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Why not both? Complementing
explanations with uncertainty,
and self-confidence in human-AI
collaboration

Ioannis Papantonis1* and Vaishak Belle1,2

1School of Informatics, University of Edinburgh, Edinburgh, United Kingdom, 2Alan Turing Institute,
London, United Kingdom

Introduction: As AI systems integrate into high-stakes domains, e�ective
human-AI collaboration requires users to be able to assess when and why to
trust model predictions. This study investigates whether combining uncertainty
estimates with explanations enhances human-AI interaction e�ectiveness,
particularly examining the interplay between model uncertainty and users’ self-
confidence in shaping reliance, understanding, and trust.

Methods: We conducted an empirical study with 120 participants across four
experimental conditions, each providing increasing levels of model assistance:
(1) prediction only; (2) prediction with corresponding probability; (3) prediction
with both probability and class-level recall rates; and (4) all prior information
supplemented with feature importance explanations. Participants completed
an income prediction task comprising of instances with varying degrees of
both human and model confidence levels. In addition to measuring prediction
accuracy, we collected subjective ratings of participants’ perceived reliance,
understanding, and trust in the model. Finally, participants completed a
questionnaire evaluating their objective model understanding.

Results: Uncertainty estimates were su�cient to enhance accuracy, with
participants showing significant improvement when they were uncertain but
the model exhibited high confidence. Explanations provided complementary
benefits, significantly increasing both subjective understanding and participants’
performance with respect to feature importance identification, counterfactual
reasoning, and model simulation. Both human confidence model confidence
played a role in shaping user’s reliance, understanding, and trust toward the
AI system. Finally, the interaction between human and model confidence
determined when AI assistance was most beneficial, with accuracy gains
occurring primarily when human confidence was low but model confidence was
high, across three of four experimental conditions.

Discussion: These findings demonstrate that uncertainty estimates and
explanations serve complementary roles in human-AI collaboration, with
uncertainty estimates enhancing predictive accuracy, and explanations
significantly improving model understanding without compromising
performance. Human confidence acts as a moderating factor influencing
all aspects of human-AI interaction, suggesting that future AI systems should
account for user confidence levels. The results provide a foundation for
designing AI systems that promote e�ective collaboration in critical applications
by combining uncertainty communication with explanatory information.
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trust in AI, human-AI collaboration, explainable AI, uncertainty in AI, user self-
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1 Introduction

AI and ML models have already found applications in domains

ranging from medical diagnosis to criminal justice. However,

full automation is not always desirable, especially in high-stakes

applications due to ethical (Naik et al., 2022) or fairness (Mehrabi

et al., 2021) concerns. Instead, in such cases, humans should be

assisted by automated systems so that the two parties reach a

joint decision, stemming out of their interaction. The advantage

of this approach is that while it makes use of sophisticated AI

systems, humans retain full agency over the final decision, limiting

the adverse effect of potential poor model predictions. One of the

primary objectives of this human-AI collaboration is to achieve

high performance, a goal that requires human users to be able to

decide when to follow the model’s predictions, which is a multi-

faceted objective, influenced by several factors (Lee and See, 2004;

Hoff and Bashir, 2015; Adams et al., 2003).

Identifying such factors as well as the way they impact user

behavior and attitude toward a model has been an active research

area for decades within the human factors and the AI communities,

resulting in several behavioral theories describing the dynamics

of the human-AI interaction (Lee and Moray, 1992; Linegang

et al., 2006; Madsen and Gregor, 2000). A consistent point of

convergence among most theories is that both model-related

factors, such as the extent to which a model is perceived to be

reliable and understandable, and user-related factors, such as their

self-confidence in their abilities to carry out a task, play a crucial role

in the formation of the human-AI relationship.

In this context, reliance is interlinked with trust in AI systems,

with the latter being defined as an attitude that the model will help

achieve one’s goals under conditions of uncertainty, and the former

as the behavioral outcome of that trust in the form of adopting

or deferring to the model’s recommendation (Lee and See, 2004).

In addition, understanding refers to a user’s subjective assessment

of their comprehension of the AI system’s decision process for a

particular instance (Hoffman et al., 2018).

As far as model-related factors are concerned, the emergence of

explainable AI has sparked a surge of empirical studies that explore

the effect of different explanation styles on model understanding,

or the capacity of explanations to allow users detect unfair model

behavior (Lai and Tan, 2019; Wang and Yin, 2021; Dodge et al.,

2019; Lai et al., 2020). Moreover, with respect to reliability,

recent studies have contrasted the influence of model predictions,

uncertainty estimates, and explanations on users’ perceived model

reliability, comparing their relative effectiveness on instilling trust

and/or inducing a complementary performance benefit, where the

joint human-AI accuracy is superior to the individual accuracy

of either party (Zhang et al., 2020; Bansal et al., 2021b; Green

and Chen, 2019; Lundberg et al., 2018). While this is an ongoing

endeavor, there has been substantial evidence suggesting that

uncertainty estimates are at least as effective as explanations in

achieving these goals. Moreover, uncertainty estimates are arguably

simpler to implement and communicate, raising questions about

the overall utility of explanations.

Notably, surveys considering both uncertainty estimates and

explanations, usually view them as competing sources of reliability-

related information.While this approach has themerit of providing

a common ground upon which it is possible to compare the two,

it reduces explanations to reliability indicators, even though their

primarily function is to enhance understanding (Hoffman et al.,

2018). In addition, while prior research suggests that information

regarding reliability and understanding have complementary

functions (Zuboff, 1988; Sheridan, 1989; Lee and Moray, 1992;

Madsen and Gregor, 2000; Kelly, 2003), the aforementioned

approach fails to capture this aspect. For example, uncertainty

estimates may help users decide the extent to which to rely on a

model, but they provide no justifications in cases where a model

makes incorrect predictions, hindering model acceptance (Ashoori

and Weisz, 2019). On the other hand, while explanations mitigate

this issue, inferring a model’s prediction and uncertainty based on

explanations alone, requires substantial technical expertise, while

also inducing high cognitive load, making it an inefficient strategy

for practical applications (Kaur et al., 2020).

Users’ self-confidence in their abilities to complete a task is

another factor that influences multiple aspects of the human-AI

relationship (Lee and Moray, 1992; Lewandowsky et al., 2000;

De Vries et al., 2003; Lee and See, 2004). Empirical surveys

examining this effect in tasks where humans function as operators,

deciding whether to perform a task manually or allocate it to

a model, provide evidence that humans’ self-confidence has a

significant influence on trust and reliance. Despite such findings,

self-confidence has received very little attention in human-AI

joint decision-making scenarios, where AI models serve purely as

advisors while humans retain final decision-making authority.

Another point that deserves further consideration is how trust

is operationalized in recent surveys. Specifically, trust is often

assessed through agreement and switching percentages (Zhang et al.,

2020), rather than using specialized trust measurement scales (e.g.

Madsen and Gregor, 2000; Jian et al., 2000; Adams et al., 2003;

Cahour and Forzy, 2009). While these percentages provide an

objective measure of user behavior, bypassing user-made subjective

self-assessments, it is well established that they primarily measure

reliance, not trust, and thus may not account for confounding

factors such as time constraints, inherent risks, or users’ self-

confidence (Miller et al., 2016; Chancey et al., 2013). This is because

although trust is considered to mediate reliance on automation,

it is a broader attitude toward automation, while reliance reflects

specific behaviors that may or may not stem from trust (Ajzen,

1980; Lee and See, 2004). For instance, users may rely on a model

not out of trust, but due to a lack of expertise to make an informed

decision. Conversely, users might reach the same conclusion as a

model purely by coincidence, with their decision based solely on

personal knowledge, rather than reliance or trust in the system.

In this study we design a salary prediction task to answer

questions along two principal axes. On the one hand, we provide

an in-depth analysis regarding the role of the interaction of human

and model confidence in influencing joint accuracy. In addition,

we elucidate how reliance, understanding, and trust are shaped

as a result of this interaction. On the other hand, we target

non-accuracy-related benefits of pairing uncertainty estimates

with explanations, such as enhanced model understanding, which

is an important indicator of model acceptance and long-term

adoption (Adams et al., 2003). In particular, we ask the following

research questions:
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RQ1 How is joint predictive performance influenced by the

interaction of human confidence, model confidence, and the

degree of model assistance?

RQ2 How are reliance, understanding, and trust toward the

model affected by the same factors?

RQ3 Does the combination of explanations and

uncertainty measures offer non accuracy-related,

complementary advantages?

RQ4 How uncertainty estimates of varying scope influence user

behavior?

Moreover, the design of our study enables a qualitative

demonstration of the limitations of using switching and agreement

percentages as proxies for studying trust. Ultimately, our goal

is to provide evidence of the tangible benefits of utilizing

combinations of diverse information sources. We aim to test the

following hypotheses:

H1 Superior joint accuracy will be observed when humans

have low self-confidence, and the model makes high

confidence predictions.

H2 Participants provided with explanations will show better

model understanding.

H3 Reliance, understanding and trust toward the model will be

affected by both human confidence and model confidence,

as follows:

H3.1 Reliance will be affected primarily by human

confidence, and to a lesser extent by model confidence.

Furthermore, we expect to find an increase in reliance

when humans have low confidence and the model makes

high confidence predictions.

H3.2 Understanding will be similarly affected by both human

andmodel confidence. In addition, we expect an increase in

understanding when both parties have high confidence.

H3.3 Trust will be affected primarily by human confidence,

and to a lesser extent by model confidence. We also expect

an increase in trust when both parties have high confidence.

H4 The difference between uncertainty measures of

distinct scopes (global vs. local) will induce differences

in user behavior.

2 Related work

Clear and transparent communication is fundamental to

enhancing the collaboration between human users and automated

systems, and the factors that contribute to this have received

significant attention in recent research. In Bhatt et al. (2021)

the authors called for utilizing diverse estimates that convey

multiple aspects of the underlying model uncertainty to promote

transparency and help users comprehend the degree to which a

model’s predictions should be followed. Moreover, the findings

in Ashoori and Weisz (2019) suggested that in high-stakes

applications uncertainty estimates might not be enough, since the

absence of explanations may lead to users entirely dismissing a

model, regardless of its accuracy.

This perspective is reinforced by a growing body of work

spanning both HCI and machine learning communities that

emphasizes the joint role of explanations and uncertainty estimates

in user interactions with AI systems. Tomsett et al. (2020)

advocate for systems that are simultaneously interpretable and

uncertainty-aware, enabling users to understand both what the

system knows and the boundaries of its knowledge. Chiaburu

et al. (2024) distinguish between multiple sources of uncertainty,

including the explanation method itself, proposing a formal

framework for modeling and interpreting this uncertainty. In

the same spirit, Salvi et al. (2025) propose to generate and

communicate estimates that quantify the uncertainty behind an

XAI generated explanation, allowing users to assess its credibility.

These discussions align with broader psychological models of

human-AI trust, which emphasize that users evaluate system

trustworthiness based not only on functional performance but also

on how systems communicate uncertainty and support appropriate

trust calibration in contextually sensitive ways (Li et al., 2024).

Motivated by such developments, several recent empirical

investigations focus on the relative effect of uncertainty and

explanations on joint accuracy and trust. For example, the findings

in Zhang et al. (2020), suggested that simply providing participants

with information about model confidence, i.e. the probability a

model assigns to its predictions, is more effective than explanations

in improving trust and joint accuracy, as well as that explanations

were not successful in allowing participants disentangle between

high and low confidence predictions. Moreover, the results in

Lai and Tan (2019) demonstrated that the best joint accuracy

was achieved when presenting information containing the model’s

prediction paired with the corresponding model confidence, in

line with Zhang et al. (2020). Pairing local feature importance

explanations andmodel predictions was slightly less effective, while

presenting explanations alone, led only to a minor improvement

compared to the baseline.

Another related study is presented in Bansal et al. (2021b),

which explores whether combining model confidence and

explanations can further improve the accuracy of the human-AI

team. The analysis showed that when both parties had comparable

individual accuracy, then presenting participants with the model’s

prediction and confidence led to the ensemble achieving superior

joint accuracy. The authors found no further improvement when

pairing this information with explanations, concluding that the

former strategy is as effective as the latter, while also being simpler.

Both Bansal et al. (2021b) and Zhang et al. (2020) suggest that

a user’s self-confidence may influence joint human-AI accuracy,

highlighting the need for more comprehensive investigation into

this relationship. In light of this, the recent study in Zhang

et al. (2022) took a black and white approach, where each party

was either always correct or guessing at random, and showed

that complementary expertise results in improved joint accuracy.

However, in real-life settings decisions are rarely taken with

absolute certainty or complete ignorance, instead the associated

uncertainty typically falls between these two extremes, which

is the case we consider in this work. Strengthening this view,

Lee and Moray (1994) showed that people tended to perform
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a task manually as long as they trusted their capabilities more

than the automation’s. In a similar vein, in Lewandowsky

et al. (2000) participants self-confidence influenced whether they

turn to automation, while De Vries et al. (2003) uncovered a

fundamental bias toward people trusting their own abilities, instead

of automation.

Beyond the effect of explanations on accuracy, other surveys

focus on alternative questions, such as the one in Dodge et al.

(2019), which explored the efficacy of explanations in helping

human users detect unfair model behavior. Interestingly, the

results revealed that local explanations were the most effective in

exposing fairness discrepancies among individuals, while global

ones instilled more confidence in the users that their understanding

was correct. In addition, the study in Wang and Yin (2021),

brought a new perspective by exploring the comparative effect

of explanation styles on model understanding, across datasets of

varying difficulty. The final results uncovered that the difficulty of

the application significantly influenced the effect of explanations on

model understanding, while also indicating that local explanations

improved participants objective understanding, and that global

explanations improved their self-reported understanding.

Finally, many recent studies share a common methodological

approach where trust in AI is assessed through agreement and

switching percentages. Agreement refers to the proportion of

instances where the user and the model agreed on their final

predictions, while switching percentages indicate how often users

changed their predictions to follow the model, assuming the two

parties initially disagreed. This approach is in contrast with the

predominant practice in the human factors and human-computer

interaction communities, where trust in automated systems is

assessed based on either specialized trust measuring scales such as

Madsen and Gregor (2000), Jian et al. (2000), Adams et al. (2003),

and Cahour and Forzy (2009), sophisticated implicit behavioral

measures (De Vries et al., 2003; Miller et al., 2016), or combinations

thereof. Moreover, focusing exclusively on the aforementioned

percentages represents a methodological shift, as both are primarily

indicators of reliance (Miller et al., 2016; Lee and See, 2004).

This implies that trust can be indirectly inferred from reliance,

which poses a challenge due to potential confounding factors

that may affect the relationship between trust and reliance in

human-AI interactions.

3 Methods

3.1 Dataset

We designed a salary prediction task based on the Adult

dataset (Blake and Merz, 1998), where participants had to predict

whether a person’s annual salary was greater than 1,00,000 dollars.

However, since this task was based on the Adult dataset, which

contains data from the 1994 Census,1 we needed to adjust the

salary threshold to account for inflation. Considering that in this

time span the US dollar has seen a cumulative price increase of

101.09%, the adjusted value became 100,500, which was rounded

to 100,000 dollars. The dataset contains 48, 842 instances, and

1 Link: https://archive.ics.uci.edu/ml/datasets/adult.

each one is comprised of 14 features. Following the authors in

Zhang et al. (2020), we opted for using only the 8 most relevant

ones, so participants were not overloaded with information. These

features corresponded to a person’s: age, employer, education,

marital status, occupation, ethnic background, gender, as well

as the hours-per-week spent working. We trained a gradient

boosting decision tree model on 80% of this dataset, leaving the

remaining 20% to test its final performance, which turnout out to

be 82%.

3.2 Participants

To address our questions, we recruited 112 participants from

Amazon Mechanical Turk. 49 participants were women, and 63

were men. 18 participants were between age 18 and 29, 45 between

age 30 and 39, 23 between 40 and 49, and 26 were over 50 years

old. Furthermore, our task was available only to USA residents,

due to the fact that the selected dataset contained information

that was relevant to the USA social context. Finally, we did not

keep track of participants’ experience with AI systems or expertise

in salary prediction tasks, which we further discuss in Section 6

.

3.3 Task instances

Our task required instances of varying complexity both from

a human’s and the model’s standpoint. To this end, we first set

the threshold for low confidence model predictions at 65%, so any

prediction with probability less than 65%, was considered a low

confidence model prediction. For high confidence predictions, the

threshold was set at 80%. We intentionally opted for a relatively

large gap between the two thresholds in order to avoid the interval

in-between where it is ambiguous whether a prediction should be

seen as having low or high confidence. We then went through the

filtered dataset looking for instances of varying complexity from a

human’s perspective. Additionally, these instances were carefully

selected to ensure that the relationship between feature values

and ground truth reflects the current social context, avoiding the

inclusion of outdated artifacts that are no longer relevant. After

completing that, we needed to validate our selection and make sure

that humans and model have comparable individual performances,

to match the setting in Bansal et al. (2021b). Following Zhang

et al. (2020), we used a stratified sampling approach, constraining

the model accuracy to be 75%, since the unconstrained accuracy

(82%) was very high for lay people. By the end of this procedure,

we identified 56 instances satisfying all desiderata, equally divided

into the 4 configurations of human/model confidence: (Human

- High & Model - High), (Human - High & Model - Low),

(Human - Low & Model - High), and (Human - Low &

Model - Low).

In order to verify that these instances were indeed effective

both in inducing different states of human confidence and in

allowing for comparable human-model performance, we recruited

15 participants from Amazon Mechanical Turk, asking them

to provide a confidence score and prediction for each of these
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FIGURE 1

Participants needed to inspect a datapoint and provide their
unassisted prediction/confidence.

datapoints. Finally, we confirmed that our categorization was

effective at inducing a different level of self-confidence to lay

users (Z = 8, p < 0.001), as well as that the selected

instances allowed for a comparable accuracy between participants

and model [Average human accuracy = 65.6%, 95% confidence

interval (54.2, 76.4)].2

3.4 Experimental setup

In order to address our research questions, we designed a

prediction task where in each trial participants needed to go

through a three-step process: (1) inspect an instance, and provide

an initial prediction about that person’s salary, as well as an estimate

of their confidence (see Figure 1); (2) receive varying levels ofmodel

assistance, depending on the condition (see below), and then give

their final prediction, where they were free to either maintain or

change their initial one; (3) provide an estimate of how much

they relied on the model for that prediction, how much they felt

they understood its decision-making process, as well as to which

extent they trusted the model’s prediction. These three steps were

repeated in each trial, and after completing the task participants

were given a test comprised of 9 multiple choice questions, adapted

2 For the former we used Wilcoxon’s signed-rank test, while the latter was

estimated using the bootstrap method.

fromWang and Yin (2021), to assess their objective understanding

of the model.

There are 4 experimental conditions, each one providing an

increasing level of model support (see Figure 2):

• Prediction: In this condition, after participants submitted

their initial prediction and confidence score, they were shown

only the model’s prediction for the same instance. After

inspecting it, they were asked to submit their final answer.

This serves as the baseline condition, providing only minimal

model assistance.

• Local confidence: In this condition, participants were shown

both the model’s prediction and the corresponding model

confidence, i.e., the probability that the model assigned to

that prediction.

• Combined confidence: In this condition, participants were

shown a combination of uncertainty measures with different

scopes. To achieve this, we expand on the information in

the Local confidence condition, by including the recall for

each class, i.e., the fraction of times an instance is correctly

identified by the model as being a member of the class.

Here, recall acts as a global meta uncertainty estimate,

providing information about the robustness of a model’s own

confidence. Combining these uncertainty measures should

help participants gain a more refined picture of the model’s

performance, since knowing that a model is, say, 80%

confident in its prediction, but predictions for this class are

correct only 50% of the time, is more informative than just

knowing the model’sconfidence.

• Explanations: In this condition, participants were shown all

of the previous information, as well as a local and a global

explanation. Based on the findings in Wang and Yin (2021),

we employed feature importance explanations for both, due to

their effectiveness in promoting a better model understanding.

Local explanations showed how much each feature influenced

the model to reach a particular prediction, while global ones

displayed the average overall impact of each feature. All

explanations were generated based on SHAP (Lundberg and

Lee, 2017).

Participants were randomly assigned to one of the four

conditions. Within subjects we manipulated model confidence and

human confidence, such that participants in each condition were

presented with an equal number of trials with each confidence

combination. More precisely, each participant was presented with 4

instances of each of the following certainty combinations: (Human

- High &Model - High), (Human - High &Model - Low), (Human

- Low & Model - High), and (Human - Low & Model - Low).

Participants were also asked to provide their confidence in each of

their predictions, which was used to confirm that our manipulation

was successful in inducing varying degrees of confidence in this

sample too (Z = 200, p < 0.001).

In addition, we matched the number of instances with

people earning less/more than 100K dollars within each certainty

combination, such that two out of the four instances of each

combination showed people gainingmore than 100K dollars. Order

of presentation of instances was random. Our dependent variables
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FIGURE 2

The model assistance presented to participants, depending on condition. Participants in the Prediction condition were shown the datapoint and the
information next to P . In Local, they were shown P + L . In Combined, they were shown P + L + C . Finally, in Explanations, they were shown all
the information contained in this slide.

are accuracy, reliance, subjective understanding of the model, trust

and objective understanding of the model.

3.5 Procedure

3.5.1 Initial screening
Upon consenting to take part in the experiment, participants

were presented with the task instructions, which matched the

demands of each condition. In the Explanations condition,

after participants read the instructions, they went through an

introduction on explanations and the interpretation of the local

and global explanation plots. Then, they were presented with

three multiple-choice questions testing whether they conceptually

understood the distinction between local and global explanations

and whether they were able to correctly interpret the explanation

plots. Participants in this condition needed to answer 2 or 3

questions correctly to be included in the sample.

3.5.2 Familiarization
Participants in all conditions went through 12 familiarization

trials where they first had to give an initial prediction on their

own, and then they were shown the model’s assistance and

provided their final answer. Once the final answer was submitted,

participants were shown the correct real life outcome. The aim of

our familiarization phase was two-fold. First, participants could

understand better their task and develop some familiarity with

the model’s assistance (especially in the case of the Explanations

condition, which contained a greater amount and a more diverse

set of information) but more importantly, participants had the

opportunity to gain some insights about the model’s performance.

In particular, given that participants were provided with the real-life

outcomes, they were exposed to instances where the model erred,

fromwhich they could infer that following the model blindly would

not be a fruitful strategy.

3.5.3 Main experiment
After the familiarization phase, participants went through

the 16 main trials, where they again had to give an unassisted

prediction, then receive model assistance and provide their final

answer (same as the familiarization phase). After submitting their

final prediction in each trial, participants were asked to answer on

a scale from 1 (“Strongly disagree”) to 7 (“Strongly agree”) to which

extent they agreed with the following statements:

• I relied on the model to reach my final prediction.

• I understand the model’s decision making process.

• I trust the model’s prediction for this person.

These items were adapted from validated scales in human-

computer interaction (Cahour and Forzy, 2009; Adams et al.,

2003), aiming to provide subjective assessments of the reliance,

understanding, and trust users exhibited toward the model. We

opted for employing single-item measures for each construct,

instead of the corresponding full scales, to capture participants’

immediate perceptions during the task while minimizing cognitive

burden across multiple trials. This is a well established approach in

user experience research (Sauro and Lewis, 2016), while the use of

a 7-point response scale aims at enhancing measurement reliability

(Preston and Colman, 2000).
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3.5.4 Exit survey
Finally, after going through all 16 trials, participants were

presented with an exit survey of 9 multiple choice questions

which assessed their objective understanding of the model, adapted

from Wang and Yin (2021), providing a second measure for

this construct.3 The goal of these questions was to address H2,

since they allowed for comparing model understanding across

conditions. This made possible to identify whether explanations

offer added benefits compared to providing users with uncertainty

estimates alone. The questions cover a wide spectrum of objectives

related to understanding:

• Global feature importance: Participants were asked to select

the most/least influential features the model utilizes to reach

its predictions. (2 questions)

• Local feature importance: Participants were given a person’s

profile, and they were asked to select the most influential

feature for this particular case. (1 question)

• Counterfactual thinking: Participants were presented with

a person’s profile, as well as a list of potential changes to

feature values, and they were asked to select which of these

changes would be sufficient to alter the model’s prediction.

(2 questions)

• Model simulation: Participants were given a profile, and

they were asked to answer what they believed the model’s

prediction for this person would be. (2 questions)

• Error detection: Participants were shown a profile, as well as

the model’s prediction, and they were asked whether they find

this prediction to be correct or not. (2 questions)

To make sure that participants were attentive, we included

two attention checks in the experiment, where they were given

instructions about which answer they should submit. Those who

failed to pass the checks, were excluded from the analysis. The

base payment was $3.20 for participants in the Explanations

condition, and $3.00 for the rest of them, since the former required

participants to go through an introduction on feature importance

explanations. Moreover, to further motivate participants, we

included two performance based bonuses; those who provided a

correct final prediction on more than 12 of the 16 main trials were

given an extra $0.30, and those who answered correctly more than

6 of the questions in the exit survey received a bonus of $0.10.

4 Results

In this section we present an analysis of our obtained data.

All confidence intervals (CIs) were calculated using the non-

parametric bootstrap estimation method (Efron and Tibshirani,

1986). Pairwise comparisons between conditions were performed

using the Mann-Whitney U Test (McKnight and Najab, 2010),

while all other comparisons were conducted using Wilcoxon’s

signed-rank test (Woolson, 2007). All statistically significant

pairwise comparisons are reported along with an estimate of the

corresponding effect size [Cohen’s d (Rosenthal et al., 1994)].

3 All the question can be found in the Supplementary material.

Statistical details about all CIs and comparisons can be found in

the Supplementary material.

4.1 Performance

The first set of analyses examined the effect of human

confidence, model confidence, and model assistance (condition)

on human performance. To address this question, we began with

comparing the individual accuracy of the two parties, so that we can

then assess whether the ensemble achieved superior performance.

To this end, we compared participants accuracy before exposure

to any model assistance (Unassisted Performance) to the model’s

accuracy. Figure 3a, depicts participants unassisted performance

per condition, along with a 95% confidence interval. Figure 3a

shows that 75% belongs to all CIs, so participants and model

showed comparable performance in all conditions, thus recreating

the setting in Bansal et al. (2021b).

Then, we compared participants performance after exposure

to the model’s assistance (Assisted Performance) to the model’s

accuracy. Figure 3a, shows the assisted performance, along with

the corresponding 95% CIs. Participants assisted performance

was significantly better than 75% in all but the Prediction

condition, suggesting that even the simple strategy of pairingmodel

predictions with confidence, as in the Local condition, is beneficial

to participants performance, in line with the findings in Bansal

et al. (2021b). On the other hand, participants in the Prediction

condition failed to surpass the model’s performance, suggesting

that predictions alone are not as effective in improving the joint

performance, supporting the findings in Lai and Tan (2019).

Having established that the model’s assistance helped the

ensemble surpass the individual model accuracy, we continue by

examining whether it surpassed participant’s individual accuracy

as well. Figure 3b, shows the 95% CIs of the difference between

participants assisted and unassisted performance, per condition.

Participants assisted performance was significantly better than their

unassisted performance in the Prediction and Local conditions.

On the contrary, the same comparison did not yield statistically

significant results in the Combined and Explanations conditions,

even though the point estimates were positive. This pattern

can be explained, at least in part, by the fact that participants

in the Combined and Explanations conditions already had

better performance in their unassisted predictions compared to

participants in the Prediction and Local conditions, leaving

less room for improvement for them. Interestingly, when the

point estimate of participants’ unassisted accuracy was lower

than the model’s accuracy (conditions Prediction and Local), the

ensemble surpassed the accuracy of both parties, however, when

the point estimate was higher than 75% (conditionsCombined and

Explanations), it failed to significantly outperform participants’

individual accuracy. In Bansal et al. (2021b), participants’ accuracy

was always lower than the model’s, so this might explain why the

ensemble achieved superior accuracy in all tasks in their study.

Expanding on the above findings, we then isolated the

effect of the different levels of model confidence (Low/High)

on participants’ accuracy (see Figure 4). The resulting analysis

showed that, with the exception of the Prediction condition, model
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FIGURE 3

(a) Participants’ unassisted and assisted accuracy. The red dotted line shows the model’s accuracy. (b) Di�erence between participants assisted and
unassisted accuracy, for each condition.

confidence did not appear to modulate participants performance.

Note that the Prediction condition was the only one where

participants had in fact no information about whether the model

had low or high confidence, and taking into account the width

of the corresponding CI, which suggests a greater variation in

participants’ accuracy.

A careful inspection of the results reveals a very interesting

pattern: Focusing on the Local condition, while model assistance

significantly improved overall performance, this effect vanished

when the different levels of assistance, i.e. high and low confidence

predictions, where examined separately. This means that while the

model’s assistance was beneficial overall, none of the individual

levels of assistance improved accuracy. One could argue that this

is a matter of statistical power, since breaking down accuracy

with respect to model confidence essentially halves our sample.

However, this explanation would overlook valuable insights in

the data, as further adjusting the analysis to account for human

confidence too reveals significant effects on accuracy, although

this reduces the sample size even more (essentially to a quarter

of the total sample). This finding demonstrates the impact of the

interaction between model and human confidence on accuracy,

highlighting its role in understanding how users engage with model

predictions and how this, in turn, shapes the overall outcome.

In more detail, Figure 5 breaks down the difference between

assisted and unassisted accuracy, as a function of condition, human

confidence, and model confidence. Participants accuracy showed

a significant improvement when they were themselves uncertain,

but the model showed high confidence in its predictions, in all

but the Combined condition, suggesting that the significant effect

observed in the Local condition was driven by this interaction,

which is why looking at model confidence alone was not enough to

convey the full picture. Furthermore, for the Combined condition,

we found a significant improvement when both model and human

confidence were low. These results showcase that although we

FIGURE 4

Di�erence in participants’ accuracy as a function of the model’s
confidence.

found no significant overall improvement for participants in the

Combined and Explanations conditions, looking at the data

through the interaction of human and model confidence allowed

us to identify the nuanced dynamics of when and how AI assistance

proves most beneficial.
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FIGURE 5

The di�erence between unassisted and assisted human
performance, broken down by condition, human confidence, and
model confidence. The red line shows the model’s accuracy.

On the other hand, when participants were confident about

their predictions, but the model was not, there was virtually no

difference in accuracy, indicating that participants’ predictions

were primarily driven by their own intuitions or knowledge of

the world. Finally, when both parties were confident in their

predictions, participants performance slightly declined, but this

effect was significant only in theExplanations condition. A possible

interpretation of this pattern is that explanations and high model

confidence prompted participants to exhibit a slightly over-reliance

on the model, which is consistent with the findings in Kaur

et al. (2020). The fact that the reverse trend was observed in the

Prediction condition strengthens this interpretation, suggesting

that in the absence of uncertainty estimates, participants’ own

confidence dominated, thus no over-reliance was observed. These

findings provide strong evidence in favor ofH1, suggesting that the

interaction between human and model confidence is an important

factor influencing when and how much a model’s predictions will

be followed, above and beyond model confidence.

4.2 Reliance, understanding, and trust

This set of analyses examines the effect of human confidence,

model confidence and condition on participants reliance,

understanding, and trust. Following the discussion in Wobbrock

and Kay (2016), we limit the assumptions of the standard F-statistic

parametric ANOVA by adopting a semi-parametric ANOVA

approach, using the Wald-type statistic proposed in Konietschke

et al. (2015), which is robust to violations of the parametric

normality assumption, as our data consists of bounded Likert scale

scores ranging from 1 to 7. This choice aligns with numerous

recent studies (Roo and Hachet, 2017; Gugenheimer et al., 2017;

Hartmann et al., 2019; Thoravi Kumaravel et al., 2020; Kudo et al.,

2021) that utilize non- or semi-parametric methods.

4.2.1 Reliance
Starting with reliance, a three-way repeated measures

ANOVA with Human Confidence×Model Confidence×Condition

identified a main effect of Human Confidence [W(1) = 40.17,

p < 0.001], a main effect of Model Confidence [W(1) = 5.138, p =

0.023], as well as an interaction between Condition and Model

Confidence [W(3) = 17.574, p = 0.001]. Participants reliance

dropped by 13.35% when they themselves were confident,

compared to when they were uncertain. Moreover, participants’

reliance increased by 4.55% when the model made high confidence

predictions. Contrasting these two percentages, we see that the

former is ∼ 3 times bigger than the latter, providing evidence that

it is primarily human confidence that influences model reliance, in

line with H3.1. However, overall this hypothesis was only partially

confirmed, since we did not detect a significant interaction between

human and model confidence [W(1) = 1.344, p = 0.246] (see

Figure 6a).

With respect to the interaction between Condition and Model

Confidence, pairwise comparisons revealed that this effect was due

to the Local condition (Z = 32, p < 0.001, d = 0.918). Moreover,

as Figure 6b shows the remaining conditions exhibited virtually no

variation in reliance for the different levels of model confidence.

In the Local condition, participants’ reliance was 19.44% higher

when the model was confident, compared to when it was not. A

possible interpretation of this finding is that while local confidence

communicates model uncertainty, it does not provide any meta-

information quantifying the robustness of this information, thus

it did not allow participants to adjust their reliance. This is

because they were only aware of the model’s uncertainty, but they

did not have any information about either the model’s global

error rates (as in the Combined condition) or about the reasons

behind the prediction (as in the Explanations condition). This

is a very interesting finding that demonstrates that although

extra information might not necessarily lead to better predictive

accuracy, it can play a major part in adjusting human behavior.

4.2.2 Understanding
Moving on we study participants’ understanding, and how

it was impacted by the various factors in our study. A three-

way repeated measures ANOVA with Human Confidence×Model

Confidence×Condition identified a main effect of Human

Confidence [W(1) = 18.114, p < 0.001], a main effect of

Model Confidence [W(1) = 23.015, p < 0.001], a main effect of

Condition (W(3) = 10.944, p = 0.012), as well as an interaction

between Human Confidence and Model Confidence [W(1) =

3.963, p = 0.047]. Participants subjective understanding improved

by 4.6%, when they had high confidence, suggesting that they took

into account their own knowledge when interpreting the model’s

predictions. Moreover, participants’ understanding improved by

6.71%when the model was confident, compared to when it was not,

providing evidence that high confidence model predictions made

participants feel more certain that their understanding was correct.

With respect to the interaction of human and model confidence,

pairwise comparisons revealed that when both human and model

confidence were high, understanding was significantly higher than

all the remaining combinations. In more detail, compared to the
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FIGURE 6

(a) Di�erences in reliance with respect to the interaction of human and model confidence. (b) Di�erences in reliance with respect to the interaction
of condition and model confidence.

combinations (Human - High & Model - Low), (Human - Low &

Model - High), and (Human - Low &Model - Low), understanding

was 8.79% (Z = 1, 755, p < 0.001, d = 0.477), 6.62% (Z =

1, 555, p < 0.001, d = 0.404), and 11.51% (Z = 1, 148.5, p <

0.001, d = 0.624), higher, respectively. This provided evidence that

the interaction of human and model confidence influences model

understanding, providing strong evidence in favor of H3.2. No

other comparison yielded significant differences (see Figure 7a).

Finally, looking at the main effect of Condition, pairwise

comparisons showed that subjective understanding ratings in the

Explanations condition differed significantly from the ones in the

Local (U = −2.5, p = 0.0365, d = 0.660) and Combined (U =

−3.01, p = 0.007, d = 0.763) conditions, but not from the ones

in the Prediction condition (U = −1.13, p = 0.774). Figure 7b

shows the average subjective understanding per condition. The

fact that there was no difference between the Explanations and

Prediction conditions, is consistent with the finding that humans

tend to project their reasoning on the model, without actually

having a well-versed understanding of the model’s decision making

process. In contrast, in the Local and Combined conditions,

participants were aware of the model’s uncertainty, so they were

more conservative with their understanding scores. The actual

discrepancy of model understanding between the Explanations

and Prediction conditions will become more apparent in Section

4.3, where we discuss participants’ objective model understanding.

4.2.3 Trust
We concluded this part of the analysis studying participants’

trust toward the model’s predictions. A three-way repeated

measures ANOVA with Human Confidence × Model

Confidence×Condition identified a main effect of Human

Confidence [W(1) = 46.269, p < 0.001], a main effect of

Model Confidence [W(1) = 12.942, p < 0.001], as well as

an interaction between Condition and Model Confidence

[W(3) = 14.817, p = 0.002]. Participants trust increased by

7.24% when they were confident in their predictions. Moreover,

participants’ trust increased by 5.48% when model confidence was

high. The difference between these two percentages suggests that

while both influenced participants’ trust, the uncertainty stemming

due to their own confidence had a slightly more pronounced effect

(see Figure 8a). Despite the fact that we did not find significant

evidence in favor of the effect arising from the interaction between

human and model confidence [W(1) = 1.358, p = 0.244], H3.3 is

partially supported by our data, however further investigations on

the effect of the interaction of human and model confidence on

trust are required.

Finally, following up on the interaction between Condition

and Model Confidence, pairwise comparisons revealed that in

the Local (Z = 88, p = 0.035, d = 0.596) and Explanations

(Z = 77, p = 0.016, d = 0.608) conditions participants tended

to trust high confidence model predictions more than low ones

(see Figure 8b). In the Local condition, high confidence model

predictions improved trust ratings by 9.58%. In the Explanations

condition, this difference was even more pronounced, and equal to

12.3%. There is a rather intuitive interpretation of this result, in the

sense that when participants were presented with local confidence

information, it was reasonable that high confidence predictions

imparted higher levels of trust. However, when these scores were

complemented with global error rates, participants became aware

of the fact that high confidence predictions might not necessarily

translate into high accuracy, which is why they did not induce the

same level of trust (Z = 160, p = 1). Having said that, when all this

information was paired with explanations, participants were able to

inspect the model’s reasoning for each individual instance, so high

confident predictions paired with reasonable explanations bypassed
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FIGURE 7

(a) Di�erences in understanding with respect to the interaction of human and model confidence. (b) Di�erences in understanding with respect to
each condition.

FIGURE 8

(a) Di�erences in trust with respect to the interaction of human and model confidence. (b) Di�erences in trust with respect to the interaction of
condition and model confidence.

the uncertainty induced due to poor global error rates (as when the

model predicts More than 100K dollars).

4.3 Objective understanding

In this section we studied objective model understanding, as

captured via the 9 multiple choice questions that participants

completed before exiting the experiment. We looked for differences

between Prediction and every other condition, to assess whether

including uncertainty estimates or explanations led to improved

understanding, compared to providing model predictions alone.

Recall that these questions addressed 5 different aspects of objective

model understanding. Each aspect is analyzed separately in order

to gain a more refined picture of participants’ understanding.

Figure 9, shows the difference in scores between conditions, broken

down by each aspect of understanding. Starting with global feature

importance, participants scores in the Explanations condition

significantly outperformed those in the Prediction one, while there
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was no difference between the remaining contrasts. This result was

not surprising since global feature importance information was

available to participants in the Explanations condition. However,

the fact that there was no difference among the remaining

conditions highlighted that uncertainty estimates were as effective

as plain predictions in helping participants infer such information.

With respect to local feature importance the discrepancy was

even more severe, since no participant in the Prediction, Local,

Combined conditions was able to provide a correct answer. On

the other hand, 64.3% of the participants in the Explanations

condition answered this question correctly. Again, we expected

participants in the latter to have an edge on this task, however,

in contrast to global feature importance which remains constant

across instances, local feature importance information depends on

the instance at hand, meaning that this effect was not due to mere

memorization. Instead, participants needed to critically reflect on

the information presented throughout the experiment to reach

their decision. This sharp difference clearly demonstrated that

when it came to inferring local feature importance the information

in the remaining conditions was insufficient.

Participants scores in the counterfactual component of the

test showed again that only those in the Explanations condition

significantly outperformed those in the Prediction condition.

This is a very interesting finding, indicating that although

explanations contained factual information, participants were

able to extract counterfactual knowledge out of them, while

uncertainty information did not provide any such benefits. The

exact same pattern was observed when considering the aspect of

model simulation, despite the fact that explanations themselves

did not explicitly contain any information regarding simulating

the model’s behavior. Regardless, the enhanced understanding

of the model’s decision making process helped participants in

the Explanations condition achieve superior performance in the

simulation component of the test.

Finally, participants ability to detect erroneous model

predictions was assessed, where no significant differences between

conditions were found. Error detection closely resembled the

main prediction task, since it required inspecting an instance

and the corresponding model prediction to assess its correctness.

This means participants in all conditions had substantial

exposure/familiarity with this procedure, which explains why there

was no difference in their performance. Overall, the preceding

analysis provided strong evidence suggesting that explanations led

to better model understanding, compared to uncertainty estimates,

thus fully supportingH2.

4.4 Switching and agreement

We conclude our analysis by considering the effect of pairing

uncertainty estimates of different scopes, and thenmoving on to the

potential pitfalls of utilizing switching and agreement percentages

to measure trust. To this end, we began with a qualitative analysis

of users’ switching behavior. Here we focused on the characteristics

of the emerging patterns, instead of a statistical analysis, for two

reasons: (1) qualitative methods enable identification of complex

decision-making patterns and contextual factors that drive user

FIGURE 9

Di�erence between Prediction and every other condition, for each
aspect of model understanding.

behavior; (2) switching events represent critical but naturally

infrequent decision points that are better understood through

detailed qualitative examination than frequency-based analysis.

This approach provides insights into the circumstances under

which users rely on, or deviate from, model recommendations.

Overall, participants’ switching percentage in thePrediction, Local,

Combined, Explanations conditions was 50%, 37%, 45%, and

34%, respectively. Furthermore, in all conditions switching helped

participants improve their performance, since in trials where they

altered their initial prediction the overall accuracy was 70.37%,

67.24%, 57.81%, and 58.53%, following the same order as before.

Focusing on the Local and Combined conditions, we find

differences in switching behavior that can be explained by the

fact that global error rates were available in the latter, but

not in the former. Figure 10 depicts the percentage of trials

participants switched their prediction, depending on Condition,

Human Confidence, and Model Confidence, where we differentiate

between cases where the model predicts Less than 100K and

those where it predicts More than 100K. In the (Human - High

& Model - Low) combination participants exhibited a similar

behavior in both conditions, presumably because their behavior was

driven by their own intuitions. However, in every other confidence

combination participants behavior in the Local and Combined

conditions were strikingly different. One the one hand, in the

Local condition, switching percentages between the two classes

were almost identical, but on the other hand, in the Combined

condition, the switching percentage when the model’s prediction

was Less than 100K was much higher than when the prediction

was More than 100K, consistent with the view that the poor global

error rates of the More than 100K class lessened the chances of

participants switching to match the model’s prediction. Inversely,

the great global error rates in the Less than 100K class prompted

participants to follow these suggestions.

This is more clearly demonstrated when (Human - Low &

Model - High), where knowing that the model had 91% success

rate when predicting Less than 100K, encouraged participants in

the Combined condition to switch in 89% of the trials, compared
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FIGURE 10

The switching percentages for the di�erent model predictions. Each subplot corresponds to a combination of human and model confidence. (a)
Human - High & Model - High. (b) Human - High & Model - Low. (c) Human - Low & Model - High. (d) Human - Low & Model - Low.

to 60% in the Local one. In line with this reasoning, when

the prediction was More than 100K, participants in the former

condition were aware that model performance was relatively

poor, so their switching percentage plummeted to 41%, which

is substantially lower than the 57% in the Local condition. This

observation perfectly captures the added benefits of pairing these

estimates together, as global error rates convey information about

the robustness of local confidence scores themselves, which is in

line with H4, however, additional studies are necessary in order to

provide more robust evidence confirming this effect.

In the same vein, while the Combined and Explanations

conditions followed a similar trend for instances with high human

confidence, the pattern was drastically different for low confidence

instances. Especially when (Human - Low & Model - Low), the

trends got reversed, which could be interpreted as additional

evidence that explanations promoted case by case reasoning.

According to this account, participants in the Explanations

condition looked past the poor error rate of the More than

100K predictions, using explanations to verify whether the model’s

reasoning was sound for the instance at hand. Notably they were

very successful in doing so, since their accuracy in cases where

they switched to follow a More than 100K model prediction was

80%. Future research should investigate this topic in more detail,

however this pattern along with the one in Section 4.2.3, provided

some very promising indications in favor of this interpretation of

the results.

Finally, we present a pattern that highlights the complexities

of inferring trust from reliance indicators. Figure 11 shows the

average difference between participants’ trust and reliance scores,

once considering trials where participants did not switch their

predictions (regardless of whether they initially agreed with the

model), and once considering only trials where they switched.

In the former, there was a positive trend for all human/model

combinations of confidence, meaning that participants’ trust scores

were higher than their reliance ones. However, when considering

only switching trials, a stark contrast was observed, with the trend

getting completely reversed, and reliance scores dominating the

corresponding trust ones. We should note that this discrepancy

was induced by differences in reliance, since although participants’

trust increased by 7.83% in switching trials, the corresponding

increase in reliance was equal to an impressive 65.72%. Even

though we only offer a qualitative account of this phenomenon,

the observed pattern demonstrates the challenges of disentangling

between trust and reliance, when using agreement and switching

percentages. Adding to this, we found that in 29% of all trials

where participants and model agreed, their reported reliance scores
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FIGURE 11

The di�erence between trust and reliance, in terms of the
interaction of human and model confidence. Solid bars correspond
to trials where participants did not switch their prediction, while
dashed ones are computed based on switching trials.

were lower than 3 out of 7, meaning that their predictions were

predominantly driven by their own intuitions. This indicates that

switching percentage is a stronger indicator of reliance, since

human-model agreement on its own does not necessarily imply

high reliance. Regardless, interpreting either as a manifestation of

trust may result to misleading conclusions.

5 Discussion

In this section we discuss and contextualize our results, as well

as we propose several future research directions.

5.1 The role of human confidence

Our findings provided strong evidence that human confidence

has a major effect on multiple aspects of the joint human-

AI synergy. Extending the results in Bansal et al. (2021b), we

showed that humans were predominantly benefited by the model’s

assistance in cases where they are uncertain, but the model made

high confidence predictions. This finding is in line with highly

influential existing theories on human-computer interaction (Lee

and See, 2004; Hoff and Bashir, 2015), where it is argued that users’

self-confidence impacts their attitude toward automation.

This pattern can be further contextualized through the lens

of dual-process theories of cognition (Kahneman, 2011), which

differentiate between fast, heuristic-based reasoning (System 1) and

effortful, analytical reasoning (System 2). From this perspective, the

tendency of low-confidence participants to follow high-confidence

model predictions may indicate a shift toward a more thoughtful

and deliberate process when dealing with uncertainty, leading

to the conscious decision to defer the prediction to the model.

However, it is possible that deferring to the model reflects a simple

metacognitive heuristic, i.e. “follow the model when uncertain”,

that still operates within the bounds of System 1. While our

current design does not disentangle these mechanisms, dual-

process theories offer a useful framework for interpreting how

explanations influence the joint human-AI decision-making (Ha

and Kim, 2024).

Furthermore, in light of the results presented in Section 4.1,

future experimental studies should be designed in a way that

records or controls for human confidence, as otherwise the ensuing

analysis may be severely distorted. Interestingly, an emerging line

of research calls for training ML models using procedures that

incorporate human confidence (Bansal et al., 2021a; Mozannar and

Sontag, 2020; Wilder et al., 2020), indicating that there is a general

interest into utilizing and accounting for this factor.

Beyond predictive performance, our findings suggested that

the influence of human confidence extends to users’ reliance,

understanding, and trust toward a model. Moreover the discussion

in Section 4.4, emphasized that human confidence also influenced

switching and agreement percentages, as well as presented a caveat

of inferring trust through reliance, adding to previous results

(Chancey et al., 2015; Hussein et al., 2020). In our view, this

highlights the need to rethink experimental designs for measuring

trust in AI or adjust the interpretation of final results. One potential

solution is to complement reliance indicators with items from

specialized trust measurement scales and assess trust based on both,

a standard practice in the human factors and human-computer

interaction communities (Wang et al., 2009; Chancey et al., 2013;

Moray et al., 2000; Merritt and Ilgen, 2008). Another option is to

adopt more nuanced behavioral indicators that capture multiple

facets of trust, as explored in De Vries et al. (2003) and Miller et al.

(2016). Alternatively, rather than modifying experimental designs,

researchers could frame surveys and hypotheses in terms of reliance

(Lee and See, 2004).

5.2 The complementary e�ect of
uncertainty and explanations

Another central question we explored in this work concerns

the role of combining uncertainty estimates and explanations. Prior

work suggested that in terms of accuracy, pairingmodel predictions

with the corresponding confidence is as effective as pairing them

with explanations (Bansal et al., 2021b; Lai and Tan, 2019; Lai et al.,

2020), implying that, performance-wise, uncertainty estimates are

as powerful as explanations, while arguably being simpler to

understand and implement. Consistent with this idea, our results

provided evidence that when both predictions and confidence

information were available, providing participants with additional

information did not lead to better performance. Despite that, we

identified a strong complementary effect, since participants in

the Explanations condition had significantly higher self-reported

understanding, while also exhibiting a far superior objective model

understanding. Interestingly, although only feature importance

explanation were provided, their effect permeated multiple aspects

of model understanding. Increased understanding has been linked

to higher rates of model acceptance (Shin, 2021), while the findings

in Ashoori and Weisz (2019) indicate that when the stakes are

high, ethical considerationsmay lead to people entirely dismissing a

model, regardless of its accuracy, unless they are able to understand

its decision-making process. A promising future direction is to

adopt a longitudinal experimental design and quantify the effect
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of explanations on model acceptance or retention. In general,

user behavior is shaped over multiple interactions with the model

through an extended period of time, where unexpected or otherwise

surprising behavior may manifest, so longitudinal designs have the

potential to provide important insights that are missed by cross

sectional designs, which do not record how user behavior changes

over extended periods of time.

Moreover, our results indicated that complementary effects

can be found within uncertainty measures too, as discussed in

Section 4.4. This is consistent with the recent discussions in Bhatt

et al. (2021), demonstrating how communicating different kinds

of uncertainty information can induce different user behavior.

In this work we considered predicted probabilities and recall,

however there is a lot of room for exploring different measures

or combinations thereof, such as precision, false discovery rate,

etc. In particular, we find the approach of combining information

with diverse scopes (e.g., local and global) to be very promising

and worthy of further exploration. An immediate follow up study

stemming from our work could explore the effect of more refined

global uncertainty information. For example, instead of providing

the overall recall of each class, we could first cluster the datapoints

based on similarity, and then compute cluster-wise recalls. This

localized version of a global summary allows for capturing potential

variability in model performance within the same class, depending

on sub-population characteristics. However, it should be noted

that such approaches require users to have a certain level of

numerical competency, which differs substantially from person

to person (Zikmund-Fisher et al., 2007), so alternatives exploring

visualizations and/or natural language expressions of uncertainty

should be considered as well.

5.3 Explanations in AI

Our findings suggested that explanations provided unique

insights that impact model understanding, however explanatory

needs are highly dependent on the application (Zhou et al.,

2021; Ribera and Lapedriza, 2019). Our work only considered

feature importance explanations, however alternative scenarios

may call for different types of explanations, such as generating

counterfactual instances (Wachter et al., 2018) or propositional

rules (Ribeiro et al., 2018). Although there is a number of recent

surveys that compare the effect of various explanation types (Wang

and Yin, 2021; Bansal et al., 2021b; Lai and Tan, 2019), to our

knowledge there has not been a systematic effort to study the

relationship between application characteristics and explanation

style preference or efficacy. Furthermore, even within the same

application, we expect stakeholders of different expertise to have

different explanatory preferences.

In Section 4.1, we provided evidence that when participants

had low confidence, model assistance significantly improved

their performance, especially when the model generated high

confidence predictions. Having said that, when both parties had

high confidence, we mostly observed a downwards trend, which

resulted in a significant decline in performance in the Explanations

condition. It is possible that this finding was due to participants’

having an information overload (Poursabzi-Sangdeh et al., 2021),

where they had a hard time keeping track of all the information

that was presented to them. However, other surveys have raised

concerns about human over-reliance on amodel when explanations

are provided (Bansal et al., 2021b; Kaur et al., 2020), so the observed

decline in accuracy might be related to this phenomenon.

Finally, it is important to consider that interacting with model

explanations engages core executive functions (Bauer et al., 2022).

Comparing one’s initial answer to the AI’s suggestion requires

inhibitory control, as users must suppress their initial (prepotent)

response in order to evaluate an alternative (Diamond, 2020).

At the same time, working memory needs to be invoked (Zuo

et al., 2025), to hold and compare both the user’s and the model’s

predictions, allowing users to potentially revise the initial decision

in light of the model’s assistance, which requires cognitive flexibility

to adjust to new input (Karr et al., 2018).

From this perspective, explanation-based assistance

actively shapes users’ reasoning by externalizing intermediate

cognitive steps. This interpretation is supported by our

findings that explanations enhanced both subjective and

objective understanding. Rather than replacing cognitive effort,

well-designed explanations may restructure it, facilitating

complex comparisons between one’s own judgment and the

model’s suggestion. This view aligns with research on distributed

cognition, which emphasizes how external representations (such as

visualizations or model rationales) can offload internal processing

and extend cognitive capacities into the environment (Zhang,

1997). Furthermore, this interpretation aligns with emerging

perspectives on cognitive augmentation, where interactive AI

systems are designed to enhance human cognitive capabilities by

restructuring task demands and supporting executive functions

(Pergantis et al., 2025).

In our view, a promising step toward further enhancing the

impact and appropriate use of explanations could be to explore

the effect of communicating information about their robustness,

in line with the view in Chiaburu et al. (2024) and Salvi et al.

(2025). Most XAI techniques heavily rely on approximations,

which means that the final explanation might not be faithful to

the model, thus distorting its decision-making process. Moreover,

even if no approximations are performed, explanations might face

stability issues, where small feature perturbations may lead to

drastically different explanations (Yeh et al., 2019). Interactively

withholding highly uncertain explanations may help reduce

cognitive load by preventing users from engaging with potentially

misleading or distracting information. Furthermore, providing

users with uncertainty estimates about the explanations may

discourage blind trust and promote more calibrated reliance on

the information presented. We believe that the interplay between

uncertainty and explanations calls for further exploration, as it

can be integral in guiding the safe and responsible adaptation of

AI systems.

6 Limitations

We acknowledge that one limitation of our study is that

we only recruited participants residing in USA. As we did not

conduct follow-up studies with more demographically diverse

populations, the cross-cultural generalizability of our findings is
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limited. Additionally, our study design was cross-sectional, so

we did not assess how participants attitudes or behaviors might

change over time. Moreover, we did not record information about

participants’ prior experience and attitude toward AI, so our

results may be influenced by participants predispositions toward

automation. Furthermore, participants were not experts on salary

prediction tasks. We alleviated this limitation by including a

familiarization phase in our experiment. The fact that participants’

performance was comparable to the model’s indicates that our

approach was effective.

Another limitation is that participants were not held

liable for their performance, which bared no consequence to

them. We addressed this limitation by providing additional

performance-based rewards to motivate participants strive for

optimal performance.

7 Conclusions

Previous empirical studies have demonstrated that pairing

model predictions and confidence is more effective than

explanations in assisting humans improve their accuracy in

decision-making tasks. In this work we ask whether bringing

them together can provide complementary, non-accuracy related

benefits, while also exploring how the interaction of human

and model confidence influences human-AI joint accuracy,

reliance, understanding, and trust toward the model. To this

end, we conducted a study with 112 human participants. We

found strong evidence suggesting that human performance is

improved in cases where they have low confidence themselves,

but the model makes high confidence predictions. Moreover,

we found that pairing uncertainty estimates with explanations

induces a complementary effect, resulting in high performance

and significantly better model understanding. We concluded

our findings by providing a qualitative analysis outlining the

benefits of combining uncertainty estimates with different scopes,

as well as the potential pitfalls of utilizing reliance indicators to

measure trust.

We hope that this work will motivate future research

that further investigates the role of self-confidence and how

different combinations of information influence the human-

AI collaboration, in situations where time constraints or other

inherent risks are present. Furthermore, another promising

direction would be to explore whether interactive methods where

humans can actively enquiry a model to satisfy their explanatory

needs yield additional benefits, compared to static strategies (like

the ones considered in this experiment). Achieving a synergistic

relationship between humans and AI is set to be one of the main

end goals of the responsible incorporation of AI in our society, and

advances along these lines should hopefully bring us a step closer to

achieving these endeavors.

Data availability statement

The raw data supporting the conclusions of this article can be

made available upon reasonable request. Requests to access these

datasets should be directed to the corresponding author.

Ethics statement

Ethical approval was not required for the studies involving

humans because the study involved an online, low-risk

prediction task that posed no physical, psychological, or social

risks. Participation was entirely voluntary and appropriately

compensated. Based on this understanding, the study adhered

to standard practices for minimal-risk behavioral research. The

studies were conducted in accordance with the local legislation and

institutional requirements. The participants provided their written

informed consent to participate in this study.

Author contributions

IP: Conceptualization, Formal analysis, Investigation,

Methodology, Software, Writing – original draft, Writing – review

& editing. VB: Supervision, Writing – original draft, Writing –

review & editing.

Funding

The author(s) declare that financial support was received

for the research and/or publication of this article. This research

was partly supported by a Royal Society University Research

Fellowship, UK, and partly supported by a grant from the UKRI

Strategic Priorities Fund, UK to the UKRI Research Node on

Trustworthy Autonomous Systems Governance and Regulation

(EP/V026607/1, 2020–2024).

Acknowledgments

We would like to thank Peter Gostev for all the stimulating

discussions, which heavily contributed into pursuing the research

questions considered in this work. Moreover, we are grateful to

Maria Mavridaki for her feedback and suggestions, which greatly

improved the quality of the final manuscript.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.

Generative AI statement

The author(s) declare that no Gen AI was used in the creation

of this manuscript.

Publisher’s note

All claims expressed in this article are solely those

of the authors and do not necessarily represent those of

Frontiers inComputer Science 16 frontiersin.org

https://doi.org/10.3389/fcomp.2025.1560448
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Papantonis and Belle 10.3389/fcomp.2025.1560448

their affiliated organizations, or those of the publisher,

the editors and the reviewers. Any product that may

be evaluated in this article, or claim that may be made

by its manufacturer, is not guaranteed or endorsed by

the publisher.

Supplementary material

The Supplementary Material for this article can be found

online at: https://www.frontiersin.org/articles/10.3389/fcomp.

2025.1560448/full#supplementary-material

References

Adams, B. D., Bruyn, L. E., Houde, S., Angelopoulos, P., Iwasa-Madge, K., and
McCann, C. (2003). Trust in Automated Systems. Ministry of National Defence.

Ajzen, I. (1980).Understanding Attitudes and Predicting Social Behavior. New Jersey:
Englewood cliffs.

Ashoori, M., and Weisz, J. D. (2019). In AI we trust? Factors that influence
trustworthiness of ai-infused decision-making processes. arXiv preprint
arXiv:1912.02675.

Bansal, G., Nushi, B., Kamar, E., Horvitz, E., and Weld, D. S. (2021a).
“Is the most accurate ai the best teammate? Optimizing AI for teamwork,”
in Proceedings of the AAAI Conference on Artificial Intelligence, 11405–11414.
doi: 10.1609/aaai.v35i13.17359

Bansal, G., Wu, T., Zhou, J., Fok, R., Nushi, B., Kamar, E., et al. (2021b). “Does
the whole exceed its parts? The effect of AI explanations on complementary team
performance,” in Proceedings of the 2021 CHI Conference on Human Factors in
Computing Systems, 1–16. doi: 10.1145/3411764.3445717

Bauer, K., von Zahn, M., and Hinz, O. (2022). Expl (AI) ned: The impact
of explainable artificial intelligence on cognitive processes. Technical report, SAFE
Working Paper. doi: 10.2139/ssrn.3872711

Bhatt, U., Antorán, J., Zhang, Y., Liao, Q. V., Sattigeri, P., Fogliato, R., et al.
(2021). “Uncertainty as a form of transparency: Measuring, communicating, and using
uncertainty,” in Proceedings of the 2021 AAAI/ACM Conference on AI, Ethics, and
Society, 401–413. doi: 10.1145/3461702.3462571

Blake, C. L., and Merz, C. J. (1998). UCI Repository of Machine Learning Databases
1998. Irvine: University of California.

Cahour, B., and Forzy, J.-F. (2009). Does projection into use improve trust and
exploration? An example with a cruise control system. Safety Sci. 47, 1260–1270.
doi: 10.1016/j.ssci.2009.03.015

Chancey, E. T., Bliss, J. P., Proaps, A. B., and Madhavan, P. (2015). The role of trust
as a mediator between system characteristics and response behaviors.Hum. Factors 57,
947–958. doi: 10.1177/0018720815582261

Chancey, E. T., Proaps, A., and Bliss, J. P. (2013). “The role of trust as a mediator
between signaling system reliability and response behaviors,” in Proceedings of the
Human Factors and Ergonomics Society Annual Meeting (Los Angeles, CA: SAGE
Publications Sage CA), 285–289. doi: 10.1177/1541931213571063

Chiaburu, T., Haußer, F., and Bießmann, F. (2024). Uncertainty in xAI: human
perception and modeling approaches. Mach. Learn. Knowl. Extr. 6, 1170–1192.
doi: 10.3390/make6020055

De Vries, P., Midden, C., and Bouwhuis, D. (2003). The effects of errors on system
trust, self-confidence, and the allocation of control in route planning. Int. J. Hum.
Comput. Stud. 58, 719–735. doi: 10.1016/S1071-5819(03)00039-9

Diamond, A. (2020). “Executive functions,” in Handbook of Clinical Neurology
(Elsevier), 225–240. doi: 10.1016/B978-0-444-64150-2.00020-4

Dodge, J., Liao, Q. V., Zhang, Y., Bellamy, R. K., and Dugan, C. (2019). “Explaining
models: an empirical study of how explanations impact fairness judgment,” in
Proceedings of the 24th International Conference on Intelligent User Interfaces, 275–285.
doi: 10.1145/3301275.3302310

Efron, B., and Tibshirani, R. (1986). Bootstrap methods for standard errors,
confidence intervals, and other measures of statistical accuracy. Stat. Sci. 1, 54–75.
doi: 10.1214/ss/1177013815

Green, B., and Chen, Y. (2019). The principles and limits of algorithm-in-the-loop
decision making. Proc. ACM Hum. Comput. Inter. 3, 1–24. doi: 10.1145/3359152

Gugenheimer, J., Stemasov, E., Frommel, J., and Rukzio, E. (2017). “Sharevr:
enabling co-located experiences for virtual reality betweenHMD and non-HMDusers,”
in Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems,
4021–4033. doi: 10.1145/3025453.3025683

Ha, T., and Kim, S. (2024). Improving trust in ai with mitigating confirmation bias:
effects of explanation type and debiasing strategy for decision-making with explainable
AI. Int. J. Hum. Comput. Interact. 40, 8562–8573. doi: 10.1080/10447318.2023.22
85640

Hartmann, J., Holz, C., Ofek, E., and Wilson, A. D. (2019). “Realitycheck:
blending virtual environments with situated physical reality,” in Proceedings of
the 2019 CHI Conference on Human Factors in Computing Systems, 1–12.
doi: 10.1145/3290605.3300577

Hoff, K. A., and Bashir, M. (2015). Trust in automation: integrating
empirical evidence on factors that influence trust. Hum. Factors 57, 407–434.
doi: 10.1177/0018720814547570

Hoffman, R. R., Mueller, S. T., Klein, G., and Litman, J. (2018). Metrics for
explainable AI: challenges and prospects. arXiv preprint arXiv:1812.04608.

Hussein, A., Elsawah, S., and Abbass, H. A. (2020). Trust mediating reliability-
reliance relationship in supervisory control of human-swarm interactions. Hum.
Factors 62, 1237–1248. doi: 10.1177/0018720819879273

Jian, J.-Y., Bisantz, A. M., and Drury, C. G. (2000). Foundations for an empirically
determined scale of trust in automated systems. Int. J. Cogn. Ergon. 4, 53–71.
doi: 10.1207/S15327566IJCE0401_04

Kahneman, D. (2011). Thinking, Fast and Slow. London: Allen Lane.

Karr, J. E., Areshenkoff, C. N., Rast, P., Hofer, S. M., Iverson, G. L., and
Garcia-Barrera, M. A. (2018). The unity and diversity of executive functions: a
systematic review and re-analysis of latent variable studies. Psychol. Bull. 144:1147.
doi: 10.1037/bul0000160

Kaur, H., Nori, H., Jenkins, S., Caruana, R., Wallach, H., and Wortman
Vaughan, J. (2020). “Interpreting interpretability: understanding data scientists’ use of
interpretability tools for machine learning,” in Proceedings of the 2020 CHI Conference
on Human Factors in Computing Systems, 1–14. doi: 10.1145/3313831.3376219

Kelly, C. (2003). Guidelines for Trust in Future ATM Systems-Principles. Brussels:
EUROCONTROL.

Konietschke, F., Bathke, A. C., Harrar, S. W., and Pauly, M. (2015). Parametric and
nonparametric bootstrap methods for general manova. J. Multivar. Anal. 140, 291–301.
doi: 10.1016/j.jmva.2015.05.001

Kudo, Y., Tang, A., Fujita, K., Endo, I., Takashima, K., and Kitamura, Y. (2021).
Towards balancing VR immersion and bystander awareness. Proc. ACMHum. Comput.
Interact. 5, 1–22. doi: 10.1145/3486950

Lai, V., Liu, H., and Tan, C. (2020). “‘Why is’ chicago’deceptive?” Towards building
model-driven tutorials for humans,” in Proceedings of the 2020 CHI Conference on
Human Factors in Computing Systems, 1–13. doi: 10.1145/3313831.3376873

Lai, V., and Tan, C. (2019). “On human predictions with explanations and
predictions of machine learning models: a case study on deception detection,” in
Proceedings of the Conference on Fairness, Accountability, and Transparency, 29–38.
doi: 10.1145/3287560.3287590

Lee, J., and Moray, N. (1992). Trust, control strategies and allocation of function in
human-machine systems. Ergonomics 35, 1243–1270. doi: 10.1080/00140139208967392

Lee, J. D., and Moray, N. (1994). Trust, self-confidence, and operators’ adaptation
to automation. Int. J. Hum. Comput. Stud. 40, 153–184. doi: 10.1006/ijhc.1994.1007

Lee, J. D., and See, K. A. (2004). Trust in automation: designing for appropriate
reliance. Hum. Factors 46, 50–80. doi: 10.1518/hfes.46.1.50.30392

Lewandowsky, S., Mundy,M., and Tan, G. (2000). The dynamics of trust: comparing
humans to automation. J. Exper. Psychol. 6:104. doi: 10.1037//1076-898X.6.2.104

Li, Y., Wu, B., Huang, Y., and Luan, S. (2024). Developing trustworthy artificial
intelligence: insights from research on interpersonal, human-automation, and human-
AI trust. Front. Psychol. 15:1382693. doi: 10.5772/intechopen.111293

Linegang, M. P., Stoner, H. A., Patterson, M. J., Seppelt, B. D., Hoffman, J. D.,
Crittendon, Z. B., et al. (2006). “Human-automation collaboration in dynamic mission
planning: a challenge requiring an ecological approach,” in Proceedings of the Human
Factors and Ergonomics Society Annual Meeting (Los Angeles, CA: SAGE Publications
Sage CA), 2482–2486. doi: 10.1177/154193120605002304

Lundberg, S. M., and Lee, S.-I. (2017). “A unified approach to interpreting model
predictions,” in Proceedings of the 31st International Conference on Neural Information
Processing Systems, NIPS’17 (Red Hook, NY, USA: Curran Associates Inc.), 4768–4777.

Frontiers inComputer Science 17 frontiersin.org

https://doi.org/10.3389/fcomp.2025.1560448
https://www.frontiersin.org/articles/10.3389/fcomp.2025.1560448/full#supplementary-material
https://doi.org/10.1609/aaai.v35i13.17359
https://doi.org/10.1145/3411764.3445717
https://doi.org/10.2139/ssrn.3872711
https://doi.org/10.1145/3461702.3462571
https://doi.org/10.1016/j.ssci.2009.03.015
https://doi.org/10.1177/0018720815582261
https://doi.org/10.1177/1541931213571063
https://doi.org/10.3390/make6020055
https://doi.org/10.1016/S1071-5819(03)00039-9
https://doi.org/10.1016/B978-0-444-64150-2.00020-4
https://doi.org/10.1145/3301275.3302310
https://doi.org/10.1214/ss/1177013815
https://doi.org/10.1145/3359152
https://doi.org/10.1145/3025453.3025683
https://doi.org/10.1080/10447318.2023.2285640
https://doi.org/10.1145/3290605.3300577
https://doi.org/10.1177/0018720814547570
https://doi.org/10.1177/0018720819879273
https://doi.org/10.1207/S15327566IJCE0401_04
https://doi.org/10.1037/bul0000160
https://doi.org/10.1145/3313831.3376219
https://doi.org/10.1016/j.jmva.2015.05.001
https://doi.org/10.1145/3486950
https://doi.org/10.1145/3313831.3376873
https://doi.org/10.1145/3287560.3287590
https://doi.org/10.1080/00140139208967392
https://doi.org/10.1006/ijhc.1994.1007
https://doi.org/10.1518/hfes.46.1.50.30392
https://doi.org/10.1037//1076-898X.6.2.104
https://doi.org/10.5772/intechopen.111293
https://doi.org/10.1177/154193120605002304
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Papantonis and Belle 10.3389/fcomp.2025.1560448

Lundberg, S. M., Nair, B., Vavilala, M. S., Horibe, M., Eisses, M. J., Adams, T., et al.
(2018). Explainable machine-learning predictions for the prevention of hypoxaemia
during surgery. Nat. Biomed. Eng. 2, 749–760. doi: 10.1038/s41551-018-0304-0

Madsen, M., and Gregor, S. (2000). “Measuring human-computer trust,” in 11th
Australasian Conference on Information Systems (Citeseer), 6–8.

McKnight, P. E., and Najab, J. (2010). “Mann-whitney u test,” in The Corsini
Encyclopedia of Psychology, 1–10. doi: 10.1002/9780470479216.corpsy0524

Mehrabi, N., Morstatter, F., Saxena, N., Lerman, K., and Galstyan, A. (2021).
A survey on bias and fairness in machine learning. ACM Comput. Surv. 54, 1–35.
doi: 10.1145/3457607

Merritt, S. M., and Ilgen, D. R. (2008). Not all trust is created equal: dispositional
and history-based trust in human-automation interactions. Hum. Factors 50, 194–210.
doi: 10.1518/001872008X288574

Miller, D., Johns, M., Mok, B., Gowda, N., Sirkin, D., Lee, K., et al.
(2016). “Behavioral measurement of trust in automation: the trust fall,” in
Proceedings of the Human Factors And Ergonomics Society Annual Meeting (Los
Angeles, CA: SAGE Publications Sage CA), 1849–1853. doi: 10.1177/15419312136
01422

Moray, N., Inagaki, T., and Itoh, M. (2000). Adaptive automation, trust, and
self-confidence in fault management of time-critical tasks. J. Exper. Psychol. 6:44.
doi: 10.1037//1076-898X.6.1.44

Mozannar, H., and Sontag, D. (2020). “Consistent estimators for learning to defer
to an expert,” in International Conference on Machine Learning (PMLR), 7076–7087.

Naik, N., Hameed, B., Shetty, D. K., Swain, D., Shah, M., Paul, R., et al. (2022).
Legal and ethical consideration in artificial intelligence in healthcare: who takes
responsibility? Front. Surg. 266:862322. doi: 10.3389/fsurg.2022.862322

Pergantis, P., Bamicha, V., Skianis, C., and Drigas, A. (2025). AI chatbots and
cognitive control: enhancing executive functions through chatbot interactions: a
systematic review. Brain Sci. 15:47. doi: 10.3390/brainsci15010047

Poursabzi-Sangdeh, F., Goldstein, D. G., Hofman, J. M., Wortman Vaughan, J.
W., and Wallach, H. (2021). “Manipulating and measuring model interpretability,” in
Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems, 1–52.
doi: 10.1145/3411764.3445315

Preston, C. C., and Colman, A. M. (2000). Optimal number of response categories
in rating scales: reliability, validity, discriminating power, and respondent preferences.
Acta Psychol. 104, 1–15. doi: 10.1016/S0001-6918(99)00050-5

Ribeiro, M. T., Singh, S., and Guestrin, C. (2018). “Anchors: High-precision model-
agnostic explanations,” in Proceedings of the AAAI Conference on Artificial Intelligence.
doi: 10.1609/aaai.v32i1.11491

Ribera, M., and Lapedriza, A. (2019). “Can we do better explanations? A proposal
of user-centered explainable AI,” in IUI Workshops, 38.

Roo, J. S., and Hachet, M. (2017). “One reality: augmenting how the physical world
is experienced by combining multiple mixed reality modalities,” in Proceedings of the
30th Annual ACM Symposium on User Interface Software and Technology, 787–795.
doi: 10.1145/3126594.3126638

Rosenthal, R., Cooper, H., and Hedges, L. (1994). Parametric measures of effect size.
Handb. Res. Synth. 621, 231–244.

Salvi, M., Seoni, S., Campagner, A., Gertych, A., Acharya, U. R., Molinari, F., et al.
(2025). Explainability and uncertainty: two sides of the same coin for enhancing the
interpretability of deep learning models in healthcare. Int. J. Med. Inform. 197:105846.
doi: 10.1016/j.ijmedinf.2025.105846

Sauro, J., and Lewis, J. R. (2016). Quantifying the User Experience:
Practical Statistics for User Research. San Fransisco, CA: Morgan Kaufmann.
doi: 10.1016/B978-0-12-802308-2.00002-3

Sheridan, T. (1989). “Trustworthiness of command and control systems,” in
Analysis, Design and Evaluation of Man-Machine Systems 1988 (Elsevier), 427–431.
doi: 10.1016/B978-0-08-036226-7.50076-4

Shin, D. (2021). The effects of explainability and causability on perception, trust,
and acceptance: implications for explainable AI. Int. J. Hum. Comput. Stud. 146:102551.
doi: 10.1016/j.ijhcs.2020.102551

Thoravi Kumaravel, B., Nguyen, C., DiVerdi, S., and Hartmann, B. (2020).
“Transceivr: bridging asymmetrical communication between VR users and external
collaborators,” in Proceedings of the 33rd Annual ACM Symposium on User Interface
Software and Technology, 182–195. doi: 10.1145/3379337.3415827

Tomsett, R., Preece, A., Braines, D., Cerutti, F., Chakraborty, S., Srivastava, M.,
et al. (2020). Rapid trust calibration through interpretable and uncertainty-aware AI.
Patterns 1:100049. doi: 10.1016/j.patter.2020.100049

Wachter, S., Mittelstadt, B., and Russell, C. (2018). Counterfactual explanations
without opening the black box: Automated decisions and the GDPR. Harvard J. Law
Technol. 31, 841–887. doi: 10.2139/ssrn.3063289

Wang, L., Jamieson, G. A., and Hollands, J. G. (2009). Trust and reliance
on an automated combat identification system. Hum. Factors 51, 281–291.
doi: 10.1177/0018720809338842

Wang, X., and Yin,M. (2021). “Are explanations helpful? A comparative study of the
effects of explanations in ai-assisted decision-making,” in 26th International Conference
on Intelligent User Interfaces, 318–328. doi: 10.1145/3397481.3450650

Wilder, B., Horvitz, E., and Kamar, E. (2020). Learning to complement humans.
arXiv preprint arXiv:2005.00582.

Wobbrock, J. O., and Kay, M. (2016). “Nonparametric statistics in human-
computer interaction,” in Modern statistical methods for HCI, 135–170.
doi: 10.1007/978-3-319-26633-6_7

Woolson, R. F. (2007). “Wilcoxon signed-rank test,” inWiley encyclopedia of clinical
trials, 1–3. doi: 10.1002/9780471462422.eoct979

Yeh, C.-K., Hsieh, C.-Y., Suggala, A., Inouye, D. I., and Ravikumar, P. K. (2019).
“On the (in) fidelity and sensitivity of explanations,” in Advances in Neural Information
Processing Systems, 32.

Zhang, J. (1997). The nature of external representations in problem solving. Cogn.
Sci. 21, 179–217. doi: 10.1207/s15516709cog2102_3

Zhang, Q., Lee, M. L., and Carter, S. (2022). “You complete me: human-AI teams
and complementary expertise,” in Proceedings of the 2022 CHI Conference on Human
Factors in Computing Systems, 1–28. doi: 10.1145/3491102.3517791

Zhang, Y., Liao, Q. V., and Bellamy, R. K. (2020). “Effect of
confidence and explanation on accuracy and trust calibration in AI-
assisted decision making,” in Proceedings of the 2020 Conference on
Fairness, Accountability, and Transparency, 295–305. doi: 10.1145/3351095.
3372852

Zhou, J., Gandomi, A. H., Chen, F., and Holzinger, A. (2021). Evaluating the quality
of machine learning explanations: a survey onmethods andmetrics. Electronics 10:593.
doi: 10.3390/electronics10050593

Zikmund-Fisher, B. J., Smith, D. M., Ubel, P. A., and Fagerlin, A. (2007).
Validation of the subjective numeracy scale: effects of low numeracy on comprehension
of risk communications and utility elicitations. Med. Dec. Mak. 27, 663–671.
doi: 10.1177/0272989X07303824

Zuboff, S. (1988). In the Age of the Smart Machine: The Future of Work and Power.
New York: Basic Books, Inc.

Zuo, Z., Yang, L.-Z., Wang, H., and Li, H. (2025). Working memory guides action
valuation in model-based decision-making strategy. J. Cogn. Neurosci. 37, 86–96.
doi: 10.1162/jocn_a_02237

Frontiers inComputer Science 18 frontiersin.org

https://doi.org/10.3389/fcomp.2025.1560448
https://doi.org/10.1038/s41551-018-0304-0
https://doi.org/10.1002/9780470479216.corpsy0524
https://doi.org/10.1145/3457607
https://doi.org/10.1518/001872008X288574
https://doi.org/10.1177/1541931213601422
https://doi.org/10.1037//1076-898X.6.1.44
https://doi.org/10.3389/fsurg.2022.862322
https://doi.org/10.3390/brainsci15010047
https://doi.org/10.1145/3411764.3445315
https://doi.org/10.1016/S0001-6918(99)00050-5
https://doi.org/10.1609/aaai.v32i1.11491
https://doi.org/10.1145/3126594.3126638
https://doi.org/10.1016/j.ijmedinf.2025.105846
https://doi.org/10.1016/B978-0-12-802308-2.00002-3
https://doi.org/10.1016/B978-0-08-036226-7.50076-4
https://doi.org/10.1016/j.ijhcs.2020.102551
https://doi.org/10.1145/3379337.3415827
https://doi.org/10.1016/j.patter.2020.100049
https://doi.org/10.2139/ssrn.3063289
https://doi.org/10.1177/0018720809338842
https://doi.org/10.1145/3397481.3450650
https://doi.org/10.1007/978-3-319-26633-6_7
https://doi.org/10.1002/9780471462422.eoct979
https://doi.org/10.1207/s15516709cog2102_3
https://doi.org/10.1145/3491102.3517791
https://doi.org/10.1145/3351095.3372852
https://doi.org/10.3390/electronics10050593
https://doi.org/10.1177/0272989X07303824
https://doi.org/10.1162/jocn_a_02237
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

	Why not both? Complementing explanations with uncertainty, and self-confidence in human-AI collaboration
	1 Introduction
	2 Related work
	3 Methods
	3.1 Dataset
	3.2 Participants
	3.3 Task instances
	3.4 Experimental setup
	3.5 Procedure
	3.5.1 Initial screening
	3.5.2 Familiarization
	3.5.3 Main experiment
	3.5.4 Exit survey


	4 Results
	4.1 Performance
	4.2 Reliance, understanding, and trust
	4.2.1 Reliance
	4.2.2 Understanding
	4.2.3 Trust

	4.3 Objective understanding
	4.4 Switching and agreement

	5 Discussion
	5.1 The role of human confidence
	5.2 The complementary effect of uncertainty and explanations
	5.3 Explanations in AI

	6 Limitations
	7 Conclusions
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Generative AI statement
	Publisher's note
	Supplementary material
	References




