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Mesenchymal stem cell therapy shows promising results for di�cult-to-

treat diseases, but manufacturing requires robust quality control through

cell confluence monitoring. While deep learning can automate confluence

estimation, research on cost-e�ective dataset curation and the role of

foundation models in this task is limited. We investigate e�ective strategies for

AI-based confluence estimation by studying active learning, goal-dependent

labeling, and foundation models that require no training or labeling e�ort

(zero-shot). Here, we show that zero-shot inference with the Segment Anything

Model (SAM) achieves excellent confluence estimation without any task-specific

training, outperforming even fine-tuned and specialized models. Moreover,

our findings demonstrate that active learning does not significantly enhance

training and performance compared to the random selection of training

samples in homogeneous cell datasets. We demonstrate that streamlined

labeling approaches tailored to specific goals yield results comparable to those

of exhaustive, time-consuming annotation methods. Our results challenge

common assumptions about dataset curation and model training: neither active

learning nor extensive fine-tuning provided significant benefits in our real-world

scenarios. Instead, we found that leveraging SAM’s zero-shot capabilities and

goal-dependent labeling o�ers the most cost-e�ective approach for AI-based

confluencemonitoring. Our study provides practical guidelines for implementing

automated cell quality control in MSC manufacturing, demonstrating that

extensive dataset curation may be unnecessary when foundation models can

e�ectively handle the task right out of the box.

KEYWORDS

active learning, deep learning, cell segmentation, segment anything model, computer

vision

1 Introduction

Mesenchymal stem/stromal cells (MSCs) are powerful Advanced Therapy Medicinal

Products (ATMPs) that can treat various conditions. Although MSCs are not yet approved

for many applications, they demonstrate promising clinical outcomes in the treatment of

degenerative inflammatory diseases, autoimmune disorders, tissue injuries, and chronic

degenerative ailments (Strecanska et al., 2024; Galipeau and Sensébé, 2018). This is

particularly significant for conditions such as rheumatic arthritis, which affects around

18 million people worldwide, imposes significant health burdens, and lacks sufficient

alternative treatments (Shimizu et al., 2023; IHME, 2020).
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MSC production, however, relies on limited and hard-to-access

sources such as bone marrow or umbilical cord tissue, requiring

ex-vivo expansion of these cells. During this expansion in cell

cultures, the density of the cells (confluence) must be tightly

controlled, as it serves as a trigger point for cell differentiation

(Fernández-Santos et al., 2022; Kim et al., 2017). Therefore,

scientists and laboratory technicians need to harvest the cells

before they differentiate and lose their potency as stem cells. Thus,

scientists and technicians monitor growth through imaging to

ensure quality and optimize yield.

During MSC production, microscopic images are often

analyzed manually, and scientists estimate the confluence, i.e.,

the fraction of area covered by cells. This erroneous and non-

standardized process leads to increased labor efforts and fails to

optimize yield by missing the optimal harvest point. For AI-based

confluence estimation, we need: (a) a method for cell segmentation

in live-cell images and (b) data with ground truth, particularly

images with known confluence and segmented cells as labels.

Traditional image processing techniques include thresholding

methods (Shen et al., 2018), such as edge detection, and region-

growing approaches (Panagiotakis and Argyros, 2018). However,

advances in artificial intelligence (AI) have shown that AI models

often outperform traditional methods for cell segmentation (Chen

and Murphy, 2023). A typical approach to training AI models

involves collecting data, labeling it, and training models from

scratch, such as a U-Net model for segmentation (Ronneberger

et al., 2015). Recently, pre-trained and large generalist foundation

models have gained popularity due to their good performance and

broad applicability (Han et al., 2021; Chen and Murphy, 2023).

In computer vision, several such models have been developed,

including generalists for image segmentation [SAM (Kirillov et al.,

2023), Detectron2 (Wu et al., 2019)] and specialists for cell

segmentation [Cellpose (Stringer et al., 2020), LiveCell (Edlund

et al., 2021)]. Although training custom models has become more

accessible to end-users without large computing resources (von

Chamier et al., 2021), the main advantage of pre-trained models

is that they can be used with little to no labeled images. This

is especially important since human labeling is costly and time-

consuming. Moreover, MSCs, like other underrepresented cells in

live-cell datasets, are non-round and irregularly shaped, making the

segmentation task challenging. Additionally, ATMPmanufacturing

processes prohibit staining for higher contrast. Consequently,

generating a sufficiently detailed and diverse training dataset

for custom model training would require significant effort,

highlighting the utility of pre-trained models.

With both foundation models and untrained models, existing

approaches naturally raise the question of how to estimate

confluence with minimal labeled data while maintaining sufficient

performance. With a large number of images, or data, available,

there are three strategies for labeling and applying AI models:

(a) zero-shot, which involves no labeling or model training, (b)

using all images to label and train models, and (c) active learning,

where the n most informative samples are selected for labeling

and training. AL is a data-centric approach that reduces the effort

of data labeling by selecting the next datapoint(s) not randomly,

but based on either uncertainty, diversity, or clustering (Monarch,

2021). Interestingly, using AL to choose only a core set of the entire

dataset can yield results similar to or even better than labeling all the

data (Jafari et al., 2024). For our model-driven approach, we focus

on uncertainty-based methods due to their broad applicability

across various models.

Since current research on cell segmentation (Chen and

Murphy, 2023) and AL (Sayin et al., 2021; Monarch, 2021) focus on

large datasets in theoretical contexts; we aim to apply AL to real-

world small datasets using state-of-the-art models for confluence

estimation. In our study, we are interested in four insights:

1. Impact and effectiveness of active learning.

2. Applicability of simplified goal-dependent, i.e., “lazy”, labeling.

3. Active learning selection patterns in a time-resolved cell culture,

“movie context.”

4. Performance of zero-shot inference.

To gain these insights, we describe in the following section

(cf. Section 2) our experimental setup, which includes three

datasets for comparing learning strategies across four models. The

selected models range from U-Net (Ronneberger et al., 2015),

developed from scratch, to large generalist foundation models such

as Detectron2 (Wu et al., 2019) and Meta’s Segment Anything

Model (SAM) (Kirillov et al., 2023), as well as the specialist pre-

trained model Cellpose (Stringer et al., 2020). By leveraging our

experiments, which are graphically summarized in Figure 1, we

elaborate on the listed insights point by point in Section 3 and

describe their impact, along with their limitations, in the final

Section 4.

2 Material and methods

In the following data, we describe models and experiments. To

ensure full transparency and reproducibility, we provide all relevant

code and scripts in our GitLab repository (https://git.informatik.

uni-leipzig.de/joas/confluence-unet).

2.1 Data

We utilized three datasets, one of which is labeled with

two strategies, resulting in four datasets for model training.

Additionally, one dataset was derived from a larger published live-

cell imaging dataset [“lc-external” (Edlund et al., 2021)], while three

originated from our lab (“internal”). One of these internal datasets

contains live-cell imaging data obtained using a CytoSmart Lux

microscope (10x magnification; 5-megapixel camera). This dataset

was labeled in a standard manner (“lc-internal”) and with goal-

dependent labeling (“lc-internal-lazy”) for a direct comparison. In

the original LC-internal dataset, each cell was labeled individually,

whereas in the “lazy” labeled set, cohesive clusters of cells were

labeled as single objects. All images had dimensions of 1280x960

pixels (see Table 1). An additional internal dataset contains

standard microscopy (“sc-internal”) images acquired with a ZEISS

Axiovert 40 CFL microscope [10x objective Ph1 (phase contrast);

Axiocam ERc 5s, 5-megapixel camera]. The images in this dataset

measured 512x512 pixels. We filtered the external dataset for the

A172 cell line (which has morphological similarities to MSC cells
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FIGURE 1

Overview of our active learning experiment.

TABLE 1 Dataset characteristics showing the number of regions of

interest (ROIs), number of images, and image dimensions for each subset.

Dataset #ROIs #Images Image size

lc-internal-train 2,243 16 1,280× 960

lc-internal-test 400 2 1,280× 960

lc-internal-train-lazy 897 16 1,280× 960

lc-internal-test-lazy 224 4 1,280× 960

lc-external-train 70,758 333 702× 520

lc-external-test 30,005 138 702× 520

sc-train 2,467 12 512× 512

sc-test 446 3 512× 512

despite its origin from glioblastomas) to roughly match the cell

shapes of the other datasets. Table 1 provides an overview of our

dataset, including the number of regions of interest (ROIs), the

number of images, and image dimensions. An ROI is defined as

a single labeled cell in an image.

We annotated the internal datasets using ImgLab1 following

instructions from wet lab scientists and obtained the annotations

in the COCO JSON format (Lin et al., 2014). Since U-Net and

Cellpose require instance masks instead of COCO JSON files,

we converted the files to masks with custom scripts (https://

git.informatik.uni-leipzig.de/joas/confluence/-/blob/main/utils/

coco_to_mask.py?ref_type=heads). We divided each dataset into

a training set and a testing set to evaluate model performance.

To capture a variety of characteristics, we used a combination

of datasets, as summarized in Table 1. The LC-external dataset,

drawn from the LIVECell paper (Edlund et al., 2021), is the largest,

containing the most ROIs. The LC-internal dataset includes full

1 https://github.com/NaturalIntelligence/imglab

and “lazy” subsets and offers the highest resolution. Finally, the

sc-internal dataset provides additional data, but with significantly

lower resolution and fewer images than the other datasets. Figure 1

shows sample images and annotations for each dataset.

2.2 Active learning for dataset curation

Upon processing the dataset, we manually selected the test set

for the internal datasets to ensure that images with approximately

50% confluence were included. This confluence range is the most

critical in production, making it essential for evaluating model

performance. For AL, we defined a pool set, which can be selected

for training, and an initial training set, chosen randomly with a

size ranging from two to ten, depending on the total number of

images. Selected images in each round were transferred from the

pool to the overall train set (either physically on our machine

or by filtering the COCO JSON file). We subsequently trained

our four models using these initial training sets and in all other

rounds for 100 epochs. Figure 1 visually represents this process,

and all models were trained on NVIDIA A100 GPUs. To evaluate

the performance of our model, we compared the predicted masks

with the actual ground-truth masks. We did this by calculating

the IoU (Intersection over Union) for each image. IoU measures

the overlap between the predicted and actual masks in relation

to their combined area. We calculated the mean IoU, standard

deviation, and interquartile range across all images in the test

set. Additionally, as a second criterion inspired by use cases,

we calculated the absolute differences in the confluence between

ground truth and predictions.

For our uncertainty-based active learning approach, we created

probability maps for all images in the dataset (excluding the

Detectron2 model). We then calculated the Shannon entropy on

these probability maps to quantify uncertainty. Images in the pool

set were ranked according to their entropy values, with those having
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the highest entropy (indicating the greatest uncertainty) selected

for the next training iteration. To accommodate varying dataset

sizes, we chose one image per round from internal datasets and ten

images per round from the larger external dataset.

This approach, known as entropy-based sampling (Monarch,

2021; Yin et al., 2023), is a widely used technique in uncertainty-

based AL (Zhu et al., 2008). We iteratively retrain the model

in each round until all images are transferred from the pool set

to the training set. After every training iteration, we assess the

model on the predefined test set. To make a direct comparison, we

trained another set of models using randomly chosen images. These

models adhered to the same training protocol as our uncertainty-

based approach, but without utilizing entropy for image selection.

This results in ten rounds for the standard microscopy dataset,

14 rounds for the LC-internal datasets, and 34 rounds for the

LC-external dataset.

To account for randomness in the image selection, we repeated

the previously described process ten times. We aggregated the

evaluation metrics from each round across all ten experiments

by calculating the mean and the interquartile range of these

metrics. To assess whether AL significantly improves training,

we compared the random selections with the AL selections and

conducted the Mann-Whitney U-test (Mann and Whitney, 1947)

for the means of the evaluation metrics in each round across all

ten experiments.

2.3 Goal-dependent labeling

Most segmentation tasks are sensitive to the shape of the object.

In adherent cell cultures, cells often grow in close proximity to

one another or overlap, forming complex shapes that resemble

blobs or clusters. Labeling such blobs of cells requires much less

effort (“lazy”) than labeling each cell individually. Since confluence

estimation necessitates full cell segmentation, we hypothesized

that it is sufficient to label blobs of cells instead of labeling

them separately. Therefore, we compared the model performance

between the lc-internal and lc-internal-lazy datasets.

2.4 Active learning in a microscopy movie
context

The images from the “sc-internal” dataset originated from a

time-resolved microscopy movie. This means that the later the

images were captured in the movie, the more the cells have grown

(higher confluence). Therefore, we expect that AL may select

images with varying levels of confluence, and subsequently, the

movie positions influence the selection process. Based on the results

from the AL experiment, we calculated the number of positions

at which the selected image differs from the image chosen in the

previous step. Again, we aggregated these differences by calculating

the mean and determining the interquartile range across all ten

random runs. As a control, we compared the image selected by AL

with the randomly selected image. We tested for significance using

the Mann-Whitney U Test (Mann and Whitney, 1947).

2.5 Fine-tuning compared to zero-shot
learning

We evaluated the necessity of fine-tuning by first using all

models without additional training and directly feeding the test

set into them for inference (zero-shot). In contrast, we fine-

tuned the models with all available labeled data, training them

for 500 epochs (without early stopping). We performed inference

on datasets and their test sets. As before, we used IoU and the

absolute delta in confluence as evaluation metrics. To provide

better context for the models’ performance, we included a baseline

confluence detector that does not incorporate modern deep

learning. This baseline algorithm processes grayscale images and

detects edges with the Canny edge detector (Canny, 1986). It

then fills gaps in the detected edges using binary hole-filling.

Subsequently, it removes small objects and detects contours in the

processed image with the “marching squares” algorithm, finding

iso-valued contours at a specific level. After detecting the contours,

any open contours are closed and simplified using polygonal

approximation. This baseline algorithm then draws these contours

onto a blank mask and interpolates between them to create a

filled mask, which can be used to calculate metrics similarly to the

other models.

2.6 Models

2.6.1 Cellpose
We utilized the Cellpose model from Stringer et al. (2020),

based on version 3.0.0, and added functionality to enable custom

names for standard Cellpose log files. This modification was

reviewed and incorporated into Cellpose’s code by the authors.

We utilized the train function from the Cellpose model with the

model type “cyto” for fine-tuning. Cellpose relies on the mean cell

diameter as input. Therefore, we calculated the mean cell diameter

with a custom script (https://git.informatik.uni-leipzig.de/joas/

confluence/-/blob/main/cellpose_main.py?ref_type=heads) using

our data. For inference, Cellpose requires two key thresholds:

the cell probability threshold and the flow threshold. The cell

probability threshold determines the minimum probability for

pixels to be classified as part of a cell, while the flow threshold

controls the tolerance for errors in detecting cells (Stringer

et al., 2020). We observed that the model’s performance is

sensitive to these thresholds; thus, we implemented an automatic

tuning process to optimize them for our training set. We

developed a method that systematically explores different threshold

combinations. The function evaluates the model’s performance

on the training set using ground-truth masks as a reference. It

iteratively tests a range of flow thresholds (from 0 to 3) and cell

probability thresholds (from −6 to 6) in 0.5 steps to identify

the optimal combination (IoU score). Additionally, a penalty is

imposed if no cells are detected in the predictedmasks. This ensures

that the model does not optimize for precision and only outputs the

background without any masks.

Besides the thresholds, we did not alter any other

hyperparameters from the default values of the Cellpose model
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class and the Cellpose train method. For the AL part, we obtained

the cell probabilities directly from the Cellpose model’s eval

method and calculated the Shannon entropy for each pool image.

Furthermore, we trained all models in the AL experiments for

100 epochs.

2.6.2 Detectron2
We employed the Detectron2 framework to perform instance

segmentation as published by Meta Research (Wu et al., 2019).

The model was configured using a Mask R-CNN architecture

with a ResNet-50 backbone and Feature Pyramid Network

(FPN) as specified in the mask_rcnn_R_50_FPN_3x.yaml

configuration file. The model was designed to detect a single

class, corresponding to the cells in our images. We configured

the model with a base learning rate of 0.00025 and a batch size

of 128 images for the region of interest (ROI) heads. To ensure

reproducibility, we established a fixed random seed. The model

was trained for 10 iterations, with a 5-iteration warmup period.

For systems without GPU acceleration, the model defaults to CPU

computation automatically.

To determine image selection in the AL process, we cannot

obtain the probability masks directly from Detectron2. Instead, the

model provides pre-calculated confidence scores for each mask.

We use the average of these scores as a measure of uncertainty. In

the inference step, we select the image(s) with the lowest score to

label next.

2.6.3 Segment anything model
We extended SAM, which does not natively support fine-

tuning, by constructing a custom module to enable this

functionality, as described in detail in a dedicated blog post (see

footnote2) that makes fine-tuning SAM publicly accessible. Our

results are based on SAM version 1.0.0 (Kirillov et al., 2023).

We developed a custom wrapper class (ModelSimple)

around SAM’s architecture to enable supervised training on our

datasets. The key innovation in our approach was selectively

freezing specific components of the network while allowing others

to be updated during backpropagation. Specifically, we froze the

image encoder and prompt encoder parameters to preserve the

model’s pre-trained feature extraction capabilities while making

only the mask decoder trainable. This strategy significantly reduced

computational requirements, allowing the model to adapt to our

specific segmentation task.

Since cell segmentation lacks predefined spatial locations,

we adjusted the standard SAM inference pipeline to

function without explicit prompts or bounding boxes. Our

implementation directly processes the input images to generate

segmentation masks, eliminating the need for user interaction

or a predefined ROI. We maintained SAM’s native input

resolution of 1,024 × 1,024 pixels to leverage the generation

of probability mask maps that were upsampled to match the

original image dimensions. To optimize our approach, we

2 https://maxjoas.medium.com/finetune-segment-anything-sam-for-

images-with-multiple-masks-34514ee811bb

employed a combined loss function as specified in the original

SAM paper:

Ltotal = 20 · Lfocal + Ldice (1)

Themodel was trained using the Adamoptimizer, and to ensure

reproducibility, we set the random seed to 100 for all random

operations (Kirillov et al., 2023). For AL, we calculated the Shannon

entropy of the predicted probability maps and selected the image(s)

with the highest entropy.

2.6.4 U-Net
We implemented the U-Net architecture according to the

original design proposed by Ronneberger et al. (2015). Our

implementation includes a symmetric encoder-decoder structure

with skip connections to maintain spatial information throughout

the network. The encoder pathway consists of four down-sampling

blocks, each containing two 3 × 3 convolutional layers with ReLU

activation, followed by a 2× 2 max pooling operation. The number

of feature channels doubles at each down-sampling step, starting

with 64 channels after the initial convolution and expanding to

128, 256, 512, and finally 1,024 channels at the bottleneck (or 512

when using bilinear up-sampling). The decoder pathway mirrors

the encoder with four up-sampling blocks. The final layer consists

of a 1×1 convolution that translates the 64-channel feature map

into the desired number of output classes, resulting in pixel-wise

classification for the segmentation mask. In our cell segmentation

task, the network produces a single-channel probability map that

indicates the likelihood of each pixel belonging to a cell.

For AL, we used the output probability maps directly from

the U-Net model. We calculated the Shannon entropy of these

predicted probability maps to select the images with the highest

entropy, or uncertainty.

3 Results

3.1 Active learning performance

We analyzed whether AL is an effective approach for improving

cell segmentation and reducing labeling effort when using four

commonly used models for segmentation. We demonstrate that

uncertainty-based AL provides no improvement in confluence

prediction performance in our chosen datasets. The experiments

with Cellpose and SAM exhibited the smallest differences between

random and AL image selection, with only four (Cellpose) and

three (SAM) statistically significant steps out of 72 total steps (cf.

Figure 2, Supplementary Figure S2) We observe significantly better

performance from the U-Net model when using a random dataset

curation approach on the external dataset. Detectron2 is the only

model where AL improved confluence prediction in the standard

microscopy dataset and, to some extent, in the external dataset.

We hypothesized that both specialized and generalist

pretrained segmentation models benefit from fine-tuning, given

the unique and complex shape of MSC cells. Surprisingly, the

impact of fine-tuning is limited and largely depends on the dataset.

In seven experiments, we observed the best scores during the early

stages of fine-tuning in AL, indicating that more data does not
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FIGURE 2

Impact of active learning on dataset curation. Each plot represents a model-dataset combination. It shows the mean di�erence between the true and

predicted confluence across the ten experiments at each step. One step represents the addition of newly labeled images selected randomly (blue) or

by AL (green). The error bars show the interquartile range. Significant di�erences (Mann-Whitney U-test) are marked with an asterisk (p-value < 0.05).

CP, Cellpose; D2, Detectron2.

always lead to improved results. Our control experiments, in which

random picks were used as the next image for labeling and training,

yielded similar results, with six of the best performances occurring

in the first half of the fine-tuning. From a model perspective,

we observe that Detectron2 does not benefit from fine-tuning,

Cellpose gets even worse, and for SAM and U-Net, we do not see a

clear trend.

Specifically, nine out of 16 experiments (model and dataset

combinations) achieved a minimal absolute delta in confluence of

no more than 0.05, while three experiments achieved a minimal

absolute delta in confluence of nomore than 0.10.When comparing

the mean performances across all datasets, SAM predicts the

confluence most accurately, with an absolute delta value of 0.05

± 0.02, while Detectron2 shows an absolute delta value of 0.15

± 0.13. Performance analysis across datasets indicates that the

goal-dependent labeled dataset (“lazy”) achieves the best results

(mean 0.04± 0.02), whereas models perform worst on the external

dataset (mean 0.18± 0.11). Table 2 provides a detailed aggregation

of the best results across models and datasets. Furthermore,

non-active learning (randomized) exhibits similar trends (cf.

Supplementary Table S1). While cf. Supplementary Table S2 shows

the absolute delta in confluence for all experiments, we observe

similar trends when using IoU as a performance metric

(cf. Supplementary Tables S4, S5).

3.2 Goal-dependent labeling

For Confluence prediction, accurately segmenting individual

cells is unnecessary because a foreground/background classification

would suffice. Therefore, we investigated whether faster goal-

dependent labeling of cell clusters as single clusters (“lazy labeling”)

affects model performance. The results achieved through goal-

dependent labeling do not universally enhance the performance of

every model. We observe a clear trend with the Detectron2 model,

where ten out of 14 steps show significant improvement with the

lazy labeling method. In contrast, for U-Net and Cellpose, there is

no evident difference. Interestingly, the SAM model demonstrates

Frontiers inComputer Science 06 frontiersin.org

https://doi.org/10.3389/fcomp.2025.1562358
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Joas et al. 10.3389/fcomp.2025.1562358

TABLE 2 Mean and standard deviation of minimum delta confluence

values across models and datasets.

a) Model aggregation

Model Min Convergence point

Cellpose 0.07± 0.08 0.29± 0.20

Detectron2 0.15± 0.13 0.50± 0.37

SAM 0.05± 0.02 0.56± 0.41

U-Net 0.06± 0.03 0.95± 0.11

b) Dataset aggregation

Dataset Min Convergence point

lc-external 0.18± 0.11 0.41± 0.45

lc-internal 0.06± 0.05 0.75± 0.29

lc-internallazy 0.04± 0.02 0.63± 0.40

sc-internal 0.05± 0.01 0.50± 0.34

The column Convergence Point represents the fraction of Active Learning iterations

completed, where 0 indicates no additional data added, and 1 signifies that all available data

has been included.

even better results for the precisely labeled images in terms of

confluence estimation.

The IoU is significantly higher by a large margin (see Figure 3)

when data are labeled lazily for all models, indicating that

this metric is not invariant to labeling strategy, cell size, and

cluster shapes.

3.3 Active learning in a microscopy movie
context

We expected that uncertainty-based AL would ideally choose

images with varying confluence, which sequentially increases in our

standard microscopy dataset recorded as a movie of a cell culture.

On the contrary, we observe no consistent differences or tendencies

in the movie positions of the selected images between the AL and

random selection processes across our four segmentation models

(see Figure 4). This suggests that cell density is not a significant

factor in the model’s uncertainty, likely because cell shape remains

relatively unchanged over time. Furthermore, the results align with

the observation that AL does not significantly improve model

performance for cell segmentation and confluence prediction, as

shown in Figure 2.

3.4 Zero-shot inference or full fine-tuning

Since we observed that models exhibited mixed behavior

during fine-tuning, such as Cellpose experiencing a decrease

in performance, we analyzed the zero-shot capability of the

models. The performance of SAM has an absolute delta of 0.05

± 0.036 in confluence estimation, which is nearly perfect across

all datasets, even without fine-tuning. As expected, deep learning-

based approaches significantly outperform the algorithmic image

segmentation baseline (see Figure 5, Supplementary Figure S2).We

observe a significant performance improvement for Detectron2

when fine-tuning on our internal datasets. However, we observe a

decline in performance when fine-tuning on the external dataset.

Additionally, we see small dataset-dependent fluctuations for the

Cellpose model.

In summary, our results indicate a strong indication that, for

the confluence prediction of MSC-like cells, generalist foundation

models, such as SAM, outperform specialized models, such as

Cellpose, and fine-tuning is unnecessary. Furthermore, in the case

of Cellpose, results indicate that fine-tuning with irregular cell

shapes (MSC) may result in decreased performance rather than the

expected improvements.

3.5 Qualitative analysis and usability

When deciding how to label a dataset for confluence

prediction and which model to choose, many practical

considerations arise beyond just performance. We will provide

insights on (a) the difficulty of fine-tuning the models, (b)

implementing an uncertainty-based AL approach, and (c) overall

computational considerations.

Detectron2 (Wu et al., 2019) is the simplest model to fine-

tune, as fine-tuning is a built-in feature. The documentation for

Detectron2 is clear and easy to follow. Detectron2 supports input

data in COCO annotations, which is a widely used format. While it

is easy to use, it offers less customizability and control. Additionally,

Detectron2 is not the most cutting-edge model and does not

specialize in cell segmentation.

In contrast, Cellpose (Stringer et al., 2020) specializes in cell

segmentation and provides robust fine-tuning options. However,

Cellpose predictions are highly sensitive to parameter settings

in cell probability and flow thresholds. These thresholds can be

adjusted when the ground truth is known, but for automatic

segmentation on unknown data, this is not feasible and would

require manual intervention to identify the optimal thresholds.

Cellpose requires ground-truth masks as input for fine-tuning,

which is also a standard practice. With releases in February 2024,

Cellpose offers updatedmodels and some customizability regarding

cell types.

SAM (Kirillov et al., 2023) was the most challenging model

to fine-tune because this option is not supported. We needed to

write custom wrapper classes to enable fine-tuning, which is not

possible without significant technical expertise in deep learning. On

the other hand, SAM is easy to use for zero-shot learning and is the

most powerful of all the models used. SAM supports annotations in

the common COCO JSON format.

We trained U-Net from scratch without any fine-tuning. U-

Net requires implementation knowledge, such as PyTorch or

Keras, and needs to be trained from scratch. Due to its limited

performance, it does not provide a good trade-off for efficient

confluence prediction.

To combine a dataset with AL, we need to obtain uncertainty

measures from the models. Detectron2 was the only model that

returned confidence scores for the mask predictions. However,

there was no built-in functionality to obtain probability masks.

In our custom implementations of U-Net and SAM, we made
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FIGURE 3

Impact of lazy labeling. The plot compares the performance of lazy and exact labeling methods during the dataset curation process for all models.

The first column displays the IoU metric, while the second column illustrates the di�erences in confluence.

it easy to obtain the probability maps directly. Nevertheless, this

comes before custom implementation, which requires expertise

in deep learning. Cellpose returns the cell probabilities directly,

making an uncertainty-based AL approach more straightforward

to implement.

A GPU for model training or fine-tuning is almost essential

for all four models. For inference, a CPU is adequate for

U-Net, Detectron2, and Cellpose. This is especially important

for integrating confluence prediction into real-world automation

systems in cell production, where high-performance GPUsmay not

be available. However, inference with SAM on a CPU is impractical

due to the model’s size and slow performance.

The fine-tuning process requires a GPU for all models to

ensure completion within a reasonable timeframe. Fine-tuning on

larger datasets with a CPU is impractical, as it could take weeks

and provide minimal benefit compared to zero-shot training. In

contrast, fine-tuning with only a few images can be completed

within hours for Detectron2 and Cellpose, offering significant

performance improvements for these models. Given the high

computational cost of fine-tuning and the lack of substantial

performance gains, we do not recommend fine-tuning SAM in

contexts such as our use case.

4 Discussion

In our study, we compared four models for cell segmentation

across various datasets inspired by real-world MSCmanufacturing.

This comparison aims to gain insights on how to leverage AI-

based confluence estimation most efficiently. The results provide

actionable strategies applicable to similar contexts. First, we

demonstrated that zero-shot inference with SAM achieved near-

perfect confluence estimation. Second, we observed that goal-

dependent labeling outperformed traditional labeling methods in

terms of IoU. Finally, we demonstrate that AL is suboptimal

for MSC microscopy images. The limited benefit of AL can be

explained by: (a) a lack of diversity within the dataset, (b) the use

of large pre-trained models, (c) a basic AL approach, and (d) the

simple binary classification (foreground/background) task.

Since our datasets contain only one cell type, the primary

variation lies in the growth state or cell density. This does

not fundamentally alter the characteristics of the objects to be

segmented (i.e., the cells). Consequently, the timing of when a

given example is presented during training has a limited impact

on model performance. Our analysis revealed that AL did not

select images based on their temporal position in the growth
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FIGURE 4

Selection pattern of active learning. Each subplot illustrates the mean di�erence in movie position between the currently selected image and the

previously selected image at each step for both AL and random selection for each model.

sequence, showing no significant difference from random selection.

This finding supports our explanation that cell density alone does

not create enough variation that AL strategies typically exploit

(Monarch, 2021). The model’s uncertainty, which drives the AL

selection process, appears to be independent of the growth state.

This suggests that once the model learns to segment cells at one

density, it can readily generalize to other densities.

We also hypothesize that the benefit of AL in pre-trained

models is minimal due to the extensive data exposure these

models have already experienced, which diminishes the impact of

new data points. Additionally, our observations indicate that U-

Nets underperform when faced with a small number of highly

diverse instances through AL, while random selection retains

a distribution that is more representative of the entire dataset.

Furthermore, for usability reasons, we adopt a straightforward

maximum entropy approach for uncertainty-based AL. However,

capturing the complexities of this data and model may require

more complex AL strategies involving combinations of techniques

to manage variations more effectively. Although prior research on

biomedical images demonstrates that AL techniques can achieve

comparable performance with a reduced sample size (Nath et al.,

2021; Kim et al., 2024; Li et al., 2023; Huang et al., 2024),

these studies did not incorporate pre-trained models, used diverse

data, and employed more complex AL methods. Considering our

findings and previous research, we conclude that AL is best utilized

when pre-trained models are not appropriate for a given use

case and when complex AL algorithms are available for specific

problems, ideally in a diverse multi-classification task.

Beyond AL, we explored simplified goal-dependent labeling

directly linked to the desired outcome, namely, confluence

estimation. Interestingly, for the IoU metric, goal-dependent

labeled data significantly outperformed traditional labeling

approaches. We attribute this success to simpler shapes that are

easier for models to learn. Even when examining the Confluence

task directly by calculating the difference from the ground-truth

Confluence, we observe no drop in performance when utilizing

goal-dependent labeling, or “lazily”. Notably, when employing

the SAM model, traditionally labeled data performed slightly

better, which we attribute to SAM’s extensive pre-training on

precisely annotated datasets. Additionally, lazy labeling introduces
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FIGURE 5

Comparison of fine-tuning and zero-shot results for each model and dataset. (A) Shows the di�erences between true and predicted confluence for

four models and one baseline across all datasets during fine-tuning. (B) Shows the performance of zero-shot learning for models where zero-shot is

applicable.

irreducible error, acting as a source of noise that is more

pronounced when model performance is overall very high, as

seen with SAM. Importantly, the substantial reduction in labeling

effort makes the lazy labeling approach attractive for confluence

estimation since detailed cell segmentation is not required (e.g., to

derive individual cell characteristics).

While this specific labeling strategy may not be applicable to

all problems, it demonstrates the value of developing task-specific

labeling approaches that strike a balance between annotation effort

and model performance. To our knowledge, no existing research

directly addresses this confluence of estimation-specific annotation.

However, recent studies in biomedical imaging have highlighted

the use of time-efficient annotation techniques combined with self-

and human-supervised learning (human-in-the-loop) to reduce

labeling demands. For example, in nucleus segmentation, some

approaches focus on selectively annotating only a small subset of

critical image patches, utilizing human-supervised methods and

data augmentation to match the performance of fully supervised

models while minimizing the requirements for labeled data (Lou

et al., 2023). Similarly, in cell segmentation, weakly supervised

methods use single-point annotations per cell, combined with

self- and co-training strategies, to achieve segmentation accuracy

close to that of fully supervised methods (Zhao and Yin, 2021).

Krishnan et al. (2022)’s review further highlights how efficient

annotationmethods, when combined with self-supervised learning,

enable models to leverage large volumes of unannotated data,

thereby enhancing model development while reducing expert

annotation time.

Furthermore, tools like LABKIT (Arzt et al., 2022) provide

interfaces for efficient annotation and human-in-the-loop

processes, combined with supervised deep learning. Although we

implemented only a time-efficient annotation strategy without

any form of weak human supervision, the relative simplicity of

our task suggests that these findings still support our results.

They indicate that efficient annotation methods, particularly when

paired with self- and human-supervised learning, can significantly

reduce labeling efforts in active learning while maintaining

model performance.

While efficient labeling strategies may reduce annotation

effort, completely eliminating the need for labeling would be

even more desirable. We demonstrate that SAM achieves nearly

perfect confluence estimation with zero-shot inference, indicating

that the cost-benefit ratio of fine-tuning decreases with larger

foundation models. Although other models exhibited marginal

improvements with fine-tuning, and even SAM showed slight

gains, these advantages were minimal compared to SAM’s zero-

shot performance. Interestingly, across all models, we discovered

that the best performance was achieved using only a subset of

the available training data, suggesting that more is not always

better. The demands of fine-tuning, including (a) computational

resources, (b) technical expertise for model adaptation, and (c)

time invested in data annotation, far outweighmodest performance

gains. This cost-benefit analysis strongly favors the use of large

foundation models like SAM in its zero-shot configuration.

Additionally, the recently released SAM 2 (Ravi et al., 2024) may

demonstrate even higher accuracy for such tasks and focuses on

object tracking in video contexts, which is relevant in time-series

data from cellular production systems.

When comparing our results with existing research, we see that

zero-shot inference with SAM is powerful even for more complex

tasks. However, the optimal approach appears task-dependent,

and some amount of fine-tuning or combining it with other

models still seems to have a benefit: Baral and Paing (2024)

used a fine-tuned object detection model (YOLOv9-E) to generate

prompts for zero-shot SAM inference, followed by traditional

image processing refinements. This hybrid approach achieved

highly accurate performance (94% mAP50) for cell segmentation

across varying difficulty levels without fine-tuning SAM directly.
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In contrast, more specialized applications require more

complex architectures. CryoSegNet (Gyawali et al., 2024)

demonstrated that the combination of SAM with a task-specific

U-Net significantly improved protein particle detection in

cryo-EM images compared to using SAM alone. Similarly, the

Segment Anything for Microscopy project (Archit et al., 2023)

demonstrated that specialized training for multi-dimensional

microscopy data significantly improved segmentation quality

across various imaging conditions. In this context, the additional

effort is likely warranted due to the complexity of volumetric

segmentation and tracking tasks compared to ours. These

varying approaches highlight the importance of considering task

complexity and resource constraints when choosing between

zero-shot applications, hybrid solutions, and full fine-tuning of

foundation models.

While our findings provide insights into confluence estimation

for MSC production standardization, we acknowledge several

limitations of our study. First, our results specifically focus

on confluence estimation, reflecting the practical needs of our

applied domain. Consequently, our methods are not directly

applicable to other tasks that may require tracking, such as

spatial colony growth monitoring in bacteria (Kindler et al.,

2019). Additional research is necessary to compare specialized

tracking tools, such as TRACKASTRA (Gallusser and Weigert,

2025), with generalist foundation models, such as SAM 2

(Ravi et al., 2024).

While not exhaustive, our selected models strategically covered

a representative spectrum of approaches: from models trained

from scratch to cell-specific models and powerful general-purpose

foundation models. This selection allowed us to compare different

paradigms in model development while maintaining practical

feasibility. Similarly, while our datasets were limited to one cell

type, they enabled us to draw important conclusions about the

impact of data diversity on active learning effectiveness in real-

world scenarios.

Despite these limitations, our study provides several valuable

contributions: We demonstrated that for homogeneous cell

cultures, (a) SAM delivers excellent results without requiring

resource-intensive methods such as active learning or fine-

tuning. We provide (b) technical guidelines for implementing

active learning in cell imaging applications, demonstrate (c) the

importance of goal-specific labeling strategies, and highlight (d)

how data homogeneity influences active learning performance.

These insights can guide future research in automated cell

culture monitoring and quality control. These practical insights

significantly lower the barrier to implementing automated quality

control in cell manufacturing. A prototype of our confluence

detection software is publicly available (https://livinglab.

scadsai.uni-leipzig.de/cell-confluence/), enabling immediate

community adoption.
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