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Unmanned Aerial Vehicles (UAVs) are increasingly used in sectors such as

surveillance, agriculture, and disaster response, generating massive volumes

of real-time big data. Traditional cloud computing introduces high latency,

while edge computing su�ers from limited scalability. This paper proposes a

novel three-layer computing framework incorporating a Regional Computing

(RC) layer between UAVs and the cloud. A dynamic o	oading strategy is

designed to select the optimal computing tier based on network conditions

and resource availability. To validate the proposal, we used EdgeCloudSim.

Simulation results demonstrate that the RC layer reduces end-to-end processing

delays by approximately 80%, lowers operational costs by up to 5× compared

to cloud computing, and achieves lower task failure rates relative to edge

computing. These findings establish Regional Computing as an e�cient and

scalable solution bridging the gap between edge and cloud paradigms for UAV

big data management.

KEYWORDS

cloud computing, edge computing, o	oading, UAV (unmanned aerial vehicle),

computer network

1 Introduction

Unmanned Aerial Vehicles (UAVs)s are increasingly integrated into various sectors,

including aerial surveillance, agricultural monitoring, disaster response, and delivery

services (Koubaa et al., 2023). The integration of UAVs has significantly increased data

generation due to the growing sophistication of sensors, cameras, onboard computers, and

interconnected UAVs technologies. This surge in data, often referred to as UAVs’ Big Data

(illustrated in Figure 1), presents exciting opportunities to gather valuable insights and

improve various aspects of these applications.

UAVs operations heavily depend on a vast array of sensors and high-resolution

cameras to perceive and react to their surroundings, consequently generating significant

volumes of big data. An average UAVs can produce several gigabytes of data per hour,

depending on its sensors and cameras (La Salandra et al., 2024). While a significant

portion of this data is processed onboard in real-time, specific information must be

communicated with external servers. UAVs need high-resolution maps, environmental

conditions, infrastructure details, and data from other UAVs for optimal operation

(Wakode, 2021). However, offloading this data to faraway servers can lead to potential

delays, hindering the real-time capabilities crucial for many UAVs’ applications (Sharma

and Mehra, 2023).
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FIGURE 1

The structure of UAVs’ big data.

UAVs depends on real-time transmission with the cloud

for various applications, including downloading high-resolution

maps, environmental metadata, and operational reports, while

uploading sensor-generated data for analysis. The current network

infrastructure constrains the efficient migration, processing and

storing of the vast volumes of data generated by UAVs, raising

concerns regarding network congestion and latency (Badshah et al.,

2022; Alshemaimri et al., 2025). Offloading data to the cloud via

public networks exacerbates these issues. Drones, particularly when

operating in swarms, generate a very high volume of data in the

form of video, images, thermal images, and sensors data during

surveillance and search operations, which needs to be processed

in real-time.

Existing solutions typically rely on cloud computing for data

processing (Koubâa et al., 2020; Kim et al., 2023). However,

offloading such large volumes of data to the cloud introduces

significant delays and causes network congestion. To address these

issues, some studies have proposed joint optimization of cloud

and edge computing or processing the data solely on the edge

(Yang et al., 2020). However, edge computing has its limitations,

particularly in terms of scalability, and struggles to handle high-

definition videos and other large data generated by UAVs. Other

studies suggest utilizing drone-based computing power (Ye et al.,

2023; Valentino et al., 2018), but this approach significantly drains

UAVs batteries, reducing their flight time. Therefore, there is a

need to develop an efficient middle layer (as shown in Figure 2)

for UAVs big data offloading that considers factors such as delay,

network congestion, computation time, and energy consumption.

This problem can be explained with one scenario;

For example, during surveillance or search operations, a swarm

of UAVs may be deployed to scan an assigned area. The high-

definition video captured by these drones requires high-performance

computing to analyze each frame. The results of this analysis may

be used as input for further queries to optimize the surveillance or

operations. In such cases, this data cannot be efficiently processed on

the drone edge or ground base edge due to their limited computing

capabilities. Offloading to the cloud is also unsuitable because of

high delays and network congestion. Therefore, there is a need for a

technique that can handle these issues and optimally process the data.

The widespread adoption of UAVss across numerous industries

necessitates further investigation, especially regarding the

management of UAVss’ Big Data. This article aims to achieve the

following key objectives:

• To develop an efficient framework for managing the large

volumes of data generated by UAVs on regional servers,

ensuring timely processing and storage.

• To design a data transfer strategy that offloads UAVs Big

Data to the cloud servers during off-peak hours, enabling

comprehensive analysis and support for other UAVs without

causing network congestion.

• To ensure minimal response times for queries regarding

environmental conditions and other relevant information,

despite the substantial data output from UAVs.

This article builds on our previous works (Badshah and Ali,

2024a,b) and presents the following proposals to address the

challenges associated with UAVs Big Data:

• Implementing Regional Computing (RC) to minimize delays

between servers and UAVs. These servers, strategically placed

within specific regions, will process data locally, reducing the

need to offload high-volume data to the cloud.

• UAVs sensor data will be temporarily stored on regional

servers for initial processing before being transferred to the

cloud for in-depth analysis and support during off-peak hours.

• The Regional Computing framework integrates the

enforcement of operational regulations and rules. This

centralized server would store collective data and analysis,

promoting compliance with operational standards and

fostering efficient UAVs operations.

Unlike our prior RC approaches in healthcare, education,

and social media domains, the present work addresses the

unique challenges of UAVs generated big data. In dynamic UAVs

environments, data is produced by moving aerial nodes with strict

latency requirements and intermittent connectivity. Our proposed

architecture introduces a UAVs specific Regional Computing layer

that accounts for these factors, offering adaptive offloading and

scalability not explored in the earlier domain-specific studies.

The remaining sections are organized as follows: Section 2

reviews related studies. Section 3 explains the methodology used to

address the challenges identified in the literature. Section 4 details

the experiments conducted to evaluate the effectiveness of the

proposed framework. Section 5 discuss in detail the potential and

limitations of UAVs, edge, regional and cloud computing paradigm.

Finally, Section 6 concludes the study.
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FIGURE 2

The structure of the middle layer as regional computing for UAVs’

big data.

2 Background

Network resource optimization is crucial for enabling efficient

processing of big data generated by UAVss. This section reviews

existing research and is categorized into four key areas: Cloud

Computing, Edge Computing, UAVs Computing, and Joint

Optimization for UAVs big data.

2.1 Cloud computing

Significant attention has been given to cloud computing

to process UAVss’ big data. Initially, the cloud computing

infrastructure was massively used for high-performance

computing and storage capabilities (Sulaj et al., 2018).

Authors in Luo et al. (2017) propose a cloud-based UAVs

system focusing on two primary aspects: how the cloud can

efficiently handle data acquisition with minimal impact on

UAVs control, and deriving stability conditions considering

the data acquisition rate and system stability. Another study

in Koubâa et al. (2020) addresses real-time image processing

for UAVs within the Internet of Things (IoT) framework. It

proposes a system architecture for offloading deep learning

tasks to the cloud, demonstrating that cloud offloading achieves

superior throughput compared to edge computing, despite larger

communication delays.

While cloud computing provides significant processing power,

the inherent delays and potential network congestion pose

challenges for real-time applications (Namani and Gonen, 2020;

Badshah et al., 2020). This calls for new investigations into hybrid

approaches that combine cloud computing with other methods to

optimize performance and reduce latency.

2.2 Edge computing

Edge computing solutions for UAVs have been explored

to address delay-sensitive applications. Authors in Damigos

et al. (2023) highlight the limitations of traditional network

technologies and propose using a ground-edge server with

5G connectivity as a control station. The research focuses on

analyzing real-world latency requirements and practical challenges

associated with this approach. The study in Gao et al. (2019)

introduces a multi-tier edge-cloud computing framework, utilizing

Integer Linear Programming to minimize service time for UAVs.

Simulations show this approach significantly reduces service time

compared to traditional edge or cloud offloading and scales

well with many UAVs. Another article proposes an energy-

efficient resource allocation scheme for air-ground mobile cloud

computing, emphasizing Quality of Experience (QoE) and energy

use. It employs a multi-queueing architecture to prioritize

high-QoE data and a Lyapunov optimization technique for

managing offloading rates and resource allocation, enhancing

UAVs satisfaction and energy efficiency (Liu et al., 2020).

Additionally, a three-layer network for big data processing in

IoT using MEC and UAVs is proposed, featuring an online

scheduling algorithm to manage energy and bandwidth at the

edge, and a deep reinforcement learning-based path planning

algorithm for UAVs to optimize service coverage (Wan et al.,

2019).

Although edge computing reduces latency and improves

response times, it often faces processing power and resource

allocation limitations (Huda and Moh, 2022; Badshah et al., 2021).

Therefore, further research is needed to address these issues.

2.3 UAV computing

Research in UAVs computing has focused on various

frameworks to leverage the computational power of UAVs. Authors

in Yang et al. (2020) propose a hierarchical deep-learning offloading

framework for UAVs target tracking, where lower layers of a CNN

model run on the UAVs for faster processing and higher layers

are handled by a mobile edge server for better accuracy. Another

study introduces a UAVs Swarm Edge Cloud Computing model,

using the computational power of UAVs swarms (Chen et al.,

2019). Similarly, in disaster areas, UAVs swarms have been used

to establish networks, utilizing their computing power effectively

(Alsamhi et al., 2022).

In another approach, UAVs infrastructure is used as MEC

computing (Ye et al., 2023). However, the short battery life of

UAVs poses a challenge. To address this, tasks are offloaded from

UAVs with weaker batteries to those with freshly charged ones.

A similar contribution is made in Valentino et al. (2018), where

a swarm of drones processes their data and uses neighboring

drones’ resources when needed. Furthermore, a mobile cloud

computing system using a moving UAVs is introduced, optimizing

data transmission and UAVs flight paths to minimize the total

energy consumption while meeting application needs (Jeong et al.,

2017). Lastly, a unified design approach for onboard processing is

proposed, showcasing a three-layer reference model and a working
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prototype to demonstrate the feasibility of the solution (Lu et al.,

2019).

UAVs computing offers flexibility and localized processing

capabilities, but battery life and resource limitations remain

significant challenges (Ahmed and Jenihhin, 2022). Therefore,

further investigations are needed to address the UAVss’ big

data issues.

2.4 Joint optimization

Joint optimization techniques have been explored to enhance

the efficiency of UAVs big data processing. One study proposes

a UAVs-Edge-Cloud model with a joint optimization approach

to minimize cost and latency, using an online algorithm based

on Markov approximation for dynamic environments (Liu et al.,

2020). Another paper presents a game-theory-based approach

for offloading computation tasks in drones, considering energy,

delay, and cost to determine the optimal offloading strategy,

outperforming traditional methods by minimizing the cost

function comprising energy overhead and delay (Messous et al.,

2017).

Additionally, a study proposes scalable aerial computing for

handling tasks with varying quality levels and UAVideo for video

processing tasks that exceed a UAVs’s computing power, streaming

video data to ground servers for processing while considering UAVs

trajectory, video characteristics, and communication resources (Liu

et al., 2021). Lastly, a joint optimization algorithm is used to

optimize energy consumption, cost, and delay for UAVs big data

(Zhang et al., 2018).

Joint optimization provides a comprehensive approach to

addressing multiple performance metrics simultaneously (Song

et al., 2022; Badshah et al., 2024). However, the complexity of these

models and their scalability need further investigation.

3 Proposed framework

UAVs are widely used in various sectors, with swarms playing

a significant role in surveillance, research, and rescue operations.

However, UAVs swarms generate massive amounts of data, posing

challenges for processing at the UAVs or edge level due to certain

limitations. Offloading this data to the cloud leads to longer delays,

higher costs, and network congestion. To address these issues,

we propose a Regional Computing approach, as illustrated in

Figure 3, to efficiently process this data, especially during peak

hours. Regional Computing processes and temporarily stores data

at the regional level to minimize delay and cost while preventing

congestion in the mainstream network.

The proposed structure operates in three layers. The first layer

comprises the UAVs, where sensors and cameras generate data. The

communication system in this layer offloads the data to regional

servers. The second layer, the regional service layer, processes

and stores the data, particularly during peak hours. In the case

of extremely important data or during off-peak hours when the

mainstream network is less congested, this data is offloaded to the

cloud. The following subsections provide a detailed discussion of

this methodology.

3.1 Communication model

UAVs swarms (v = {v1, v2, v3, . . . , vn}) generate

significant amounts of data (l = {l1, l2, l3, . . . , lm}) during

operations. Efficient transmission and processing are crucial

to avoid delays and network congestion. The total delay for

transmitting data from UAVs to the processing channel is

calculated as:

Dtotal = Dtran + Dprop + Dpr + Dsig + Dhv (1)

Where Dtotal represents the total delay, Dtran represents

the transmission delay, Dprop represents the propagation delay,

Dpr represents the processing delay, Dsig represents the delay

due to signal strength, and Dhv represents the base station

handover delay.

The transmission delay from UAVs to Base Station (Dbs
tran) can

be calculated as:

Dbs
tran =

∑n
i=1

∑m
j=1(vi, lj)

Sbstran
(2)

Here, Sbstran represents the speed of wireless transmission.Where

the vi shows the UAVs and lj the data generated from these UAVs.

The propagation delay for data sent through 5G base stations

(Dbs
prop) is determined by:

Dbs
prop =

Disi,BS

c
(3)

where Disi,BS is the distance between UAV i and the base station,

and c is the speed of light.

The transmission delay base station to Regional Computing

(Drc
tran) can be calculated as:

Drc
tran =

∑n
i=1

∑m
j=1(vi, lj)

Srctran
(4)

Here, Srctran represents the speed of wired transmission.

The propagation delay for data sent from the base station to the

regional computing server (Drc
prop) is determined by:

Drc
prop =

∑n
i=1

∑m
j=1(vi, lj)

Srcprop
(5)

Where Srcprop denotes the wired propagation speed. This speed is

calculated as:

Srcprop =
Disbs,rc

Brc
(6)

Here, Disbs,rc is the distance between the base station and the

regional computing server, and Brc is the cable bandwidth.

The total time for processing this data (Dpr) is calculated as:

Dpr =

(
∑n

i=1

∑m
j=1(vi, lj)

Spr

)

(7)
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FIGURE 3

The proposed structure of regional computing for UAVs’ big data.

Here, Spr indicates processing speed. The processing speed is

calculated as:

Spr =
L

R
(8)

Where L is the workload and R is the processing rate.

The delay due to signal strength is given by:

Dsig =
Drate

Reff
× Dtran (9)

Where Drate is the nominal data rate, Reff is the effective data

rate considering Bit Error Rate (BER), and Dtran is the nominal

transmission delay.

Signal strength (SNR) is calculated as:

SNR (dB) = 10 log10

(

Psignal

Pnoise

)

(10)

The delay due to base station handover is given by:

Dhv =

∑n
i=1

∑m
j=1(vi, lj)

Shv
(11)

Where Dhv is the handover delay and Shv is the speed of

handover.

Therefore, the total delay for n UAVs and m workloads, as per

the Equations 2–5, 7, 9, 11 is given by:

Dtotal =

(
∑n

i=1

∑m
j=1(vi, lj)

Sbstran

)

+

(
∑n

i=1

∑m
j=1(vi, lj)

Sbsprop

)

+

(
∑n

i=1

∑m
j=1(vi, lj)

Srctran

)

+

(
∑n

i=1

∑m
j=1(vi, lj)

Srcprop

)

+

(
∑n

i=1

∑m
j=1(vi, lj)

Spr

)

+

(

Drate

Reff
× Dtran

)

+

(
∑n

i=1

∑m
j=1(vi, lj)

Shv

)

(12)

The congestion probability is given by:

ConProb ≈
Ltotal

Bavail
(13)

Where ConProb refers to congestion probability, Ltotal is

the total traffic on the network, and Bavail represents available

bandwidth. Network congestion likelihood rises with total traffic

and declines with available bandwidth. The proliferation of cloud

services and increasing UAVs usage will escalate traffic, leading to

network congestion.

Since regional computing servers are deployed geographically

closer to the UAVs compared to distant cloud servers, the
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propagation distance, and thus propagation delay, is substantially

reduced as per the Equations 1, 3, 5, 12. This reduction stems

from regional computing servers being situated within the region.

Furthermore, reliance on cloud-based data or devices decreases

with the use of regional servers, as shown by the congestion

probability analysis, Equation 13. Minimal workload routed to

the main network ensures bandwidth availability for real-time

application data, enhancing overall system performance and

responsiveness. The flow of data in the regional computing is

shown in as shown in Figure 4.

3.2 Energy model

Likewise, to delay, energy consumption is directly proportional

to distance. The energy consumption in the UAVs big data

communication setup can be computed as follows:

Etran =

n
∑

i=1

(

E
bs
tran(i)+ E

rc
tran(i)

)

(14)

Here, E
bs
tran(i) denotes the energy utilization for wireless

transmission from UAVs i to the base station, and E
rc
tran(i) denotes

the energy utilization for wired transmission from the base station

to the regional computing server.

Where

E
bs
tran(i) ≈ Disi,bs · P

bs
i · Ti,bs (15)

and

E
rc
tran(i) ≈ Disbs,rc · P

rc
bs · Tbs,rc (16)

Here, Disi,bs represents the distance between UAVs i and the

base station, Pbsi represents the power consumption for wireless

transmission by UAVs i, Ti,bs represents the transmission time from

UAVs i to the base station. Similarly,Disbs,rc represents the distance

between the base station and the regional computing server, Prc
bs

represents the power consumption for wired transmission by the

base station, and Tbs,rc represents the transmission time from the

base station to the regional computing server.

These equations illustrate that energy utilization increases with

distance, which is also directly proportional to cost.

Eother = Epro + Estor + Ecol + k (17)

Similarly, Eother represents the energy used in various activities,

including computing (Epro), storage (Estor), and cooling data

centers (Ecol).

The total energy utilization can be calculated as follows:

Etotal = Etran + Eother (18)

Here, Etotal shows the total energy usage, while Etran denotes the

total energy consumption on data offload.

It is also known that,

Costoper ∝ E (19)

There is a direct correlation between a UAVs’s power

consumption (denoted by E and its operational costs (Costoper). In

other words, as a UAVs consumes more power, its operational costs

tend to rise.

The Equations 15, 16 presented above affirm that energy

consumption escalates with increasing distance. Additionally, a

higher workload congests the network and processors, resulting

in additional heat generation, which in turn consumes more

energy (as shown in Equation 19). Consequently, based on

the aforementioned energy model, it can be concluded that

cloud computing (CC) demands greater energy consumption.

Conversely, when the workload is processed by regional computing

(RC), the energy requirements decrease significantly.

3.3 Cost model

In previous sections, we have observed that delay, congestion,

and energy consumption increase as the distance between UAVs

and processing units expands. This section focuses on the cost

behavior with respect to these parameters for UAVss’ big data. The

total cost can be computed using the following formula:

Costt = Costtr + Costp + Costpr + Costcol (20)

where Costt represents the total cost, Costtr denotes the

transmission cost, Costp is the propagation cost, Costpr refers to the

processing cost, and Costcol accounts for the cooling cost.

The transmission cost, Costtr , includes two components: the

cost associated with transmitting data from UAVs to base stations

and the cost from base stations to regional computing servers.

For the transmission from UAVs to base stations, the cost can

be expressed as:

Ctrn, bs =

n
∑

i=1

m
∑

j=1

(

Crate, v · Li,basewj+

Ctime, v · Ti,base + Cenergy, v · Ei,base+

Cbandwidth, v · Bi,base + Cfixed, v

)

(21)

In this formula, n represents the number of UAVs and m

denotes the number of workload tasks generated by these UAVs.

Crate, v denotes the cost per unit of data transmitted, while Li,basewj

is the amount of data fromUAVs i for workload j.Ctime, v represents

the cost per unit of time for this transmission, with Ti,base indicating

the time required. Cenergy, v signifies the cost per unit of energy

consumed, and Ei,base denotes the energy used in the transmission

fromUAVs to base stations. Additionally,Cbandwidth, v is the cost per

unit of bandwidth utilized, while Bi,base represents the bandwidth

used. Cfixed, UAV is the fixed cost associated with each transmission

event from UAVs.
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FIGURE 4

The big data flow with Regional Computing.

For the transmission from base stations to regional computing

servers, the cost is:

Ctrn, rc =

n
∑

i=1

m
∑

j=1

(

Crate, bs · lbase,rcwj+

Ctime, bs · Tbase,rc + Cenergy, BS · Ebase,rc+

CB, bs · Bbs,rc + Cfixed, bs

)

(22)

In this formula, Crate, BS represents the cost per unit of data

transmitted from base stations, and dbs,rclj is the amount of data

for workload j. The cost per unit of time for this transmission is

Ctime, bs, with Tbs,rc being the time taken. Cenergy, bs denotes the

cost per unit of energy consumed during this transmission, and

Ebs,rc is the energy used in the transmission from base stations to

regional computing servers. CB, bs is the cost per unit of bandwidth

used, while Bbs,rc represents the bandwidth utilized. Lastly, Cfixed, bs

is the fixed cost associated with each transmission event from

base stations.

The total transmission cost can be expressed as:

Ctrn = Ctrn, bs + Ctrn, rc (23)

The propagation cost, Costp, is computed based on the

distances involved and is expressed as:

Cprop =

n
∑

i=1

(

Cdis, UAV · Disi,bs + Cdis, bs · Disbs,rc
)

(24)

In this formula, Cdis, UAV is the cost per unit of distance for

UAV-to-base station transmission, whileDisi,bs is the distance from

UAVs i to base stations. Cdis, bs denotes the cost per unit of distance

for base station-to-regional computing transmission, with Disbs,rc
representing the distance involved in this stage.

The processing cost Costpr is calculated as:

Cprc =

n
∑

i=1

m
∑

j=1

(

Cuprc · Tprci,j

)

(25)

Here, Tprci,j represents the processing time for data fromUAVs i

and workload j, and Cuprc denotes the processing time cost per unit.

This comprehensive cost model addresses the costs associated

with transmitting data from UAVs to base stations, from

base stations to regional computing servers and the associated

propagation and processing costs.

The cost model equations illustrate the significant impact

of distance on transmission and propagation costs, as well as

processing time on overall expenses (as shown in Equations 21,

22, 25). Cloud computing tends to incur higher costs due to the

increased distances involved in data transmission. In contrast,

regional computing provides cost efficiencies by minimizing

these distances and optimizing processing tasks, thereby making

RC a more cost-effective solution for managing UAVs big

data workloads.

The proposed offloading strategy dynamically determines the

optimal processing destination for each UAV-generated workload

based on real-time evaluation of system parameters, as formalized

in Algorithm 1.

For each workload lj generated by UAV vi, the system

first calculates the total delay Dtotal according to Equation 12,

energy consumption Etotal based on Equation 18, overall cost

Costt using Equation 20, and congestion probability ConProb

following Equation 13. These parameters are then compared

against predefined system thresholds: Dthresh for acceptable delay

and Conthresh for congestion tolerance.

The decision-making process proceeds by first checking

whether the calculated total delay Dtotal is within the

acceptable threshold and the congestion probability ConProb

is higher than the congestion threshold. If both conditions are

satisfied, the workload is offloaded to the Regional Computing

(RC) layer, taking advantage of its proximity and moderate

resource capacity to reduce network congestion and maintain

low latency.

If the workload does not satisfy the first condition, the system

then examines the temporal state of the network. Specifically, it

checks whether the current time falls within off-peak network

hours, where traffic is typically lower. If the request occurs during

off-peak hours and sufficient processing capacity is available at the

RC servers, the workload is offloaded to the RC layer to achieve

energy and cost savings.

However, if the RC layer lacks sufficient resources or if the

request arrives during peak traffic periods, the workload is directly

offloaded to the Cloud Computing (CC) layer to ensure that it

is processed without overloading local resources or increasing

queuing delays.
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1 Input: UAVs v = {v1,v2,v3, . . .,vn} and their

respective workloads l = {l1,l2,l3, . . .,lm}

2 Output: Decision on optimal processing tier: UAV,

Regional Computing (RC), or Cloud Computing (CC)

3 foreach workload lj generated by UAV vi do

4 Calculate total delay Dtotal using Equation (12)

5 Calculate energy consumption Etotal using

Equation (18)

6 Calculate overall cost Costt using

Equation (20)

7 Calculate congestion probability ConProb using

Equation (13)

8 if Dtotal ≤ Dthresh AND ConProb ≥ Conthresh then

9 Offload lj to Regional Computing (RC) to

minimize delay and congestion

10 else

11 if Current time is in off-peak hours then

12 if Sufficient processing capacity available

at RC then

13 Offload lj to Regional Computing (RC)

to reduce cost and energy consumption

14 else

15 Offload lj to Cloud Computing (CC)

16 end

17 else

18 Offload lj directly to Cloud Computing

(CC)

19 end

20 end

21 if workload lj is required for cross-regional

accessibility or global data aggregation then

22 Migrate lj to Cloud Computing (CC)

23 end

24 end

Algorithm 1. Dynamic O	oading Strategy for UAV Big Data Based on

Delay, Energy, Cost, and Congestion

Additionally, regardless of the above conditions, if a workload

is identified as requiring global accessibility, such as when the data

must be made available across multiple regions or aggregated at a

global level, the workload is compulsorily migrated to the CC layer,

bypassing local decision policies.

The complete logical sequence of these offloading decisions

is detailed in Algorithm 1, while the operational flow is visually

summarized in Figure 5.

4 Evaluation

To assess the effectiveness of the proposed framework, we

utilized EdgeCloudSim (2023). This advanced simulation tool

is tailored for analyzing the performance of edge computing

infrastructures and applications. By building on the popular

CloudSim (Cloudslab, 2023) framework, EdgeCloudSim addresses

the specific demands of edge computing, such as user proximity,

UAVs' Big Data (vn, lm)

No

Network highly

Utilization

Is it off-peak hours

Transfer to the Cloud

Servers

Process on Regional

Servers

If the RC has the

capacity

Data needed at

other Region

No

Yes

Yes

Yes Yes

FIGURE 5

Flowchart representing the working of the proposed model.

TABLE 1 Simulation parameters and settings.

Parameters Description

Quantity of cloud servers 1

Quantity of regional servers 1

Quantity of edge servers 1

Network topology Wireless/LAN/WAN

Minimum UAVs 5

Maximum UAVs 100

Simulation time 30 Min

Delay Round trip delay

Cost Communication and processing

cost

Simulation repetition for average calculation 10 times

low latency, and distributed processing. It offers a robust platform

formodeling diverse edge and cloud scenarios, enabling researchers

and developers to simulate and study the performance of

their applications across various network conditions, resource

management strategies, and workload distributions.
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4.1 Experimental setup

The experimental setup outlined in this study includes four

distinct scenarios to handle UAVss’ big data. First, we evaluate the

performance and cost associated with offloading UAVs big data

to cloud computing servers. Second, we examine the performance

and cost of offloading UAVs big data to edge computing servers.

Third, we assess the performance and cost of the proposed regional

computing solution. Fourth, we include a UAVs computing

scenario to test performance, simulating a network of UAVs

collecting and processing large volumes of data in real-time. The

simulation parameters are shown in Table 1.

4.1.1 Cloud context
In the initial setup of the cloud computing context, a single

cloud data center was established to handle UAVss data. The server

was configured to support 2,000 UAVs and manage 300,000 tasks

globally. The server setup included 36 cores, 16,000 MIPS, 16,000

MB of RAM, and 200,000 MB of storage capacity. Within this

host, eight virtual machines (VMs) were deployed, each equipped

with 4 cores, 10,000 MIPS, 4,000 MB of RAM, and 50,000 MB

of storage. It was conducted ten times, with each session lasting

half an hour, to ensure robustness and reliability. Subsequently, the

average delay and cost associated with data transfer and processing

were calculated.

4.1.2 Edge context
In the initial setup for edge computing, a single-edge data

center was established. The server configuration included 4 cores,

6,000 MIPS, 4,000 MB of RAM, and 100,000 MB of storage

capacity. Within this host, four VMs were deployed, each equipped

with a single core. The setup can involve a range of UAVss up

2,00. It was conducted ten times, with each session lasting half

an hour, to ensure robustness and reliability. Subsequently, the

average delay and cost associated with data transfer and processing

were calculated.

4.1.3 Regional context
In the setup for regional computing, a single regional data

center was established. The server configuration included 8 cores,

10,000 MIPS, 16,000 MB of RAM, and 150,000 MB of storage

capacity. Within this host, four VMs were deployed, each equipped

with 2 cores. The setup can involve a range of UAVss up to

500. It was conducted ten times, with each session lasting half

an hour, to ensure robustness and reliability. Subsequently, the

average delay and cost associated with data transfer and processing

were calculated.

4.1.4 UAV computing context
In the UAVs computing context, each UAVs was responsible for

processing its own data independently. The UAVss were equipped

with onboard computing resources to handle data processing tasks

locally. This scenario involved a range of UAVss from a minimum

of 5 to a maximum of 100. The experiment was conducted ten

FIGURE 6

Resources utilization comparison of UAVs, edge, cloud and regional

computing.

times, with each session lasting half an hour, to ensure robustness

and reliability. The average delay and cost associated with data

processing within each UAVs were then calculated to assess the

effectiveness of this decentralized approach.

4.2 Result analysis

The results analysis section is organized into five subsections,

which include delay, resource utilization, task failure, performance,

and cost comparison.

4.2.1 Resources utilization
Figure 6 illustrates the resources utilization comparison

of UAVs computing, edge computing, cloud computing, and

regional computing.

UAVs onboard computing shows a progressive increase in

utilization, starting from 16.6% and reaching up to 166% as

the number of tasks increases. While UAVs onboard computing

has almost no network delay, however, the resources are quickly

overutilized, making it infeasible to process large volumes of

UAVss’ big data. Additionally, UAVs have limited battery life, and

overutilization will further reduce their flight time, compounding

the challenge.

Edge computing utilization ranges from 2.29% to 94%, with

a rapid increase as task demands grow. This high utilization rate

results from edge computing’s limited resource capacity, leading to

potential overutilization and performance degradation. The initial

low utilization rates rise sharply, highlighting the strain on edge

resources under increasing task demands. Cloud computing, on the

other hand, demonstrates more stable and lower utilization rates,

ranging from 0.16% to 1%. This lower utilization is attributed to the

vast and scalable resources available in cloud data centers. Regional

computing exhibits utilization rates similar to edge computing,
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FIGURE 7

Task failure comparison of UAVs, edge, cloud, and Regional

Computing.

ranging from 0.56% to 1.4%. This moderate utilization rate

indicates that regional computing can effectively manage resources

to avoid the high overutilization observed in edge computing, while

still offering lower latency compared to cloud computing.

The comparison indicates that regional computing strikes a

balance between resource utilization and delay, offering lower

latency compared to cloud computing whilemaintaining utilization

rates comparable to edge and UAVs’s computing. This positions

regional computing as superior in scenarios where both efficient

resource utilization and reduced latency are crucial.

4.2.2 Task failure
Figure 7 illustrates the task failure comparison among UAVs

computing, edge computing, cloud computing, and regional

computing. As observed in the delay and server utilization sections,

edge computing’s limited resources increase its susceptibility

to overutilization, potentially leading to task failures under

heavy loads.

UAVs computing exhibits a progressive increase in task failures,

starting from 5% and reaching up to 50% as the number of tasks

increases. While UAVs onboard computing has almost no network

delay, the overutilization of resources leads to a high number

of task failures. Additionally, the limited battery life of UAVs

further exacerbates this issue, making UAVs onboard computing

unsuitable for processing large volumes of UAVs big data.

Task failure rates on edge computing range from 0.47% to

14%. The escalating failure rates align with the rising server

utilization, highlighting a significant challenge in edge computing

where resource constraints can compromise reliability during

periods of high demand. In contrast, task failure rates on cloud

computing remain consistently low, ranging from 0% to 0.27%. The

robust infrastructure and scalability of cloud data centers ensure

minimal task failures even under significant workloads. However,

this reliability is achieved at the expense of higher latency compared

to edge and regional computing solutions.

FIGURE 8

Processing time comparison of UAVs, edge, cloud, and Regional

Computing.

Regional computing emerges as a viable compromise among

UAVs, edge and cloud computing in terms of task failure rates.

Failure rates on regional computing fall between 0.01% and 0.29%,

indicating a moderate level of reliability even under increasing

workloads and server utilization. This suggests that regional

computing can effectively manage task failures while offering lower

latency than cloud computing and mitigating the over-utilization

issues encountered in edge computing.

4.2.3 Processing time
Figure 8 illustrates the processing time comparison among

UAVs computing, edge computing, cloud computing, and regional

computing. As observed in the previous sections, UAVs and

edge computing’s tendency to become overutilized can lead to an

increase in processing time.

UAVs computing shows a progressive increase in processing

time, starting from 7.34 ms and reaching up to 73.4 ms as

the number of tasks increases. While UAVs onboard computing

experiences almost no network delay, the processing time increases

significantly due to overutilization of resources. This highlights

the limitations of UAVs in handling large volumes of big data,

exacerbated by their limited battery life.

Edge computing processing time ranges from 1.01 ms to

5.9 ms. The processing time increases as server utilization rises,

indicating the impact of overutilization on processing efficiency.

This underscores a significant drawback of edge computing, where

resource constraints can degrade processing performance under

heavy workloads. In contrast, cloud computing demonstrates

consistently low processing times, ranging from 0.05 ms to 0.07

ms. The vast resources and scalability of cloud data centers ensure

efficient processing even under significant workloads, although this

comes at the cost of higher latency compared to the edge and

regional computing solutions.

Regional computing emerges as the optimal choice among,

UAVs, edge and cloud computing in terms of processing time.
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FIGURE 9

Cost comparison of cloud and Regional Computing.

Processing times on regional computing range from 1 ms to 2 ms,

offering a balance between the low latency of edge computing and

the efficient resource utilization of cloud computing. By effectively

managing processing tasks without leading to overutilization,

regional computing provides reliable and consistent processing

performance, making it a suitable solution for a wide range

of applications.

4.2.4 Cost
Figure 9 illustrates the cost comparison for processing data

from 200 to 2,000 UAVss. The cost model used in this section

accounts for transmission, processing, propagation, and cooling

expenses. Since UAVs and edge computing utilize minimal

resources, its cost is negligible for this comparison. Therefore, the

focus is on comparing the costs of cloud and regional computing.

As shown in the figure, the cost of cloud computing ranges

from 0.52 $ to 5.36 $. This higher cost is attributed to transmission

expenses and the significant electricity required for running and

cooling large data centers. In contrast, regional computing costs

range from 0.08 to 1.14, making it a more cost-effective option.

4.2.5 Delay
Figure 10 illustrates the delay comparison among UAVs edge,

edge computing, regional computing, and cloud computing.

The UAVs edge shows no delay, maintaining a consistent value

of 0ms across all measurements. This is because there is no distance

or hop to pass data, resulting in minimal delay. However, UAVss

cannot process large volumes of data, making them unsuitable for

big data applications despite the minimal delay.

Edge computing delay starts at 0.062 ms and increases to 0.21

ms as the number of tasks grows. This gradual increase highlights

how server utilization affects delay. While edge computing

maintains minimal delay, it faces scalability issues, limiting its

effectiveness under heavy workloads.

FIGURE 10

Delay time comparison of UAVs, edge, cloud, and Regional

Computing.

Regional computing experiences delay values close to those of

edge computing, starting from 0.95 ms and reaching up to 1.5 ms.

Although the delay is slightly higher than edge computing, regional

computing can offer scalability similar to cloud computing. This

makes regional computing the best choice, balancing low latency

and scalability.

Cloud computing exhibits the highest delay, starting at 8.95

ms and increasing to 8.21 ms. Despite the extensive resources

available in cloud data centers, the significant network delay

makes cloud computing less suitable for applications requiring

real-time processing.

In summary, UAVs edge computing demonstrates no delay

but is unsuitable for big data processing. Edge computing offers

minimal delay but struggles with scalability. Regional computing

provides a good balance with low delay and scalability akin to cloud

computing,making it the optimal choice. Cloud computing, despite

its high processing power, faces challenges due to substantial

network delay.

5 Discussion

The analysis of UAVs, edge, cloud, and regional computing

paradigms reveals distinct potential and limitations for each, with

regional computing emerging as the most balanced and effective

solution, as we can see in Table 2.

5.1 UAV computing

UAVs computing, characterized by its on-board processing

capabilities, initially benefits from minimal network delay, making

it well-suited for real-time data analysis and immediate decision-

making during operations. However, as task demands increase,

UAVs computing faces significant challenges. The utilization of

resources on UAVs rises dramatically from 16.6% to 166%, which

leads to severe overutilization. This overutilization compromises
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TABLE 2 Comparison of computing paradigms.

Paradigm Potentials Limitations

UAV computing Low network delay Resource overutilization,

high task failure rate

Edge computing Reduced latency High utilization, high

task failure rate, limited

scalability

Cloud computing Scalability, low

processing time, minimal

task failures

High latency, high costs

Regional computing Balanced utilization and

latency, moderate task

failure rates,

cost-effective

Limited scalability

compared to cloud

the UAVs’s ability to handle large volumes of data and further

shortens its battery life, limiting its effectiveness for extensive

data processing tasks. Additionally, the task failure rate escalates

considerably, reaching up to 50% as the number of tasks grows.

This high failure rate, combined with the limited battery life and

constrained resources, renders UAVs computing unsuitable for

processing large data efficiently.

5.2 Edge computing

Edge computing provides reduced latency by processing data

closer to its source, which is advantageous for applications

requiring real-time responses. Despite this, edge computing faces

notable limitations. Resource constraints at the edge lead to

utilization rates that range from 2.29% to 94%, indicating that

the edge infrastructure often becomes overutilized under heavy

workloads. This overutilization results in increased task failure

rates, which range from 0.47% to 14%. The limited scalability

of edge computing further exacerbates these issues, as the fixed

resources can become a bottleneck when scaling up to handle larger

volumes of tasks. Consequently, while edge computing offers low

latency, its resource limitations and high task failure rates pose

significant challenges.

5.3 Cloud computing

Cloud computing excels in scalability and efficiency, with

utilization rates consistently low, ranging from 0.16% to 1%. The

extensive and scalable resources available in cloud data centers

ensure that processing times remain minimal, between 0.05 ms

and 0.07 ms, even under substantial workloads. Furthermore, the

cloud infrastructure provides minimal task failure rates, from 0%

to 0.27%, due to its scalable capabilities. However, cloud computing

comes with its drawbacks. The latency associated with data being

processed in remote data centers is higher compared to the edge

and regional computing. Additionally, the cost of cloud computing

is considerably high, ranging from 0.52 to 5.36, driven by expenses

related to the transmission, processing, and cooling of large data

centers. Thus, while cloud computing is highly efficient and reliable,

its higher latency and cost are significant factors to consider.

5.4 Regional computing

Regional computing emerges as the most balanced and effective

solution among the paradigms analyzed. It offers a middle

ground by providing moderate resource utilization rates, ranging

from 0.56% to 1.4%, and processing times that fall between 1

ms and 2 ms. This balance ensures that regional computing

manages resources effectively, avoiding the overutilization issues

seen in edge computing while delivering lower latency compared

to cloud computing. Task failure rates in regional computing

are also moderate, ranging from 0.01% to 0.29%, indicating

reliable performance even with increasing workloads. Additionally,

regional computing is more cost-effective, with costs ranging

from 0.08 to 1.14, making it a more economical option

compared to cloud computing. Although regional computing

may not scale as extensively as cloud solutions, it provides

a well-rounded solution that balances efficiency, performance,

and cost-effectiveness.

In summary, while each computing paradigm has its specific

strengths and limitations, regional computing stands out as

the optimal choice for many applications. It offers an effective

compromise between resource utilization, latency, reliability, and

cost, making it a versatile and practical solution for diverse

computational needs.

6 Conclusion

In this study, we addressed the growing challenge of real-

time data processing and storage for UAVss’ big data. The ever-

increasing adoption of UAVss’ leads to a surge in data generation,

exceeding the capabilities of onboard computing and introducing

latency issues with cloud storage due to network congestion.

We proposed a regional computing framework as a solution.

This framework leverages regional servers to process UAVs data

during peak hours, alleviating onboard processing limitations and

network congestion. Subsequently, the processed data is offloaded

to the cloud for later use or in-depth analysis during off-peak

hours, optimizing resource utilization. The results demonstrate

the effectiveness of regional computing in minimizing processing

delays and costs while maximizing network utilization. This

approach offers a promising solution for managing the ever-

growing volume of UAVs data, paving the way for more efficient

and reliable UAVs operations.
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