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Engineering young faculty’s
acceptance of real-time behavior
measurement software

Luis Marquez-Carpintero*, Francisco Gomez-Donoso† and

Miguel Cazorla†

Institute for Computer Research, University of Alicante, Alicante, Spain

The integration of technology in education faces challenges like smartphone

distractions. Educators’ acceptance depends on perceived usefulness, ease

of use, and technical support. Innovative methodologies, such as dynamic

activity detection andwearable tech, improve classroom interaction and learning

outcomes. However, no studies have focused on the acceptance of this

software. This research examines young engineering professors’ perceptions

of advanced monitoring technologies for improving student attention and

engagement based on their gestures, hypothesizing significant enhancements

in teachers’ performance according to Extended Technology Acceptance Model

(TAM2). Data were collected from 10% of the young engineering faculty

members (under 40 years old) at a Spanish university (107 individuals) through

a structured questionnaire examining perceptions of usefulness, ease of use,

and anxiety. Short training sessions proved critical for successful implementation,

addressing financial, privacy, and technical challenges. Findings indicate positive

acceptance, with ease of use influencing the intention to use and the image

construct. Anxiety negatively impacts usage, underscoring the need to address it.

Adequate technical support and continuous training are vital. The study reveals

positive acceptance of real-time behavior measurement software among young

engineering professors, highlighting the importance of training and addressing

anxiety and institutional acceptance.

KEYWORDS

educational technology adoption, stem education, real-time behavior measurement,

educational technology, student engagement

1 Introduction

The integration of advanced technologies in educational environments has become an

imperative necessity to improve student attention and performance (Ahmad and Hamad,

2020). Despite the numerous technological advances, education has been one of the fields

that has benefited the least methodologically (Loh et al., 2021). However, the field of

engineering presents a unique scenario.

In the fields of engineering, where there is a presumed predisposition to adapt

technology in the classroom, there is a noticeable delay in the effective transmission of

knowledge from professors to students, similar to other subjects (Technology et al., 2020).

This underutilization of technological tools adds complexity when implementing systems

designed for high reproducibility, such as those employing commercial and economical

wrist sensors (smartwatches), Docker-based architectures, and online monitoring systems

accessible from any device (Marquez-Carpintero et al., 2023).

Building on this context, recent studies have emphasized the growing importance

of wearable technologies, particularly smartwatches, not only for educational purposes

but also for monitoring stress and related conditions such as anxiety among
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students (Abd-Alrazaq et al., 2024). These tools offer new avenues

for understanding student well-being, which is increasingly

relevant given the growing challenges to maintaining attention in

the classroom.

Indeed, one of the most pressing issues in current educational

environments is the increasing tendency of students to be less

attentive and more focused on their mobile phones during class.

In crowded classroom settings, this shift in behavior makes it

particularly difficult for instructors to assess student engagement

with precision (Höver and Mühlhäuser, 2015).

Our system addresses the activity using a low-impact approach

that respects privacy. Engineering professors often lack the means

to objectively measure attention, which is closely linked to the

student’s activity in class. It is known that mobile phone use

represents less attention to class than taking notes in class, which

influences a significant part of the final grade (Zaletelj and Košir,

2017).

This study introduces an innovative approach to dynamic

activity detection in the classroom through an effective graphical

user interface (GUI) (see Figure 1), validated by engineering faculty

in diverse educational settings. The interface is organized into

distinct sections: one displays individual student data, indicating

the specific activities being performed (writing on a smartphone,

drawing on paper, typing on a keyboard, using a mouse, resting,

playing with a pen and using a touchpad), while the remaining

sections summarize overall classroom information by providing

the global heart rate and a concise overview of student activities.

This structure offers synthesized and easily accessible insights for

instructors and administrators.

By leveraging the Technology Acceptance Model (TAM2)

(Venkatesh and Davis, 2000), as shown in Figure 2, this work

evaluates both the effectiveness and acceptance of the proposed

technology in real-world educational contexts. The research

objectives include collecting quantitative and qualitative evidence

of improved classroom behaviors and enhanced student academic

performance. Additionally, Table 1 provides the abbreviations used

for each construct in the study, along with the number of questions

associated with each.

This paper examines how young engineering professors

(defined here as those under 40 years of age) perceive the

implementation of advanced technologies, specifically through the

use of action control systems enabled by online monitoring. It

explores how these systems can provide objective and effective tools

for evaluating student activity and the attention associated with that

activity while respecting student privacy. Finally, the study presents

quantitative and qualitative results from user validation using the

TAM2 standard, demonstrating the technology’s acceptance and

effectiveness in educational contexts.

This research investigates the following questions:

• How do young engineering professors perceive the impact of

advanced monitoring technologies on their ability to evaluate

and enhance student engagement in the classroom?

• What are the challenges and benefits experienced by

engineering professors when integrating online monitoring

systems for student activity and engagement, and how do these

systems influence their teaching practices and effectiveness?

The integration of technology into education has significantly

transformed conventional teaching and learning methodologies,

offering both opportunities and challenges. This literature review

explores three main areas related to this transformation. First, it

discusses the impact of mobile devices on student engagement,

highlighting both the potential advantages and the distractions

they introduce. Next, it examines the acceptance of technology

within educational institutions, focusing on factors that influence

the adoption and effective use of new tools and platforms. Finally,

it investigates innovative didactic methodologies, emphasizing how

dynamic activity detection and wearable technology can enhance

classroom interactions and learning outcomes.

1.1 Theoretical framework

Technology has reshaped multiple facets of modern society,

and education is no exception. This framework reviews the impact

of mobile devices, examines technology acceptance in educational

institutions, and considers didactic strategies that integrate

emerging technologies into classroom practice. Additionally, it

addresses novel approaches such as dynamic activity detection

and wearable technology to illustrate their potential benefits in

educational settings.

1.1.1 Impact of mobile devices on student
engagement

A variety of studies indicate that the proliferation of

smartphones poses significant challenges in regulating student

behavior in the classroom (Akopova, 2020), reducing attention

span and engagement among digital natives. Since 2010, a

decrease of over 60% in note-taking during lectures has been

reported, largely attributable to mobile device usage (Kuznekoff

and Titsworth, 2013).

Research further shows that using mobile phones during class

negatively affects students’ information retention and academic

performance (Sapci et al., 2021). Students who refrained from

using their phones took more comprehensive notes, remembered

more information, and achieved higher grades than peers who

used their devices (Abd Rashid et al., 2020). Moreover, mobile

device usage can undermine critical thinking and collaborative

work (Green, 2019), as students composing responses on mobile

devices demonstrated lower levels of critical reasoning compared

with those using computer keyboards or handwriting.

Given these findings, providing educators with tools to detect

and manage mobile device usage is essential for improving student

attention and engagement.

1.1.2 Technology acceptance in educational
institutions

Educators’ resistance to adopting new technologies in

classroom settings is well documented (Watty et al., 2016). Despite

the potential benefits for teaching and learning, implementation

barriers remain. According to numerous systematic reviews,

“perceived usefulness” and “ease of use”–key constructs of the
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FIGURE 1

Visual interface tested by teachers.

TAM–are major predictors of successful technology acceptance

(Granić and Marangunić, 2019).

For instance, a study in higher education noted positive

attitudes toward platforms like Moodle, Facebook, and YouTube,

again underscoring the roles of perceived usefulness and ease

of use (Costa et al., 2019). Nevertheless, resistance persists for

certain technologies, partly due to unfamiliarity and concerns about

possible distractions in educational environments.

Additional evidence indicates that computer self-efficacy and

technical support are essential for the acceptance of mobile and

online technologies among students (Chahal, 2022). In Jordanian

universities, familiarity with e-learning systems and internet

technologies has been identified as critical for successful adoption

(Al-Adwan et al., 2013), while a study in Nepalese universities

reports that perceived enjoyment and self-efficacy also significantly

affect students’ technology acceptance (Teo et al., 2019).

1.1.3 Didactic methodology
In engineering education, there is notable resistance to the

integration of new instructional methods. Maintaining high levels

of attention is crucial for practical tasks and problem-solving

activities, which promote active learning and critical thinking skills.

The technology discussed here aims to reinforce behaviorist

principles in the classroom, where learning is driven by observable

behaviors and shaped by experience. Employing problem-solving
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FIGURE 2

TAM 2 model (Wu et al., 2008).

approaches focuses on changing student behavior through trial and

error, with repeated reinforcement of the strategies that lead to

successful problem resolution (Pape, 2004; Gorrell and Downing,

1989; Gorrell, 1993).

Addressing learned helplessness–a misguided belief that one

has no control over academic situations–is also vital. Strategies

involving appropriate reinforcement and personalized guidance

can help students sustain a sense of control and efficacy in their

learning processes (Ghasemi and Karimi, 2021).

By combining these didactic methodologies with the activity

detection tools introduced in this study, the teaching-learning

process may be substantially improved. For instance, detecting and

recording student participation during problem-solving tasks can

provide immediate insight into engagement levels (Kasparova et al.,

2020), while biometric data can inform positive reinforcement

for active students and negative reinforcement for those who

are less engaged (Asai and Yamana, 2013). Moreover, real-time

performance data enable instructors to customize problem-solving

activities, which is especially beneficial in engineering disciplines,

by providing additional tasks or support to students exhibiting low

engagement (Tang et al., 2023).

1.2 Dynamic activity detection in
educational contexts

Numerous studies have investigated the application of

individual RGB cameras for real-time activity detection within

educational environments. While this approach is cost-effective

and relatively straightforward to implement, smartwatches,

as utilized in this study, present a less intrusive alternative,

minimizing the potential for behavioral alterations due to the

awareness of being observed (Weiss et al., 2016). Furthermore,

smartwatches demonstrate greater resilience to challenges such as

occlusion or head movement.

Recent advancements highlight the value of incorporating

physiological and biometric data alongside conventional visual

inputs to augment the capabilities of Vision-Language Models

(VLM) and Multimodal Large Language Models (MLLM). For

example, the real-time measurement of heart rate variability

and other biometric indicators via smartwatches provides deeper

insights into cognitive load and emotional states (Bustos-Lopez

et al., 2022).

Among the most recognized and effective AI models for

attention detection using RGB cameras are those presented in

Abedi and Khan (2021) and Ai et al. (2022). However, in the

educational domain, no specific attention-detection models for

smartwatches have been developed thus far, even though their use

in sports activity recognition has been evaluated.

The software discussed in this paper has been tested

on smartwatches for the aforementioned reasons. Its modular

architecture also allows easy integration of RGB-based approaches,

providing a flexible platform that can accommodate diverse data

collection methods.

2 Materials and methods

This section describes the methodological framework for

evaluating the acceptance and effectiveness of a novel technological

system among engineering faculty members. It includes the

study context, institutional setting, participant selection, system

specifications, data collection strategies, and analytic procedures.

2.1 Study context

The research took place in Spain with professors from Robotics

Engineering and Computer Science programs, each specializing

in engineering. To determine how short training sessions impact

technology adoption, participants received a concise explanation
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TABLE 1 Constructs used for the analysis.

Construct Abbreviation No. of questions

Perceived Usefulness PU 6

Perceived Ease of Use PEOU 6

Intention of Use IU 3

Usage Behavior UB 4

Experience E 5

Voluntariness V 4

Subjective Norm SN 3

Image I 3

Job Relevance JR 3

Output Quality OQ 3

Result Demonstrability RD 3

Attitude Toward Using* ATU 4

Perceived Enjoyment* PE 3

Anxiety* A 3

∗Constructs not originally part of TAM 2.

(under two minutes) of the software’s features. This approach

was chosen to assess how effectively minimal instruction could

facilitate software usability and intuitiveness. Streamlining training

also helped address faculty workload constraints, allowing for quick

integration of new tools without substantial disruption to daily

responsibilities (Georgina and Hosford, 2009). Such rapid adoption

of emerging technologies is vital for maintaining both the quality

and timeliness of education programs (Granziera et al., 2019).

As previously mentioned, the study was performed at a Spanish

university with over 30,000 students enrolled across six faculties

and one Polytechnic School. Like many institutions, it faces

considerable hurdles in implementing advanced technologies (e.g.,

AI-driven tools, smart classrooms), including:

• High financial investments,

• Privacy and security issues,

• Extensive training requirements for effective use,

• Technical integration challenges and potential biases in AI-

based systems.

The university fosters a multicultural and inclusive

environment that attracts both international students and faculty.

Its mission centers on delivering state-of-the-art educational and

research opportunities and supporting innovation and personal

growth within a Mediterranean setting.

2.2 Participants

A total of 107 early-career engineering instructors (doctoral

students with teaching responsibilities and junior professors) were

considered for this analysis. From this group, 10 educators (nearly

TABLE 2 Distribution of participants by sex and age.

Sex Frequency Percentage

Male 08 80.00%

Female 02 20.00%

Age Frequency Percentage

20-30 years 07 70.00%

31-39 years 03 30.00%

10% of the total) agreed to participate and provided informed

consent. All possessed the necessary teaching credentials.

Participants answered a total of 59 survey questions, including

53 structured items targeting the acceptance of disruptive

AI technologies designed to enhance teaching effectiveness,

particularly in detecting academic activities and managing

classroom attention, and 6 open-ended qualitative questions

aimed at eliciting deeper insights into their perceptions and

concerns. Table 2 summarizes their demographic characteristics.

Their teaching experience ranged from 1 to 7 years, covering

basic undergraduate courses (e.g., mathematics) to advanced

graduate topics (e.g., intelligent computer vision). Despite their

distinct teaching assignments, they shared strong foundations in

engineering.

Although the sample included only ten participants–

approximately 10% of the total population of early, career

engineering faculty at the institution, this study adopted an

exploratory approach that prioritized the collection of rich,

nuanced data over a broader sample size. The questionnaire was

specifically designed to capture a wide range of perceptions and

behavioral drivers based on the extended TAM2 model, enabling a

fine-grained analysis suited to identifying emerging patterns and

informing future, larger-scale investigations.

2.3 Computer system

The system under evaluation builds on a previously developed

architecture (Marquez-Carpintero et al., 2023) and introduces an

innovative procedure for capturing and displaying user activities

and attention through a smartwatch.

2.3.1 System architecture
A modular client-server platform, containerized using Docker,

ensures portability and scalability for the inference component.

The Wear OS smartwatch collects sensor data at the maximum

allowable frequency (see Table 3 for sensor specifications). This

data is then processed and classified by the server in real time

to infer attention levels, and the resulting information is securely

stored in a database.

To ensure data security, all information is managed on

protected servers using standard encryption protocols–SSL/TLS

for data transmission and symmetric encryption for storage.

Leveraging the system’s modular architecture, a dedicated web
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TABLE 3 Description of various sensors with their respective data values.

O�cial sensor name Description Measured values Samples per
second

Units in data
sampling

Samsung HR None Wakeup

Sensor*

Detects the moment the smartwatch

awakens

beats per minute 1 BPM

Samsung Linear Acceleration

Sensor*

Reports linear acceleration excluding

gravity in the sensor frame.

Value 0: X-axis, Value 1: Y-axis, Value 2:

Z-axis

100 Value 0: m/s2 , Value

1: m/s2 , Value 2:

m/s2

LSM6DSO Gyroscope* Reports the rate of rotation around

three sensor axes.

Value 0: rad/s, Value 1: rad/s, Value 2:

rad/s

100 Value 0: m/s2 , Value

1: m/s2 , Value 2:

m/s2

OPT3007 Light Sensor Measures the level of environmental

light.

Luminosity value 5 Lux units

Samsung Rotation Vector* Provides continuous information about

device orientation in three-dimensional

space.

Value 0: X-axis vector ∗ sin(θ /2), Value

1: Y-axis vector ∗ sin(θ /2), Value 2:

Z-axis vector ∗ sin(θ /2), Value 3:

cos(θ /2)

100 No units

(quaternion)

∗Indicates that the value was used to feed the model.

server can also be seamlessly integrated to transmit the stored data

to the instructor’s computer interface.

2.3.2 Data flow
As depicted in Figure 3, the smartwatch sends sensor data to a

web server, which stores the incoming information and guarantees

fault tolerance. The web server subsequently transmits the data

to the instructor’s computer, enabling distributed processing and

efficient load balancing when running on a remote server.

Upon receiving a request, the AI engine classifies user activities

(writing on a smartphone, drawing on paper, typing on a

keyboard, using a mouse, resting, playing with a pen and using a

touchpad) within four-second intervals, computing the probability

of each possible action and labeling the activity with the highest

likelihood. Since the sensor data arrive at one-second intervals and

remain relatively small in volume, a conventional SQL database

was deemed suitable for quick queries and retrieval. Automatic

interface updates for the instructor’s system are facilitated

by AJAX.

Figure 4 illustrates the structure of the input data used for the

model’s final classification. The architecture consists of a Conv1D

layer to extract local features from time-series data, an RNN layer

to capture temporal dependencies, and a fully connected (FC)

layer that generates the final output. The model assigns an activity

label by selecting the class with the highest predicted probability.

A previously evaluated baseline model achieved an activity

recognition accuracy of 80% (Suescun-Ferrandiz et al., 2025).

The combination of sensor readings enables the identification of

different activities, which are reflected in the model’s output. These

outputs are then mapped to specific attention weights (0, 0.5 or 1).

Once the student’s attention level is inferred, assigning a value

of 1 for attentive actions, 0.5 for a neutral state, and 0 for inattentive

behavior, this value is aggregated with those of the remaining

students. The combined data are normalized on a 0-100 scale and

averaged across all students to enable visualization in the global

attention graph.

2.4 Data collected

Assessing software usability was pivotal to determining

technology acceptance. Accordingly, the extended TAM2 (Varela,

2004; Wu et al., 2008) was employed, incorporating additional

contextual factors.

2.4.1 Questionnaire design
In line with TAM2, a structured and validated questionnaire

(Venkatesh and Davis, 2000; Alwreikat et al., 2021) focused on

key constructs such as subjective norm, voluntariness, image,

job relevance, output quality, and result demonstrability. These

constructs are crucial for evaluating workplace software adoption

(Turner et al., 2010; Sharifzadeh et al., 2017; King and He,

2006).

TAM2 extends the original TAM (1989) by incorporating

factors (e.g., subjective norms, perceived job relevance) essential

for analyzing contemporary, dynamic software. Additionally, three

constructs were integrated from earlier studies: Anxiety (A) (Tsai

et al., 2020), Perceived Enjoyment (PE) (Teo and Noyes, 2011;

Alalwan et al., 2018), and Attitude Toward Using (ATU) (Teo,

2009). Given the high-stakes context of teaching, Anxiety items

were reversed on the Likert scale to ensure that higher scores

indicated more positive evaluations.

These supplementary measures (A, PE, ATU) were included to

gauge how readily educators might adopt this system in real-world

academic scenarios. Anxiety captures potential apprehension under

observation, Perceived Enjoyment investigates user engagement,

and Attitude Toward Using examines perceived usefulness and

relevance within educational environments.

2.4.2 Response coding
Participants used a five-point Likert scale (Joshi et al., 2015) to

answer each question:

1: Strongly disagree
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FIGURE 3

Pipeline schema.

FIGURE 4

Detailed pipeline of data usage. *One digit is obtained for each class, representing the probability that a given sequence of data belongs to each class.

2: Disagree

3: Neutral

4: Agree

5: Strongly agree

This scale is valued for its simplicity, clarity, and reliability

in measuring the intensity of opinions and attitudes, enabling

robust statistical analysis. Responses were interpreted using the

following ranges:

• Very Poor: 0–1.25

• Poor: 1.25–2.5

• Acceptable: 2.5–3.5

• Good: 3.5–4.0

• Excellent: 4–4.5

• Best: 4.5–5.0

By converting qualitative perspectives into quantitative data,

the Likert scale facilitated rigorous examination of user responses.

A qualitative analysis of these results appears in Section 4,

accompanied by a global box plot (Figure 5) for an overview of how

respondents perceived each construct.

3 Results

A range of statistical methods was employed to assess user

acceptance based on the TAM2 framework. Figures 6, 7 display

the distribution of responses across various constructs, serving as

the basis for the descriptive and inferential analyses discussed in

Section 5.

Table 4 presents summary statistics for each construct,

including measures of central tendency (mean and median) and

dispersion (standard deviation). These initial descriptive analyses

provided a foundation for identifying potential redundancies

among variables.

Building on this, Figure 8 illustrates the correlation matrix,

where variables Q35, Q56, Q47, Q14, Q49, Q55, Q41, Q10, and

Q52 exhibited correlations above 0.85 (r > 0.85). To address

multicollinearity and enhancemodel precision, these variables were

subsequently removed.

Following the refinement of variables, the internal consistency

of the survey constructs, Cronbach’s Alpha was calculated for

each item set (Vaske et al., 2017) (see Table 5). Notably, PU

(α = 0.056) and V (α = 0.348) showed low reliability,
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FIGURE 5

Distribution of constructs on the Likert scale.

suggesting that the associated items may not adequately capture

these constructs. In contrast, IU (α = 0.529) and UB (α =

0.683) demonstrated moderate reliability, acceptable in exploratory

research yet indicating potential for item refinement. The matrix

invertibility analysis (Ward et al., 1985) confirmed that constructs

such as PU and PEOU contributed non-redundant information to

the overall model.

Figure 8 displays the correlation matrix of all survey items. To

mitigate multicollinearity, items with intercorrelations above 0.85

(Q35, Q56, Q47, Q14, Q49, Q55, Q41, Q10, andQ52) were excluded

from further analysis.

Figure 9 illustrates the interrelationships between key

constructs, along with their associated p-values:

• PU was positively correlated with IU (r = 0.355, p = 0.314).

• PEOU was negatively correlated with PU (r = −0.520, p =

0.109), and positively correlated with both IU (r = 0.192,

p = 0.624) and Image (r = 0.438, p = 0.744).

• ATU showed positive correlations with both IU (r = 0.602,

p = 0.022) and UB (r = 0.380, p = 0.284).

• A was negatively correlated with both IU (r = −0.429, p =

0.248) and UB (r = −0.524, p = 0.035).

• SN and I were also positively correlated with IU (r = 0.633,

p = 0.050).

All correlations were tested under the null hypothesis of no

linear relationship between the paired variables (r = 0). The

corresponding p-values indicate the likelihood that the observed

associations occurred by chance.

To complement the quantitative findings, six open-ended

questions were included to capture participants’ subjective

impressions. The analysis of these qualitative responses,

summarized in Figure 10, revealed four main areas of concern:

discomfort, a sense of being monitored, technical issues, and the

perceived risk of data misinterpretation. While most participants

described the system as easy to use, several noted limitations

related to the user interface and privacy.

4 Discussion

This study has sought to ascertain the level of acceptance

of real-time behavior measurement software among a cohort

of young engineering professors in Spain. The findings showed

in Table 4 suggest that the technology is met with a favorable

response, particularly when it is introduced alongside concise

and well-structured training sessions. According to TAM2, high

levels of perceived usefulness and ease of use indicate that

professors are willing to incorporate these tools into their teaching

practices.

The real-time measurement system enhances the quality

of teaching by enabling the detection and adaptation of

classroom activities through continuous monitoring of

student participation and engagement. This facilitates more
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FIGURE 6

Frequency distribution of responses for constructs Job Relevance (JR), Output Quality (OQ), Result Demonstrability (RD), Attitude Toward Using

(ATU), Perceived Enjoyment (PE), and Anxiety (A).

personalized instruction, which in turn promotes greater student

involvement and potentially improved academic outcomes.

The system’s modular architecture ensures adaptability and

scalability across diverse educational settings. Additionally,

its deployment via smartwatches reduces perceptions of

intrusiveness and minimizes behavioral modifications

Frontiers inComputer Science 09 frontiersin.org

https://doi.org/10.3389/fcomp.2025.1565809
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Marquez-Carpintero et al. 10.3389/fcomp.2025.1565809

FIGURE 7

Frequency distribution of responses for Perceived Usefulness (PU), Perceived Ease of Use (PEOU), Intention of Use (IU), Usage Behaviour (UB),

Experience (E), Voluntariness (V), Subjective Norm (SN), and Image (I) constructs.

linked to awareness of being monitored, particularly

when compared to more invasive technologies such as

RGB cameras.

Two of the most significant factors influencing technology

acceptance were anxiety and institutional support. The analysis

shows that anxiety had a substantial inhibitory effect on both

Intention to Use (-0.429) and Usage Behavior (-0.524), reinforcing

the importance of mitigating user apprehension to promote

adoption. Likewise, the level of difficulty perceived in using the

system and the degree of institutional backing were pivotal in

shaping user acceptance.

To better understand the sources of anxiety underlying

the significant negative correlations identified, we analyzed

participants’ open-ended responses collected via the

qualitative section of the survey. The analysis revealed three

recurrent themes:

• Perceived Surveillance: Several participants expressed

concern about being “observed” or “recorded,” stating that

such real-time monitoring could lead to discomfort or an

overly surveilled classroom environment.

• Technical Complexity: Some users pointed out usability

issues, such as a need for a more intuitive interface or

occasional connectivity problems (e.g., “problems withWi-Fi”

or “unfriendly GUI”).

• Fear of Data Misinterpretation: A number of responses

highlighted apprehension regarding how attention or behavior

data might be misunderstood or misused, e.g., “the system
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TABLE 4 Descriptive statistics of the constructs rounded to three decimal

places.

Mean Std. dev Median Count

PU 3.967 0.682 4.000 60

PEOU 4.167 0.756 4.000 60

IU 4.267 0.680 4.000 30

UB 4.025 0.689 4.000 40

E 2.920 1.230 3.000 50

V 3.850 0.823 4.000 40

SN 3.767 0.920 4.000 30

I 3.833 0.687 4.000 30

JR 4.017 0.806 4.000 30

OQ 3.467 1.176 4.000 30

RD 4.133 0.562 4.000 30

ATU 4.200 0.678 4.000 40

PE 3.800 0.702 4.000 30

A 3.967 1.224 4.500 30

might misread levels of attention” or “be used to manipulate

classroom climate.”

These qualitative findings corroborate and contextualize

the quantitative results, suggesting that anxiety is rooted

not only in technological self-efficacy but also in ethical

and pedagogical concerns. Addressing these areas in future

deployments, via improved training, clearer system transparency,

and data usage protocols, may reduce anxiety and promote

broader acceptance.

Additionally, several of the computed correlations did not

reach conventional thresholds for statistical significance (p <

0.05). This outcome is primarily attributed to the limited sample

size, which limits statistical power. In such cases, even moderate

to strong correlations may fail to achieve significance despite

reflecting meaningful patterns. Importantly, the direction and

magnitude of most associations were consistent with theoretical

expectations of the TAM2 model, suggesting the presence of

underlying relationships that warrant further investigation. These

findings provide exploratory evidence and offer a foundation

for hypothesis refinement and future studies with larger, more

diverse samples.

Notably, ATU showed a strong correlation with both IU and

UB, suggesting that fostering positive attitudes toward the system

could significantly enhance both intention and actual usage.

Further supporting this relationship, PU correlated moderately

with IU (0.355), while PEOU showed a negative association

with PU (-0.520) but maintained positive correlations with IU

(0.192) and IM (0.438), underscoring the nuanced role of usability

in shaping both perceived value and user intent. Additionally,

A demonstrated inhibitory effects on IU (-0.429) and UB (-

0.524), suggesting that reducing user anxiety may enhance system

acceptance. Social influences, including SN and I, also emerged as

relevant factors, highlighting the importance of social context in

technology adoption decisions.

4.1 Comparative analysis

When compared to prior studies grounded in the TAM2

framework (Wingo et al., 2017; Khoa et al., 2020), the results

of this research demonstrate a consistent directional alignment

with established theoretical predictions. For example, although

the correlation between PEOU and IU in this study did

not reach statistical significance (r = 0.192, p = 0.624), it

maintained the positive direction reported in previous research,

reinforcing its conceptual validity. Conversely, the relationship

between SN and IU was notably stronger in this study (r

= 0.633, p = 0.050) than that reported by Khoa et al.

(2020) (β = 0.235), suggesting that social pressure and

institutional endorsement play a particularly influential role in

technology adoption within structured academic settings. This

finding aligns with TAM2, which posits that SN becomes

a key determinant when technology use is mandated or

formally encouraged by the organization (Venkatesh and Davis,

2000).

A notable divergence was observed in the relationship between

PEOU and PU, which unexpectedly showed a negative correlation

(r = −0.520, p = 0.109). This inverse association may reflect a

ceiling effect among technologically proficient faculty, for whom

ease of use does not necessarily imply greater utility. In fact, simpler

systems may be perceived as lacking the functional depth required

for advanced pedagogical applications.

Furthermore, this study highlights the critical role of A, an

external factor not originally included in TAM2 but increasingly

recognized as essential in digital education research (Dönmez-

Turan and Kır, 2019). Although A was not quantitatively measured

here, its relevance was acknowledged within the theoretical model.

Other studies based on the extended TAM3 framework report

substantially lower A levels among our study and general users (e.g.,

M = 2.44, SD = 1.25; M = 2.01, SD = 1.07 on a 7-point scale)

(Kleine et al., 2025), suggesting that educators may experience

qualitatively distinct forms of A, especially when coupled with the

simultaneous demands of managing both the classroom and the

educational software.

4.2 Limitations

The relatively small sample size and its demographic specificity,

comprising engineering faculty members under the age of 40 from

a single Spanish university, limit the generalizability of the findings.

Nonetheless, the sample is internally diverse within the defined

target group of young engineering faculty. Given the exploratory

nature of this study, the results should be viewed as preliminary

insights rather than definitive conclusions. Future research should

aim to broaden the sample by incorporating more diverse

participants across multiple institutions, academic disciplines, and

geographic regions, thereby enhancing the robustness and external

validity of the findings.
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FIGURE 8

Correlation matrix of survey variables.

TABLE 5 Cronbach’s alpha for each construct.

Construct Cronbach’s alpha

PU 0.056

PEOU 0.844

IU 0.529

UB 0.683

E 0.842

V 0.348

SN 0.722

I 0.704

JR 0.906

OQ 0.943

RD 0.647

ATU 0.775

PE 0.682

A 0.974

Additionally, the study’s cross-sectional design captured only

initial user perceptions following a brief training session. As a

result, it does not account for long-term adoption, changes in

teaching practices, or evolving attitudes such as reduced anxiety

over time.

To overcome these limitations, future research should replicate

this study with larger and more diverse samples across institutions,

age groups, and academic fields. Longitudinal designs are

also recommended to evaluate sustained technology use, its

impact on pedagogical practices, and the development of user

perceptions over time. Follow-up studies tracking continued

usage are particularly important to determine whether early

positive perceptions lead to long-term adoption and meaningful

educational change.

Furthermore, the limited literature on faculty-specific anxiety

within the TAM framework, highlighted in the comparative

analysis, represents a critical research gap and a valuable

opportunity for future studies to enhance our understanding of

technology adoption in educational settings.

Finally, some measurement limitations were identified. PU (α

= 0.056) and V (α = 0.348) exhibited low internal consistency,
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FIGURE 9

Correlation matrix of constructs.

indicating the need for item refinement to more accurately capture

these constructs. Despite this, both were retained due to their

central theoretical roles within the TAM2 framework. PU is a

key predictor of technology adoption, and omitting it would

compromise the model’s conceptual integrity. Likewise, V remains

essential for understanding peer influence on adoption behavior.

The low reliability scores may stem from the small sample

and item adaptation issues rather than conceptual irrelevance.

Future research should revise and strengthen the measurement of

these constructs.

5 Conclusion

This study investigated the acceptance of real-time behavior

measurement software among young engineering professors at

a Spanish university. The findings indicate a generally positive

reception, with participants valuing the system’s usability and

practical relevance for enhancing classroom engagement. By

offering instructors an objective, real-time tool to assess student

activity, this technology presents a promising path toward

improving teaching effectiveness and academic outcomes through

more personalized learning experiences.

Key factors that facilitated technology acceptance included

the simplicity of the interface and the minimal training required

for initial use. These elements contributed significantly to the

perceived ease of use and overall user acceptance. However, the

analysis also revealed two critical barriers to adoption: anxiety

and institutional support. Notably, anxiety exerted the strongest

inhibitory influence, with a substantial negative effect on both the

intention to use the system (r=−0.429) and actual usage behavior

(r = −0.524). This underscores the central role of psychological

readiness and the importance of fostering user confidence to ensure

successful implementation.

Interestingly, contrary to expectations, the relationship

between Perceived Ease of Use and Perceived Usefulness yielded

a negative correlation. This unexpected result may reflect a

ceiling effect, whereby technologically proficient faculty do not
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FIGURE 10

Categorical summary of participants’ responses. (a) Reported discomfort. (b) Feeling of being observed. (c) Technical di�culties. (d) Perceived risk of

misinterpretation of results.

necessarily associate ease of use with greater utility, perhaps

perceiving simpler systems as less capable of supporting complex

pedagogical tasks.

The system’s unobtrusive design, particularly the use of

smartwatches instead of more invasive technologies like RGB

cameras, was positively received. This design choice helpedmitigate

perceptions of surveillance, fostering a more natural classroom

environment and contributing to broader acceptance. Its modular

and scalable architecture further enhances its potential applicability

across various educational settings.

While the study affirms the feasibility of deploying real-time

behavior monitoring tools in academic contexts, it also highlights

the need for further research. The limited sample, comprising

early-career engineering faculty from a single institution,

constrains the generalizability of the results. Future research

should involve more diverse samples across disciplines and age

groups, and adopt longitudinal approaches to assess sustained

usage, pedagogical impacts, and evolving user perceptions

over time.

To facilitate broader adoption, it is essential to reduce

user anxiety, ensure robust institutional support, and provide

ongoing technical assistance. The study provides meaningful

preliminary insights into the factors shaping technology acceptance

in educational settings. These results open the door to future lines

of research aimed at refining and expanding the use of real-time

behavior measurement tools.
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