
TYPE Original Research

PUBLISHED 17 April 2025

DOI 10.3389/fcomp.2025.1563942

OPEN ACCESS

EDITED BY

Pasquale Coscia,

University of Milan, Italy

REVIEWED BY

Samson Otieno Ooko,

Adventist University of Africa, Kenya

Oscar David Torres Sanchez,

University of Coimbra, Portugal

Eva Holasova,

Brno University of Technology, Czechia

*CORRESPONDENCE

Antonio Liotta

antonio.liotta@unibz.it

RECEIVED 20 January 2025

ACCEPTED 31 March 2025

PUBLISHED 17 April 2025

CITATION

Douzandeh Zenoozi A, Erhan L, Liotta A and

Cavallaro L (2025) A comparative study of

neural network pruning strategies for

industrial applications.

Front. Comput. Sci. 7:1563942.

doi: 10.3389/fcomp.2025.1563942

COPYRIGHT

© 2025 Douzandeh Zenoozi, Erhan, Liotta

and Cavallaro. This is an open-access article

distributed under the terms of the Creative

Commons Attribution License (CC BY). The

use, distribution or reproduction in other

forums is permitted, provided the original

author(s) and the copyright owner(s) are

credited and that the original publication in

this journal is cited, in accordance with

accepted academic practice. No use,

distribution or reproduction is permitted

which does not comply with these terms.

A comparative study of neural
network pruning strategies for
industrial applications

Amirhossein Douzandeh Zenoozi1, Laura Erhan1,

Antonio Liotta1* and Lucia Cavallaro2

1Department of Engineering, Free University of Bozen-Bolzano, Bolzano, Italy, 2Data Science

Department, Institute for Computing and Information Sciences, Radboud University, Nijmegen,

Netherlands

Introduction: In recent years, Deep Learning (DL) and Artificial Neural Networks

(ANNs) have transformed industrial applications by providing automation in

complex tasks such as anomaly detection and predictivemaintenance. However,

traditional DL models often need significant computational resources, making

them unsuitable for resource-constrained edge devices. This paper explores

the potential of sparse ANNs to address these challenges, focusing on their

application in industrial settings.

Methods: We perform an experimental comparison of pruning techniques,

including the Pre-Training, In-Training, Post-Training, and SET method, applied

to the VGG16 and ResNet18 architectures, and conduct a systematic analysis of

pruningmethodologies alongside the e�ects of varying sparsity levels, to analyze

their e�ciency in anomaly detection and object classification tasks. Key metrics

such as training accuracy, inference time, and energy consumption are analyzed

to assess the feasibility of deploying sparse models on edge devices.

Results and discussion: Our results demonstrate that sparse ANNs, particularly

when pruned using the SET method, achieve energy savings without

compromising accuracy, making them suitable for industrial applications. This

work highlights the potential of sparse neural networks to boost sustainability

and e�ciency in industrial environments, paving the way for their large adoption

in edge computing scenarios.

KEYWORDS

sparse neural networks, pruning techniques, industrial applications, energy e�ciency,

edge devices

1 Introduction

In recent years, Deep Learning (DL) and Artificial Neural Networks (ANNs) have

transformed industrial applications by automating complex and repetitive tasks. DL

algorithms, paired with sensors and camera networks, canmonitor industrial processes and

assist in essential tasks, such as anomaly and fault detection, and predictive maintenance.

By analyzing data in real-time, these systems help industries prevent failures and

optimize operations.

However, classical DL models usually require huge computation and bandwidth

to process massive datasets (Rane et al., 2024; Huo et al., 2021; Balaprakash et al.,

2019). For example, large-scale object detection models such as You Only Look Once

(YOLO) (Redmon et al., 2016) are usually trained by migrating massive image datasets

like ImageNet (Deng et al., 2009) to high-performance cloud servers for computation. This

results in increased delays in communication and puts a heavy burden on bandwidth and

computing resources. Such an approach is particularly inefficient and resource-intensive

for systems with limited computational power, such as smartphones or IoT (i.e., Internet

Frontiers inComputer Science 01 frontiersin.org

https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org/journals/computer-science#editorial-board
https://www.frontiersin.org/journals/computer-science#editorial-board
https://www.frontiersin.org/journals/computer-science#editorial-board
https://www.frontiersin.org/journals/computer-science#editorial-board
https://doi.org/10.3389/fcomp.2025.1563942
http://crossmark.crossref.org/dialog/?doi=10.3389/fcomp.2025.1563942&domain=pdf&date_stamp=2025-04-17
mailto:antonio.liotta@unibz.it
https://doi.org/10.3389/fcomp.2025.1563942
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fcomp.2025.1563942/full
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Douzandeh Zenoozi et al. 10.3389/fcomp.2025.1563942

of Things) devices, since they lack the necessary hardware

capabilities to handle such demands.

However, the rapid growth of IoT has made edge devices more

capable, allowing much of the data to be processed locally instead

of relying on cloud resources (Kanagarla, 2024; Brennan and Lee,

2024). This shift moves the processing burden from central systems

to devices at the “edge” of the network, such as sensors or small

devices near the data source (Palena et al., 2024; Kolapo et al., 2024).

As a result, systems become more sustainable and energy-efficient,

while reducing both bandwidth usage and latency (Taha et al.,

2024). This makes edge processing essential for a wide range of

applications, particularly those requiring real-time performance in

industrial scenarios. Besides that, certain computationally intensive

tasks, especially, those involving generative adversarial networks

(GANs) for generating images, videos, or any other form of visual

content (Goodfellow et al., 2014; Andriulo et al., 2024; Soumyalatha

and Manjunath, 2023), still lead to challenges for edge devices

due to their high resource demands compared to traditional deep

learning models.

Using edge technologies is not limited to running complex deep

learning algorithms on smaller or lighter hardware (Witt et al.,

2024; Shuvo et al., 2023; Susskind et al., 2023). It also involves

investigating methods such as optimizing network architectures,

compressing models, and applying pruning techniques on the

different parts of the model, among others (Wang, 2023; Zou, 2024;

Blalock et al., 2020; Cheng et al., 2024).

Various optimization techniques exist to fit ANNs on

lightweight devices: model compression, network pruning, and

sparsity (Nimmagadda, 2025; Tyche et al., 2024). Recently, sparse

ANNs have gained popularity (Lasby et al., 2023; Nikdan et al.,

2023) due to their ability to produce performance very similar

to those obtained with fully connected networks but that usually

occupy less memory, are more lightweight and thus, have faster

inference times (Erhan et al., 2025; Jayasimhan and Pabitha, 2024;

Atashgahi et al., 2024). Even the most straightforward methods

based on random pruning can yield very encouraging results (Sun

et al., 2023; Gadhikar et al., 2022; Mittal et al., 2019). In addition,

the more sophisticated dynamic sparse training could lead to gains

regarding training efficiency (Li and Chang, 2024; Qu et al., 2024).

Our research focuses on industrial applications by conducting

an experimental comparison of sparse ANNs on a resource-

constrained laptop. We examine how various pruning methods

and levels of sparsity affect the performance of ANNs in detecting

anomalies and faults in industrial environments or classifying

objects in the same setting. While laptops are not IoT devices, the

experiments conducted allow us to lay the foundations for future

deployments of industrial applications at the edge. To evaluate

the convenience of using these techniques in an IoT edge context,

we analyze key metrics such as training accuracy, training loss,

total training time, and average inference time. Additionally, we

consider energy consumption from a sustainability perspective,

estimating the energy required to train the models and also during

the inference phase.

2 Related work

Our research focuses on using sparse ANNs for industrial

applications, where efficiency and computational cost are critical

TABLE 1 Comparison of the best accuracy (in %) achieved by VGG16 and

ResNet18 models when trained on the BloodMNIST dataset with 0%

sparsity (Dense), after applying (50%) sparsity on convolution layers and

(80%) sparsity on linear layers, and as reported by Doerrich et al. (2024).

Model Doerrich
et al.

Our result
(Dense)

Our result
(Sparse)

VGG16 94.85 95.99 92.4

ResNet18 91.93 93.65 92.3

Bold values represent the results obtained in our experiments.

factors to be considered. While industrial datasets present

unique challenges, such as handling high-resolution images (e.g.,

MvTec3D; Section 3.3.2) or limited samples in anomaly detection

tasks (e.g., VisA; Section 3.3.3), sparse models offer a solution to

reduce resource requirements without compromising performance.

However, before applying sparsity techniques (Section 3.1)

to complex industrial datasets, it is crucial to validate their

effectiveness in a controlled environment. This approach ensures

that the sparsification methods are strong and generalizable before

addressing the specific challenges of industrial data.

According to this need, we chose MedMNIST as a benchmark

because it provides a standardized and diverse set of medical

imaging tasks, making it ideal for validating our sparsity

techniques. Yang et al. (2021) created this dataset, which aims to

facilitate rapid prototyping and provide an easy benchmark with

which comparison between medical image analysis models can

be made. The authors tested various baseline methods, including

ResNet variations and AutoML tools, supporting the claim that the

utility of the dataset might advance research.

To validate our approach, we built upon former research that

evaluated the performance of different models on MedMNIST

dataset collection. Doerrich et al. (2024) presented a comprehensive

study evaluating 10 different models, including VGG16 and

ResNet18, on the MedMNIST collection. Their work presented

a comprehensive baseline for the performance of each dataset in

the MedMNIST collection. Table 1 presents the accuracy of their

experiments on the BloodMNIST dataset compared to the accuracy

of our experiments where we use the fully connected ANNs as

well as where we employed sparsification strategies on the same

methods.

In this work, our experiments achieved accuracy levels

comparable to those reported in their study, validating the

effectiveness of our approach( 2% increase on average).

Additionally, we conducted a detailed comparison of metrics,

such as sparsity levels, training time, accuracy, and inference time.

These results along with a comprehensive analysis, are presented

in the results section (Section 4), where we demonstrate how

sparse neural networks can efficiently classify medical images while

maintaining competitive performance.

The other dataset being used in this work is VisA, related to

binary classification with the normal and damaged objects available

in the industrial environment. As a fact, one recent work that

classifies such data bymaking use of VisA is presented in Chen et al.

(2023). They proposed an APRIL-GAN: GAN-based architecture

for the participation of the VAND 2023 Challenge. Their objective

was to create a model that can work with different classes, most

of which require very minimal or no available normal reference

images and speed adaptation.

Frontiers inComputer Science 02 frontiersin.org

https://doi.org/10.3389/fcomp.2025.1563942
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Douzandeh Zenoozi et al. 10.3389/fcomp.2025.1563942

In the zero-shot track without reference images, they extend

CLIP with added layers to map image features in a common space

for comparisons of text features for the effective generation of

anomaly maps. For the few-shot track that has some reference

images, their approach relied on memory banks for the storage of

image features in order to match test images with them at runtime.

Their approach achieved very good results, ranking first in the zero-

shot track and fourth in the few-shot track, with a classification

accuracy of 86.87%.

Nevertheless, APRIL-GAN models, have some drawbacks:

they need more computational power compared to normal DL

models, which limits their scalability in industrial applications.

Furthermore, their architecture did not employ any sparsification

methods, such as those regarding stochastic weights, that could

have helped. In contrast, our method, using sparse networks,

achieves comparable accuracy (86%) without the computational

burden of GANs. In this research, we focus on reducing

computational costs and improving efficiency by using lighter

models and sparse neural networks.

Another research that shares similarities with our work in terms

of dataset and using ANN solutions for industrial environment

is WinCLIP, a vision-language model created by Jeong et al.

(2023) for zero-shot and few-shot anomaly classification and

segmentation tasks in an industrial context. In contrast to most

of the strategies that have been developed and implemented with

a Primary Model reliant heavily on deeply annotated datasets,

WinCLIP employs the CLIPmodel, which has already been trained,

to correlate images and text. This means that it can identify

anomalies without having large amounts of annotated data. The

model employs patch, window, and image multi-level features

as well as prompt-engineering-based textual embeddings and is

effective at classification and segmentation tasks alike.

The authors also proposed WinCLIP+, an enhancement of

the previous one that utilizes additional normal image data to

enhance efficiency in a few-shot learning cases. Competitive results

are obtained for WinCLIP and WinCLIP+ on some datasets like

MVTec-AD and the VisA, as compared to other state-of-the-art

architectures in zero-shot and few-shot approaches. These results

also point to the industrial anomaly detection potential of vision-

language models.

Despite the advantages, WinCLIP has limitations: it depends

on resource-intensive computer vision and natural language

processing models, which may strain industrial resources.

Additionally, the study does not explore sparse neural networks,

which could further optimize performance. On the other hand,

models such as VGG16 and ResNet18, which are used in their dense

versions, deliver close to 86% accuracy and remain lightweight and

inexpensive to implement. We further refine these models using

sparsity techniques to deploy them in industrial environments

more easily and maintain them more efficiently in the future. The

focus of our work is therefore on more direct and performant

approaches that are fitting for industrial usage and are therefore

complimentary to WinCLIP.

Besides the papers that used the same datasets as our

experiments, Jayasimhan and Pabitha (2024) proposed a filter

pruning technique that shares similarities with our convolution-

pruning approach. Their method achieves a model accuracy close

to the dense version after applying a 40% average sparsity level

across layers. However, their work focuses on dynamic sparsity

levels, where different layers have different sparsity levels, and they

do not prune the linear layers. In contrast, our work extends this

approach by focusing on industrial datasets and models to simulate

real-world scenarios. Additionally, we not only increase the sparsity

level but also apply pruning to both convolutional and linear layers,

further exploring the impact of sparsity on model performance in

industrial environments.

Several surveys have explored the performance of pruning

techniques across various domains, providing valuable insights into

their applications and limitations such as Reed (1993), Blalock

et al. (2020), and Cheng et al. (2024). Among these, Cheng

et al. (2024) provides a comprehensive review of deep neural

network pruning, analyzing over 300 papers to categorized the

field into four key areas: (i) universal/specific, (ii) pruning timing,

(iii) pruning methods, and (iv) fusion of pruning with other

compression techniques. This survey includes different domains

such as Computer Vision, Natural Language Processing, and Audio

Signal Processing.

Extending Cheng et al. (2024)’s research, we investigate four

types of pruning techniques including Pre-Training, In-Training,

Post-Training, and SET method with a focus on industrial

applications, an area that requires further attention. Specifically,

we address gaps identified in their survey by investigating

the impact of sparsification on different types of layers and

focusing on industrial applications. Additionally, we compare the

performance of pruning techniques in the image classification

domain to provide insights appropriate for real-world needs. For

instance, in our experiments, we achieve higher accuracy when

pruning to obtain a 50% level of sparsity over convolutional

layers, thus, presenting the effectiveness of sparse networks in

addressing the industrial challenges. Additionally, we extend

their findings by systematically analyzing the behavior of models

when different sparsity levels are applied to different types of

layers (e.g., convolutional and linear layers), a dimension not

thoroughly explored in their study. By doing so, we provide

deeper insights into the interplay between sparsity, layer types,

and model performance, complementing the broader scope of

Cheng et al. (2024)’s survey with a focused investigation tailored to

industrial applications.

Although previous works have explored various aspects of

industrial usage of ANNs, there are critical gaps in areas such as

energy efficiency, sparsification techniques, model selection, and

practical deployment that remain unaddressed. For instance, while

Chen et al. (2023) and Jeong et al. (2023) achieve a comparable

accuracy on their studies, they did notmeasure the energy efficiency

of the final model, which is crucial for industrial applications

where resource constraints are a major concern. Additionally,

by investigating sparsification techniques we address another

uncovered area of those studies. Chen et al. (2023) also rely on high-

resource-needing models such as GANs, rather than leveraging

efficient and widely applicable architectures e.g., VGG-16 and

ResNet-18. These gaps highlight the need for more comprehensive

research that addresses the practical challenges of deploying ANNs

in industrial settings. Furthermore, while Cheng et al. (2024)

examine the impact of varying sparsity levels across different layer

Frontiers inComputer Science 03 frontiersin.org

https://doi.org/10.3389/fcomp.2025.1563942
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Douzandeh Zenoozi et al. 10.3389/fcomp.2025.1563942

types, they overlook the industrial context and utilize pruning

techniques that differ from those used in our study.

To summarize, this research work tackles limited research on

sparse neural networks for industrial applications by providing an

experimental evaluation and comparison of four different pruning

methods, namely Pre-Training, In-Training, Post-Training, and

SET, applied to two models which are commonly used in industrial

settings, namely VGG 16 and ResNet18. In terms of chosen

datasets for carrying out this work, we chose as primary benchmark

BloodMNIST, not an industrial dataset, but a well documented

standardized dataset, lightweight, with minimum complexity to

validate and compare our proposed approach against the usual

application of dense neural networs. After a successful validation

of our approach, we expand the experimental evaluation and

comparison to include industrial datasets VisA, and MVTec 3D

Object Classification. Monitored metrics include accuracy, training

and inference time, energy usage. The results indicate that pruned

neural networks achieve performance levels similar to those of

their dense counterparts, while boasting reduced inference time

in less powerful hardware, such as laptops running only on CPU.

The results pave the way for the expansion of the analysis and

study to include more complex industrial datasets and scenarios,

as well as extended metric monitoring, energy efficiency and trade-

off analysis while considering a variety of devices ranging from

classic HPC/Cloud infrastructure to resource-constrained devices

more suitable for IoT Edge deployment in an industrial setting.

3 Methodology

In this section, first in Section 3.1, we explore the sparsity

definitions, the techniques we employed, and also present the

mathematical formulations that define these sparsity techniques,

detailing how each method was applied to the neural network

models and its role in enhancing performance. Next, in Section 3.2,

we describe the architectures of the models used, including specific

details about their layers, configurations, and adaptations for our

experiments. Then, in Section 3.3 we present each selected dataset

for our experiments in detail. After that, in Section 3.4, we describe

how we collect our data from the experiments to visualize them in

Section 4. Finally, Section 3.5 shows our pruning scenarios and the

sparsity level for each section of the models.

3.1 Sparsity

Sparsity in ANNs refers to the actions of reducing the

number of active connections or weights in a network. This

approach mimics biological neural systems, where only a subset

of neurons and connections are active at any given time. The

goal of introducing sparsity is to create more efficient models that

require fewer computational resources, consume less energy, and

maintain or even improve performance on specific tasks. In this

research we used four different sparsity techniques including Pre-

Training (Section 3.1.1), In-Training (Section 3.1.2), Post-Training

(Section 3.1.3), and Sparse Evolutionary Training (Section 3.1.4).

3.1.1 Pre-training
One common pruning method employs the L1 technique

(Wu et al., 2019) to remove weak connections immediately after

the neural network is created but before the training process

begins. By starting with a pruned network, where some of the

connections according to the sparsity level have already been

removed, the number of parameters to optimize is significantly

reduced. This not only simplifies the optimization process but also

lowers computational costs and accelerates the training phase, as

the model requires fewer resources to learn effectively (Shi et al.,

2024). In Section 3.1.1.1, we provide a detailed explanation of the

L1 norm, including its mathematical formulation, and an example.

3.1.1.1 L1 algorithm

L1 norm is a mathematical technique used in the area of

machine learning and statistics, to improve the importance of

feature selection, reducemodel complexity, and improve prediction

accuracy. It aims at the minimization of the sum of selected

variables’ (e.g., the weight of the connections in our case) absolute

values, hence causing “sparsity” where most variables become zero

(i.e., the removed connections in our experiment). This method has

a wide application in pruning techniques, signal processing, image

recognition, and bioinformatics.

The L1 norm, also called the “least absolute deviation,”

calculates the distance between points in a mathematical space. For

a vector x = [x1, x2, x3, ..., xn], the L1 norm is defined as:

‖x‖1 = |x1| + |x2| + ...+ |xn| (1)

This calculation sums up the absolute values of each element

in the vector x. Unlike other norms, such as the L2 norm (which

squares each element), the L1 norm does not exaggerate the

size of larger values. This quality is what makes it suitable for

creating sparse solutions, which involve many values in the vector

being zero.

In machine learning, the L1 unstructured method is often

applied to solve an optimization problem by minimizing a “loss

function” (the difference between predicted and actual values) and

adding a regularization term that uses the L1 norm. This is common

in Lasso Regression, where the goal is to find coefficients for

features that best predict the output while reducing the complexity

of the model.

As an example, imagine we are working with three features

and have the weight vector w = [w1,w2,w3]. By applying the

L1 unstructured method, we may end up with a solution like

w = [0.5, 0, 1.2]. Here, the method set w2 to zero, indicating

that the second feature is not significant for our predictions. This

outcome simplifies the model without losing much accuracy in

the prediction.

3.1.2 In-training
The second pruning method uses the built-in Random

technique in the PyTorch library to create the initial model. During

training, at each epoch, the 20% of weakest connections (i.e., the

smallest positive and largest negative weights) are swapped out for

random ones that were previously removed. We used the Random

technique to create the initial model. After that, we replaced the

Frontiers inComputer Science 04 frontiersin.org

https://doi.org/10.3389/fcomp.2025.1563942
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Douzandeh Zenoozi et al. 10.3389/fcomp.2025.1563942

weak connections, identified by their L1 scores, with new random

ones. This approach ensures that the model always retains the

strongest connections. In Section 3.1.2.1, we provide a detailed

explanation of this algorithm, including its formulation, and a

simple example.

3.1.2.1 Random algorithm

In this random unstructured method, the features or weights of

a model are randomly selected in a manner such that it simplifies

the model without any regard to the importance of features. It

works by zeroing out a random element and otherwise retaining

elements to produce a simpler model which can sometimes, as an

added advantage, help reduce overfitting. In the L1method, sparsity

is created by using an optimization process that reduces the size

of certain connections in the network. This is done in a selective

way, keeping the important connections while removing the less

important ones. In contrast, the random unstructured method uses

randomness to remove connections without any optimization or

specific selection. This approach is simpler and faster than the L1

norm technique (Section 3.1.1.1) to apply but does not focus on

which connections are more or less important. In other words,

this randomness gives every connection, whether it is active or

removed, the same chance to be included in the process. This is

important because a connection that seems unimportant at the start

might become very important later during training as the model

learns. By treating all connections equally, the random method

stays flexible and avoids removing connections that could help

improve the model later.

In this method, we start with a vector x = [x1, x2, x3, ..., xn] and

randomly select the indices to keep, while setting the others to zero.

This can be represented as:

x′ = [x1.m1, x2.m2, x3.m3, ..., xn.mn] (2)

In Equation 2, x′ is the modified vector after applying the

random unstructured method, and m1 s a binary mask (either 0

or 1) randomly assigned to each element xi. If mi = 0, xi is set to

zero; ifmi = 1, xi is retained.

Assume we have a vector x = [0.7, 1.2, 0.3, 0.9,−0.4] and

generate a random mask m = [1, 0, 1, 0, 1]. The result x′

after applying the random unstructured method would be x′ =

[0.7, 0, 0.3, 0,−0.4] In this way, the random unstructured method

does not focus on the importance of features but randomly enforces

sparsity, which can sometimes be useful in preventing overfitting

or reducing the computational cost. In short, the random

unstructured method applies random sparsity to a vector by setting

some elements to zero based on a randomly generated mask.

3.1.3 Post-training
This method is the simplest approach discussed herein. It

involves pruning the network after the training process is complete.

The primary advantage of this technique is that it allows us to create

models with different levels of sparsity without needing to train

the model multiple times. This is particularly useful because we

only need the final checkpoint of the trained model to apply the

pruning process.

To prune the network, we start with a fully connected model

and remove the weakest connections based on their L1 scores—

the same metric used in pre-training (Section 3.1.1). However,

this method has some limitations. Since pruning happens after

training, the model doesn’t have the opportunity to optimize its

weights during training to account for the removed connections.

Additionally, if the model overfits during training, the pruned

versions might still carry over this overfitting issue, which can affect

their performance on new data.

3.1.4 SET method
The Erdös-Rényi model (Erdős and Rényi, 2022) is a

fundamental mathematical framework used to generate random

graphs, which consist of nodes connected by edges. This model

is particularly useful for studying the structure of real-world

networks, such as social or biological systems, by simulating their

connectivity using probabilities. In this model, we begin with n

nodes, where each possible pair of nodes is connected by an edge

with a probability p. The simplicity and flexibility of this model

make it an excellent tool for initializing sparse architectures in

neural networks.

Building on this, the SET method, introduced by Mocanu et al.

(2018), uses the Erdös-Rényi model to create an initial sparse

network. Unlike the Random and L1 techniques, which follow

different sparsification approaches, SET employs this probabilistic

model to define the initial connections between neurons. By using

the Erdös-Rényi model, SET generates a sparse network with a

controlled level of connectivity based on the probability p.

During training, the SET method incorporates the In-Training

Method to optimize the network parameters. It dynamically adjusts

the network by replacing the 20% of smallest positive and largest

negative weights (i.e., weaker connections) with connections that

were pruned earlier. This process ensures that the model always

builds up the most important connections while maintaining

sparsity. By the end of training, the network evolves into a strong

structure with highly optimized connections, effectively balancing

efficiency and performance.

Having this sparsity technique, along with the In-Training

approach, allows us to investigate the roles of different initialization

methods, which is the only difference between these two pruning

approaches. Specifically, we use the standard random model

exclusively for the In-Training approaches, while the Erdös-Rényi

model is utilized solely for the SET method. This comparison helps

us evaluate how these initialization strategies impact the network’s

performance and training dynamics in their respective contexts.

Algorithm 1 provides the pseudocode for the implementation of

the In-Training and SET methods in our experiments.

3.2 Models

In this section, we will explore different model architectures

that are central to our research. We provide a detailed overview of

their design and functionality, explaining why they are important to

our work. Two of these models - which are VGG-Net Architecture

(Section 3.2.1) and ResNet Architecture (Section 3.2.2)—are

Frontiers inComputer Science 05 frontiersin.org

https://doi.org/10.3389/fcomp.2025.1563942
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Douzandeh Zenoozi et al. 10.3389/fcomp.2025.1563942

Input: Model M, training data D, target sparsity

starget, total epochs E, sparsity techniques

T

Output: Pruned model Mpruned

Initialize model parameters θ ∼ M;

Apply initial pruning to M to achieve sparsity

starget;

if T = SET then

M = erdos_renyi_initiate_model()

end

if T = InTraining then

M = random_unstructured()

end

for epoch = 1 to E do

Train the model using the training set;

for batch (x,y) ∈ D do

Forward pass: compute loss L(M(x),y);

Backward pass: compute gradients ∇θL;

Update parameters θ ← θ − η∇θL;

end

if epoch mod f = 0 and epoch < E then

Prune weights: for layer ℓ ∈ M do

if ℓ is prunable (e.g., linear or

convolutional) then

Calculate weight magnitudes |wij|;

Identify smallest weights;

replace the smallest weights with the

new random weight which was prunned;

end

end

end

end

Keep pruning the model epoch by epoch.;

return Mpruned

Algorithm 1. Pruning the model during the training (SET and In-

Training).

directly used in our experiments as base architectures (i.e.,

VGG16 and ResNet18), forming the foundation of our approach.

Besides that, Figure 1 provides a comparative visualization of the

architectural structures of both models, highlighting their key

main parts and the position of each layer type. Additionally, we

discuss Generative Adversarial Networks (GANs) (Section 3.2.3),

which are not directly used in our experiments but are included

because they play a key role in similar research (Chen et al.,

2023). By understanding GANs, we gain better insight into how

related studies approach the problem. Together, these models

help us build a clear picture of the methods and ideas driving

our experiments.

3.2.1 VGG-Net architecture
The Visual Geometry Group (VGG) (Simonyan and Zisserman,

2014) architecture, represents a standard deep Convolutional

Neural Network (CNN) design characterized by its depth, with

variations such as VGG-16 and VGG-19 featuring 16 and 19

convolutional layers, respectively. This deep neural network has

been instrumental in advancing object identification models. Due

to its innovative design and robust capabilities, VGG continues

to be one of the most widely adopted architectures in the field

of image recognition (Apostolopoulos and Tzani, 2022; Hossain

et al., 2019). Both these VGG architectures (i.e., VGG-16 and VGG-

19) are common architectures, but for the industrial environment,

efficiency is an important factor. While both models are effective,

VGG-16 has approximately 138 million parameters, compared to

VGG-19’s 143 million. This smaller size makes VGG-16 more

computationally efficient and needs fewer resources for training

and deployment. In industrial settings, where resource limitations

and semi-real-time processing are often priorities, VGG-16

strikes a better balance between performance and practicality.

This is why we selected VGG-16 as the base architecture for

our experiments.

3.2.2 ResNet architecture
The main novelty of the Residual Network (ResNet) (He

et al., 2016) architecture consists of residual blocks that were

introduced as a remedy for the vanishing gradients problem

for very deep networks. Using skip connections, or residual

connections, gradients can easily flow during backpropagation and

thus allow for the training of networks with many layers, way

more than was possible before like AlexNet (Krizhevsky, 2014)

with 8 layers, or VGG with 16 or 19 layers. In fact, this ability

to grow “very deep,” with hundreds of layers, while remaining

trainable and effective, is what made ResNet a landmark in

deep learning.

ResNet is one of themost widely used architectures in industrial

applications due to its balance of performance (Duan et al., 2021;

Xu et al., 2023; Gao et al., 2022; Lee et al., 2020). There are several

versions of the ResNet architecture, including ResNet-18, ResNet-

34, ResNet-50, and ResNet-101, each with different depths and

complexities. The ResNet-18 and ResNet-34 represent shallow and

more efficient variants, making them a suitable selection for less

complicated scenarios or resource-constrained environments like

industrial settings. While ResNet-50 and ResNet-101 are deeper

and more powerful, they will give better results (Khan et al., 2017)

on challenging tasks with larger datasets such as COCO (Lin et al.,

2014); their higher complexity also means that they require many

more resources than shallower models, reducing their practicality

in low-resource settings, such as certain industrial applications

where efficiency is very crucial. According to these facts, we select

ResNet-18 for our experiment to not only have the performance of

this architecture but also keep the model resource efficient.

3.2.3 Generative adversarial networks
Generative Adversarial Networks (GANs) work by training two

models at the same time: a generator (G) and a discriminator

(D). The generator creates new data, like images, that look

similar to real data, while the discriminator tries to tell the

difference between real data and the fake data created by the

generator. The goal of the generator is to make the discriminator

think that the fake data is real. This creates a competition

Frontiers inComputer Science 06 frontiersin.org

https://doi.org/10.3389/fcomp.2025.1563942
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Douzandeh Zenoozi et al. 10.3389/fcomp.2025.1563942

FIGURE 1

A simplified illustration to compare VGG16 and ResNet18 architectures at a glance.

between the two models, like a game, where the generator

tries to get better at making fake data, and the discriminator

tries to get better at spotting it. As both models improve,

the generator creates more realistic data, and the discriminator

becomes more accurate. This process can be trained using

backpropagation, a common technique in machine learning.

GANs are powerful because they can generate high-quality

data without needing complex processes, like Markov chains,

during training.

3.3 Dataset

In this section, we describe the datasets used in our study. Each

dataset is introduced separately. The following subsections provide

details on the individual datasets namely MedMNIST (Section

3.3.1), MVTec 3D Object Classification (Section 3.3.2), and

VisA (Section 3.3.3). Figure 2 provides an overview of data

frequency, showing how datasets are split into training, testing, and

validation sets.

For the BloodMNIST and MVTec3D datasets, the training

phase uses 70% of the data, while the remaining 30% is split into

20% for testing and 10% for validation. However, the VisA dataset

is an exception due to its smaller size. To ensure more accurate

results, we allocate 20% of the total data to validation, and for the

training phase instead of using 70% similar to the BloodMNIST and

MVTec3D we use 80%. The VisA dataset consists of 12 subsets,

and because of the limited number of samples for both normal

and anomalous classes, we combine the testing and validation sets.

This approach allows us to maximize the utility of the available data

while maintaining a robust evaluation process.

3.3.1 MedMNIST
MedMNIST1 (Yang et al., 2021, 2023) is a large dataset

of biomedical images, specially developed for machine learning

research in the medical area. We selected this dataset as a

standardized benchmark to enable robust comparisons with prior

work. It is presented as a collection of 18 different datasets

(including 12 datasets for 2D and 6 datasets for 3D biomedical

images) that are formatted to be easily usable with deep learning

models and specifically tailored for different medical applications

such as the classification of diseases, segmentation of tissues, and

identification of anatomy. The images are pre-processed to be

consistent in size, either as 2D images at 28 × 28 pixels or 3D

volumes at 28× 28× 28 pixels. Each of the datasets in MedMNIST

has standardized training, validation, and test sets split.

Among the different datasets that constitute MedMNIST, we

focus on those containing images of blood cells and classification

problems. BloodMNIST, especially, finds its application in

diagnosis and analysis because it considers most of the cell

types occurring in blood. Pre-defined splits and a very regular

structure make this dataset perfect for training and evaluating

machine learning models in medical research. It thus allows for

efficient experimentation with models for blood cell classification

while keeping results comparable between studies. In addition,

the BloodMNIST dataset is particularly relevant to our research

because it is a multi-label classification dataset, similar to

MVTec3D. It also consists of color images, which makes it a

closer representation of the types of data encountered in industrial

applications. This similarity allows us to validate our pruning

techniques in a setting that closely mirrors the challenges of

industrial datasets.

1 “MedMNIST” dataset: https://medmnist.com/.

Frontiers inComputer Science 07 frontiersin.org

https://doi.org/10.3389/fcomp.2025.1563942
https://medmnist.com/
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Douzandeh Zenoozi et al. 10.3389/fcomp.2025.1563942

FIGURE 2

The pie charts illustrate the distribution of data into training, testing, and validation sets for three datasets. The color coding is fixed among datasets:

Red for training, Blue for testing, and Green for validation.

3.3.2 MVTec 3D object classification
This dataset includes images of 10 different industrial objects

from theMVTec Industrial 3DObject Detection Dataset (Schuerrle

et al., 2023; Drost et al., 2017). These objects represent a variety of

common products found in industrial settings, such as triangular

adapter plates, large brackets, small clamps, round and square

engine part coolers, injection pumps, screws, stars, tee connectors,

and threads.

The dataset contains 100,000 color images per object category,

totaling 1 million images. Each image is provided in JPEG format

at a resolution of 224 × 224 pixels. The data is split into 70,000

images for training, 20,000 for testing, and 10,000 for validation.

Each image includes one object, along with detailed annotations

in COCO format—a common standardized JSON structure used

for object detection, and segmentation, which includes bounding

boxes, segmentation masks, and category labels.

To add variety and realism, each object’s position, rotation,

surface texture, and lighting conditions are varied. The objects are

placed in different positions along the x, y, and z axes and rotated

to capture various orientations. Surface textures are designed to

resemble smooth metallic materials, mimicking real industrial

components. Lighting conditions are also adjusted by changing the

position, energy, and strength of light sources.

This dataset is well-suited for machine learning tasks in

industrial object detection, offering high-quality images and

comprehensive annotations for effective model training and

evaluation. This dataset is currently publicly available on Kaggle.2

3.3.3 VisA dataset
The VisA3 (Akcay et al., 2022; Zou et al., 2022) dataset includes

images of 12 different objects, covering a range of industrial items.

It has a total of 10,821 images, with 9,621 labeled as normal and

2 “MVTec 3D Object Classification” Dataset: https://www.kaggle.com/

datasets/beschue/industrial-classification-data-set/.

3 “VisA” Dataset: https://paperswithcode.com/dataset/visa.

1,200 labeled as anomalous. The dataset contains four types of

printed circuit boards (PCBs) with complex structures, including

components like transistors, capacitors, and chips.

Some subsets, namely Capsules, Candles, Macaroni1, and

Macaroni2, show multiple instances of objects in each image.

Capsules and Macaroni2 have varied object positions and

orientations. Other subsets, such as Cashew, Chewing Gum,

Fryum, and Pipe Fryum, show objects that are mostly aligned in

similar positions.

Anomalous images in the dataset contain different types of

defects. These include surface flaws like scratches, dents, color

spots, and cracks, as well as structural issues such as missing or

misplaced parts.

This dataset is well-suited for machine learning tasks focused

on anomaly detection in industrial objects, providing a variety

of samples with different defects and complex arrangements for

effective model training and evaluation. However, we used this

dataset to train the binary classification models which is able

to classify between the normal objects and damaged ones in

industrial settings.

3.4 Metrics

To evaluate the performance of the model across the four

pruning techniques, we used a total of nine metrics. These metrics

provide a comprehensive understanding of the model’s behavior,

efficiency, and resource usage.

The first four metrics–F1 score (F1), recall, precision, and

accuracy (ACC)–measure the model’s predictive performance.

Thesemetrics help us assess howwell themodel captures important

patterns in the data and how accurately it classifies inputs. They

are critical for understanding the overall effectiveness of the model

after training. We not only calculate all four metrics after training

the model in the test phase but also monitor them at the end of

each epoch.

Frontiers inComputer Science 08 frontiersin.org

https://doi.org/10.3389/fcomp.2025.1563942
https://www.kaggle.com/datasets/beschue/industrial-classification-data-set/
https://www.kaggle.com/datasets/beschue/industrial-classification-data-set/
https://paperswithcode.com/dataset/visa
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Douzandeh Zenoozi et al. 10.3389/fcomp.2025.1563942

Next, we analyzed training energy, memory usage, and training

time. These metrics are crucial for industrial applications, where

computational resources are limited. For training time, we collected

the total time spent during each epoch, excluding the test phase, to

ensure we only measured the time required for training. Similarly,

for energy consumption, we focused only on the energy used during

the training phase, excluding the test phase, to provide a clear

picture of the model’s energy needed during learning.

To measure memory usage, we used PyTorch’s built-in

functions to monitor the maximum used memory during each

training round. To ensure accuracy, we manually reset the memory

metric at the end of each training phase before starting the test

phase and at the beginning of the next round. This approach

allowed us to capture exactmemory usage data without interference

from previous rounds.

Finally, we monitored the loss during training. Tracking loss is

essential because it helps us detect overfitting, which occurs when

the model performs well on the training data but fails to generalize

to new, unseen data. By monitoring the loss, we ensure the model

remains general.

Together, these nine metrics provide a complete picture of the

model’s performance, resource usage, and behavior under various

settings. They allow us to compare the effectiveness of different

pruning techniques and identify the most efficient and practical

solutions for industrial applications.

3.5 Experimental design

In this study, we apply four pruning techniques on two

convolutional neural network models, namely VGG-16 (Section

3.2.1) and ResNet-18 (Section 3.2.2). Those models are composed

by two key components: feature extraction part and classification.

The first component contains multiple convolutional layers that

use kernels to capture important information from the input data,

particularly through color channels. The second one uses this

important information to classify the input data and map them to

one of the existing classes in the input dataset.

In convolutional models, we focus on identifying the most

significant filters within each convolution layer. To discover filter

importance, we use the L1 norm, which calculates the sum of the

absolute values of the weights for each filter, converting them into

single float numbers. The L1 norm for a convolutional filter w is

defined as:

‖W‖1 =

C∑

c=1

k∑

i=1

k∑

j=1

|Wcij| (3)

where C is the number of channels, and k is the height and width

of the filter. Based on Equation 3, filters with smaller magnitudes

are considered less important and can be pruned, while those with

larger magnitudes are stronger and are retained to preserve the

model’s performance.

The behavior of pruning functions depends on the library one

uses when building and training their model. In our experiments,

we rely on the PyTorch library. PyTorch uses a mask matrix, which

is a binary matrix that serves as a “switch” for every weight in linear

layers and each filter in convolution layers of a network. When

the value in the mask is 1 the corresponding weight or filter is

retained and when it is 0 it is pruned. Such zeroing-out operations

enable selective partial disabling of the network without having to

physically alter the original topology of the network.

On the other hand, PyTorch does not allow one to prune their

model during training. This is due to the fact that most of the time,

pruning requires reconfiguration of the models’ network structure

which is problematic because of PyTorch’s dynamic compute graph.

In order to bypass this limitation, we implement pruning in a

way that aligns with PyTorch’s built-in functions. For convolution

layers, this process is more complex than for linear layers. In

convolution layers, filters are not represented by a single weight but

by a kernel matrix. To prune these filters, we must first generate a

mask matrix that maps all the kernel matrices to a structure with

the same dimensions as the input. After applying the mask, we

reverse the process to remove the specific filters and identify which

ones are important. This ensures the network’s structure remains

undamaged and compatible with PyTorch’s framework.

For techniques like SET and In-Training pruning, we need to

run the pruning algorithm during each training iteration epoch

by epoch. This repeated process identifies and retains the most

important filters while removing less important ones. By doing

this repeated process, we ensure the convolutional model becomes

sparse effectively while maintaining its ability to classify input

data accurately.

For training the models, we used a high-performance

computing (HPC) system having a NVIDIA A100-SXM4-80GB

GPU to provide an isolated environment for each training session.

To monitor energy consumption during training, we used the

Zeus Project library.4 The Zeus library leverages the NVIDIA

Management Library (NVML) to provide accurate power readings

directly from the GPU, ensuring reliable and precise energy

measurements. As highlighted in the work of You et al. (2023), the

Zeus library employs just-in-time (JIT) profiling, which measures

energy consumption during training in real-time with minimal

overhead, further reducing the impact of external factors. While

the Zeus tool is user-friendly, it does have limitations in HPC

environments. One notable issue is that in HPC systems, GPU

resources are often divided to run parallel jobs at the same time, and

Zeus cannot accurately measure energy consumption for individual

and virtual GPU partitions.

To have better insight into this limitation, we ran comparative

experiments on a dedicated machine, a Lenovo Legion 5 equipped

with an NVIDIA GeForce RTX 3060 GPU and 16GB RAM and

Intel Core i7-11800H CPU. This allowed us to measure energy

consumption more accurately, as the entire GPU was available for

monitoring without being partitioned. We found that training the

model with the same configuration on Lenovo Legion 5 required

about half the energy on average compared to the HPC system. This

difference is primarily because the Zeus performance monitoring

library can only measure energy consumption for the entire

hardware, making detailed measurements challenging in HPC

environments where the hardware is split into virtual partitions.

4 Available at https://ml.energy/zeus/.

Frontiers inComputer Science 09 frontiersin.org

https://doi.org/10.3389/fcomp.2025.1563942
https://ml.energy/zeus/
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Douzandeh Zenoozi et al. 10.3389/fcomp.2025.1563942

By comparing results from both systems, we ensured a

fair evaluation of energy efficiency. While the HPC system

provided computational power and isolation, the dedicated

machine offered more accurate energy measurements, allowing

us to better understand the trade-offs between performance

and energy consumption. These insights are critical for

optimizing models in resource-constrained environments,

such as industrial applications.

To investigate the performance of sparse neural networks

under different pruning techniques and scenarios to present

a comprehensive comparison of their efficiency and accuracy.

We utilize three datasets (Section 3.3)—VisA, BloodMNIST

(part of the MedMNIST collection), and MVTec3D Object

Classification—to ensure diverse testing settings. VisA, mostly used

for anomaly detection in industrial applications, is adapted for

binary classification tasks (i.e., normal and damaged objects), while

BloodMNIST, with its multi-label classification and color images,

aids us in validating our approaches. To cover the potential impact

of dataset size, we use the MVTec3D dataset in two ways: first,

with its full size (100,000 samples), and second, with a reduced size

matching the MedMNIST dataset. This allows us to minimize the

influence of dataset scale on the results.

We initially used the BloodMNIST dataset-one of the 10

datasets from MedMNIST collection, as a controlled starting

point (for more details, see Section 3.3.1). This allowed us to

test and refine the implementation of pruning techniques in a

simpler setting before applying them to more complex industrial

datasets like MvTec3D (Section 3.3.2) and VisA (Section 3.3.3),

which involve challenges such as high-resolution inputs and

limited sample sizes. By adopting this step, we ensured that our

sparsification techniques were effective and reliable before scaling

to industrial applications.

In terms of the model architecture, for this research, we

focus on two widely used architectures (Section 3.2) in industrial

applications (Gao et al., 2022; Apostolopoulos and Tzani, 2022):

VGG16 and ResNet18. Detailed descriptions of these two

architectures are presented in Sections 3.2.1, 3.2.2, respectively. We

use four different pruningmethods (Section 3.1) to investigate their

effectiveness in reducing model complexity.

Additionally, we evaluate the impact of different pruning levels

(summary of the pruning scenarios considered is provided in

Table 2): (i) Uniform High Sparsity: applying 80% pruning to all

convolutional and linear layers. (ii) Mixed Sparsity: applying 80%

pruning to linear layers and 50% pruning to convolutional layers.

(iii) Linear-Only Sparsity: applying 80% pruning only to linear

layers. In these cases, 80% sparsity is considered high sparsity (Ma

et al., 2021). Our tests show that increasing it beyond 80% causes

the model to fail after about 10 epochs, as the filters cannot extract

useful information to train the network. On the other hand, 50%

sparsity is seen as upper-medium sparsity. This level not only lets

us remove many filters and connections but also gives comparable

accuracy and performance. These sparsity scenarios are adapted

from Cheng et al. (2024). Besides that, for the Mixed Sparsity

Scenario, we maintained an 80% sparsity level for linear layers to

maximize sparsity while ensuring stability, as reducing it further

would compromise our goal of achieving high computational

efficiency. Across all scenarios, a consistent swap fraction of 20%

TABLE 2 Summary of the considered experimental pruning scenarios,

including chosen sparsity levels for the di�erent types of layers.

Scenario Sparsity level Swap ratio

Linear
layers

Convolution
layers

(i) Uniform High Sparsity 80% 80% 20%

(ii) Mixed Sparsity 80% 50% 20%

(iii) Linear-Only Sparsity 80% 0% 20%

The Swap Ration refers to the proportion of filters or connections replaced in each epoch in

SET or In-Training technique.

was maintained for filters and connections in both the In-Training

and SET pruning techniques.

Although choosing sparsity levels is heuristic and depends on

the model, dataset, and task complexity, applying different levels of

sparsity for different types of layers is a common research practice,

as it often yields better results compared to applying the same

sparsity level across all layers (Liang et al., 2021; Xiang et al.,

2021). Applying these scenarios also allows us to compare the

impact of sparsity techniques on different types of layers, such

as convolutional and linear layers, providing deeper insights into

their behavior.

In other words, when we apply a specific amount of sparsity

(e.g., 80%) on the convolutional layers, it means that we remove

80% of the filters in each convolution layer and extract features

using the remaining filters. For linear layers, which are only used

in the classification part of the models, we remove a specific

amount of the total connections (e.g., 80%) between neurons

and use the remaining neurons to map the input to the output

classes. These scenarios allow us to analyze how varying levels

of sparsity affect model performance and resource usage. While

previous studies (Chen et al., 2023) use GANs for classification

tasks, we focus on simpler and more common models like VGG16

and ResNet18.

To ensure fair comparisons across all combinations of models

(Section 3.2), datasets (Section 3.3), and pruning techniques

(Section 3.1), we employed a constant training configuration.

Specifically, each combinationwas trained three times for 50 epochs

with a batch size of 64 and a learning rate of 1e-4. This configuration

presented a balanced trade-off between learning speed and stability

during training, allowing us to compare the results across all

combinations and scenarios.

The results discussed in Section 4 are based on the average

values obtained from three independent runs of the experiments.

During our experiments, we observed that all three repetitions of

each experiment yielded similar results, confirming the consistency

and reliability of our findings. To further ensure the validity

of the results, especially for metrics sensitive to external factors

(such as inference time and energy efficiency), we conducted each

round of experiments at different times of the day. This approach

minimized the potential impact of background processes or system

load variations. The consistent results across the three repetitions

allowed us to limit additional rounds of experiments, as the findings

were robust and reproducible.

Frontiers inComputer Science 10 frontiersin.org

https://doi.org/10.3389/fcomp.2025.1563942
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Douzandeh Zenoozi et al. 10.3389/fcomp.2025.1563942

TABLE 3 Summary of experimental configurations. Categories include

datasets, model architectures, pruning methods, hardware setups, and

training parameters.

Configuration
category

Details

Datasets (Section 3.3) BloodMNIST, VisA, MVTec 3D object
classification

Models (Section 3.2) VGG16, ResNet18

Pruning techniques
(Section 3.1)

Pre-Training, In-Training, Post-Training, SET

Pruning scenarios
(Section 2)

Uniform High Sparsity, Mixed Sparsity,
Linear-Only Sparsity

Metrics (Section 3.4) Training accuracy, loss, training time, test
accuracy, inference time, inference energy

HPC configuration NVIDIA A100-SXM4-80GB GPU

Laptop configuration Intel Core i7-11800H CPU, GeForce RTX 3060
GPU, 16GB RAM

To ensure reproducibility and clarity, Table 3 summarizes all

the considered experimental configurations. The Configuration

Category column lists the key aspects of our setup: datasets,

model architectures, pruning techniques, pruning scenarios (e.g.,

sparsity levels), evaluation metrics, and hardware setups (HPC

clusters and laptops). The Details column provides specific

values or descriptions for each category, including training

hyperparameters, hardware specifications, and metric definitions.

This table serves as a comprehensive reference for replicating

our experiments.

4 Results

In this section, we present and analyze the results of our

experiments, focusing on the performance of the sparse models

across different pruning techniques and sparsity levels that we

discussed in Section 3.5. The results are organized into six

subsections, each presenting a specific sight of themodel’s behavior.

First, we investigate training accuracy (Section 4.1), which reflects

the model’s accuracy at the end of each training epoch. Next, we

explore training loss (Section 4.2), which tracks the loss value

during each training round, providing insights into the model’s

learning progress and helping us to prevent the overfitting issue

during the training process. The Test accuracy (Section 4.4),

shows the final accuracy of the model after training, highlighting

its ability to generalize to unseen data. after that, we monitor

total training time (Section 4.3), which measures the overall

time required to train the model, with further details available

in Section 3.4. In addition, we investigate average inference

time (Section 4.5), which presents the time the model takes to

classify inputs and produce predictions. Besides that, we measured

the total training energy for each experiment in Section 4.6.

Finally, in Section 4.7, we evaluate the performance of our model

on a resource-constrained setting by deploying the model on a

general-purpose laptop.

4.1 Training accuracy

Accuracy is a key metric collected during training, evaluated

epoch by epoch to compare model performance. Figures 3–5 show

the training accuracy varying the pruning fraction. In particular, (i)

in Figure 3 all layers had a pruning fraction of 80%, (ii) in Figure 4

only linear layers were pruned at 80% pruning on linear layers

while convolutional layers hat a 50% pruning on convolutional

layers. Lastly, (iii) in Figure 5 we pruned to 80% only linear layers.

The reason behind these scenarios is that using different sparsity

levels for different layers is a common practice; for more details, see

Section 3.5.

From the experiments emerged that applying pruning

techniques namely Pre-Training and SET during the training

phase impacts the model’s accuracy per epoch, particularly due to

the sparsity levels applied to the convolutional layers. This effect is

observed in both VGG16 and ResNet18 architectures. For example,

according to Figure 3, when using VGG16 with the BloodMNIST

or MVTec3D datasets, the highest training accuracy achieved

was only 20%. In ResNet18, using the same datasets, the best

accuracy improves to 50%, but this is still an unsatisfactory result.

By reducing the sparsity level of the convolutional layers from 80%

in Figure 3 to 50% in Figure 4, the trend of the accuracy for both

of these techniques gets closer to the dense version. In Figure 5

we can see that the trend of this metric is mostly matched with

the dense version. While this metric for training the same models

using the VisA dataset is as good as the dense version, be checking

the other metrics like Training Loss in Section 4.2 we can see the

effect of applying high sparsity levels on the convolutional layers.

4.2 Training loss

Training loss is another useful metric to evaluate model

learning goodness during training. In an ideal scenario, the training

loss should decrease gradually over epochs, indicating that the

model is minimizing errors and improving its performance. By

monitoring the metric we can prevent or detect common errors,

especially overfitting, where the model memorizes the training data

instead of learning the features and patterns. In other words, if

this metric dropped rapidly at the beginning of the training phase

we can take this behavior as a sign of this issue. Similarly, if the

training loss begins to fluctuate around specific values rather than

decreasing, it shows that the model has stopped improving. Both

behaviors highlight potential issues in the learning process that

need to be addressed.

Like Training Accuracy discussed in Section 4.1, training loss is

similarly displayed in Figure 6 (80% pruning on all layers), Figure 7

(80% pruning on linear layers and 50% pruning on convolutional

layers), and Figure 8 (80% pruning only on linear layers).

According to the charts, similar to the trends observed in

training accuracy, applying pruning techniques like In-Training

and SET to dense models impacts the training loss, particularly

at higher sparsity levels in Figure 6. For instance, when training

VGG16 on the BloodMNIST and MVTec3D datasets, the training

loss remains constant, posing around 2. In contrast, that of the

VisA dataset fixes at a much lower value (i.e., approximately

Frontiers inComputer Science 11 frontiersin.org

https://doi.org/10.3389/fcomp.2025.1563942
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Douzandeh Zenoozi et al. 10.3389/fcomp.2025.1563942

FIGURE 3

Training Accuracy for scenario (i) Uniform High Sparsity (80%)—Sparsity of 80% applied uniformly to both convolutional and linear layers. For details

on all sparsity configurations, refer to Table 2.

0.35), though the general behavior remains consistent

across datasets.

On the other hand, reducing the sparsity level from 80%

(Figure 6) to 50% (Figure 7) on the convolutional layers leads to

significant improvements in the training loss metric. As shown

in the charts, except for the VisA dataset, the training loss

exhibits a steady decrease from epoch 1 to epoch 50. Finally,

in Figure 8, by removing the sparsity from convolutional layers

we can see the trend of this metric is getting similar to the

dense version.

4.3 Training time

To evaluate model efficiency it is also important to monitor

the training time. In industrial settings is particularly important,

given that computational resources are limited and expensive.

Training time for sparse networks can vary depending on the

pruning technique used. For instance, with SET and In-Training

methods, we expect an increase in training time since these

techniques need to identify weak connections during each epoch.

By contrast, Pre-Training and Post-Training methods only need to

find these connections once, which results in lower computational

overhead. In addition, for the Post-Training technique, if we need

to have models with different sparsity levels, we do not need

to retrain the model and we can use the dense version again.

Moreover, it is important to note that time-based metrics, such

as training time, are highly sensitive and can be influenced by

both direct and indirect factors. Direct factors include dataset size,

image resolution, and model architecture, while indirect factors

include the number of parallel tasks competing for resources

or background processes running on the system, these kinds

of variables can lead to some unexpected behaviors in the

experiments. Figures 9–11 show the training time in the three

pruning settings.

The figures show that in the majority of cases-85 out of 90

experiments (94% of cases), the training time for SET methods

is either comparable to or less than that of dense models,

regardless of the model (VGG16 or ResNet18) or dataset used.

However, with VGG16 on MVTec3D dataset and an 80% of

pruning only for linear layers (Figure 11) the training time for

the SET method is similar to the dense version, while the other

Frontiers inComputer Science 12 frontiersin.org

https://doi.org/10.3389/fcomp.2025.1563942
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Douzandeh Zenoozi et al. 10.3389/fcomp.2025.1563942

FIGURE 4

Training Accuracy for scenario (ii) Mixed Sparsity (Linear: 80%, Convolutional: 50%)—Sparsity levels of 80% and 50% applied to linear and

convolutional layers, respectively. For details on all sparsity configurations, refer to Table 2.

pruning techniques need more time to complete the training

process. Moreover, by training the model with the VisA dataset

and VGG16 architecture and the sparsity level set at 80% for

both the classification and feature extraction part of the model

(Figure 9), the training time for all pruning techniques needs

more time compared to the dense version. In this scenario, by

changing themodel fromVGG16 to ResNet18 we have the opposite

results and the total training time for the dense version is more

than that of sparse models. According to Figure 9, the dense

version of the models shows a 500-second increase, while the

four other sparse models decrease from nearly 8,000 seconds to

5,800 seconds.

Across all three sets of charts, ResNet18, despite having

more convolutional layers than VGG16 (Figure 1), requires

less total training time both with and without pruning

techniques. The only exception is when training on the VisA

dataset, where the difference in training time between VGG16

and ResNet18 becomes insignificant, which shows that, the

architecture of this network is more time-efficient compared

to VGG16, because of using Residual Block instead of regular

convolution blocks.

4.4 Test accuracy

The Test Accuracy results are illustrated across three sets

of charts, each of them indicates the specific pruning scenario:

Figure 12 presents the 80% pruning on all layers, Figure 13

shows the 80% pruning on linear layers and 50% pruning on

convolutional layers, and Figure 14 illustrates the 80% pruning only

on linear layers.

By decreasing the sparsity level in convolution layers from 80%

(Figure 12) to 50% (Figure 13), the test accuracy of the SETMethod

was improved across all datasets and models. For example, when

we train the VGG16 with the MVTec3D dataset If we apply the

80% sparsity on both convolution and linear layers (Figure 12) we

will have nearly 10% accuracy, even if we change the model to

ResNet18 we cannot get better result higher than 30%. However,

By decreasing the sparsity level to 50% in convolution layers in

Figure 13 the final accuracy of the model for both VGG16 and

ResNet18 improved significantly and to nearly 90%. Additionally,

if we set the sparsity level at 0% for convolution layers, the

accuracy of the model is similar to the dense version. In this

scenario (Figure 14), we have an insignificant difference between

Frontiers inComputer Science 13 frontiersin.org

https://doi.org/10.3389/fcomp.2025.1563942
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Douzandeh Zenoozi et al. 10.3389/fcomp.2025.1563942

FIGURE 5

Training Accuracy for scenario (iii) Linear-Only Sparsity—80% sparsity on linear layers, convolutional layers unpruned. For details on all sparsity

configurations, refer to Table 2.

the accuracy of all the pruning techniques and their dense versions-

which is almost 92%.

Moreover, Figure 12 presents that, while changing the

models from VGG16 to ResNet18 boosts the accuracy of

the models in all the pruning techniques, the opposite

change is observed when we apply the 80% sparsity at all the

convolution layers by choosing the Post-Training techniques for

the sparsification.

According to the the behavior of the models when we decrease

the applied sparsity level on the convolution layers, the test

accuracy boosts up throughout all experiments. For instance,

Figure 12 presents the accuracy of the Pre-Training methods less

than 20% when we train the VGG16 model using MVTec3D.

However, Figure 14 shows over 90% for the same experiments, with

the same configuration.

4.5 Average inference time

Inference time is another metric to determine how fast

the trained model can process the data at test time when

the training process is finished. The “Average” word, refers

to the fact that like the other metrics that we collect after

the training finished, we calculate this metric by measuring

the total inference time for all the samples that we used

for this phase. As shown in Figure 2, we use 20% of VisA

and 10% of the BloodMNIST and MVTec3D data set for

the test phase and calculate the average inference time

between them.

According to this metric, the highest average inference time

(slowest) is 0.008s, while the lowest average inference time (fastest)

is 0.002s. In the majority of cases–12 out of 18 experiments

(75% of cases)—the average inference time for the SET method

matches that of the dense version, demonstrating its efficiency.

For the remaining 25% of experiments, the SET method exhibits

a slightly higher inference time, with a maximum increase of

only 0.002s. This light difference remains well within acceptable

limits for real-world applications, highlighting the feasibility of

the SET method. It is important to note, however, that this

experiment did not specifically target real-time applications,

leaving an area for future exploration in scenarios with lower

latency requirements.

Frontiers inComputer Science 14 frontiersin.org

https://doi.org/10.3389/fcomp.2025.1563942
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Douzandeh Zenoozi et al. 10.3389/fcomp.2025.1563942

FIGURE 6

Training Loss for scenario (i) Uniform High Sparsity (80%)—Sparsity of 80% applied uniformly to both convolutional and linear layers. For details on all

sparsity configurations, refer to Table 2.

4.6 Total training energy

Energy efficiency is one of the primary metrics whenmeasuring

the viability of sparse neural networks, especially in industrial

applications where sustainability and resource constraints are

crucial. Sparse networks train to reduce computational complexity

by removing less important connections, which directly impact

the energy required for training. By collecting the total energy

usage during the training process, we can evaluate the benefit of

pruning techniques in reducing energy usage while maintaining

model performance. This metric is particularly important for edge

devices and IoT systems (Sofianidis et al., 2024), where energy

efficiency is a key for deployment according to their limited power

supply (Kang and Lim, 2024).

The total training energy results are organized into three sets of

charts, each of them shows the specific pruning scenario: Figure 15

presents the 80% pruning on all layers, Figure 16 shows the 80%

pruning on linear layers and 50% pruning on convolutional layers,

and Figure 17 illustrates the 80% pruning only on linear layers.

Across all six plots, the SET method consistently indicates

better energy efficiency compared to the dense version of the

model. Regardless of the dataset (MVTec3D, BloodMNIST, or

VisA) (Section 3.3) or the model architecture (VGG16 or

ResNet18) (Section 3.2), the SET method requires less energy to

train the sparse network. This is observable across all pruning

scenarios, as the SET method shows better performance in terms

of energy consumption under similar settings and configurations.

Regarding model architecture, ResNet18 always shows better

performance compared to VGG16. The difference between training

the models using VGG16 or ResNet18 is observable in Figures 15–

17 when we choose BloodMNIST and MVTec3D as a dataset

to train the model. In detail, when training on the MVTec3D

dataset, the average total energy consumption for VGG16 is

approximately 2.7 × 106 J across all sparse and dense models,

while ResNet18 consumes notably less energy, averaging around

1.1 × 106 J. Furthermore, we observed the same trends for the

BloodMNIST dataset, where the average total energy consumption

for VGG16 is approximately 0.6 × 106 J, compared to 0.2 × 106

J for ResNet18.

However, between all these illustrations, we have some

exceptions. For instance in Figure 15 when training VGG16 on

the MVTec3D dataset, the total energy consumption for the

Frontiers inComputer Science 15 frontiersin.org

https://doi.org/10.3389/fcomp.2025.1563942
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Douzandeh Zenoozi et al. 10.3389/fcomp.2025.1563942

FIGURE 7

Training Loss for scenario (ii) Mixed Sparsity (Linear: 80%, Convolutional: 50%)—Sparsity levels of 80% and 50% applied to linear and convolutional

layers, respectively. For details on all sparsity configurations, refer to Table 2.

In-Training and Post-Training pruning techniques is nearly the

same as that of the dense version and higher than that of Pre-

Training and SET method. Similarly, another exception occurs in

Figure 17, for the same dataset (i.e., MVTec3D) and also the same

model (i.e., VGG16), the total energy to train sparse model when

we use Pre-Training, In-Training, and Post-Training is higher than

Dense and SET method.

4.7 Performance evaluation on
resource-constrained devices

Understanding how machine learning models perform on

resource-constrained laptop devices is important for real-world

applications, where computational resources are limited. To

address this, we conducted experiments on a consumer-grade

laptop to evaluate the efficiency of sparse neural networks

compared to their dense counterparts. These measurements

provide insights into the feasibility of deploying such models in

resource-constrained environments.

For our experiments, we used a Lenovo Legion 5 laptop, a mid-

range consumer device with specifications that can reflect typical

hardware available in constrained scenarios (when considering

laptops as part of an Edge scenario). This setup mirrors the

configuration described in Section 3.5 for consistency, allowing

a direct comparison between high-performance computing

environments and a more resource-constrained one. According

to Table 3, although the Lenovo Legion 5 is a laptop equipped

with an NVIDIA GeForce RTX 3060 GPU and an Intel Core

i7 CPU, it remains a suitable choice for an initial evaluation

of model performance for resource-constrained devices. This

is because, in this experiment, we did not use the GPU as our

main computational unit, but rather the CPU which is better

aligned with the category of resource-constrained environments.

Even if the GPU was to be utilized, its performance would not

be comparable to high-end GPU processors typically found in

HPC or workstation environments. However, the chosen laptop

is indeed more powerful than traditional IoT devices such as a

Raspberry Pi, but in an industrial setting, it is not necessarily the

rule that we only encounter very resource-constrained devices.

Nevertheless, this choice allows us to run a variety of experimental

Frontiers inComputer Science 16 frontiersin.org

https://doi.org/10.3389/fcomp.2025.1563942
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Douzandeh Zenoozi et al. 10.3389/fcomp.2025.1563942

FIGURE 8

Training Loss for scenario (iii) Linear-Only Sparsity—80% sparsity on linear layers, convolutional layers unpruned. For details on all sparsity

configurations, refer to Table 2.

scenarios and test and analyse the performance of SNNs compared

to their dense counterparts in a timely manner, while doubling as

a validation approach for further future experiments. The results

indicate that further deployment in more resource-constrained

environments should be possible and promising. Besides that,

while the Lenovo Legion 5 is not a specialized lightweight device,

its affordability and widespread availability make it a suitable

proxy for evaluating performance in an initial comparative study

of Neural Network pruning strategies. However, in future work,

we intend to further address the issue of resource-constrained

environments by evaluating and comparing the performance

of pruning techniques, alongside assessing the viability of

using and training SNNs in a variety of lightweight and very

lightweight devices.

We focused on two key metrics that were previously measured

in the HPC environment, namely inference time and energy

consumption. Inference time was measured as the average duration

required to process input samples, excluding the initial model

loading phase. Since loading the model is a one-time task, skipping

this step allows us to isolate the repetitive computational tasks

during inference, which is more relevant for real-time applications.

We use average duration to make the results more comparable

together since we have different datasets, and the number of

samples in each of them is different so by measuring the average

time we neutralize the impact of different numbers of samples in

the test phase for each dataset.

Energy consumption was, instead, measured for the entire

inference process, including both model loading and sample

classification, to measure the total energy requirement during

the usage.

Measuring inference time helps us evaluate how quickly the

model can predict the answers. Faster inference is crucial for

applications requiring immediate responses, such as autonomous

systems or interactive tools. According to Figure 18, in all our

tests, the dense model took longer to process inputs compared

to the sparse version. This difference became more noticeable as

the sparsity level increased, directly linking sparsity to reduced

computational overhead. For instance, a model with 80% sparsity

showed faster inference times than a 50% sparse model, reinforcing

the benefits of sparsity in optimizing speed. However, finding the

best combination between the sparsity level and accuracy of the

model is heuristic and depends on our final needs or ultimate goals.

Frontiers inComputer Science 17 frontiersin.org

https://doi.org/10.3389/fcomp.2025.1563942
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Douzandeh Zenoozi et al. 10.3389/fcomp.2025.1563942

FIGURE 9

Total Training Time for scenario (i) Uniform High Sparsity (80%)—Sparsity of 80% applied uniformly to both convolutional and linear layers. For details

on all sparsity configurations, refer to Table 2.

FIGURE 10

Total Training Time for scenario (ii) Mixed Sparsity (Linear: 80%, Convolutional: 50%)—Sparsity levels of 80% and 50% applied to linear and

convolutional layers, respectively. For details on all sparsity configurations, refer to Table 2.

As expected, minor fluctuations were observed in the

experimental results. These variations primarily come from the

use of general-purpose devices (e.g., consumer laptops) during

evaluation, which essentially runs background processes for routine

user tasks. Fully deactivating these processes is impractical,

as such devices prioritize multitasking over-controlled, isolated

workloads. In contrast, real-world IoT deployments usually involve

dedicated devices optimized for specific tasks. In these scenarios,

administrators retain full control over resource allocation, enabling

the model to utilize the device’s computational capacity exclusively,

thereby minimizing interference and stabilizing performance.

This distinction highlights the importance of context-aware

evaluations when assessing models for lightweight or edge-

computing applications.

Energy consumption is equally important, especially for

battery-powered devices. Our experiments realize that energy

usage depends on the model architecture. According to Figure 19,

VGG-based models require more energy to load and run

compared to ResNet-based designs (Lazzaro et al., 2023; Canziani

et al., 2016). This trend aligns with our earlier observations

on HPC systems, where VGG architectures demanded higher

computational resources. One of the main reason behind this

difference is that in VGG16 model has 138,000,000 parameters

while the ResNet18 has only 11,000,000 parameters. The other

Frontiers inComputer Science 18 frontiersin.org

https://doi.org/10.3389/fcomp.2025.1563942
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Douzandeh Zenoozi et al. 10.3389/fcomp.2025.1563942

FIGURE 11

Total Training Time for scenario (iii) Linear-Only Sparsity—80% sparsity on linear layers, convolutional layers unpruned. For details on all sparsity

configurations, refer to Table 2.

FIGURE 12

The Test Accuracy for scenario (i) Uniform High Sparsity (80%)—Sparsity of 80% applied uniformly to both convolutional and linear layers. For details

on all sparsity configurations, refer to Table 2.

reason also is that in ResNet-based model have residual blocks and

skip connections in their architecture, while in VGG-based model

we use the regular convolution layers. It is worth to mention that

the sparse versions of both architectures used less energy than their

dense counterparts. However, the impact of energy reduction on

the sparse version of the model is not as much as we expected, and

we believe that this difference is related to the how PyTorch library

implements the sparsification. This library uses a mask Matrix to

generate the final model and in this way, parts of the prunned

connection still exist and it affects the energy metric during the

inference phase. This reduction highlights how sparsity not only

improves inference time but also lowers energy costs, making

sparse models more sustainable for deployment in resource-limited

scenarios and environments.

These findings confirm that the advantages of sparse networks

observed in HPC environments extend to lightweight devices. The

consistent reduction in inference time and energy consumption

across both settings underscores the robustness of our experiments.

This evaluation fills the gap between theoretical efficiency and

real-world usage.

Frontiers inComputer Science 19 frontiersin.org

https://doi.org/10.3389/fcomp.2025.1563942
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Douzandeh Zenoozi et al. 10.3389/fcomp.2025.1563942

FIGURE 13

The Test Accuracy for scenario (ii) Mixed Sparsity (Linear: 80%, Convolutional: 50%)—Sparsity levels of 80% and 50% applied to linear and

convolutional layers, respectively. For details on all sparsity configurations, refer to Table 2.

FIGURE 14

The Test Accuracy for scenario (iii) Linear-Only Sparsity—80% sparsity on linear layers, convolutional layers unpruned. For details on all sparsity

configurations, refer to Table 2.

5 Discussion

The performed experiments led us to a number of insightful

observations. According to the results, applying high levels of

sparsity to convolutional layers significantly impacts the final

accuracy of the model. We observed that increasing the sparsity

level from 50% to 80% on convolutional layers can reduce the

final accuracy by up to 80% in the worst-case scenario of our

experiments, as illustrated in Figure 12. This highlights the critical

role of convolutional layers in feature extraction and also the role

of each filter in extracting the features from inputs during the

training process.

By contrast, applying the same level of sparsity (80%) to linear

layers, which are the main component of the models’ classification

part, does not significantly impact the final accuracy. In our

experiments, when sparsity techniques were applied to linear layers

in the classification component, we achieved comparable results

in 87.5% of all cases (21 out of 24 sparse models), indicating that

sparse networks can maintain performance close to that of dense

models when sparsity is limited to linear layers, as visualized in

Figure 14.

This observation confirms our expectation: while applying a

higher sparsity level to the linear layers of the model does impact

the final accuracy, the high number of connections in this part

Frontiers inComputer Science 20 frontiersin.org

https://doi.org/10.3389/fcomp.2025.1563942
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Douzandeh Zenoozi et al. 10.3389/fcomp.2025.1563942

FIGURE 15

Energy e�ciency of sparse vs. dense models under scenario (i) Uniform High Sparsity (see Table 2). Compares energy consumption between sparse

(80% sparsity on convolutional and linear layers) and dense models, emphasizing energy savings achieved through pruning while maintaining

accuracy.

FIGURE 16

Energy e�ciency of sparse vs. dense models under scenario (ii) Mixed Sparsity (see Table 2). Evaluates energy usage for sparse models with 80%

sparsity on linear layers and 50% on convolutional layers, demonstrating the trade-o�s between energy reduction and performance retention.

of the model covers the removed connections. For instance, the

large number of connections in linear layers allows the model to

maintain robust performance even after pruning, as the remaining

connections can effectively redistribute the information flow.

Training time is one of the key metrics that directly impacts

total energy usage. By comparing similar experiments, we can

identify the reasons behind the exceptions in total energy

consumption discussed in Section 4.6. According to the charts, the

total training time for VGG16 trained on the MVTec3D dataset is

higher when using Pre-Training, In-Training, and Post-Training

techniques compared to the SET method and the dense version

of the model, which is matched with the same behavior of energy

consumption. This increased training time leads to higher energy

consumption. However, this discrepancy in training time may

also be attached to indirect factors, such as background processes,

hardware architecture, or the use of virtual GPU partitions instead

of dedicated hardware (for more details, see Section 3).

As confirmed by the energy consumption metric, our

experiments show that the pruned versions of the models are

more energy-efficient compared to their dense versions, which

highlights a key advantage of pruning: reducing computational

overhead while keeping model performance. However, contrary to

our expectations, increasing the sparsity level did not consistently

lead to further reductions in energy consumption. We attribute

Frontiers inComputer Science 21 frontiersin.org

https://doi.org/10.3389/fcomp.2025.1563942
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Douzandeh Zenoozi et al. 10.3389/fcomp.2025.1563942

FIGURE 17

Energy e�ciency of sparse models with pruning confined to classification layers in scenario (iii) (see Table 2). Analyzes energy savings when sparsity

(80%) is applied exclusively to linear (classification) layers, while convolutional layers remain dense, preserving feature extraction capabilities.

this to the implementation of sparsification in PyTorch, which

uses mask matrix for filters and weights during training. In this

approach, increasing the sparsity level only modifies the mask

values during the training stage. Despite this limitation, our work

showcases the potential of pruning to improve energy efficiency.

6 Conclusion

In this paper, we investigate the performance of different

pruning techniques for industrial applications, to achieve this

goal we used two of the most common model architectures

including VGG16 and ResNet18 in the industrial environment. We

commence with similar works in the industrial environment and

the other papers that used similar models, datasets, or pruning

techniques. Then we define sparse neural networks and explain

the pruning techniques used in our experiments. After that, we

explain the architecture of the models and dataset that we used

in detail. Finally, we collect metrics to evaluate the performance

of sparse networks in industrial settings, focusing on energy

efficiency, accuracy, and inference time. By collecting these metrics,

we compared the effectiveness of different pruning techniques,

including the SETmethod in the same environment, and examined

their impact on model performance and energy consumption.

According to the results, although using common machine

learning libraries in an industrial environment, i.e., PyTorch, to

develop and implement our experiments introduces limitations–

such as relying on mask matrices to create pruned models and

constraints on modifying the model architecture during training–

we successfully show reductions in total energy consumption

during the training phase. This is particularly evident when

using the SET method to prune the network, which consistently

outperformed three other pruning techniques that we used for our

experiments in terms of energy efficiency. The SETmethod’s strong

approach to sparsity, which keeps the most important connections

in linear layers and filters in convolution layers while pruning

weaker ones in each training round, confirms highly efficient for

industrial applications where energy efficiency is crucial and leads

to cost reduction on large-scale cases.

Moreover, while the remaining methods also show a decrease

in energy consumption during the training stage, the SET method

shows better performance in terms of efficiency. Besides that,

simpler techniques such as Post-Training pruning require major

attention, as they inherit the drawbacks of the dense model. For

instance, if the dense version of the model suffers from overfitting,

the sparse version will retain this issue, limiting its generalization

capability. This emphasizes the importance of using stronger

pruning techniques that not only reduce energy consumption but

also are able to address other weaknesses.

In summary, this research highlights the potential of sparse

neural networks, particularly the one that used the pruning of

the model during the training namely, the SET method and

In-Training, to provide energy-efficient solutions for industrial

applications. By addressing the challenges of energy consumption

and computational costs, our work clears the way for more

sustainable and scalable AI deployments in industrial settings.

7 Future work

While this study provides valuable insights, several areas

remain unexplored, offering significant opportunities for further

research. One of the potential directions is the integration of

sparse neural networks with real-time industrial systems. Fault

detection is a critical element of manufacturing pipelines, and

establishing low-resource, energy-efficient models in this context

can notably enhance operational efficiency. By enabling real-time

monitoring and lively anomaly detection, sparse models can reduce

downtime, decrease production losses, and improve overall output

in industrial settings.

Frontiers inComputer Science 22 frontiersin.org

https://doi.org/10.3389/fcomp.2025.1563942
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Douzandeh Zenoozi et al. 10.3389/fcomp.2025.1563942

FIGURE 18

The evaluation of inference time metric on lightweight devices with limited resources based on 3 di�erent sparsity scenarios (see Table 2). (a)

Scenario (i), Uniform 80% sparsity applied to both convolution and linear layers; (b) Scenario (ii), Mixed sparsity with 80% on linear layers and 50% on

convolution layers; (c) Scenario (iii), Linear-only sparsity (80%) sparsity on linear layers with dense (unpruned) convolution layers.

Another area for exploration is federated learning with sparse

models. This approach can revolutionize how industrial AI systems

are trained and deployed. Federated learning allows sparse models

to be trained on low-cost devices, such as smartphones or

IoT sensors while keeping data privacy. Instead of centralizing

data on a single server, each device trains the model locally

Frontiers inComputer Science 23 frontiersin.org

https://doi.org/10.3389/fcomp.2025.1563942
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Douzandeh Zenoozi et al. 10.3389/fcomp.2025.1563942

FIGURE 19

The evaluation of total energy consumption metric on lightweight devices with limited resources based on 3 di�erent sparsity scenarios (see Table 2).

(a) Uniform 80% sparsity applied to both convolution and linear layers; (b) Mixed sparsity with 80% on linear layers and 50% on convolution layers; (c)

Linear-only sparsity (80%) sparsity on linear layers with dense (unpruned) convolution layers.

using its own data and computational resources, and only the

model updates (not the raw data) are shared with a central

server. This decentralized training pattern not only enhances

data privacy but also addresses the challenge of limited datasets

in industrial applications. Moreover, federated learning enables

collaboration among similar industries by allowing them to

collectively improve a single shared model without compromising

sensitive data.

Frontiers inComputer Science 24 frontiersin.org

https://doi.org/10.3389/fcomp.2025.1563942
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Douzandeh Zenoozi et al. 10.3389/fcomp.2025.1563942

We also plan to investigate the efficacy of sparse neural

networks in more limited-resource environments such as IoT and

edge devices (e.g., Raspberry Pi, NVIDIA Jetson Boards) which

is the ultimate goal of our research. These platforms naturally

face limitations in computational power, memory, and energy

budgets, making sparse architectures a potential candidate for

efficient deployment. Additionally, we aim to evaluate the impact

of quantization techniques on these sparse models, analyzing

how reduced precision affects their accuracy, latency, and energy

efficiency. A deeper exploration of the interplay between sparsity

and quantization could yield practical insights into optimizing

neural networks for real-world applications while maintaining

robustness under hardware limitations.

Additionally, future work should expand the comparison of

sparse models across heavier datasets, diverse architectures, and

more complex models. For instance, evaluating the performance

of sparse networks on large-scale industrial datasets, such as high-

resolution data or multi-modal datasets, could provide deeper

insights into their scalability. Exploring architectures beyond

CNNs, such as Transformers or Graph Neural Networks (GNNs),

would also help generalize the findings of this study to a broader

range of applications.

Data availability statement

Publicly available datasets were analyzed in this study. This

data can be found here: https://medmnist.com/, https://www.

kaggle.com/datasets/beschue/industrial-classification-data-set/,

and https://paperswithcode.com/dataset/visa.

Author contributions

AD: Data curation, Software, Visualization, Writing – original

draft. AL: Conceptualization, Supervision, Validation, Writing –

review & editing. LE: Investigation, Writing – review & editing.
LC: Investigation, Methodology, Supervision, Writing – review &

editing.

Funding

The author(s) declare that financial support was received for the

research and/or publication of this article. This work was supported

by the Open Access Publishing Fund of the Free University of

Bozen-Bolzano and was carried out in the context of project

COMMON-WEARS (Community oriented wearable computing

systems), funded by the Italian Ministry of Research (PRIN 2020

program), grant number I53C21000210001.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.

Generative AI statement

The author(s) declare that no Gen AI was used in the creation

of this manuscript.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

References

Akcay, S., Ameln, D., Vaidya, A., Lakshmanan, B., Ahuja, N., and Genc,
U. (2022). “Anomalib: a deep learning library for anomaly detection,” in 2022
IEEE International Conference on Image Processing (ICIP) (IEEE), 1706–1710.
doi: 10.1109/ICIP46576.2022.9897283

Andriulo, F. C., Fiore, M., Mongiello, M., Traversa, E., and Zizzo, V. (2024). Edge
computing and cloud computing for internet of things: a review. Informatics (MDPI)
11:71. doi: 10.3390/informatics11040071

Apostolopoulos, I. D., and Tzani, M. A. (2022). Industrial object and defect
recognition utilizing multilevel feature extraction from industrial scenes with
deep learning approach. J. Ambient Intell. Humaniz. Comput. 14, 10263–10276.
doi: 10.1007/s12652-021-03688-7

Atashgahi, Z., Liu, T., Pechenizkiy, M., Veldhuis, R., Mocanu, D. C., and van der
Schaar, M. (2024). Unveiling the power of sparse neural networks for feature selection.
arXiv:2408.04583.

Balaprakash, P., Egele, R., Salim, M., Wild, S., Vishwanath, V., Xia, F., et al. (2019).
“Scalable reinforcement-learning-based neural architecture search for cancer deep
learning research,” in Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, SC ’19 (New York, NY, USA: Association
for Computing Machinery), 33. doi: 10.1145/3295500.3356202

Blalock, D., Ortiz, J. J. G., Frankle, J., and Guttag, J. (2020). What is the state of
neural network pruning? arXiv:2003.03033.

Brennan, R. L., and Lee, T. (2024). “Extremely low-power edge connected
devices,” in 2024 IEEE 67th International Midwest Symposium on Circuits and Systems
(MWSCAS) (IEEE), 674–677. doi: 10.1109/MWSCAS60917.2024.10658964

Canziani, A., Paszke, A., and Culurciello, E. (2016). An analysis of deep neural
network models for practical applications. arXiv:1605.07678.

Chen, X., Han, Y., and Zhang, J. (2023). APRIL-GAN: a zero-/few-shot anomaly
classification and segmentation method for CVPR 2023 VAND workshop challenge
tracks 12: 1st place on zero-shot AD and 4th place on few-shot AD. arXiv:2305.17382.

Cheng, H., Zhang, M., and Shi, J. Q. (2024). A survey on deep neural network
pruning: taxonomy, comparison, analysis, and recommendations. IEEE Trans. Pattern
Anal. Mach. Intell. 46, 10558–10578. doi: 10.1109/TPAMI.2024.3447085

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei, L. (2009). “Imagenet: a
large-scale hierarchical image database,” in 2009 IEEE Conference on Computer Vision
and Pattern Recognition (IEEE), 248–255. doi: 10.1109/CVPR.2009.5206848

Doerrich, S., Di Salvo, F., Brockmann, J., and Ledig, C. (2024). Rethinking
model prototyping through the MedMNIST+ dataset collection. Sci. Rep. 15:7669.
doi: 10.1038/s41598-025-92156-9

Drost, B., Ulrich, M., Bergmann, P., Härtinger, P., and Steger, C. (2017).
“Introducing mvtec itodd – a dataset for 3d object recognition in industry,” in 2017
IEEE International Conference on Computer Vision Workshops (ICCVW), 2200–2208.
doi: 10.1109/ICCVW.2017.257

Duan, J., Shi, T., Zhou, H., Xuan, J., and Wang, S. (2021). A novel ResNet-based
model structure and its applications in machine health monitoring. J. Vib. Control 27,
1036–1050. doi: 10.1177/1077546320936506

Erdős, P., and Rényi, A. (2022). On random graphs. I. Publ. Math. Debrecen 6,
290–297. doi: 10.5486/PMD.1959.6.3-4.12

Frontiers inComputer Science 25 frontiersin.org

https://doi.org/10.3389/fcomp.2025.1563942
https://medmnist.com/
https://www.kaggle.com/datasets/beschue/industrial-classification-data-set/
https://www.kaggle.com/datasets/beschue/industrial-classification-data-set/
https://paperswithcode.com/dataset/visa
https://doi.org/10.1109/ICIP46576.2022.9897283
https://doi.org/10.3390/informatics11040071
https://doi.org/10.1007/s12652-021-03688-7
https://doi.org/10.1145/3295500.3356202
https://doi.org/10.1109/MWSCAS60917.2024.10658964
https://doi.org/10.1109/TPAMI.2024.3447085
https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/10.1038/s41598-025-92156-9
https://doi.org/10.1109/ICCVW.2017.257
https://doi.org/10.1177/1077546320936506
https://doi.org/10.5486/PMD.1959.6.3-4.12
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Douzandeh Zenoozi et al. 10.3389/fcomp.2025.1563942

Erhan, L., Liotta, A., and Cavallaro, L. (2025). “Comparing training of
sparse to classic neural networks for binary classification in medical data,” in
Lecture Notes in Computer Science (Cham: Springer Nature Switzerland), 101–106.
doi: 10.1007/978-3-031-78049-3_10

Gadhikar, A., Mukherjee, S., and Burkholz, R. (2022). Why random pruning is all
we need to start sparse. arXiv:2210.02412.

Gao, H., Zhen, T., and Li, Z. (2022). Detection of wheat unsound kernels based on
improved ResNet. IEEE Access 10, 20092–20101. doi: 10.1109/ACCESS.2022.3147838

Goodfellow, I. J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S.,
et al. (2014). Generative adversarial networks. arXiv:1406.2661.

He, K., Zhang, X., Ren, S., and Sun, J. (2016). “Deep residual learning for image
recognition,” in 2016 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR) (IEEE), 770–778. doi: 10.1109/CVPR.2016.90

Hossain, M. S., Al-Hammadi, M., and Muhammad, G. (2019). Automatic fruit
classification using deep learning for industrial applications. IEEE Trans. Industr.
Inform. 15, 1027–1034. doi: 10.1109/TII.2018.2875149

Huo, Z., Gu, B., and Huang, H. (2021). Large batch optimization for deep learning
using new complete layer-wise adaptive rate scaling. Proc. Conf. AAAI Artif. Intell. 35,
7883–7890. doi: 10.1609/aaai.v35i9.16962

Jayasimhan, A., and Pabitha P. (2024). Resprune: an energy-efficient restorative
filter pruning method using stochastic optimization for accelerating CNN. Pattern
Recogn. 155:110671. doi: 10.1016/j.patcog.2024.110671

Jeong, J., Zou, Y., Kim, T., Zhang, D., Ravichandran, A., and Dabeer, O. (2023).
“Winclip: Zero-/few-shot anomaly classification and segmentation,” in 2023 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR) (IEEE), 19606–19616.
doi: 10.1109/CVPR52729.2023.01878

Kanagarla, K. (2024). Edge computing and analytics for iot devices: enhancing
real-time decision making in smart environments. Int. J. Multidisc. Res. 6, 1–9.
doi: 10.2139/ssrn.5012466

Kang, Y.-M., and Lim, Y.-S. (2024). Handling power depletion in energy harvesting
IoT devices. Electronics 13:2704. doi: 10.3390/electronics13142704

Khan, R. U., Zhang, X., Kumar, R., and Tariq, H. A. (2017). “Analysis of resnetmodel
for malicious code detection,” in 2017 14th International Computer Conference on
Wavelet Active Media Technology and Information Processing (ICCWAMTIP) (IEEE),
239–242. doi: 10.1109/ICCWAMTIP.2017.8301487

Kolapo, R., Kawu, F. M., Abdulmalik, A. D., Edem, U. A., Young, M. A., and Mordi,
E. C. (2024). Edge computing: revolutionizing data processing for IoT applications. Int.
J. Sci. Res. Arch. 13, 023–029. doi: 10.30574/ijsra.2024.13.2.2082

Krizhevsky, A. (2014). One weird trick for parallelizing convolutional neural
networks. arXiv:1404.5997.

Lasby, M., Golubeva, A., Evci, U., Nica, M., and Ioannou, Y. (2023). Dynamic sparse
training with structured sparsity. arXiv:2305.02299.

Lazzaro, D., Ciná, A. E., Pintor, M., Demontis, A., Biggio, B., Roli, F., et al. (2023).
Minimizing energy consumption of deep learning models by energy-aware training.
arXiv:2307.00368.

Lee, J., Lee, Y. C., and Kim, J. T. (2020). Fault detection based on one-class deep
learning for manufacturing applications limited to an imbalanced database. J. Manuf.
Syst. 57, 357–366. doi: 10.1016/j.jmsy.2020.10.013

Li, I.-H., and Chang, T.-S. (2024). “Dynamic gradient sparse update for edge
training,” in 2024 IEEE International Symposium on Circuits and Systems (ISCAS), 1–5.
doi: 10.1109/ISCAS58744.2024.10558072

Liang, T., Glossner, J., Wang, L., Shi, S., and Zhang, X. (2021). Pruning and
quantization for deep neural network acceleration: a survey. Neurocomputing 461,
370–403. doi: 10.1016/j.neucom.2021.07.045

Lin, T.-Y., Maire, M., Belongie, S., Bourdev, L., Girshick, R., Hays, J., et al. (2014).
Microsoft COCO: common objects in context. arXiv:1405.0312.

Ma, X., Qin, M., Sun, F., Hou, Z., Yuan, K., Xu, Y., et al. (2021). Effective model
sparsification by scheduled grow-and-prune methods. arXiv:2106.09857.

Mittal, D., Bhardwaj, S., Khapra, M. M., and Ravindran, B. (2019). Studying the
plasticity in deep convolutional neural networks using random pruning. Mach. Vis.
Appl. 30, 203–216. doi: 10.1007/s00138-018-01001-9

Mocanu, D. C., Mocanu, E., Stone, P., Nguyen, P. H., Gibescu, M., and Liotta, A.
(2018). Scalable training of artificial neural networks with adaptive sparse connectivity
inspired by network science. Nat. Commun. 9:2383. doi: 10.1038/s41467-018-04316-3

Nikdan, M., Pegolotti, T., Iofinova, E., Kurtic, E., and Alistarh, D. (2023).
SparseProp: Efficient sparse backpropagation for faster training of neural networks.
arXiv:2302.04852.

Nimmagadda, Y. (2025). “Model optimization techniques for edge devices,” in
Model Optimization Methods for Efficient and Edge AI, Ch. 4 (JohnWiley & Sons, Ltd),
57–85. doi: 10.1002/9781394219230.ch4

Palena, M., Cerquitelli, T., and Chiasserini, C. F. (2024). Edge-device
collaborative computing for multi-view classification. Comput. Netw. 254:110823.
doi: 10.1016/j.comnet.2024.110823

Qu, Y., Qu, L., Chen, T., Zhao, X., Li, J., and Yin, H. (2024). Sparser training for
on-device recommendation systems. arXiv:2411.12205.

Rane, J., Kaya, Ö., Mallick, S. K., and Rane, N. L. (2024). “Scalable and
adaptive deep learning algorithms for large-scale machine learning systems,” in Future
Research Opportunities for Artificial Intelligence in Industry 4.0 and 5.0 (Deep Science
Publishing), 39–92. doi: 10.70593/978-81-981271-0-5_2

Redmon, J., Divvala, S., Girshick, R., and Farhadi, A. (2016). “You only look once:
unified, real-time object detection,” in 2016 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR) (IEEE), 779–788. doi: 10.1109/CVPR.2016.91

Reed, R. (1993). Pruning algorithms-a survey. IEEE Trans. Neural Netw. 4, 740–747.
doi: 10.1109/72.248452

Schuerrle, B., Sankarappan, V., and Morozov, A. (2023). “SynthiCAD: generation
of industrial image data sets for resilience evaluation of safety-critical classifiers,” in
Proceeding of the 33rd European Safety and Reliability Conference (Singapore: Research
Publishing Services), 2199–2206. doi: 10.3850/978-981-18-8071-1_P400-cd

Shi, Y., Tang, A., Niu, L., and Zhou, R. (2024). Sparse optimization guided pruning
for neural networks. Neurocomputing 574:127280. doi: 10.1016/j.neucom.2024.127280

Shuvo, M. M. H., Islam, S. K., Cheng, J., and Morshed, B. I. (2023). Efficient
acceleration of deep learning inference on resource-constrained edge devices: a review.
Proceed. IEEE 111, 42–91. doi: 10.1109/JPROC.2022.3226481

Simonyan, K., and Zisserman, A. (2014). Very deep convolutional networks for
large-scale image recognition. arXiv:1409.1556.

Sofianidis, I., Konstantakos, V., and Nikolaidis, S. (2024). “Energy consumption
aspects on embedded system for IoT applications,” in 2024 13th International
Conference on Modern Circuits and Systems Technologies (MOCAST) (IEEE), 1–5.
doi: 10.1109/MOCAST61810.2024.10615490

Soumyalatha, N., and Manjunath, R. K. (2023). Compact optimized deep
learning model for edge: a review. Int. J. Electr. Comput. Eng. 13:6904.
doi: 10.11591/ijece.v13i6.pp6904-6912

Sun, C., Chen, J., Li, Y., Wang, W., and Ma, T. (2023). Random pruning:
channel sparsity by expectation scaling factor. PeerJ Comput. Sci. 9:e1564.
doi: 10.7717/peerj-cs.1564

Susskind, Z., Arora, A., Miranda, I. D. S., Bacellar, A. T. L., Villon, L. A. Q.,
Katopodis, R. F., et al. (2023). ULEEN: a novel architecture for ultra low-energy edge
neural networks. arXiv:2304.10618.

Taha, R. T., Abdullah, A. O., Dronach, A., Shnain, S. K., Khaleefah, A. M., and
Tkachenko, O. (2024). “The convergence of edge computing and IoT-A paradigm shift
in data processing,” in 2024 36th Conference of Open Innovations Association (FRUCT)
(IEEE), 787–796. doi: 10.23919/FRUCT64283.2024.10749961

Tyche, N., Taylor, A., Evans, J., and Reid, M. (2024). Improving
neural network efficiency through advanced pruning techniques. Techrxiv.
doi: 10.36227/techrxiv.172720330.08872446/v1

Wang, J. (2023). Research on pruning optimization techniques for neural networks.
Appl. Comput. Eng. 19, 152–158. doi: 10.54254/2755-2721/19/20231025

Witt, N., Deutel, M., Schubert, J., Sobel, C., and Woller, P. (2024). “Energy-
efficient AI on the edge,” in Unlocking Artificial Intelligence (Cham: Springer Nature
Switzerland), 359–380. doi: 10.1007/978-3-031-64832-8_19

Wu, S., Li, G., Deng, L., Liu, L., Wu, D., Xie, Y., et al. (2019). L1 -norm batch
normalization for efficient training of deep neural networks. IEEE Trans. Neural Netw.
Learn. Syst. 30, 2043–2051. doi: 10.1109/TNNLS.2018.2876179

Xiang, K., Peng, L., Yang, H., Li, M., Cao, Z., Jiang, S., et al. (2021). A novel
weight pruning strategy for light weight neural networks with application to the
diagnosis of skin disease. Appl. Soft Comput. 111:107707. doi: 10.1016/j.asoc.2021.107
707

Xu, W., Fu, Y.-L., and Zhu, D. (2023). ResNet and its application to medical
image processing: research progress and challenges. Comput. Methods Progr. Biomed.
240:107660. doi: 10.1016/j.cmpb.2023.107660

Yang, J., Shi, R., and Ni, B. (2021). “Medmnist classification decathlon:
a lightweight automl benchmark for medical image analysis,” in 2021 IEEE
18th International Symposium on Biomedical Imaging (ISBI) (IEEE), 191–195.
doi: 10.1109/ISBI48211.2021.9434062

Yang, J., Shi, R., Wei, D., Liu, Z., Zhao, L., Ke, B., et al. (2023). Medmnist v2-a large-
scale lightweight benchmark for 2d and 3d biomedical image classification. Sci. Data
10:41. doi: 10.1038/s41597-022-01721-8

You, J., Chung, J.-W., and Chowdhury, M. (2023). “Zeus: understanding and
optimizing GPU energy consumption of DNN training,” in 20th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 23) (Boston, MA: USENIX
Association), 119–139.

Zou, Y. (2024). Research on pruning methods for mobileNet convolutional neural
network. Highlights Sci. Eng. Technol. 81, 232–236. doi: 10.54097/a742e326

Zou, Y., Jeong, J., Pemula, L., Zhang, D., and Dabeer, O. (2022). “SPot-the-
difference self-supervised pre-training for anomaly detection and segmentation,” in
Lecture Notes in Computer Science (Cham: Springer Nature Switzerland), 392–408.
doi: 10.1007/978-3-031-20056-4_23

Frontiers inComputer Science 26 frontiersin.org

https://doi.org/10.3389/fcomp.2025.1563942
https://doi.org/10.1007/978-3-031-78049-3_10
https://doi.org/10.1109/ACCESS.2022.3147838
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/TII.2018.2875149
https://doi.org/10.1609/aaai.v35i9.16962
https://doi.org/10.1016/j.patcog.2024.110671
https://doi.org/10.1109/CVPR52729.2023.01878
https://doi.org/10.2139/ssrn.5012466
https://doi.org/10.3390/electronics13142704
https://doi.org/10.1109/ICCWAMTIP.2017.8301487
https://doi.org/10.30574/ijsra.2024.13.2.2082
https://doi.org/10.1016/j.jmsy.2020.10.013
https://doi.org/10.1109/ISCAS58744.2024.10558072
https://doi.org/10.1016/j.neucom.2021.07.045
https://doi.org/10.1007/s00138-018-01001-9
https://doi.org/10.1038/s41467-018-04316-3
https://doi.org/10.1002/9781394219230.ch4
https://doi.org/10.1016/j.comnet.2024.110823
https://doi.org/10.70593/978-81-981271-0-5_2
https://doi.org/10.1109/CVPR.2016.91
https://doi.org/10.1109/72.248452
https://doi.org/10.3850/978-981-18-8071-1_P400-cd
https://doi.org/10.1016/j.neucom.2024.127280
https://doi.org/10.1109/JPROC.2022.3226481
https://doi.org/10.1109/MOCAST61810.2024.10615490
https://doi.org/10.11591/ijece.v13i6.pp6904-6912
https://doi.org/10.7717/peerj-cs.1564
https://doi.org/10.23919/FRUCT64283.2024.10749961
https://doi.org/10.36227/techrxiv.172720330.08872446/v1
https://doi.org/10.54254/2755-2721/19/20231025
https://doi.org/10.1007/978-3-031-64832-8_19
https://doi.org/10.1109/TNNLS.2018.2876179
https://doi.org/10.1016/j.asoc.2021.107707
https://doi.org/10.1016/j.cmpb.2023.107660
https://doi.org/10.1109/ISBI48211.2021.9434062
https://doi.org/10.1038/s41597-022-01721-8
https://doi.org/10.54097/a742e326
https://doi.org/10.1007/978-3-031-20056-4_23
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

	A comparative study of neural network pruning strategies for industrial applications
	1 Introduction
	2 Related work
	3 Methodology
	3.1 Sparsity
	3.1.1 Pre-training
	3.1.1.1 L1 algorithm

	3.1.2 In-training
	3.1.2.1 Random algorithm

	3.1.3 Post-training
	3.1.4 SET method

	3.2 Models
	3.2.1 VGG-Net architecture
	3.2.2 ResNet architecture
	3.2.3 Generative adversarial networks

	3.3 Dataset
	3.3.1 MedMNIST
	3.3.2 MVTec 3D object classification
	3.3.3 VisA dataset

	3.4 Metrics
	3.5 Experimental design

	4 Results
	4.1 Training accuracy
	4.2 Training loss
	4.3 Training time
	4.4 Test accuracy
	4.5 Average inference time
	4.6 Total training energy
	4.7 Performance evaluation on resource-constrained devices

	5 Discussion
	6 Conclusion
	7 Future work
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Generative AI statement
	Publisher's note
	References


