and System" (MIXDES) (Gdynia: IEEE), 381–384.

Duan, Z., Tian, C., and Zhang, L. (2008). A decision procedure for propositional
projection temporal logic with infinite models. Acta Inform. 45, 43–78.
doi: 10.1007/s00236-007-0062-z

Dutta, S., Jha, S., Sankaranarayanan, S., and Tiwari, A. (2018). “Output range
analysis for deep feedforward neural networks,” in NASA Formal Methods Symposium
(Cham: Springer), 121–138.

Ehlers, R. (2017). “Formal verification of piece-wise linear feed-forward neural
networks,” in Automated Technology for Verification and Analysis - 15th International
Symposium, ATVA 2017, eds. D. D’Souza, and K. N. Kumar (Pune: Springer), 269–286.

Eliyahu, T., Kazak, Y., Katz, G., Schapira, M., Kuipers, F., and Caesar, M.
(2021). “Verifying learning-augmented systems,” in Proceedings of the 2021 ACM
SIGCOMM 2021 Conference (New York, NY: ACM), 305–318. doi: 10.1145/3452296.34
72936

Eramo, R., Fanni, T., Guidotti, D., Pandolfo, L., Pulina, L., and Zedda, K. (2022).
“Verification of Neural Networks: Challenges and Perspectives in the AIDOART
Project,” in Proceedings of RiCeRcA, 3345.

Eykholt, K., Evtimov, I., Fernandes, E., Li, B., Rahmati, A., Xiao, C., et al.
(2018). “Robust physical-world attacks on deep learning visual classification,” in 2018
IEEE/CVF Conference on Computer Vision and Pattern Recognition (Salt Lake City, UT:
IEEE), 1625–1634.

Fan, Y., andWang, M. (2024). Specification mining based on the ordering points to
identify the clustering structure clustering algorithm and model checking. Algorithms
17:28. doi: 10.3390/a17010028

Fatnassi, W., Khedr, H., Yamamoto, V., and Shoukry, Y. (2023). “BERN-NN:
tight bound propagation for neural networks using bernstein polynomial interval
arithmetic,” in Proceedings of the 26th ACM International Conference on Hybrid
Systems: Computation and Control (ACM), 1–11.

Fazlyab, M., Morari, M., and Pappas, G. J. (2019). Probabilistic Verification and
Reachability Analysis of Neural Networks via Semidefinite Programming, in 2019 IEEE
58th Conference on Decision and Control (CDC) (IEEE), 2726–2731.

Frank, A. (2010). UCI Machine Learning Repository. Available online at: http://
archive.ics.uci.edu/ml (accessed December 30, 2024).

Garcia, F., and Rachelson, E. (2013). “Markov decision processes,” in Markov
Decision Processes in Artificial Intelligence (John Wiley & Sons, Ltd.), 1–38.
doi: 10.1002/9781118557426.ch1

Gardner, M. (1970). Mathematical games. Sci. Am. 222, 132–140.
doi: 10.1038/scientificamerican0670-132

Gawlikowski, J., Tassi, C. R. N., Ali, M., Lee, J., Humt, M., Feng, J., et al. (2023).
A survey of uncertainty in deep neural networks. Artif. Intell. Rev. 56, 1513–1589.
doi: 10.48550/ARXIV.2107.03342

Gehr, T., Mirman,M., Drachsler-Cohen, D., Tsankov, P., Chaudhuri, S., and Vechev,
M. (2018). “AI2: Safety and robustness certification of neural networks with abstract
interpretation,” in 2018 IEEE Symposium on Security and Privacy (SP) (San Francisco,
CA: IEEE), 3–18.

Gros, T. P., Hermanns, H., Hoffmann, J., Klauck, M., and Steinmetz, M. (2022).
Analyzing neural network behavior through deep statistical model checking. Int. J.
Softw. Tools Technol. Transfer. 25, 407–426. doi: 10.1007/s10009-022-00685-9

Hajdu, Á., and Micskei, Z. (2020). Efficient strategies for cegar-based model
checking. J. Automat. Reason. 64, 1051–1091. doi: 10.1007/s10817-019-09535-x

Henriksen, P., and Lomuscio, A. (2021). “Deepsplit: an efficient splitting method
for neural network verification via indirect effect analysis,” in Proceedings of the
Thirtieth International Joint Conference on Artificial Intelligence, IJCAI-21, eds. Z. H.
Zhou (Jeju: International Joint Conferences on Artificial Intelligence Organization),
2549–2555.

Holzmann, G. (1996). On-the-fly model checking. ACM Comput. Surv. 28:120.
doi: 10.1145/242224.242379

Holzmann, G. J. (2018). “Explicit-state model checking,” in Handbook of Model
Checking, 153–171.

Huang, X., Kroening, D., Ruan, W., Sharp, J., Sun, Y., Thamo, E., et al. (2020). A
survey of safety and trustworthiness of deep neural networks: Verification, testing,
adversarial attack and defence, and interpretability. Comput. Sci. Rev. 37:100270.
doi: 10.1016/j.cosrev.2020.100270

Frontiers inComputer Science 20 frontiersin.org

https://doi.org/10.3389/fcomp.2025.1557977
https://doi.org/10.1016/j.inffus.2021.05.008
https://doi.org/10.1080/08839514.2023.2282834
https://doi.org/10.1007/s10626-023-00377-9
https://doi.org/10.48550/arXiv.1606.06565
https://doi.org/10.1016/j.jlamp.2023.100941
https://doi.org/10.1016/j.entcs.2004.12.015
https://doi.org/10.1145/3453483.3454056
https://doi.org/10.1145/3617508
https://doi.org/10.1145/3577204
https://doi.org/10.1007/s10009-023-00703-4
https://doi.org/10.48550/arXiv.1909.06588
https://doi.org/10.1016/0890-5401(92)90017-A
https://doi.org/10.1609/icaps.v29i1.3529
https://doi.org/10.48550/arXiv.0804.4809
https://doi.org/10.1007/s00236-007-0062-z
https://doi.org/10.1145/3452296.3472936
https://doi.org/10.3390/a17010028
http://archive. ics. uci. edu/ml
http://archive. ics. uci. edu/ml
https://doi.org/10.1002/9781118557426.ch1
https://doi.org/10.1038/scientificamerican0670-132
https://doi.org/10.48550/ARXIV.2107.03342
https://doi.org/10.1007/s10009-022-00685-9
https://doi.org/10.1007/s10817-019-09535-x
https://doi.org/10.1145/242224.242379
https://doi.org/10.1016/j.cosrev.2020.100270
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Sbai 10.3389/fcomp.2025.1557977

Huang, X., Kwiatkowska, M., Wang, S., and Wu, M. (2017). “Safety verification
of deep neural networks,” in Computer Aided Verification, eds. R. Majumdar, and V.
Kunčak (Cham: Springer International Publishing), 3–29.

Hustiu, I., Mahulea, C., and Kloetzer, M. (2023). “Software tool for distribution
of linear temporal logic specifications,” in 2023 The 22nd World Congress of the
International Federation of Automatic Control (IFAC). Available online at: https://drive.
google.com/file/d/1svTaotOoPE-2VmSoEXgCRXpzDa7jyjvf/view?usp=sharing

Jawaddi, S. N. A., Johari, M. H., and Ismail, A. (2022). A review of microservices
autoscaling with formal verification perspective. Software: Pract. Exp. 52, 2476–2495.
doi: 10.1002/spe.3135

Katz, G., Barrett, C., Dill, D. L., Julian, K., and Kochenderfer, M. J. (2017).
“Reluplex: an efficient SMT solver for verifying deep neural networks,” in Computer
Aided Verification, eds. R. Majumdar, and V. Kunčak (Cham: Springer International
Publishing), 97–117.

Khmelnitsky, I., Neider, D., Roy, R., Xie, X., Barbot, B., Bollig, B., et al.
(2021). “Property-directed verification and robustness certification of recurrent neural
networks,” in Automated Technology for Verification and Analysis: 19th International
Symposium, ATVA 2021 (Gold Coast, QLD: Springer), 364–380.

Kulathunga, N., Ranasinghe, N. R., Vrinceanu, D., Kinsman, Z., Huang, L., and
Wang, Y. (2021). Effects of nonlinearity and network architecture on the performance
of supervised neural networks. Algorithms 14:51. doi: 10.3390/a14020051

Kurd, Z., and Kelly, T. (2003). “Establishing Safety Criteria for Artificial Neural
Networks,” in International Conference on Knowledge-Based and Intelligent Information
and Engineering Systems (Berlin, Heidelberg: Springer), 163–169.

Lan, J., Zheng, Y., and Lomuscio, A. (2022). “Tight neural network verification
via semidefinite relaxations and linear reformulations,” in Proceedings of the AAAI
Conference on Artificial Intelligence, 36, 7272–7280. doi: 10.1609/aaai.v36i7.20689

Legay, A., Lukina, A., Traonouez, L.M., Yang, J., Smolka, S. A., andGrosu, R. (2019).
“Statistical model checking,” in Computing and Software Science: State of the Art and
Perspectives (Cham: Springer), 478–504.

Li, J., Liu, J., Yang, P., Chen, L., Huang, X., and Zhang, L. (2019). “Analyzing
deep neural networks with symbolic propagation: towards higher precision and faster
verification,” in Static Analysis (Cham: Springer International Publishing), 296–319.

Li, R., Yang, P., Huang, C.-C., Sun, Y., Xue, B., and Zhang, L. (2022). “Towards
practical robustness analysis for dnns based on pac-model learning,” in Proceedings of
the 44th International Conference on Software Engineering, ICSE ’22 (New York, NY:
Association for Computing Machinery), 2189–2201.

Lin, R., Zhou, Q., Wu, B., and Nan, X. (2022). Robustness evaluation for deep
neural networks via mutation decision boundaries analysis. Inf. Sci. 601, 147–161.
doi: 10.1016/j.ins.2022.04.020

Lin, S.-B., Wang, K., Wang, Y., and Zhou, D.-X. (2022). Universal consistency
of deep convolutional neural networks. IEEE Trans. Inform. Theory 68, 4610–4617.
doi: 10.1109/TIT.2022.3151753

Liu, C., Arnon, T., Lazarus, C., Strong, C., Barrett, C., and Kochenderfer, M.
J. (2021). Algorithms for verifying deep neural networks. Found. Trends Optim. 4,
244–404. doi: 10.1561/2400000035

Liu, J., Xing, Y., Shi, X., Song, F., Xu, Z., and Ming, Z. (2022). Abstraction and
Refinement: Towards Scalable and Exact Verification of Neural Networks.

Liu, W., Song, F., Zhang, T., and Wang, J. (2020). Verifying relu neural
networks from a model checking perspective. J. Comput. Sci. Technol. 35, 1365–1381.
doi: 10.1007/s11390-020-0546-7

Luebke, D. (2008). “CUDA: Scalable parallel programming for high-performance
scientific computing,” in 2008 5th IEEE International Symposium on Biomedical
Imaging: From Nano to Macro (Paris: IEEE), 836–838.

Makino, T., Jastrzebski, S., Oleszkiewicz, W., Chacko, C., Ehrenpreis, R., Samreen,
N., et al. (2022). Differences between human and machine perception in medical
diagnosis. Sci. Rep. 12:6877. doi: 10.1038/s41598-022-10526-z

Mao, Y., Muller, M. N., Fischer, M., and Vechev, M. T. (2023). Understanding
certified training with interval bound propagation. arXiv [preprint] arXiv:2306.10426.
doi: 10.48550/arXiv.2306.10426

Mayr, F., Yovine, S., and Visca, R. (2021). Property checking with interpretable
error characterization for recurrent neural networks. Machine Learn. Knowl. Extract.
3, 205–227. doi: 10.3390/make3010010

Meng, M. H., Bai, G., Teo, S. G., Hou, Z., Xiao, Y., Lin, Y., et al. (2022). Adversarial
robustness of deep neural networks: A survey from a formal verification perspective.
IEEE Trans. Depend. Secure Comp. 1:1. doi: 10.1109/TDSC.2022.3179131

Montavon, G., Binder, A., Lapuschkin, S., Samek, W., and Müller, K.-R. (2019).
“Layer-wise relevance propagation: an overview,” in Explainable AI: Interpreting,
Explaining and Visualizing Deep Learning, eds. W. Samek, W. Montavon, A. Vedaldi,
L. Hansen, K. R. Müller (Cham: Springer), 11700. doi: 10.1007/978-3-030-28954-6_10

Monteiro, R. F., Alves, E., Silva, I., Ismail, H., Cordeiro, L., and Filho, E. (2017).
ESBMC-GPU a context-bounded model checking tool to verify cuda programs. Sci.
Comp. Program. 152:5. doi: 10.1016/j.scico.2017.09.005

Müller, M. N., Makarchuk, G., Singh, G., Püschel, M., and Vechev, M. (2022).
PRIMA: general and precise neural network certification via scalable convex hull
approximations. Proc. ACM Program. Lang. 6:3462308. doi: 10.1145/3462308

Muškardin, E., Aichernig, B. K., Pill, I., and Tappler, M. (2022). “Learning finite state
models from recurrent neural networks,” in Integrated Formal Methods, eds. M. H. ter
Beek, and R. Monahan (Cham: Springer International Publishing), 229–248.

Naseer, M., Hasan, O., and Shafique, M. (2023). Scaling model checking for dnn
analysis via state-space reduction and input segmentation (extended version). arXiv
[preprint] arXiv:2306.17323. doi: 10.48550/arXiv.2306.17323

Naseer, M., Minhas, M. F., Khalid, F., Hanif, M. A., Hasan, O., and Shafique,
M. A. (2019). “FANNet: formal analysis of noise tolerance, training bias and input
sensitivity in neural networks,” in 2020 Design, Automation&Test in Europe Conference
& Exhibition (DATE) (Grenoble: IEEE), 666–669.

Nayak, S. P., Neider, D., Roy, R., and Zimmermann, M. (2024). “Robust
computation tree logic,” in Innovations in Systems and Software Engineering, 1–23.

Pulina, L., and Tacchella, A. (2010). “An abstraction-refinement approach to
verification of artificial neural networks,” inComputer Aided Verification, eds. T. Touili,
B. Cook, and P. Jackson (Berlin, Heidelberg: Springer Berlin Heidelberg), 243–257.

Ressi, D., Romanello, R., Rossi, S., and Piazza, C. (2024). Compressing
neural networks via formal methods. Neural Netw. 178:106411.
doi: 10.1016/j.neunet.2024.106411

Ruan, W., Wu, M., Sun, Y., Huang, X., Kroening, D., and Kwiatkowska, M. (2019).
Global Robustness Evaluation of Deep Neural Networks with Provable Guarantees for the
Hamming Distance. Montreal: IJCAI-19.

Ryou, W., Chen, J., Balunovic, M., Singh, G., Dan, A., and Vechev, M. (2021).
“Scalable polyhedral verification of recurrent neural networks,” in Computer Aided
Verification: 33rd International Conference, CAV 2021, Virtual Event, July 20-23, 2021,
Proceedings, Part I 33 (Springer International Publishing), 225–248.

Sälzer, M., Alsmann, E., Bruse, F., and Lange, M. (2022). Verifying and
interpreting neural networks using finite automata. arXiv [preprint] arXiv:2211.01022.
doi: 10.48550/arXiv.2211.01022

Samek, W., Montavon, G., Lapuschkin, S., Anders, C. J., and Muller, K.-R. (2021).
Explaining deep neural networks and beyond: a review of methods and applications.
Proc. IEEE 109, 247–278. doi: 10.1109/JPROC.2021.3060483

Sena, L., Song, X., Alves, E., Bessa, I., Manino, E., Cordeiro, L., et al. (2021).
Verifying quantized neural networks using smt-basedmodel checking. arXiv [preprint]
arXiv:2106.05997. doi: 10.48550/arXiv.2106.05997

Sena, L. H., Bessa, I. V., Gadelha, M. R., Cordeiro, L. C., and Mota, E. (2019).
“Incremental bounded model checking of artificial neural networks in CUDA,” in 2019
IX Brazilian Symposium on Computing Systems Engineering (SBESC) (Natal: IEEE),
1–8.

Sena, L. H. C. (2022). Automated Verification and Refutation of Quantized Neural
Networks.

Seshia, S., Desai, A., Dreossi, T., Fremont, D., Ghosh, S., Kim, E., et al. (2018).
Formal Specification for Deep Neural Networks: 16th International Symposium, ATVA
2018. Los Angeles, CA: ATVA, 20–34.

Sherstinsky, A. (2020). Fundamentals of recurrent neural network (RNN) and long
short-term memory (lstm) network. Physica D: Nonlinear Phenomena 404:132306.
doi: 10.1016/j.physd.2019.132306

Shih, A., Darwiche, A., and Choi, A. (2019). “Verifying binarized neural networks
by angluin-style learning,” in Theory and Applications of Satisfiability Testing-SAT 2019,
eds. M. Janota, and I. Lynce (Cham: Springer International Publishing), 354–370.

Shridhar, A., Tomson, P., and Innes, M. (2020). “Interoperating deep learning
models with ONNX.ji,” in Proceedings of the JuliaCon Conferences, 59.

Singh, G., Gehr, T., Mirman, M., Püschel, M., and Vechev, M. (2018). “Fast
and effective robustness certification,” in Advances in Neural Information Processing
Systems, eds. S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and
R. Garnett (New York: Curran Associates, Inc).

Singh, G., Gehr, T., Püschel, M., and Vechev, M. (2019b). An abstract domain for
certifying neural networks. Proc. ACM Program. Lang. 3, 1–30. doi: 10.1145/3290354

Singh, G., Gehr, T., Püschel, M., and Vechev, M. (2019c). “Boosting robustness
certification of neural networks,” in 7th International Conference on Learning
Representations, ICLR 2019 (New Orleans).

Sistla, A. P., Vardi, M. Y., andWolper, P. (1987). The complementation problem for
büchi automata with applications to temporal logic. Theor. Comput. Sci. 49, 217–237.
doi: 10.1016/0304-3975(87)90008-9

Song, X., Manino, E., Sena, L., Alves, E., Bessa, I., Lujan, M., et al. (2021).
QNNVerifier: a tool for verifying neural networks using smt-based model checking.
arXiv [preprint] arXiv:2111.13110. doi: 10.48550/arXiv.2111.13110

Sotoudeh, M., and Thakur, A. V. (2020). “Abstract neural networks,” in Static
Analysis, eds. D. Pichardie, and M. Sighireanu (Cham: Springer International
Publishing), 65–88.

Frontiers inComputer Science 21 frontiersin.org

https://doi.org/10.3389/fcomp.2025.1557977
https://drive.google.com/file/d/1svTaotOoPE-2VmSoEXgCRXpzDa7jyjvf/view?usp=sharing
https://drive.google.com/file/d/1svTaotOoPE-2VmSoEXgCRXpzDa7jyjvf/view?usp=sharing
https://doi.org/10.1002/spe.3135
https://doi.org/10.3390/a14020051
https://doi.org/10.1609/aaai.v36i7.20689
https://doi.org/10.1016/j.ins.2022.04.020
https://doi.org/10.1109/TIT.2022.3151753
https://doi.org/10.1561/2400000035
https://doi.org/10.1007/s11390-020-0546-7
https://doi.org/10.1038/s41598-022-10526-z
https://doi.org/10.48550/arXiv.2306.10426
https://doi.org/10.3390/make3010010
https://doi.org/10.1109/TDSC.2022.3179131
https://doi.org/10.1007/978-3-030-28954-6_10
https://doi.org/10.1016/j.scico.2017.09.005
https://doi.org/10.1145/3462308
https://doi.org/10.48550/arXiv.2306.17323
https://doi.org/10.1016/j.neunet.2024.106411
https://doi.org/10.48550/arXiv.2211.01022
https://doi.org/10.1109/JPROC.2021.3060483
https://doi.org/10.48550/arXiv.2106.05997
https://doi.org/10.1016/j.physd.2019.132306
https://doi.org/10.1145/3290354
https://doi.org/10.1016/0304-3975(87)90008-9
https://doi.org/10.48550/arXiv.2111.13110
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Sbai 10.3389/fcomp.2025.1557977

Tao, Y., Liu, W., Song, F., Liang, Z., Wang, J., and Zhu, H. (2023). An automata-
theoretic approach to synthesizing binarized neural networks. arXiv [preprint]
arXiv:2307.15907. doi: 10.1007/978-3-031-45329-8_18

Urban, C., and Miné, A. (2021). A review of formal methods applied to machine
learning. arXiv [preprint] arXiv:2104.02466. doi: 10.48550/arXiv.2104.02466

Wang, S., Pei, K., Whitehouse, J., Yang, J., and Jana, S. (2018). “Formal security
analysis of neural networks using symbolic intervals,” in 27th USENIX Security
Symposium (USENIX Security 18) (Baltimore, MD: USENIX Association), 1599–1614.

Wang, X., Yang, K., Wang, Y., Zhao, L., and Shu, X. (2020). “Towards formal
verification of neural networks: A temporal logic based framework,” in Structured
Object-Oriented Formal Language and Method, eds. H. Miao, C. Tian, S. Liu, and Z.
Duan (Cham: Springer International Publishing), 73–87.

Wang, Z., Albarghouthi, A., Prakriya, G., and Jha, S. (2022). Interval
universal approximation for neural networks. Proc. ACM Program. Lang. 6, 1–29.
doi: 10.1145/3498675

Weiss, G., Goldberg, Y., and Yahav, E. (2018). “Extracting automata from recurrent
neural networks using queries and counterexamples,” in International Conference on
Machine Learning (New York: PMLR), 5247–5256.

Woodcock, J., Larsen, P. G., Bicarregui, J., and Fitzgerald, J. (2009).
Formal methods: Practice and experience. ACM comp. Surveys 41, 1–36.
doi: 10.1145/1592434.1592436

Xiao, J., Sun, R., and Luo, Z.-Q. (2023). “PAC-Bayesian Spectrally-Normalized
Bounds for Adversarially Robust Generalization,” in Proceedings of the 37th
International Conference on Neural Information Processing Systems (NIPS ’23) (ACM),
36305–36323.

Xu, K., Zhang, H., Wang, S., Wang, Y., Jana, S., Lin, X., et al. (2021). Fast and
Complete: Enabling Complete Neural Network Verification with Rapid and Massively
Parallel Incomplete Verifiers.

Xu, Z., Liu, Y., Qin, S., and Ming, Z. (2023). Output range analysis for feed-forward
deep neural networks via linear programming. IEEE Trans. Reliabil. 72, 1191–1205.
doi: 10.1109/TR.2022.3209081

Yalçın, O. G. (2021). Feedforward Neural Networks (Berkeley, CA: Apress), 121–143.

Yang, K., Duan, Z., Tian, C., and Zhang, N. (2017). A compiler for msvl and its
applications. Theor. Comput. Sci. 749:32. doi: 10.1016/j.tcs.2017.07.032

Ye, C., Yang, Y., Fermuller, C., and Aloimonos, Y. (2017). On the importance
of consistency in training deep neural networks. arXiv preprint arXiv:1708.00631.
doi: 10.48550/arXiv.1708.00631

Yu, X., Smedemark-Margulies, N., Aeron, S., Koike-Akino, T., Moulin, P., Brand,
M., et al. (2023). Improving adversarial robustness by learning shared information.
Pattern Recognit. 134:109054. doi: 10.1016/j.patcog.2022.109054

Zafar, M. R., and Khan, N. (2021). Deterministic local interpretable model-
agnostic explanations for stable explainability.Mach. Learn. Knowl. Extract. 3, 525–541.
doi: 10.3390/make3030027

Zhang, N., Duan, Z., and Tian, C. (2016). Model checking concurrent
systems with msvl. Sci. China Inform. Sci. 59, 1–3. doi: 10.1007/s11432-015-
0882-6

Zhang, Y., Zhao, Z., Chen, G., Song, F., and Chen, T. (2021). “BDD4BNN: a bdd-
based quantitative analysis framework for binarized neural networks,” in Computer
Aided Verification, eds. A. Silva, and K. R. Leino (Cham: Springer International
Publishing), 175–200.

Zhang, Y., Zhao, Z., Chen, G., Song, F., and Chen, T. (2022). Precise quantitative
analysis of binarized neural networks: a BDD-based approach. ACM Trans. Softw. Eng.
Methodol. 32:3563212. doi: 10.1145/3563212

Zhao, L., Wu, L., Gao, Y., Wang, X., and Yu, B. (2022). “Formal
modeling and verification of convolutional neural networks based on MSVL,”
in 2022 9th International Conference on Dependable Systems and Their
Applications (DSA) (Wulumuqi), 280–289. doi: 10.1109/DSA56465.2022.
00046

Zhao, Z., Zhang, Y., Chen, G., Song, F., Chen, T., and Liu, J. (2022). “CLEVEREST:
Accelerating CEGAR-based neural network verification via adversarial attacks,” in
Static Analysis, eds. G. Singh, and C. Urban (Cham: Springer Nature Switzerland),
449–473.

Frontiers inComputer Science 22 frontiersin.org

https://doi.org/10.3389/fcomp.2025.1557977
https://doi.org/10.1007/978-3-031-45329-8_18
https://doi.org/10.48550/arXiv.2104.02466
https://doi.org/10.1145/3498675
https://doi.org/10.1145/1592434.1592436
https://doi.org/10.1109/TR.2022.3209081
https://doi.org/10.1016/j.tcs.2017.07.032
https://doi.org/10.48550/arXiv.1708.00631
https://doi.org/10.1016/j.patcog.2022.109054
https://doi.org/10.3390/make3030027
https://doi.org/10.1007/s11432-015-0882-6
https://doi.org/10.1145/3563212
https://doi.org/10.1109/DSA56465.2022.00046
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

	Model checking deep neural networks: opportunities and challenges
	1 Introduction
	1.1 Paper contributions
	1.2 Related work
	1.3 Paper outline

	2 Model checking DNNs: an overview
	2.1 Preliminaries on DNNs
	2.2 Model checking process
	2.3 Applications of model checking to DNNs

	3 Formal models of DNNs
	3.1 Finite automata
	3.2 Markov decision process
	3.3 Binary decision diagram
	3.4 Petri net
	3.5 Kripke structure
	3.6 Interval arithmetic

	4 Formal specification
	4.1 Formal logic
	4.2 Temporal logic
	4.2.1 ReTL
	4.2.2 PPTL
	4.2.3 BLTL

	4.3 Finite state machine

	5 Algorithms to check models against specifications
	5.1 Explicit model checking
	5.2 Implicit model checking
	5.3 Bounded model checking
	5.4 On-the-fly model checking

	6 Discussion
	7 Open challenges
	7.1 Complexity and scalability
	7.2 Interpretability
	7.3 Verification entirety

	8 Conclusion and future outlook
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Generative AI statement
	Publisher's note
	References

