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Urban transportation management increasingly relies on Intelligent

Transportation Systems (ITS), where Vehicle Make and Model Recognition

(VMMR) plays a vital role in surveillance, tra�c monitoring, and infrastructure

planning. However, tra�c conditions in developing nations such as Pakistan

present unique challenges due to unstructured driving practices and lack

of lane discipline. We introduce a large VMMR dataset for Pakistan’s tra�c

dynamics to address these challenges. This dataset comprises 129,000 images

across 94 vehicle classes. We collected the dataset through web scraping and

overhead tra�c video recording, followed by an iterative semi-automated

annotation process to ensure quality and reliability. For evaluation, we perform a

fine-grained analysis using modern deep-learning architectures, including VGG,

E�cientNet, and Vision Transformers. Experimental results are obtained through

model simulations. These results establish a new benchmark in vision-based

tra�c analytics for developing countries. Our best-performing model achieves

an accuracy of 97.3%, demonstrating the potential of the data set to advance

ITS applications.
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1 Introduction

Efficient transportation is a critical challenge in large metropolitan cities. In
this regard, Intelligent Transportation Systems (ITS) (Bharadiya, 2023) are essential
components of smart city initiatives in urban areas worldwide to achieve optimal, safe,
and sustainable utilization of the available transportation infrastructure and achieve
maximum traffic efficiency. Automatic vehicle analysis is an important undertaking in
any intelligent transportation system, involving vehicle attribute recognition such as
vehicle re-identification, vehicle type recognition, and VMMR (vehicle make and model
recognition). VMMR has many applications, such as in surveillance for policing and
law enforcement, augmenting Automatic License Plate Recognition (ALPR) systems,
advanced driver assistance systems (ADAS), electronic toll collection (ETC), self-driving
cars, intelligent parking systems, measurement of traffic parameters like vehicle count,
speed, and flow, as well as market analysis for car manufacturing companies.
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Traffic monitoring through VMMR is a critical tool for
collecting statistics that will aid in designing and planning
sustainable and efficient transportation infrastructure. Often,
simple vehicle counting is insufficient, and the systemmust capture
extended attributes of vehicles. For example, can heavy traffic
be separated from lighter vehicles, or can individual vehicles be
tracked to determine which routes the drivers typically take?
This type of data enables fine-grained analysis and more accurate
profiling of users of transportation infrastructure, which is required
to guide the design of future upgrades and renovation projects.

VMMR is fraught with complications. The first is vehicle
detection; the VMMR system should accurately locate vehicles
in video images to perform feature extraction and classification.
Numerous vehicle variations, such as color, size, and shape,
make the problem difficult. Furthermore, under different lighting
conditions and viewpoint variations, the visual properties of
vehicles also change dramatically. The next task is to classify the
localized image regions into make and model categories. Several
issues must be addressed to achieve good classification accuracy.
Firstly, the wide range of models and makes seen in practice can
render the number of classes to consider rather large, making it
a challenging fine-grained classification problem. Next, different
models from the same manufacturer (make) frequently share
similar shape characteristics and are thus difficult to distinguish.
Also, the same model can have various facelifts released by the
manufacturer over the years, introducing intra-class variation
within this class.

The traditional method of collecting traffic data involves
manual data collection and human labor to count vehicles.
Alternatively, various technologies could help with the automated
detection of vehicles, e.g., inductive loops (Gheorghiu et al., 2021),
RADAR, LiDAR, infrared, and acoustic sensors (Wang et al., 2022).
Video camera-based traffic monitoring techniques have recently
gained popularity due to their widespread availability, low cost,
and potential for video analytics-based surveillance applications.
In addition, they provide a rich source of information from which
researchers can develop new generations of recognition methods.

For a long time, the performance of computer vision techniques
was the primary bottleneck for camera-based traffic monitoring
systems. However, the advent of deep learning has fundamentally
altered the situation. Image classification, in particular, has
advanced to an entirely new level in the last decade, approaching
human-level accuracy in several domains. The availability of large-
scale datasets and computational power have been key players in
this transformation.

Most of the available large-scale image-based VMMR datasets
come from developed countries (Krause et al., 2013; Sochor et al.,
2016; Tafazzoli et al., 2017; Yang et al., 2015). Hence, these
data sets provide a good starting point for research purposes.
However, traffic dynamics are very different and inconsistent
in developing countries such as Pakistan, especially in city
thoroughfares. For example, there are no lane markings more
often than not, and driving within lanes is not typically the
norm. Most existing datasets (e.g., Stanford Cars, CompCars)
are designed for structured traffic environments. No existing
benchmark dataset captures vehicles in overhead viewpoints under
real-world, unstructured traffic conditions as seen in Pakistan and
similar developing countries. Our dataset is the first to provide a

fine-grained, annotated dataset for VMMR in Pakistani overhead
traffic conditions, making it a valuable resource for future ITS and
surveillance applications. Key contributions of this research are:

• A novel, large-scale dataset (129,000 images, 94 classes) for
overhead vehicle recognition, addressing the lack of datasets
tailored to unstructured traffic conditions.

• A semi-automated annotation pipeline that combines deep
learning models (VGG) with manual verification for high-
quality dataset labeling.

• Benchmark evaluation of several deep learning models
(AlexNet, VGG, EfficientNet, ViT) on this dataset, establishing
a baseline for future research.

• Insights into overhead VMMR challenges, including
occlusions, lighting variations, and dataset scalability.

The rest of the paper is organized as follows: Section 2
presents a detailed review of existing Vehicle Make and Model
Recognition (VMMR) methods and datasets. Section 3 outlines
the data collection and annotation process, highlighting the
methodology used to create a high-quality dataset for overhead
traffic analytics. Section 4 presents the experimental setup for
baseline model evaluation and thorough dataset analysis. Finally,
Section 5 concludes the paper by summarizing the key findings
and suggesting potential directions for future advancements in
fine-grained VMMR applications.

2 Literature review

We first present existing fine-grained VMMR methods,
emphasizing deep learning techniques to contextualize the
proposed dataset. In the second section, we review the existing
datasets in detail.

2.1 VMMR methods

The general VMMR technique contains feature extraction
and classification. Existing literature can be roughly divided into
two categories, namely, traditional classification methods, e.g.,
discriminant analysis (Klecka, 1980), Bayesian methods (Bernardo
and Smith, 1994; Ashraf and Ahmed, 2020), and support vector
machines (Suthaharan and Suthaharan, 2016), and techniques from
the computational intelligence domain, e.g., neural networks (Islam
et al., 2019), various combinations of neural networks, fuzzy sets,
and genetic algorithms (Gorzalczany, 2012; Arfeen et al., 2021).

2.1.1 Traditional methods
Early approaches to VMMR primarily relied on traditional

machine learning techniques, using handcrafted features to
represent vehicle images. One idea is to identify cars based on their
inherent dimensions, shapes, and textures. These methods rely on
the cameras’ pose and position. Using shape information, (Gu and
Lee, 2013) demonstrated improved car model recognition. Betke
et al. (2000) detected and tracked vehicles using symmetry and rear
lights, while another approach (Emami et al., 2014; Llorca et al.,
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2014) identified cars from backlights, license plates, and global
shape features.

Car models are also classified using various features, including
low-level features like edge-based, contour point, contourlet
transform, corner features, and high-level features like SIFT
(Psyllos et al., 2010), SURF (Hsieh et al., 2013), HoG (Dalal and
Triggs, 2005), PHOG, and Gabor features Xue (2006). Different
studies have shown high accuracy in recognizing car models
using these features. For example, Munroe and Madden Munroe
and Madden (2005) achieved 97% accuracy while distinguishing
between 5 vehicle classes using edge features with K-means.
Pearce and Pears (Pearce and Pears, 2011)proposed LNHS for
improved corner detection, achieving a 96% correct classification
rate. Boonsim and Prakoonwit (2017) addressed night-time
identification with a 93% accuracy rate. Clady et al. (2008)
developed a method with 93.1% accuracy for identifying vehicle
types based on oriented contour points. Baran et al. (2015) used
local features like SURF and achieved a 97.2% correct recognition
rate for car models. These methods are based on human detection
and recognition techniques, utilizing robust and efficient features
like HOG, Gabor Filters, and LBP (Shan et al., 2009). Still, they may
face severe limitations as the dataset grows regarding the number
of very similar classes.

Many VMMR methods follow the intuition that distinguishing
features of a fine-grained category, such as the grille of a
car, are most naturally represented in 3D object space, which
includes both the appearance of the features and their location
for an object. Prokaj and Medioni (2009) introduced a top-
down, model-based approach for vehicle pose estimation using
3D models, achieving 90% accuracy on 36 classes. Krause et al.
(2013) enhanced 2D object representations for 3D applications and
utilized 3D CAD models to avoid manual annotation, reaching
94.5% accuracy across 196 car models. Hsiao et al. (2014) used
non-parametric 3D curves derived from 2D images for vehicle
model representation, with an 87% success rate on an 8-class
dataset. Lin Y.-L. et al. (2014) combined 3Dmodel fitting with fine-
grained classification for a 90% accuracy on the FG3DCar dataset,
highlighting limitations in application scope and performance for
large vehicle datasets. Model-based approaches have the advantage
of reducing viewpoint dependency in general; however, they
remain limited to the basic classes, and producing simple 3D
models accurate enough to distinguish between the many makes
and models or subtypes of different models appears unlikely to
have high success. Furthermore, the inter-class difference is quite
significant in vehicle type classification applications, whereas the
appearances of various models are very similar in car make and
model recognition.

2.1.2 Computationally intelligent methods
The traditional methods laid the groundwork for developing

more sophisticated computer vision systems in VMMR. The advent
of deep learning and convolutional neural networks (CNNs)
marked a significant turning point in VMMR research. Recent
literature reveals that convolutional neural networks (CNNs) have
established a new benchmark in fine-grained visual classification
(Sochor et al., 2016). Pioneering studies by Liu and Wang (2017)
and Yang et al. (2015) have underscored the effectiveness of CNNs

in this domain. They introduced GoogleNet, an early pre-trained
deep learning model, and surpassed conventional methods in fine-
grained vehicle classification.

Early investigations primarily explored auxiliary networks
to capture local-level information for fine-grained classification.
Krause et al. (2015) proposed a method without annotations
of parts, using alignment and segmentation concepts to identify
informative parts. Similarly, Xiao et al. (2015) employed multiple
attention mechanisms to extract relevant image details, integrating
them to train deep networks. Zhang et al. (2016) introduced an
automatic recognition approach without annotations of objects or
parts, extracting distinctive filter responses and learning specific
patterns.

Further advancements addressed constraints in pose-
normalized representations for fine-grained classification. Zhang
et al. Zhang et al. (2014) incorporated semantic part localization
in CNNs, achieving state-of-the-art performance. Fu et al. (2017)
proposed a recurrent attention model, learning discriminative
region attention on multiple scales without bounding boxes.
Furthermore, a novel part-stacked CNN (Huang et al., 2016)
simultaneously encoded object- and part-level cues to model subtle
differences.

Spatially Weighted Pooling (SWP) layers introduced by Hu
et al. (2017) in CNNs enhanced feature pooling by learning
discriminative spatial units, outperforming prior methods. Ma
et al. (2019) enhanced CNN generalization by inserting a Channel
Max Pooling (CMP) layer, significantly reducing parameters while
improving classification accuracy. Lightweight CNNs (Zhang et al.,
2018) optimized parameters through pre-training and fine-tuning
on the VMMR dataset, achieving notable results.

Innovative architectures were devised to consolidate
informative image parts. Lam et al. (2017) proposed a heuristic
function to score proposals unified via LSTM networks into a deep
recurrent architecture. Lin et al. (2015) introduced a valve linkage
function (VLF) enhancing back-propagation, particularly in deep
localization and alignment systems.

Several loss functions were introduced to enhance neural
network performance. Deep CNNs with Large-Margin Softmax (L-
softmax) loss Liu et al. (2016b) improved feature discriminability,
while Center Loss (Wen et al., 2016) facilitated inter-class
dispersion and intra-class compactness. Focal Loss addressed class
imbalance, focusing on hard-set examples, while a novel loss
function proposed by Lin et al. (2017) penalized misclassification
probabilities.

Hayee et al. (2023) proposed a model that extracts deep
features through the FC layer of a fine-tuned CNN and
produces the features that best describe a vehicle for fine-grained
vehicle classification using the Fisher discriminative least squares
regression (FDLSR) module.

In conclusion, recent advances in CNN architectures, loss
functions, and feature optimization techniques have significantly
increased fine-grained visual classification performance,
particularly in vehicle recognition tasks.

These advantages come with many challenges, including
calculation complexity, where deep CNNs with numerous layers
and parameters have a significant computational overhead (Yu
et al., 2020). Other challenges include optimizing CNN models
for fine-grained classification to balance computational speed and
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TABLE 1 Summary of datasets for fine-grained vehicle classification.

No. Dataset
name

Year Number of
images

Number of
classes

Salient features

1. Stanford Cars 2013 16,185 196 • Fine-grained categories include make, model,
and year.

• High-resolution images

2. CompCars 2015 Over 200,000 1,716 • Surveillance-natured and web-natured data.
• Categories include make and model.
• Viewpoint annotations available

3. VeRi-776 2016 Over 50,000 776 • Real-world urban surveillance data.
• Suitable for vehicle re-identification.
• Attributes include bounding boxes

4. VehicleID 2016 221,763 26,267 • Large-scale dataset suitable for vehicle re-
identification.

• Single frontal view per vehicle

5. PKU VehicleID 2016 Over 110,000 13,134 • Focuses on vehicle re-identification.
• Images captured from multiple real-world

scenarios

6. BoxCars 116k 2018 116,000 Over 500 • Benchmark for fine-grained recognition.
• 3D bounding boxes available.
• Attributes include multiple angles and

conditions

accuracy degradation (Habib and Qureshi, 2022) and capturing
subtle differences between classes, which can lead to complex
models with many parameters. This complexity can lead to
overfitting, especially given the typically smaller datasets available
for fine-grained classification tasks (Yun et al., 2023).

Training deep CNNs for fine-grained classification demands a
large amount of data to avoid overfitting, making it difficult to train
these networks effectively with a small dataset (Yu et al., 2020).

2.2 VMMR datasets

Most of the earlier fine-grained image classification benchmark
datasets contain only a few thousand (or less) training images.
These vehicle data sets only include a selection of brands and
models (Pearce and Pears, 2011), or only categorize cars at a high
level (ie SUV, truck, sedan) (Ma and Grimson, 2005), and are only
helpful for vehicle-related tasks such as identification and pose
estimation (Lin Y.-L. et al., 2014). Most of the data sets focus on
organized driving situations. This approach is generally associated
with well-defined infrastructure, such as lanes, clearly defined traffic
participant groups, a variety of motifs or backgrounds of the same,
and strict adherence to traffic regulations.

A unique data set is required for road scene comprehension
in unstructured situations when the assumptions mentioned above
are mostly unmet. It is also essential to have many images for
each class to cover the vast range of view angle and illumination
changes and the pretty wide range of appearance changes
within the same category. Fine-grained car classification (FGCV)
datasets are typically categorized into web-image, surveillance-
image, and hybrid datasets. Web image datasets collect car
images from public websites featuring various car models in
various poses and viewpoints, leading to significant appearance
variations. Surveillance image data sets consist of car images
captured by fixed surveillance cameras in different traffic scenarios,

primarily from the front view. Hybrid data sets combine elements
from both the web and surveillance images. Unlike traditional
classification datasets, fine-grained car datasets can be divided
into categories based on various attributes. One of the first
benchmark data sets researchers still use today is Stanford Cars
(Krause et al., 2013). The authors present a dataset containing
16,000+ images of 196 vehicle classes, including make, model,
and year. The data is split almost 50/50 between training and
testing images, with 8,144 training images and 8,041 testing
images. The image resolution is 360 × 240 pixels. The CompCars
dataset (Yang et al., 2015) is another widely used dataset. This
dataset has two categories: web-nature and surveillance-nature.
The web-natured part comprises 136,727 vehicles from 153 car
brands with 1716 car models, photographed from various angles
and covering many commercial car models from the last ten
years. Most of these models are Chinese, while the surveillance
part comprises 44,481 frontal images of vehicles captured by
surveillance cameras. The CompCars dataset was created for
fine-grained automobile categorization, attribute prediction, and
verification. Liu et al. (2016a) presented the “VehicleID” dataset,
which contains 221,763 images of 26,267 vehicles. The dataset
includes images of 250 vehicle models, with 110,178 images
of 13,134 vehicles for training and 111,585 images of 13,133
vehicles for testing. Multiple real-world surveillance cameras
capture the images in the data set in a small city in China
during the day. Each vehicle in the data set has at least two
images, including more than 900,000 labeled images with vehicle
model information. The dataset is suitable for vehicle search-
related tasks and is organized to assist in vehicle retrieval and
re-identification experiments.

VMMRdb (Vehicle Make and Model Recognition Database)
(Tafazzoli et al., 2017) is a large-scale dataset designed for vehicle
make and model recognition, a specific application of fine-
grained classification. The dataset has over nine million images,
making it one of the most extensive publicly available datasets
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FIGURE 1

Dataset collection procedure.

TABLE 2 Web crawled data statistics.

Number of classes 94

Total number of images 36,164

Average number of images per class 385

Minimum number of images per class 321

Maximum number of images per class 1,005

for vehicle recognition. Covers more than 2,950 models and
years combined, providing many vehicles for recognition tasks.
Images from the Internet in multiple countries and environments
contribute to diversity. This includes cars from different periods,
conditions (new or used), and modifications that reflect real-
world variability. Sochor et al. (2018) presented BoxCars116K.
The dataset contains 116,286 images of 27,496 vehicles. There
are 693 fine-grained classes in the dataset, which include make,
model, submodel, and model year information. In the hard
split, there are 11,653 tracks (51,691 images) for training and
11,125 tracks (39,149 images) for testing. The data set includes
information on the 3D boundary box for each vehicle, an image
with a background mask extracted by background subtraction,
and various attributes such as boundary boxes, vehicle types,
and colors.

Recent vehicle data sets such as EuroCity (Braun et al., 2019)
focus on pedestrians but include vehicle annotations in urban traffic

scenes across European cities, and KITTI-360 (Liao et al., 2022)
provide 360-degree view annotations, including vehicles. These
datasets are not vehicle-specific and are not suitable for fine-grained
classification tasks. A summary of notable VMMR datasets is given
in Table 1.

Few or no datasets are available on vehicles such as
autorickshaws, tempo, trucks, etc. In addition, the images in the
dataset should be taken in varied weather conditions, including
daylight, evening, and night. The dataset must have various
illumination variations, distances, viewpoints, etc.

A dataset that accurately trains a CNN-based classifier for fine-
grained image classification must have the following properties:

• High-Quality Annotations: The data set should contain
true and dispositioned annotations for each image. This
is especially true for fine-grained classification, where
small feature changes might incorrectly classify an object
(Wah et al., 2011).

• Diverse Representations: The images should represent various
settings, poses, lights, and occlusions to provide loads of
pattern variations to prevent the model from getting trapped
on a limited set of attributes (Krause et al., 2013).

• Balanced Class Distribution: Diversity in training data is
important to avoid that the model is biased towards classes
with a greater presence in the data set (the representations
of its classes should be as close to each other as possible)
(Zhou et al., 2016).
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FIGURE 2

Honda City fifth generation from web-crawled data.

TABLE 3 Video data statistics.

Duration of video data 15 h

Total number of video clips 74

Total number of frames 1.8 million

Frames per second 30/60

Conditions Early morning, afternoon, late
evening, sunset

Number of locations 6

• Sufficient Sample Size: For a deep learning model, the number
of images should be the same per class, which is crucial to
achieving efficient training (Sun et al., 2014).

• Consistent Annotation Criteria: The basis for annotating
and categorizing pictures must be the same in all
instances to prevent learning from being interfered
with by insufficient labels or inconsistent properties
(Van Horn et al., 2015).

• Presence of Hierarchical Labels: Fine-grained classification
can be improved by adding hierarchical labels
(Valan et al., 2019)

• Multiple Instances Per Class: This enables themodel to classify
more diverse and robust features. The data should contain
several examples per class with pictures of the subject studied
taken in different situations and conditions (Deng et al., 2009).

Together, these properties will achieve the desired result of
a dataset that accurately trains a deep learning (CNN)-based
classifier. The inputs deal with specific points regarding the fine-
grained dataset model, such as the data collection, annotation, and
utilization process associated with these challenges.

3 Proposed dataset

The article presents a novel data set comprising 129,000
images in 94 vehicle classes explicitly tailored to unique traffic
conditions in Pakistan. Due to the large dataset size, we primarily
stored it on a local external hard disk; this enabled efficient
data retrieval and processing. A copy of the dataset was also
uploaded to Microsoft OneDrive for remote access and backup.

This ensures data security and protects against hardware failure
losses. The research demonstrates a robust methodology to collect
and classify vehicular data. It performs well even under challenging
conditions, such as occlusions and low lighting. This highlights the
resilience of the approach to common issues in collecting overhead
traffic data for congested road scenarios. The following section
describes in detail the dataset collectionmechanism, its quantitative
and qualitative analysis, and, as a final step, the traffic analytics
performed on the collected dataset.

3.1 Data collection

Two types of dataset collection have been conducted. The
first type involves web-crawled data, which was gathered using a
web scraping tool and consists primarily of front-view and rear-
view images. The second type is derived from various overhead
traffic videos recorded in different locations within the twin cities
of Rawalpindi and Islamabad, each lasting fifteen minutes. This
approach aims to include images captured from an overhead
viewpoint. Figure 1 shows collection procedure. To date, there are
94 common vehicle categories on Pakistani roads.

3.1.1 Web-crawled data
A scraping tool is developed to scrape images from the Internet.

The scrapper takes vehicle names and tags as input and then scraps
data from Google, Yahoo, and Bing, depending on the nature of
the tags. The scraped data are saved in the form of raw images.
There are a lot of repetition and out-of-context images from the
desired ones.

The raw images are manually cleaned and annotated.
Repetitions and out-of-context images are removed. The Web-
crawled dataset consists of 36,164 images with 94 different vehicle
classes. Its statistics are shown in Table 2.

Figure 2 shows some images of Honda City fifth generation
from web-crawled data.

3.1.2 Overhead-image data
There is minimal vehicle image data on the Internet from

overhead viewpoints. To remedy this, almost 15 hours of video data
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FIGURE 3

Honda City fifth generation from overhead image data.

TABLE 4 Cropped images placed in each iteration.

Iteration Confidence No of images

1 90–100 31,118

2 40–89 56,462

3 0–39 15,862

were collected from different locations in Islamabad. The statistics
of this video data set are shown in Table 3.

We took ten-second sections from each video to use as test
sequences to create our dataset. Using a version of the YOLO-v4
(Jiang et al., 2022) software trained on the MS COCO dataset (Lin
T. -Y. et al., 2014), we specifically focused on identifying specific
types of vehicles: bikes, bicycles, buses, trucks, and cars. We then
extracted sections of images from this 15-hour collection of video
footage. We only kept the image sections that were 64 by 64 pixels
or larger to ensure good image quality, and we picked these sections
from every 100th frame. In this way, we could avoid collecting
too many similar images. From the ten-second test sequences, we
gathered 1,744 image sections. For the training sequences, which
comprise the rest of the video duration, we obtained 103,442 image
sections. Together, we collected 105,186 image sections from the
15-h video dataset. These image sections are shown in Figure 3,
showing examples of image croppings we took from the videos.

We trained VGG (Vedaldi and Zisserman, 2016) on the
complete web-crawled dataset and deployed it on overhead-
cropped images. Depending on the model’s confidence level with
each crop, we segregated the overhead dataset into three different
iterations. The crops above 90 percent confidence are placed in
Iteration 1, those with confidence between 40 and 90 percent
confidence are placed in Iteration 2, and those below 40 percent
confidence are placed in Iteration 3. Table 4 shows the total number
of crops placed in each iteration.

The VGG model, trained on a web-crawled dataset, poorly
classified overhead croppings. To remedy this problem, we
manually cleaned the overhead data, iteratively trained the VGG
model, and deployed it in the next iteration. Images with a
confidence level greater than 90 were included in the first iteration,

images with a confidence level between 40 and 90 were included in
the second iteration, and images with fewer than 40 were included
in the third iteration.

Each iteration produces cleaned images, garbage images, and
ambiguous images. Starting fromweb-crawled data, cleaned images
are combined with the dataset from the previous iteration and
used to retrain VGG. Garbage images cannot be used and are
discarded. Ambiguous images need deeper visualization and are
segregated separately. These ambiguous images are included in the
final iteration of the VGG. Annotations are performed manually
in each iteration. The statistics of each iteration are summarized
in Table 5.

Figures 4, 5 show some ambiguous and discarded images.
After cleaning the overhead crops, 92,836 total overhead images

were cleaned. Combined with the web-crawled dataset, 129,000
images of 94 classes were finally collected. The data set is collected
iteratively. VGG and AlexNet are used in parallel for the collection,
and VGG performed better. We used a small VGG (Ioannou
et al., 2015). It has 11 layers with 13,766,754 parameters, compared
to VGG-16, which has almost 138 million. The second CNN
architecture implemented is AlexNet (Alom et al., 2018), consisting
of 8 layers with five convolutional layers and three fully connected
ones. There are 58,671,966 parameters in it. The accuracy of the
model to classify images from each iteration and the time consumed
by its correction are shown in Table 6.

In an iterative process, a significant decrease in the time
required for manual image cleaning is observed. Initially,
considerable time was expended due to redundant and irrelevant
web-crawled images. Subsequently, time was also consumed in
addressing issues related to viewpoint overhead. However, the time
expenditure decreased as the process advanced, improving the
model’s accuracy.

4 Dataset analysis and results

We analyzed our data set, focusing on its utility, reliability,
and scalability to establish it as a vehicle manufacturer and model
recognition benchmark.
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TABLE 5 Data cleaning statistics.

Iteration Total
images

Training
accuracy

Validation
accuracy

Training
loss

Validation
loss

Cleaned
images

Ambiguous
images

Discarded
images

1 61,616 93.15 % 86.01 % 0.2084 0.6674 25,452 5,290 376

2 103,139 92.49 % 88.09 % 0.2281 0.4873 41,523 12,924 2,015

3 114,395 93.23 % 88.90 % 0.2029 0.4863 11,256 3,583 1,023

4 127,500 93.33 % 88.35 % 0.1986 0.5132 13,105 7,834 858

FIGURE 4

Ambiguous images from each iteration.

4.1 Data annotation quality

Data annotation is carried out semi-automatically. As a first

step, the web-crawled data with available annotations is manually
rechecked. These double-checked class labels annotate new images
in the next iteration. The resulting annotations are manually
confirmed once again. This process is carried out in each iteration.

Details of each iteration are given in Section 3.1. A strict naming
convention is followed to ensure consistency in label naming.

This will reduce errors and improve the reliability of the data set.
The naming convention followed is Make_Model_Generation; for

example, Honda_City_5 means Honda City 5th generation.

4.2 Optimum image size and data
augmentation

For VMMR datasets, the image size is crucial to balance
accuracy, processing power, and storage. Commonly recommended
image sizes are; Small Resolution (64x64 to 128x128 pixels)
(Tang et al., 2015), medium Resolution (224 × 224 to 256
× 256 pixels) (Krizhevsky et al., 2017) and high resolution
(512 × 512 to 1,024 × 1,024 pixels) (Li et al., 2023). Since
our data set is intended for overhead traffic analytics, we
did not consider high-resolution images, as they require
significant computational resources and larger storage.
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FIGURE 5

Discarded images from each iteration.

TABLE 6 Model accuracy in each iteration and correction time.

Iteration Model accuracy Number of images Correction time Correction time per
image (sec)

1 25.18 % 25,452 18 days,7 h/day 18

2 77.70 % 41,523 20 days, 7 h/day 12

3 85.77 % 11,256 4 days, 8 h/day 10

4 86.40 % 13,105 5 days, 8 h/day 7

TABLE 7 Image sizes after each iteration.

Image size Total images Greater than 227 × 227 Less than 227 × 227 Average size

Web crawled 36,164 24,205 11,959 777× 538

Iteration 1 25,452 6,208 19,244 207× 222

Iteration 2 41,523 10,135 31,388 214× 212

Iteration 3 11,256 2,769 8,487 217× 209

Iteration 4 13,105 2,338 10,767 179× 173

Last 10 s 1,500 465 1,035 241× 243

Total data 129,000 46,120 82,880 368× 301

After each iteration, the data set has web-crawled images
and overhead traffic images. Table 7 shows image sizes after
each iteration.

Different experiments were performed to choose the image size
(small or medium resolution) and set the model parameters. We
trained a small VGG with a 64 × 64 and 227 × 227 input image

Frontiers inComputer Science 09 frontiersin.org

https://doi.org/10.3389/fcomp.2025.1561899
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Hayee et al. 10.3389/fcomp.2025.1561899

size to decide on the optimum image size. The statistics of both
experiments are shown in Table 8.

Based on the experimental results, a model size of 227 × 227
was chosen. These results are consistent with the fact that very low-
resolution images are not ideal for capturing detailed make- and
model characteristics but can work for primary classification.

We also performed data augmentation to increase the number
of variants in the dataset. Data augmentation is applied to each
image in the dataset to increase the diversity of the data and
improve the model’s generalization ability. The details of the
augmentation parameters, their values, and their functions are
given in Table 9.

TABLE 8 Image size experiment results.

Image size 227 × 227 64 × 64

Training accuracy 93.38 % 86.83 %

Validation accuracy 82.22 % 76.92 %

Training loss 0.2071 1.0051

Validation loss 0.9623 3.6805

TABLE 9 Data augmentation parameters.

Parameter Value Operation

Rotation rotation_range=0.1 Random rotation of each
image within a range of±10%
of 360 degrees

Shift width_shift_range=0.1,
height_shift_range=0.1

Shift the image horizontally
and vertically by up to 10% of
the image’s width or height,
respectively

Shear shear_range=0.2 Shear (slant the shape of an
object) transformation up to
20 degrees

Zoom zoom_range=0.2 Random zooming to the
image, either zooming in or
out by up to 20%

Horizontal flip horizontal_flip=True Each image is flipped
horizontally, doubling the
number of unique samples by
creating mirror images

Fill fill_mode="nearest" Newly created empty space
from transformations is filled
by the nearest pixel values
along the edges, creating a
seamless effect

These transformations introduce variations in rotation,
position, shear, zoom, and flipping to each image. This
results in a more diverse dataset, which makes the
model robust to different orientations, positions, and
scales. Hence, it improves its ability to generalize in
real-world scenarios.

4.3 Baseline model training and evaluation

We train several popular Convolutional Neural Network
(CNN) architectures as baseline models to evaluate data set
performance. To assess the flexibility of our proposed dataset, we
trained and evaluated AlexNet, VGG, and EfficientNet (Tan, 2019)
multiple times, and their quantitative results are represented as 50
epochs per iteration per the standard dataset. We used stochastic
gradient descent and batch normalization as regularizers. The
learning rate of fully connected layers is kept at 0.0001, and we have
trained no model for more than 200 epochs.

We created a standard test dataset to evaluate the models that
have been trained iteratively. This standard test data set includes
the following:

• 5% of the validation dataset
• 5% of the complete test dataset
• 1,500 images from the test sequence videos

The standard test data set contains 14,154 images and is used to
evaluate the performance of the trained models. The statistics of all
three models for each iteration are shown in Table 10.

The training plots of all four models for all iterations are shown
below in Figure 6.

The models trained on data collected after the fourth iteration
are the final models. We notice that VGG performs better in all
iterations than AlexNet. EfficientNet performs significantly better
than older architectures such as AlexNet and VGG for fine-
grained classification tasks. This is due to its design principles
that emphasize efficiency and scalability while maintaining high
performance (Tan, 2019).

4.4 Scalability analysis

We analyze scalability to examine how well our data set
performs across models of different sizes, complexities, and

TABLE 10 Model performance metrics after each iteration.

Model AlexNet VGG E�cientNet

Iteration 1 2 3 4 1 2 3 4 1 2 3 4

Training accuracy (%) 93.15 95.14 95.62 95.43 96.34 92.49 93.23 93.33 88.64 96.35 98.90 100.00

Validation accuracy
(%)

68.60 84.46 84.36 85.15 78.18 88.09 88.90 88.35 70.03 83.97 98.01 97.30

Training loss 0.1182 0.1458 0.1360 0.1423 0.2084 0.2281 0.2029 0.1986 0.1930 0.037 0.011 0.004

Validation loss 1.2738 0.8794 0.9977 0.9477 0.6674 0.4873 0.4863 0.5132 0.6674 0.017 0.006 0.010
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FIGURE 6

Overall training plots.

architectures. In the previous section, our dataset performed well
for various CNN models, from the classic AlexNet architecture to
the recent EfficientNet. Traditionally, transformer architectures are
employed for natural language processing, but recently, they have
shown remarkable performance in image classification tasks. Vision
Transformed (ViT) (Dosovitskiy, 2020) is highly expressive and
can capture complex patterns that CNNs might miss. ViT splits
images into patches instead of using convolutional filters. A dataset
with rich feature variety is required to validate these patches. ViT
splits images into patches instead of using convolutional filters. A
data set with rich feature variety is necessary for these patches to
be useful. ViT testing can highlight the strength of critical feature
representations (such as vehicle make and model details). ViT-B/16
was deployed; hyperparameters are listed in Table 11. The model
statistics after every 50 epochs are shown in Table 12.

ViT performs well due to the self-attention mechanism
(Touvron et al., 2021), which helps to capture subtle differences
between images. Both EfficientNet and ViT show comparable
performance. ViT can outperform EfficientNet if the dataset is
extensive because it can better capture global relationships. The

accuracy of EfficientNet improves more steadily, particularly in the
early epochs, while ViT requires more epochs to achieve similar
accuracy. ViT eventually catches up, but EfficientNet performs
better in the initial stages.

We observed that Vision Transformers (ViT) outperformed
Convolutional Neural Networks (CNNs) in fine-grained vehicle
make and model recognition. While CNNs excel in capturing
local spatial hierarchies, ViTs leverage self-attention mechanisms
to model global dependencies, making them more effective
for detailed classification. CNNs employ weight sharing,
which makes them more efficient; ViTs require extensive
pretraining and are computationally more demanding. The
study also highlighted CNNs’ limitations, including difficulty
capturing long-range dependencies, fixed kernel constraints,
and reduced performance distinguishing visually similar
vehicle models. This underscores the importance of balancing
accuracy and computational cost in real-world applications
(Khalil et al., 2023).

Google Colab was used for model training, while local systems
were used for image cropping and testing. In particular, cropping
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TABLE 11 Hyperparameters for ViT-B/16.

Hyperparameter Value Description

Patch size 16× 16 The input image is
divided into patches of
this size

Embedding dimension 768 Size of the embedding
for each patch

Number of
transformer layers

12 The depth of the
transformer,
representing the number
of encoder layers

Dropout rate 0.1 Dropout rate used for
regularization to prevent
overfitting

Learning rate 0.0003 Initial learning rate

Batch size 1,024 Number of samples per
batch used in training

TABLE 12 ViT statistics after each iteration.

Iteration
1

Iteration
2

Iteration
3

Iteration
4

Training
accuracy

80.94 % 96.5 % 98.2% 99.88%

Validation
accuracy

70.08 % 93.99 % 95.3% 98.53%

Training
loss

0.1141 0.035 0.009 0.006

Validation
loss

0.0763 0.0112 0.023 0.021

of approximately one image per second, training of roughly
68 images per second, and testing of nearly eight images per
second were achieved. With the final validation accuracy of
VGG at 88.35%, AlexNet at 85.15 %, EfficientNet at 97.3%, and
ViT at 98.5%.

5 Conclusions and suggestions for
future work

We have established that, before our investigation, no
benchmark data set was available for vision-based traffic analytics
in the Pakistani context. Furthermore, no pre-trained deep
neural network existed to categorize overhead traffic image data
effectively.

To address this problem, we collected a large-scale dataset
through extensive field data collection. The data set was
then annotated using an iterative, semi-automated approach
that employed existing deep neural networks in a novel and
conscientious manner. The classification results obtained using
existing standard deep neural networks demonstrated promising
outcomes and have the potential to facilitate insightful traffic
analytics.

The data set comprises 129,000 images placed into 94 different
classes and is now available as a benchmark for future research

focused on fine-grained vehicle classification and traffic analytics.
This data set provides a valuable resource for researchers and
practitioners seeking to advance the field of vision-based traffic
analytics in the Pakistani setting, thus contributing to developing
more effective and efficient traffic management strategies.

The dataset can now be used as a benchmark for further traffic
analytics. It can be used to explore tracking algorithms to achieve
real-time traffic analytics by exploring multiclass object detectors.
It can also be used for a single-pass pipeline. The hardware
implementation of the algorithms mentioned above can be done.
Single-image-based speed estimation can also be processed further.

The paper sets a new benchmark for vision-based traffic
analytics in developing countries by providing a comprehensive
and well-annotated dataset. This data set can be a valuable resource
for future research and practical applications in ITS.
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