
TYPE Perspective

PUBLISHED 09 July 2025

DOI 10.3389/fcomp.2025.1564048

OPEN ACCESS

EDITED BY

Huai Liu,

Swinburne University of Technology, Australia

REVIEWED BY

Mengjiao Guo,

Swinburne University of Technology, Australia

*CORRESPONDENCE

Damian Arellanes

damian.arellanes@lancaster.ac.uk

RECEIVED 21 January 2025

ACCEPTED 10 June 2025

PUBLISHED 09 July 2025

CITATION

Arellanes D (2025) Models of high-level

computation. Front. Comput. Sci. 7:1564048.

doi: 10.3389/fcomp.2025.1564048

COPYRIGHT

© 2025 Arellanes. This is an open-access

article distributed under the terms of the

Creative Commons Attribution License (CC

BY). The use, distribution or reproduction in

other forums is permitted, provided the

original author(s) and the copyright owner(s)

are credited and that the original publication

in this journal is cited, in accordance with

accepted academic practice. No use,

distribution or reproduction is permitted

which does not comply with these terms.

Models of high-level
computation

Damian Arellanes*

School of Computing and Communications, Lancaster University, Lancaster, United Kingdom

Classical models of computation are useful for understanding computability

in the small; however, they fall short when it comes to analyzing large-scale,

complex computations. To address this gap, theoretical computer science has

witnessed the emergence of several formalisms that attempt to raise the level of

abstraction with the aim of describing not only a single computing device but

interactions among a collection of them. In this paper, we unify such formalisms

under a common framework, which we refer to as Models of High-Level

Computation. Our aim is to o�er an accessible overview of these models.

KEYWORDS

models of computation, computability theory, high-level computation,

compositionality, algebraic composition

1 Introduction

Classical models of computation formally emerged during the first half of the century

20th, as an attempt to capture the very essence of computation in the form of information

processing. Under the Church-Turing thesis, these models have been successful to describe

any possible effective procedure construed as a (monolithic) algorithmic process. Although

they can be used to describe complex computations, classical models fail to provide

expressive means to do so, apart from not being suitable to accept information streams

at computation-time. Describing complex computations has become essential nowadays

since the scale and complexity of computing systems is exponentially increasing (especially

in the realm of distributed computing). Accordingly, plenty of Models of High-Level

Computation (MHCs) have been proposed over the last half century so as to capture the

essence of complex computations. In this paper, we describe the meaning, key properties

and representative paradigms of MHCs, and identify promising directions for future

research in advancing their theory and application.

The rest of the paper is structured as follows. Section 2 describes the general notion

of MHCs. Section 3 sketches the design of a simple MHC with the aim of discussing the

key elementary properties of such models. Section 4 presents a preliminary classification

of MHCs by considering three major paradigms. Section 5 outlines the conclusions and

future directions of the research area this paper introduces.

2 What is a model of high-level computation?

Before describing what an MHC is, let us consider an e-commerce web application

composed of several microservices running on different machines, each with its own state

and behavior (e.g., user authentication or payment processing). Modeling this application

as a single Turing machine (i.e., as a low-level computing device) would require encoding

all possible states and communication interleavings into one massive transition table,

which may be both impractical and intractable, especially as the number of microservices

and interactions increase. To make things worse, this application would require not only

Frontiers inComputer Science 01 frontiersin.org

https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org/journals/computer-science#editorial-board
https://www.frontiersin.org/journals/computer-science#editorial-board
https://www.frontiersin.org/journals/computer-science#editorial-board
https://www.frontiersin.org/journals/computer-science#editorial-board
https://doi.org/10.3389/fcomp.2025.1564048
http://crossmark.crossref.org/dialog/?doi=10.3389/fcomp.2025.1564048&domain=pdf&date_stamp=2025-07-09
mailto:damian.arellanes@lancaster.ac.uk
https://doi.org/10.3389/fcomp.2025.1564048
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fcomp.2025.1564048/full
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Arellanes 10.3389/fcomp.2025.1564048

FIGURE 1

Conceptual representation of an algebraic composition operator that takes M computing devices and produces a composite one. Each device

operand can be either composite or non-composite.

reasoning about control flow but also about data flow to formally

determine the order in which (distributed) computing devices

(i.e., microservices) are activated and how data is exchanged

among them, respectively. As classical, single-device models of

computation primarily focus on control flow, they are unsuitable

to adequately describe or analyse our web application and

modern computing systems in general. Rather than thinking about

computation in the small, what we need is a formal approach

to compositionally construct global complex behavior from local

simple computations. This is where MHCs come into play.

An MHC raises the level of abstraction of its classical, low-level

counterpart (e.g., Turing Machines) by providing a birds-eye-view

of multiple computing devices rather than focusing on a single one

(see Box 1).1 As individual devices are treated as modular black

boxes, their internal details are irrelevant. What matters is how

to glue together multiple (low- or even high-level) computations

in order to form more complex ones. Thus, an MHC induces

modularity and describes how computing devices interact with

the aim of processing information that may be initially encoded,

that can continuously be produced by an exogenous entity or any

combination thereof.2 That is, an MHC can be open or closed.3

By the above, it is evident that an MHC needs to intrisically

separate computation from interaction. Therefore, a so-called

composition mechanism needs to be used. A composition

mechanism particularly specifies how computing devices interact

from a high-level perspective. An interaction always defines control

flow either implicitly or explicitly. It is explicit when there is a

clear construct specifying the order of invocation of computing

devices, and implicit otherwise. Apart from control, an interaction

can optionally define implicit or explicit data flow to establish a data

exchange scheme among computing devices.4

1 We should not confuse high-level with higher-order computations

(Longley and Normann, 2015). Higher-order computability is a well-

established field in theoretical computer science, whose aim is to study

computations that receive and produce other computations.

2 By exogenous, we mean an entity that is out of the scope of the

interacting computing devices, e.g., a human operator.

3 Classical, low-levelmodels of computation are inherently closed because

they have a fixed input before computing (e.g., on a tape) so outputs can

only be read after termination. Open models of computation contrast with

this behavior by allowing the processing of data streams from the external

world while computing. An example is a workflow process that pauses a data

pipeline and waits for a human operator’s input before proceeding, just as in

the original Turing c-machines (Turing, 1937).

4 For example, Reo (Arbab, 2004) defines explicit data flows (via timed

connectors) and implicit control flow, whereas process calculi (Baeten et al.,

2009) typically define explicit control flow (e.g., via message passing) and

implicit data flow.

BOX 1 What is an MHC?

Rather than describing how a single computing device produces an output

from a given input, an MHC gives a birds-eye-view on multiple interacting

computing devices. For this, an MHC provides formal rules to determine the

moment in which a each participant device should compute and how devices

must interact.

Typically, computing devices facilitate composition by

providing interfaces that serve as endpoints to entry or exit some

internal computational structure. Enabling these endpoints is what

allows treating computing devices as high-level, modular black

boxes which can be composed algebraically or non-algebraically

(see Box 2). Only algebraic composition enables compositionality,

a necessary property to ensure closure by the provision of higher-

order operators that receive a number of computing devices and

produce a composite one which can, in turn, be used as an operand

to construct even more complex computing devices (see Figure 1).

Evidently, algebraic composition relies on well-defined

operators, together with algebraic laws (e.g., associativity), to

formally combine computing devices; thereby, ensuring that the

structure of any composite is deterministic (i.e., predictable) and

can be reasoned about formally. Algebraic composition supports

high modularity and reuse, since computations are designed to be

composable according to predefined rules. Any algebraic composite

is itself a valid (high-level) computation that preserves properties

from the operands and can be further composed into more

complex computing devices. Non-algebraic (ad-hoc) composition

does not guarantee this preservation property or predictability

because computations need to be glued together manually without

any formal basis, leading to unforeseen incompatibilities and no

guarantees that composites are valid, modular or reusable.5

BOX 2 Key properties of an MHC.

AnMHC (i) can be open or closed, (ii) induces modularity by black-boxing

computing devices (with clear interfaces), (iii) separates computation from

interaction, (iv) always defines explicit or implicit control flow, (v) optionally

defines explicit or implicit data flow, and (vi) enables interaction among

computing devices via a composition mechanism (which can be algebraic or

non-algebraic).

5 The original Actor Model (Hewitt, 1977) is a concrete example of a non-

algebraic MHC, whereas Reo (Arbab, 2004) is an example of the counterpart,

which allows the algebraic construction of high-level computations in the

form of data flow circuits. The next section presents another example of an

algebraic MHC.

Frontiers inComputer Science 02 frontiersin.org

https://doi.org/10.3389/fcomp.2025.1564048
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Arellanes 10.3389/fcomp.2025.1564048

3 Designing a simple MHC

For the sake of argument, even if not computationally powerful,

in this section we design a simple MHC to demonstrate the key

properties discussed in Section 2. For this, we consider computing

devices in the form of Nondeterministic Finite Automata (NFAs)

as well as composition operators for concatenating (⊕) and

parallelising (⊗) — see Definition 1. The behavior of ⊕ and ⊗

is directly derivable from the respective proofs of closure under

concatenation and union of regular languages (Sipser, 2013), as

shown by Definitions 2 and 3.

Definition 1 (NFA). Let A be the universe of NFAs. A NFA

N ∈ A is a tuple (6, S, s, δ, F) where 6 is a finite set of input

symbols which always contains the empty string ǫ, S is a finite

set of states, s ∈ S is called an initial state, δ : S× 6 → P(S) is

a transition function and F ⊆ S is an empty or nonempty set

of final states. We say that N accepts a string w = x1x2 . . . xn
over 6 if there is a sequence (p0, p1, . . . , pn) ∈ Sn satisfying the

following conditions:

1. p0 = s,

2. pi+1 ∈ δ(pi, xi+1) for i = 0, . . . , n− 1 and

3. pn ∈ F.

Definition 2 (Concatenative NFA). The concatenation

operator ⊕ :A× A → A is a binary function that receives two

NFAS, N1 = (61, S1, s1, δ1, F1) and N2 = (62, S2, s2, δ2, F2), and

produces a concatenative NFA N1 ⊕ N2 = (60, S0, s0, δ0, F0) where

60 = 61 ∪ 62, S0 = S1 ∪ S2, s0 is the initial state s1 of N1, F0 = F2
and:

δ0(s, x) =























δ1(s, x) if s ∈ S1 and s /∈ F1

δ1(s, x) if s ∈ F1 and x 6= ǫ

δ1(s, x) ∪ {s2} if s ∈ F1 and x = ǫ

δ2(s, x) if s ∈ S2

for any state s ∈ S0 and any symbol x ∈ 60.

Definition 3 (Parallel NFA). The parallelising operator

⊗ :A× A → A is a binary function that receives two NFAS,

N1 = (61, S1, s1, δ1, F1) and N2 = (62, S2, s2, δ2, F2), and produces

a parallel NFA N1 ⊗ N2 = (60, S0, s0, δ0, F0) where 60 = 61 ∪ 62,

S0 = S1 ∪ S2 ∪ {s0}, F0 = F1 ∪ F2 and:

δ0(s, x) =















δi(s, x) if s ∈ Si for i = 1, 2

{s1, s2} if s = s0 and x = ǫ

∅ if s = s0 and x 6= ǫ

for any state s ∈ S0 and any symbol x ∈ 60.

After defining the algebraic composition operators for our

MHC, let us now consider the NFA N1 depicted in Figure 2a which

recognizes the language L1 = {w} where w is a string over {a, b}

containing the symbol “b” at the third position (from right to left)

such as abaabaa (Sipser, 2013). Also, consider the NFAN2 depicted

in Figure 2b which recognizes the language L2 = {ambn} form > 0

and n ≥ 0.

Treating N1 and N2 as high-level computations (by just

considering their respective initial and final states), enable us

to compose them into more complex automata (i.e., high-

level computations) via the operators described in Definitions

2 and 3. Particularly, N1 and N2 can be composed into the

concatenative NFA N1 ⊕ N2 to accept strings in the language

{wambn}. The structure of such a composite is depicted in Figure 2c.

Figure 2d shows that N1 and N2 can also be composed into

the parallel NFA N1 ⊗ N2 to recognizing the language L1 ∪ L2.

As it is well-known that regular languages are closed under

concatenation and union, both N1 ⊕ N2 and N1 ⊗ N2 can in

turn be inductively composed into more complex NFAs using the

same composition operators. That is, our MHC satisfies closure.

It also satisfies the closed-world property since it is well-known

that every (classical) NFA does not admit external data streams

while computing.

Control flow between composed NFAs is implicitly defined

in the added state transitions of a composite NFA. For instance,

the transition δ(p3, ǫ) = {q0} of N1 ⊕ N2 serves to implicitly pass

control from N1 to N2, whereas the transition δ(r0, ǫ) = {p0, q0} of

N1 ⊗ N2 defines implicit control for the simultaneous activation of

N1 and N2.

Although explicit data flow is not directly supported by our

MHC, it is important to analyse how data is processed within

a composite automaton. In the case of a concatenative NFA, an

input string is esentially computed in two different chunks. In a

parallel NFA, there is no data partitioning but each composed NFA

computes the whole input independently. For instance, if aabaaaab

needs to be processed by N1 ⊗ N2 then both N1 and N2 would

compute and reject on aabaaaab simultaneously. Injecting the same

input intoN1 ⊕ N2 would lead toN1 passing control toN2 just after

implicitly determining that aabaa is in L1. After receiving control,

N2 would just compute and accept on aab. If we were to extend our

MHC with the notion of explicit data flows (e.g., by introducing

direct message passing), N1 ⊕ N2 could sequentially pass aab from

N1 to N2. By the same token, we could also enable data replication

within N1 ⊗ N2 to make sure both N1 and N2 receive a copy of the

whole input before computing.

Returning to the motivating scenario introduced in Section 2,

we could use our composition operators to incrementally define

the global behavior of our e-commerce application. For example,

the ⊕ operator can be used to sequentially compose the

behavior of microservices for order processing and customer

notification, in that order. Similarly, ⊗ can be employed

to construct a composite microservice for parallel inventory

checks across multiple third-party suppliers. This composite can,

in turn, be sequentially composed with another microservice

to display the inventory results. This bottom-up composition

process can be continued until forming a complex, large-

scale e-commerce system. In this example, we opt to explicitly

deal with microservices since they are increasingly being used

as (composable) units of computation in modern distributed

systems. With our state-oriented MHC, although limited in

computational power, we can mirror how microservice-based

applications are designed and composed in practice (i.e., in

a bottom-up manner). State-oriented MHCs are not the only

way of defining high-level computations as we shall see in the

next section.

Frontiers inComputer Science 03 frontiersin.org

https://doi.org/10.3389/fcomp.2025.1564048
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Arellanes 10.3389/fcomp.2025.1564048

A

C

D

B

FIGURE 2

The NFAs displayed in (a) and (b) serve as building blocks to construct more complex NFAs such as (c) and (d). We use an enclosing box to denote that

the internal details of an automaton are abstracted away. Only initial and final states are visible from a high-level perspective. That is, both (a) and (b)

are treated as black boxes. (a) NFA N1. (b) NFA N2. (c) Concatenative NFA N1 ⊕N2 (as per Definition 2). (d) Parallel NFA N1 ⊗N2 (as per Definition 3).

4 What classes of MHCs do currently
exist?

In this section, we classify MHCs into three different classes:

state-oriented, data-oriented and control-oriented. For each of

them, we provide a brief description and present a few examples.

State-oriented MHCs are built upon traditional Finite State

Machines (FSMs) to enable the description of complex computing

systems. The most representative models in this class are the

so-called Communicating Finite State Machines (CFSMs) (Brand

and Zafiropulo, 1983) and Hierarchical Finite State Machines

(HFSMs) (Harel, 1987).6 CFSMs introduce “send” and “receive”

operations in their semantics to enable concurrent interactions

among distinct FSMs via (unbounded) First-In-First-Out (FIFO)

6 Note that there also is a hybrid variant calledCommunicating Hierarchical

State Machines (Alur et al., 1999).

channels. The overall behavior of a system is described through

traces of configurations each of which is a tuple of both the

state of the FSMs involved and the content of FIFO channels.

Extensions of CFSMs include open CFSMs (Barbanera et al., 2019)

and parameterised CFSMs (Bollig, 2014). The other subclass of

state-orientedMHCs is that of HFSMswhich allow the specification

of nested FSMs in the form of so-called superstates. Due to their

simplicity to modeling complex high-level computations, HFSMs

have influenced the design of several industry-oriented formalisms

such as the UML Superstructure specification which, in turn, has

become the de facto standard for modeling complex software

systems. In Section 3, we designed a simple MHC which can be

classified as a HFSM. Other examples pertaining to this class are

Hierarchical Featured State Machines (Fragal et al., 2019) and

scope-dependent HFSMs (La Torre et al., 2008).

Data-oriented MHCs originated in late sixtees as an attempt

to model concurrent computations in the form of direct message

passing among a collection of interacting computing devices

Frontiers inComputer Science 04 frontiersin.org

https://doi.org/10.3389/fcomp.2025.1564048
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Arellanes 10.3389/fcomp.2025.1564048

(usually referred to as actors). In these models, control flow is

not explicit but implicit in the collaborative exchange of data.

Here, data-driven computations are typically expressed as directed

graphs in which nodes and edges denote data processing actors

and explicit communication channels for directionally exchanging

data streams, respectively (Dennis, 1974).7 Perhaps the most

representative MHCs pertaining to this class are Kahn Process

Networks (KPNs) (Kahn, 1974) and theActorModel (Hewitt, 1977).

On the one hand, KPNs define denotational semantics formodeling

(high-level) concurrent actors that communicate through FIFO

queues. Although operational semantics have been proposed to

explicitly describe the flow of data values (Dennis, 1974), it has

been showed that such a semantics coincide with the original

denotational notion of KPNs (Lee and Matsikoudis, 2009). The

operational idea is that there is a static network of actors in which

every actor consumes input tokens, perfoms some computation on

those tokens and produces output tokens that can potentially be

consumed by other actors. The Actor Model does not operate on

a static network of data processing actors, but it allows actors to

dynamically create other actors, send messages to other actors and

decide how to handle data. Other data-oriented MHCs that have

been proposed over time (many of them variants of KPNs) include

Synchronous Data Flow (SDF) (Lee and Messerschmitt, 1987),

dataflow process networks (Lee and Parks, 1995), reactive process

networks (Geilen and Basten, 2004) and synchronous blocks

(Edwards and Lee, 2003). Interestingly, there are some MHCs

[e.g., Reo (Arbab, 2004)] which do not allow direct data passing

among computing devices, but data exchanges are “coordinated

exogenously” via well-defined algebraic dataflow structures.8

Control-oriented MHCs enable the specification of explicit

order in which individual computing devices need to be invoked

so that interacting devices behave as passive units of computation.

Examples of MHCs belonging to this class are exogenous connectors

for encapsulated components (Lau et al., 2006), Behavior Trees

(Colledanchise and Ögren, 2018) and workflow control flow models

(Russell et al., 2016). Particularly, exogenous connectors allow

the formation of hierarchical control flow structures that define

(exogenous) coordination for the invocation of different computing

devices. A few extensions of this model have been proposed over

time (e.g., Lau and Ornaghi, 2009; Rana et al., 2022; Arellanes

et al., 2023). Behavior trees are similar to exogenous connectors

in the sense that hierarchical control flow structures are formed.

The difference lies in the operational semantics of control flow

coordination. Over time, several extensions and enhacements of

Behavior Trees have been proposed (see Iovino et al., 2022), mainly

to modeling modular Robot behavior. Apart from exogenous

connectors and Behavior Trees, we also have workflow control flow

models which define formal rules to govern the computation of

workflows. Here, control flow specifies the order in which workflow

activities are activated. A workflow activity is a fundamental

7 Some data-oriented MHCs [e.g., Token Flows (Buck and Lee, 1993)]

introduce special actors to enable control constructs such as branching.

8 Data-orientedMHCs are increasingly finding applications in domains that

require the processing of data streams in some predefined order such as the

Internet of Things. For this, various tools built upon dataflow models have

emerged over time [e.g., Node-Red (Hagino and O’Leary, 2021)].

unit of computation which can either be indivisible or contain

other activities. Specific examples of workflow control flow models

include Workflow Nets (Van der Aalst, 1998), formal BPEL process

models (Ouyang et al., 2007), YAWL (Van der Aalst and ter

Hofstede, 2005), among others.9

It is important to note that the three classes of MHCs we

just considered are not exhaustive but indicative of the vast

range of MHCs that have been proposed over time in the need

of describing complex computations. For instance, we did not

consider MHCs that combine state- and data-oriented features

(e.g., SDF with HFSMs), typically within the Ptolemy framework

(Tripakis et al., 2013). Similarly, we did not consider process calculi

(Baeten et al., 2009) which are KPN-influenced models that borrow

properties from both data- and control-oriented MHCs, in order

to enable the description of inter-process communication through

well-defined algebraic laws for equational reasoning. In the last

years, there has been an increasing tendency to move toward

describing high-level processes via algebras over operads of wiring

diagrams (Yau, 2018) which provide formal constructs to reasoning

about functional and concurrent computations in an intuitive yet

rigorous manner, typically in the language of symmetric monoidal

categories wherein morphisms express high-level computations

that can graphically be depicted as string diagrams (Piedeleu and

Zanasi, 2025).10 We believe that such category-theoretic operadic

models are collectively forging the foundations of promising

compositionality-enabling MHCs. Examples within this paradigm

include tape diagrams (Bonchi et al., 2025), the many-worlds

calculus (Chardonnet et al., 2025), the calculus of signal flows

(Bonchi et al., 2017), the resource calculus (Bonchi et al., 2019)

and the zx-calculus (Coecke and Duncan, 2011). Although not

operadic in nature, other formalisms deserving attention are so-

called component models (Lau and Di Cola, 2017) since many of

them formMHCs themselves. For instance, Reo (Arbab, 2004) and

exogenous connectors (Lau et al., 2006) are component models that

yield data- and control-oriented MHCs, respectively, as mentioned

previously.

5 Conclusions and future directions

In this paper, we introduced a new class of models of

computation referred to as MHCs. Contrary to their low-level

counterpart, the purpose of an MHC is to define interactions

among diverse computing devices through a certain composition

mechanism, so that interaction results from composition (not

the other way round). As interactions occur outside the internal

structure of each composed computing device, an MHC separates

computation from interaction and induces modularity by treating

computing devices as black bloxes. Composition can be done

either algebraically or non-algebraically in order to specify

9 A workflow engine is an abstract machine able to receive a workflow

control flow model M and a workflow specification S, before computing the

activities in S according to the rules imposed by M. Workflow engines are

particularly useful in the real-world for business process automation (Reijers,

2021).

10 String diagrams have their roots in the Penrose graphical notation for

tensor networks (Penrose, 1971).

Frontiers inComputer Science 05 frontiersin.org

https://doi.org/10.3389/fcomp.2025.1564048
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Arellanes 10.3389/fcomp.2025.1564048

(explicit/implicit) control flow and, optionally, (explicit/implicit)

data flow.

In Section 3, we presented a closed MHC for facilitating

the interaction of NFAs through an algebraic composition

mechanism that defines implicit control flow and implicit data

flow. Through this example, we demonstrated the modularity

property that permeates the notion of MHCs. Although our

examplary MHC satisfies closure over NFAs, there are other

MHCs that do not necessarily compose state machines so as

to deal with the well-known state explosion problem, e.g.,

(Arbab, 2004; Lau et al., 2006). There even are MHCs that

provide mechanisms to sequentially compose Turing Machines

(Goldin et al., 2004). In Section 4, we classified MHCs into three

major classes: state-oriented, data-oriented and control-oriented.

Although our review is introductory only, it can serve as a

starting point to devise a more complete classification scheme

(or even a whole taxonomy). For a more detailed analysis and

comparison between MHC classes, one can examine limitations

in terms of the properties presented in Section 2 and beyond

such as determinism vs. non-determinism or algebraic vs. non-

algebraic.

We believe that algebraically composing computing devices is

of paramount importance to tame the complexity of interactions,

especially as the size of computing devices becomes larger

and larger. Algebraic composition can also be beneficial to

compositionally verify certain properties such as termination

and reachability. Nevertheless, there are number of directions

that need to be addressed before unleashing the full potential

of MHCs, including (compositional) concurrency for unrestricted

synchronization among computing devices at different granularity

levels (as the most pressing challenge). Specifying, analyzing and

verifying concurrent behaviors in a compositional manner can

mitigate state explosion through modular reasoning. Another

potential direction is concerned with the classification of expressive

power (especially of open MHCs) to rigorously compare classes of

problems that can be solved while determining trade-offs between

computational power and computational tractability. Equivalence

proofs with respect to existing models of computation are also

needed to establish computational universality while clarifying

(or extending) computability boundaries. In this sense, high-level

complexity (i.e., computational complexity of “algorithms over

algorithms") is also important for analyzing how time, space

and communication costs scale with the number of computing

devices. These four directions are concerned with the theoretical

analysis of MHCs. For their practical adoption, we envision novel

programming languages built on top on the notion of MHCs, tool

support development and learning curve analysis, just to name a

few directions.

Moving up the ladder of abstraction from low- to high-

level computations resembles the paradigm shift from low- to

high-level programming languages. It is also analogous to the

change of perspective from concrete mathematical structures to

high-level ones (as in Category Theory). The paradigm shift

we present in this paper clearly indicates that raising the

level of abstraction is inevitably fundamental to deal with the

intrinsic complexity that surround us. Accordingly, we envision

that MHCs will play a crucial role in specifying complex,

large-scale computing systems (or systems of systems) across

various domains in the coming years. We invite the theoretical

computing community to continue exploring and expanding the

promising and intriguing frontiers of what we call Models of

High-Level Computation.

Data availability statement

The original contributions presented in the study are included

in the article/supplementary material. Further inquiries can be

directed to the corresponding author.

Author contributions

DA: Conceptualization, Formal analysis, Investigation,

Methodology, Writing – original draft, Writing – review & editing.

Funding

The author(s) declare that financial support was received

for the research and/or publication of this article. The author

acknowledges that the publication fees for this article were covered

by Lancaster University through its institutional agreement with

Frontiers.

Conflict of interest

The author declares that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.

Generative AI statement

The author(s) declare that no Gen AI was used in the creation

of this manuscript.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Frontiers inComputer Science 06 frontiersin.org

https://doi.org/10.3389/fcomp.2025.1564048
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Arellanes 10.3389/fcomp.2025.1564048

References

Alur, R., Kannan, S., and Yannakakis, M. (1999). “Communicating hierarchical
state machines,” in Automata, Languages and Programming, Lecture Notes in Computer
Science, eds. J. Wiedermann, P. van Emde Boas, and M. Nielsen (Berlin: Springer),
169–178. doi: 10.1007/3-540-48523-6_14

Arbab, F. (2004). Reo: a channel-based coordination model for component
composition.Math. Struct. Comput. Sci. 14, 329–366. doi: 10.1017/S0960129504004153

Arellanes, D., Lau, K.-K., and Sakellariou, R. (2023). Decentralized data flows for
the functional scalability of service-oriented IoT systems. Comput. J. 66, 1477–1506.
doi: 10.1093/comjnl/bxac023

Baeten, J. C. M., Basten, T., and Reniers, M. A. (2009). “Process algebra: equational
theories of communicating processes,” in Cambridge Tracts in Theoretical Computer
Science (Cambridge: Cambridge University Press). doi: 10.1017/CBO9781139195003

Barbanera, F., de’Liguoro, U., and Hennicker, R. (2019). Connecting open systems
of communicating finite state machines. J. Logical and Algebr. Methods Program. 109,
1–34. doi: 10.1016/j.jlamp.2019.07.004

Bollig, B. (2014). “Logic for communicating automata with parameterized
topology,” in Proceedings of the Joint Meeting of the 23rd EACSL Annual Conference on
Computer Science Logic (CSL) and the 29th Annual ACM/IEEE Symposium on Logic in
Computer Science (LICS) (New York, NY: ACM), 1–10. doi: 10.1145/2603088.2603093

Bonchi, F., Di Giorgio, A., and Di Lavore, E. (2025). “A diagrammatic
algebra for program logics,” in Foundations of Software Science and Computation
Structures, eds. P. A. Abdulla, and D. Kesner (Cham: Springer), 308–330.
doi: 10.1007/978-3-031-90897-2_15

Bonchi, F., Holland, J., Piedeleu, R., Sobociński, P., and Zanasi, F. (2019).
Diagrammatic algebra: from linear to concurrent systems. Proc. ACM Program. Lang.
3(POPL), 1–28. doi: 10.1145/3290338

Bonchi, F., Sobociński, P., and Zanasi, F. (2017). The calculus of signal
flow diagrams I: linear relations on streams. Inf. Comput. 252, 2–29.
doi: 10.1016/j.ic.2016.03.002

Brand, D., and Zafiropulo, P. (1983). On communicating finite-state machines. J.
ACM 30, 323–342. doi: 10.1145/322374.322380

Buck, J., and Lee, E. (1993). Scheduling dynamic dataflow graphs with bounded
memory using the token flow model. IEEE Int. Conf. Acoust. Speech Signal Process. 1,
429–432. doi: 10.1109/ICASSP.1993.319147

Chardonnet, K., and Visme, M. d., Valiron, B., Vilmart, R. (2025). The many-worlds
calculus. Logical in Comput. Sci. 21, 13:1–13:44. doi: 10.46298/lmcs-21(2:13)2025

Coecke, B., and Duncan, R. (2011). Interacting quantum observables: categorical
algebra and diagrammatics.New J. Phys. 13, 1–85. doi: 10.1088/1367-2630/13/4/043016

Colledanchise, M., and Ögren, P. (2018). Behavior Trees in Robotics and AI: An
Introduction, 1st Edn. Boca Raton, FL: CRC Press. doi: 10.1201/9780429489105

Dennis, J. B. (1974). “First version of a data flow procedure language,” in
Proceedings of Symposium on Programming, ed. B. Robinet (Paris), 362–376.
doi: 10.1007/3-540-06859-7_145

Edwards, S. A., and Lee, E. A. (2003). The semantics and execution of
a synchronous block-diagram language. Sci. Comput. Program. 48, 21–42.
doi: 10.1016/S0167-6423(02)00096-5

Fragal, V. H., Simao, A., and Mousavi, M. R. (2019). Hierarchical featured state
machines. Sci. Comput. Program. 171, 67–88. doi: 10.1016/j.scico.2018.10.001

Geilen, M., and Basten, T. (2004). “Reactive process networks,” in Proceedings of
the 4th ACM International Conference on Embedded Software (New York, NY: ACM),
137–146. doi: 10.1145/1017753.1017778

Goldin, D. Q., Smolka, S. A., Attie, P. C., and Sonderegger, E. L. (2004). Turing
machines, transition systems, and interaction. Information and Computation, 194,
101–128. doi: 10.1016/j.ic.2004.07.002

Hagino, T., and O’Leary, N. (2021). Practical Node-RED Programming: Learn
Powerful Visual Programming Techniques And Best Practices for the Web and IoT.
Birmingham: Packt Publishing.

Harel, D. (1987). Statecharts: a visual formalism for complex systems. Sci. Comput.
Program. 8, 231–274. doi: 10.1016/0167-6423(87)90035-9

Hewitt, C. (1977). Viewing control structures as patterns of passing messages. Artif.
Intell. 8, 323–364. doi: 10.1016/0004-3702(77)90033-9

Iovino, M., Scukins, E., Styrud, J., Ögren, P., and Smith, C. (2022). A
survey of Behavior Trees in robotics and AI. Robot. Auton. Syst. 154:104096.
doi: 10.1016/j.robot.2022.104096

Kahn, G. (1974). The Semantics of a Simple Language for Parallel Programming.
Amsterdam: North-Holland Publishing Co.

La Torre, S., Napoli, M., Parente, M., and Parlato, G. (2008). Verification
of scope-dependent hierarchical state machines. Inf. Comput. 206, 1161–1177.
doi: 10.1016/j.ic.2008.03.017

Lau, K.-K., and Di Cola, S. (2017). An Introduction to Component-Based Software
Development, 1st Edn. Singapore: World Scientific. doi: 10.1142/10486

Lau, K.-K., and Ornaghi, M. (2009). “Control encapsulation: a calculus for
exogenous composition of software components,” in Component-Based Software
Engineering, Lecture Notes in Computer Science, eds. G. A. Lewis, I Poernomo.,
and C. Hofmeister (Berlin: Springer), 121–139. doi: 10.1007/978-3-642-024
14-6_8

Lau, K.-K., Ornaghi, M., and Wang, Z. (2006). “A software component model and
its preliminary formalisation,” in Formal Methods for Components and Objects, Lecture
Notes in Computer Science, eds. F. S. de Boer, M. M. Bonsangue, S. Graf, and W.-P. de
Roever (Berlin, Heidelberg: Springer), 1–21. doi: 10.1007/11804192_1

Lee, E., and Messerschmitt, D. (1987). Synchronous data flow. Proceedings of the
IEEE, 75, 1235–1245. doi: 10.1109/PROC.1987.13876

Lee, E., and Parks, T. (1995). Dataflow process networks. Proc. IEEE 83, 773–801.
doi: 10.1109/5.381846

Lee, E. A., and Matsikoudis, E. (2009). “The semantics of dataflow with firing,” in
“From Semantics to Computer Science: Essays in Honour of Gilles Kahn, eds. G. Plotkin,
G. Huet, J.-J. Lévy, and Y. Bertot (Cambridge: Cambridge University Press), 71–94.
doi: 10.1017/CBO9780511770524.005

Longley, J., and Normann, D. (2015). Higher-Order Computability, 1st Edn. Berlin:
Springer. doi: 10.1007/978-3-662-47992-6

Ouyang, C., Verbeek, E., van der Aalst, W. M. P., Breutel, S., Dumas, M., and ter
Hofstede, A. H. M. (2007). Formal semantics and analysis of control flow inWS-BPEL.
Sci. Comput. Program. 67, 162–198. doi: 10.1016/j.scico.2007.03.002

Penrose, R. (1971). “Applications of negative dimensional tensors,” in
Combinatorial Mathematics and its Applications,ed. D. Welsh (New York, NY:
Academic Press), 221–244.

Piedeleu, R., and Zanasi, F. (2025).An Introduction to String Diagrams for Computer
Scientists. Elements in Applied Category Theory, 1st Edn. Cambridge, MA: Cambridge
University Press. doi: 10.1017/9781009625715

Rana, T., Maqbool, A., Rana, T. A., Mirza, A., Iqbal, Z., Khan, M. A., et al.
(2022). Achieving stepwise construction of cyber physical systems in EX-MAN
component model. J. King Saud Univ. Comput. Inf. Sci. 34(10, Part B), 10319–10338.
doi: 10.1016/j.jksuci.2022.10.024

Reijers, H. A. (2021). Business process management: the evolution of a discipline.
Comput. Ind. 126, 1–5. doi: 10.1016/j.compind.2021.103404

Russell, N., van der Aalst, W. M. P., and ter Hofstede, A. H. M. (2016).
Workflow Patterns: The Definitive Guide. Cambridge, MA: The MIT Press.
doi: 10.7551/mitpress/8085.001.0001

Sipser, M. (2013). Introduction to the Theory of Computation, 3rd Edn. Boston, MA:
Cengage Learning.

Tripakis, S., Stergiou, C., Shaver, C., and Lee, E. A. (2013). A modular
formal semantics for Ptolemy. Math. Struct. Comput. Sci. 23, 834–881.
doi: 10.1017/S0960129512000278

Turing, A. M. (1937). On computable numbers, with an application
to the entscheidungs problem. Proc. London Math. Soc. s2–42, 230–265.
doi: 10.1112/plms/s2-42.1.230

Van der Aalst, W. M. P. (1998). The application of petri-nets to workflow
management. J. Circuits Syst. Comput. 8, 21–66. doi: 10.1142/S0218126698000043

Van der Aalst, W. M. P., and ter Hofstede, A. H. M. (2005). YAWL: yet another
workflow language. Inf. Syst. 30, 245–275. doi: 10.1016/j.is.2004.02.002

Yau, D. (2018). Operads of Wiring Diagrams, 1st Edn. New York, NY: Springer.
doi: 10.1007/978-3-319-95001-3

Frontiers inComputer Science 07 frontiersin.org

https://doi.org/10.3389/fcomp.2025.1564048
https://doi.org/10.1007/3-540-48523-6_14
https://doi.org/10.1017/S0960129504004153
https://doi.org/10.1093/comjnl/bxac023
https://doi.org/10.1017/CBO9781139195003
https://doi.org/10.1016/j.jlamp.2019.07.004
https://doi.org/10.1145/2603088.2603093
https://doi.org/10.1007/978-3-031-90897-2_15
https://doi.org/10.1145/3290338
https://doi.org/10.1016/j.ic.2016.03.002
https://doi.org/10.1145/322374.322380
https://doi.org/10.1109/ICASSP.1993.319147
https://doi.org/10.46298/lmcs-21(2:13)2025
https://doi.org/10.1088/1367-2630/13/4/043016
https://doi.org/10.1201/9780429489105
https://doi.org/10.1007/3-540-06859-7_145
https://doi.org/10.1016/S0167-6423(02)00096-5
https://doi.org/10.1016/j.scico.2018.10.001
https://doi.org/10.1145/1017753.1017778
https://doi.org/10.1016/j.ic.2004.07.002
https://doi.org/10.1016/0167-6423(87)90035-9
https://doi.org/10.1016/0004-3702(77)90033-9
https://doi.org/10.1016/j.robot.2022.104096
https://doi.org/10.1016/j.ic.2008.03.017
https://doi.org/10.1142/10486
https://doi.org/10.1007/978-3-642-02414-6_8
https://doi.org/10.1007/11804192_1
https://doi.org/10.1109/PROC.1987.13876
https://doi.org/10.1109/5.381846
https://doi.org/10.1017/CBO9780511770524.005
https://doi.org/10.1007/978-3-662-47992-6
https://doi.org/10.1016/j.scico.2007.03.002
https://doi.org/10.1017/9781009625715
https://doi.org/10.1016/j.jksuci.2022.10.024
https://doi.org/10.1016/j.compind.2021.103404
https://doi.org/10.7551/mitpress/8085.001.0001
https://doi.org/10.1017/S0960129512000278
https://doi.org/10.1112/plms/s2-42.1.230
https://doi.org/10.1142/S0218126698000043
https://doi.org/10.1016/j.is.2004.02.002
https://doi.org/10.1007/978-3-319-95001-3
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

	Models of high-level computation
	1 Introduction
	2 What is a model of high-level computation?
	3 Designing a simple MHC
	4 What classes of MHCs do currently exist?
	5 Conclusions and future directions
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Generative AI statement
	Publisher's note
	References


