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Breast cancer is the highest-ranking type of cancer, with 2.3 million new cases 
diagnosed each year. Immunohistochemistry (IHC) is the gold standard “examination” 
for determining the expression of cancer malignancies in patients with the ultimate 
goal of determining prognosis and therapy. Immunohistochemistry refers to the 
four WHO standard biomarkers: estrogen receptor, progesterone receptor, human 
epidermal growth factor receptor-2, and Ki-67. These biomarkers are assessed 
based on the quantity of cell nuclei and the intensity of brown cell membranes. 
Our study aims to detect the expression of breast cancer malignancy as an initial 
step in determining prognosis and therapy. We implemented homogeneous and 
heterogeneous ensemble learning models. The homogeneous ensemble learning 
model uses the majority vote technique to select the best performance between 
the Xception, ResNet50V2, InceptionResNet50V2, and ConvNextTiny models. 
The heterogeneous ensemble learning model takes the ConvNextTiny model as 
the best model. Feature engineering in ConvNextTiny combines convolution and 
cell-quantification features as feature fusion. ConvNextTiny, which applies feature 
fusion, can detect the expression of cancer malignancy. Heterogeneous ensemble 
learning outperforms homogeneous ensemble learning. The model performs well 
for accuracy, precision, recall, F1-score, and receiver operating characteristic-area 
under the curve (ROC-AUC) of 0.997, 0.973, 0.991, 0.982, and 0.994, respectively. 
These results indicate that the model can classify the malignancy expressions 
of breast cancer well. This model still requires the configuration of the visual 
laboratory device to test the real-time model capabilities.
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1 Introduction

Breast cancer (BC) ranks first in women among all types of cancer 
in the world (Intan et  al., 2024). Approximately 2.3 million cases 
spread across various countries, and as many as 666,103 deaths 
(Alismail, 2024). Asian countries have the highest number of 985,817 
cases and 315,309 deaths (World Health Organization, 2022). In line 
with global cases, in Indonesia, breast cancer ranks first in cancer 
cases in women. Global cancer data in 2022 shows that the total cases 
in women are 30.1% (66,271 cases) and 19.8% (22,598 cases) (World 
Health Organization, 2022).

Breast cancer is a type of cancer that occurs when malignant cells 
grow in breast tissue and is heterogeneous, characterized by various 
molecular subtypes and genotype profiles (Chen et al., 2024). These 
cells can form tumors that can be felt on physical examination or 
detected through mammography. Breast cancer is more common in 
women but can also occur in men in very small numbers (Kemenkes, 
2024). Breast cancer has various presentations with different molecular 
subtypes, with different biomolecular, pathological, and genetic 
features, and with different clinical and therapeutic response results, 
so breast cancer is called a heterogeneous disease. These molecular 
markers are known to be closely related to oncogenic transformation, 
cancer cell proliferation, tumor growth, treatment options, and 
prognosis of breast cancer (Joensuu et al., 2013; Afkari et al., 2021).

An immunohistochemistry (IHC) is an examination to determine 
the characteristics of breast cancer. The examination involves 
biomarkers, which are widely used in the process of diagnosis, 
prognosis, and treatment for patients with breast cancer. Biomarkers 
are useful for both patients who have recently had breast cancer and 
those who have experienced a recurrence. There are four types of 
biomarkers, which are the WHO gold standard that is routinely 
enforced in the characterization and diagnosis of breast cancer, 
namely estrogen receptor (ER), progesterone receptor (PR), human 
epidermal growth factor receptor-2 (HER-2), and Ki-67. Especially for 
ER, PR, and HER-2, implementation is easy because it is effective and 
inexpensive (Alismail, 2024).

Estrogen receptors (ERs) and progesterone receptors (PRs) are 
both important for predicting breast cancer pathogenesis and 
treatment response. Both are hormone receptors in response to 
estrogen and progesterone; ER and PR contribute to cancer growth in 
hormone-sensitive breast tissue by facilitating cancer cell proliferation 
(Alismail, 2024). Estrogen receptors (ERs) have remained the most 
important biomarker in breast oncology for 60 years after their 
discovery. ER status is very urgent in clinical decisions and outcome 
prediction for breast cancer patients, including determining the right 
therapy for patients. The results can significantly improve clinical 
outcomes with ER-positive characteristics. As an important predictive 
biomarker, visualization of its image requires analysis that meets the 
standard scoring of cell nuclei against stained cell nuclei. The majority 
of BC are ER-positive. Visually, ER has “positive” and “negative” 
characteristics. Negative characteristics if ER staining is ≥1% of the 
cell nucleus by IHC (Allison et al., 2021; Reinert et al., 2022; Loggie 
et al., 2024). Another scoring standard, ER-negative, has a cell nucleus 
threshold of ≤10% (Fei et al., 2021) or ranges from 2 to 7% (Loggie 
et al., 2024). Progesterone receptor (PR) is a member of the nuclear/
steroid hormone receptor (SHR) family of ligand-dependent 
transcription factors expressed primarily in female reproductive 
tissues and the central nervous system. In response to the binding of 

its related steroid hormone, progesterone, PR regulates the expression 
of a network of genes to control the development, differentiation, and 
proliferation of target tissues, as well as pathological processes in 
endocrine-based cancers (Grimm et  al., 2016). PR characteristics 
include “positive” and “negative.” Visually, PR is “positive” if the score 
of stained cell nuclei has a cutoff >1% (Shao et al., 2024) or >10%, 
conversely if PR is “negative,” then the score of stained cell nuclei is 
<10% (2–7%) (Alismail, 2024; Loggie et al., 2024).

Human epidermal growth factor receptor 2 (HER-2) is 
overexpressed in approximately 15–30% of breast cancer cases. Thus, 
it is considered an important prognostic and predictive biomarker for 
breast cancer. Unfortunately, HER-2 overexpression is associated with 
a more aggressive tumor phenotype characterized by prone metastasis, 
poor prognosis, and high recurrence rates. This suggests that HER-2-
positive breast cancer is often associated with more advanced stages 
(Alismail, 2024). Routine determination of HER-2 status is performed 
using techniques such as immunohistochemistry (IHC) and 
fluorescence in situ hybridization (FISH). FISH detects HER-2 gene 
amplification, while IHC evaluates HER-2 protein expression levels; 
both techniques determine eligibility for HER-2-targeted therapy (Lv 
et  al., 2016). Accurate determination of HER-2 status influences 
therapy choice and prognosis, which are critical for the best patient 
management (Alismail, 2024). HER-2 has a score that is taken from 
ER and PR. At the cutoff limit of 10%, the threshold <10% is HER-2 
negative, conversely, if the threshold ≥10 is HER-2 “positive.” HER-2 
is divided into three subtypes based on IHC scores: “negative” (IHC 
0/1+), equivocal cases (IHC 2+), and “positive” cases (IHC 3+). 
Equivocal cases are retested with FISH to verify their HER-2 
expression more accurately. Positive cases indicate that patients are 
eligible for anti-HER-2 therapy (Lv et al., 2016).

Ki-67 is a widely used biomarker to measure and monitor tumor 
proliferation in breast specimens, although there is poor agreement 
on the analytical approach to its assessment, assessment methods and 
cutoffs, data handling, and appropriate clinical utility of the biomarker. 
Ki-67 appears to be a continuously variable type marker, reflecting 
tumor biology (Penault-Llorca and Radosevic-Robin, 2017). Testing 
for Ki-67 is performed using different methods, and cutoffs for 
defining Ki-67 “positive” and “negative” or “high” and “low” 
populations are not clear. Consequently, the Tumor Marker Guidelines 
Committee of the American Society of Clinical Oncology (ASCO) 
determined that the evidence supporting the clinical utility of Ki-67 
is insufficient to recommend routine use of this marker for prognosis 
in patients with newly diagnosed breast cancer. Standardization of 
Ki-67 assessment is a global standard set by the WHO to improve its 
reproducibility. The clinical utility of very low and very high Ki-67 
indices is good. The 25% threshold has shown significance for 
predicting overall survival. Multigene testing can provide useful 
information to guide the management of patients with ER+/HER-2 
breast cancer in the “gray zone” Ki-67 index (between 15 and 25%) 
(Penault-Llorca and Radosevic-Robin, 2017).

Therefore, the four biomarkers visually indicate the expression of 
cancer malignancy through the number of cells and the extent of 
brown color between the stained cells. Determining the characteristics 
of each biomarker will provide appropriate treatment 
recommendations for breast cancer patients.

Pathologists have difficulty observing tissues with the naked eye 
and manually analyzing images based on their knowledge and skills. 
First, they perform fundamental techniques through microscopic 
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observation of cell morphological structures (nuclei and cell 
membranes). The method relies heavily on manual naked-eye 
observation, so it does not save time because IHC images have 
complex, uneven cell color distribution between normal and 
cancerous stained cells, overlapping cells, and uncertain cell sizes. 
Second, the objectivity of the observation results depends on the 
experience and accommodation of the pathologist’s eyes, so the results 
sometimes differ. Third, there are so many cases of breast cancer in 
hospitals that it is tiring if the process only relies on manual 
techniques. On the other hand, the demand for examination results 
must be released quickly to patients as part of hospital management.

Therefore, this study proposes a modified ConvNextTiny to detect 
breast cancer malignancy expression, combining cell quantification 
and convolution features. The cell quantification feature adapts cell 
morphology as a fundamental pathologist calculation. The 
convolution feature is a ConvNextTiny feature that utilizes a 
convolutional neural network architecture and pre-trained transfer 
learning weights. The cell quantification calculation is a WHO 
calculation standard in the ConvNextTiny feature that performs well 
with transfer weights from “imagenet” (transfer learning weights). 
Combining both is an advantage in finding unique patterns for each 
breast cancer image that will improve model performance.

In this study, we  experimented with two ensemble transfer 
learning models, namely homogeneous and heterogeneous ensemble 
learning. The homogeneous ensemble learning model was constructed 
using a majority voting scheme among four models: Xception, 
Resnet50V2, InceptionResnet50v2, and ConvNextTiny. We trained 
each model individually and performed hyperparameter tuning, with 
particular focus on evaluating the learning rate. ConvNextTiny was 
selected as it shows dominant performance within the homogeneous 
ensemble. Combining the ConvNexTiny and cell quantification model 
features is the final ensemble model by concatenating their features 
into the ConvNexTiny neural network classifier. The advantage of the 
homogeneous ensemble learning model is based on transfer learning 
from CNN, which has high computational feature extraction and 
classification capabilities, and ConvNexTiny has a short computational 
time. Moreover, using cell quantifications involves a practical model 
and simple computation. Combining these two models using feature 
fusion balances the complexity of the algorithm and delivers better 
performance and acceleration. The final model classification result is 
in the form of ER and PR expressions: “positive” and “negative”; 
HER-2 is +1 (negative) and +3 (positive), while Ki-67 is low and high. 
The final results show that our proposed model outperforms all single 
models and as an ensemble result. Our contributions: (1) built the 
model using feature fusion that contains 768 ConvNextTiny features 
and one cell quantification feature from (Canny and Otsu); (2) used 
four biomarkers (ER, PR, HER, and Ki-67) as input for homogeneous 
and heterogeneous breast cancer classification.

The study presents a systematic approach to detecting four breast 
cancer biomarkers—ER, PR, HER-2, and Ki-67. Section 1 discusses 
the biomarkers and highlights the novelty of the research. Section 2 
reviews previous studies and emphasizes the contributions made by 
this work. Section 3 discusses the methodology in detail, including 
dataset collection, integration, and the application of ensemble 
learning algorithms with feature fusion techniques to enhance 
performance. Section 4 demonstrates that feature fusion significantly 
improves model accuracy in detecting cell nuclei scores and brown 
intensity in image objects, leveraging feature extraction and 
combination in both models. Finally, Section 5 concludes that the 

proposed model meets the needs of ensemble learning while aligning 
with pathologists’ practices, achieving superior performance in 
accuracy, precision, recall, F1-score, and ROC-AUC through the 
combination of cell quantification features and ConvNexTiny features.

2 Related studies

Several previous researchers conducted studies focusing on 
investigating the status of ER, PR, HER-2, and Ki-67, as well as other 
biomarkers, using machine learning, deep learning, CNN model 
adaptation, and stained cell expression scoring.

Fan et al. (2024) presented an intelligent, holistic breast cancer 
tumor diagnosis system, including an interpretation module and a 
subtype module. The interpretation module is used to extract and 
analyze data based on a CNN-based convolutional neural network 
from HER-2, ER, PR, and Ki-67 images, followed by classification 
analysis. The subtype module produces holistic detection results of 
critical tumor markers with diagnostic suggestions for molecular 
subtypes validated by three pathologists. The model architecture 
consists of four convolution layers, four pooling layers, fully connected 
layers, and one output layer. The used dataset consists of 104 HER-2 
cases, 198 ER and PR cases, and 60 Ki-67 cases.

Kildal et  al. (2024) proposed a model using Mask R-CNN, 
YOLOv5, and deep learning to detect nuclear, cytoplasmic, and 
membranous IHC staining patterns in five image objects, namely 
colon, two prostate, breast, and endometrial. Image objects of the 
biomarker Ki-67 for colon, prostate, and breast cancer; PMS2 and 
MSH6 for colon and endometrial cancer; PTEN, CCNB1, CD44, 
Flotillin1, Mapre2, and β-catenin for prostate cancer; and ER and PR 
for breast cancer. The models consist of three, namely the nuclear 
model, the cytoplasmic model, and the membranous model. The 
nuclear model consists of 69 whole slide imaging (WSI) from the 
Ki-67 colon set and 23 WSIs from the PMS2-colon set; the cytoplasmic 
model consists of 34 WSIs from the PTEN-prostate set; and the 
membranous model consists of 25 WSIs from the β-catenin prostate. 
The image size is 800 × 800 pixels at 40× magnification, as the feature 
and the labels are “positive” and “negative” for each biomarker.

Zhao et al. (2024) developed a ResNet-18 model based on the 
framework and an online clinical application platform to predict 
molecular features and patient prognosis from triple-negative WSI 
pathology. The framework architecture consists of a serially working 
part to compare two separate convolutional networks (CNNs). The 
first is a tissue type classifier developed based on 20 WSIs’ pixel-level 
tissue type annotations connected to the prediction target. The second 
is a CNN trained based on sample tiles for different targets. The 
models were trained and validated using the Fudan University 
Shanghai Cancer Center Triple Negative Breast Cancer 
(FUSCCTNBC) cohort through three-fold cross-validation. All three 
models were applied to the The Cancer Genome Atlas Triple Negative 
Breast Cancer (TCGATNBC) cohort. Each patient received three 
prediction scores, and the average was used for the final prediction. 
Performance metrics were then computed for external validation.

Tafavvoghi et al. (2024) performed two scenarios: first, classifying 
tiles in tumor and non-tumor areas for molecular subtypes using 
InceptionV3, the tile matrix size is 512 × 512, then decreased in size 
(1 × 1, 3 × 3, 5 × 5); second, using the One-vs-Rest (OvR) strategy to 
train four binary OvR classifiers and combining the results using the 
Xtreme Gradient Boosting model. The datasets accessed from The 

https://doi.org/10.3389/fcomp.2025.1569017
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Intan et al.� 10.3389/fcomp.2025.1569017

Frontiers in Computer Science 04 frontiersin.org

Cancer Genome Atlas-Breast Cancer Gene (TCGA-BRCA) were 
1,175, Breast Cancer Screening System (BRACS) were 129, Clinical 
Proteomic Tumor Analysis Consortium_Breast Invasive Carcinoma 
(CPTAC_BRCA) was 382, and HER-2-Warwick was 71.

Solorzano et al. (2024) built a single CNN model and an ensemble 
model from Inception V3, ResNet50, Inception-ResNet V2, and 
Xception to determine the presence of invasive carcinoma, IC or not 
IC. The datasets from Clinseq were 232 WSI and Sos 355 WSI, a total 
of 2,502,649 tissue tiles of size 598 × 598 pixels (271 × 271 μm) at 20× 
magnification. To determine the last decision, voting was applied to 
the model.

Bychkov et al. (2022) detected mitosis, nuclear pleomorphism, 
and tubule formation images using ResNet CNN. The biomarkers 
used were BCSS, ER, and ERBB2. The evaluation technique was 
applied to the model trained on the FinProg test set, which refers to 
the internal test set, and the FinHer patient series, which was not used 
for all training. The average output of the five trained models was used 
for cross-validation to reduce CNN variance and improve prediction 
accuracy. Validation between prediction scores (CNN output) and 
real-time sensor readings was conducted using statistical analysis 
based on Cox PH multivariate regression.

The advantages of our implemented model are as follows: (1) 
Accommodating conventional techniques that pathologists use to 
analyze the cell morphology. The quantification and intensification of 
the staining of the nucleus and membrane of cancer cells determine 
the expression of cancer malignancy. (2) Homogeneous ensemble 
learning improves model performance results during training and 
testing. The majority vote technique selects the best model among the 
four models, which is more efficient than the average bagging 
technique. (3) Heterogeneous ensemble learning, through feature 
fusion of concatenated different features, significantly improves model 
performance to be  visually and medically representative. Feature 
engineering uses modified ConvNextTiny as a concatenation of 
convolution and cell quantification features. Computation time is 
shorter because it uses one ConvNextTiny classifier.

3 Methods

3.1 Datasets

We used datasets from Hasanuddin University Hospital (HUH) 
and Wahidin Sudirohusodo Hospital (WSH), consisting of 300 WSI: 
200 from WSH, and 100 from HUH, which were then sampled into 
23,351 samples. The dataset is closed access, and the owner’s consent 
is required. The immunohistochemistry (IHC) biomarkers used for 
each patient consisted of estrogen receptor (ER), progesterone 
receptor (PR), HER-2, and Ki-67. However, the condition of 
biomarkers in the laboratory is not always complete, so data imbalance 
is an obstacle. The data composition of each biomarker consists of 
9,035 ER image samples, and the total dataset used was 1,499 images. 
As shown in Table 1, the total dataset used was 23,331 images.

Because the image size during capture varies depending on the 
image cropping area and device resolution, we  need to do data 
preparation. This step is crucial because, besides being thorough, it is 
also very time-consuming. Therefore, the input data are standardized 
to 224 × 224 and normalized for computing speed needs. In addition, 
determining the boundaries of cell morphology and membranes 

requires careful visual analysis to annotate each cell boundary and its 
cell membrane boundary. Not all WSIs are normal; some have 
blurriness during WSI pre-processing, so the cell morphology does 
not match the actual one.

3.2 Pre-processing

We performed physical data acquisition and data preparation that 
met the required qualification standards. The techniques used 
included performing the cutting process when capturing the image of 
each biomarker sample (cropping). The rectangular image dimensions 
vary according to the ratio of the size and area of the WSI. For 
instance, an image measuring 1,280 × 613 pixels has a size of 
approximately 224 kb. WSI scans using KBIO, China Scanner, capture 
the entire cross-section of the WSI image area. Additionally, we read, 
enlarge, capture, and crop using Slideviewer 3DHISTECH, Budapest, 
Hungary, with magnifications of 5×, 10×, 20×, and 40×. The selection 
of these magnifications is based on the clarity of the colored cell 
objects, which adapt to the devices of the two hospitals. Physical data 
acquisition continues with virtual data acquisition if it is already in the 
programming framework. Acquisition is done by resizing the original 
image size into patches (224 × 224) to ensure uniform data size, 
facilitating the arithmetic and geometric operations of the input data.

Here, we focus specifically on the preprocessing of handcrafted 
features, as preprocessing for convolutional neural networks is 
handled automatically without manual intervention. The 
preprocessing techniques applied include Gaussian Blur, Otsu 
thresholding, and mask inversion. An 11 × 11 Gaussian blur is used 
to blur the image, remove noise in the image, and make the transition 
between areas smoother. At the same time, Otsu’s method is an 
automatic technique for determining the optimal threshold to divide 
grayscale images into two classes: foreground and background. 
ConvNextTiny was pre-trained using ImageNet weights as transfer 
learning weights. All handcrafted features use feature standardization 
for data uniformity.

3.3 Processing

Processing and performing modeling based on the methods used 
in the feature extractor and classifier.

3.3.1 Feature engineering
Feature engineering consists of two main types: cell 

quantification feature (handcrafted feature) and convolution feature. 
The cell quantification feature extracts using Canny edge detection 
and the Otsu thresholding technique. The Canny edge detection 

TABLE 1  Datasets of ER, PR, HER-2, and Ki-67.

Images Train Validation Test Total

ER 4,790 598 506 8,894

PR 3,268 408 410 4,086

HER-2 5,309 663 665 6,637

Ki-67 5,370 671 673 6,714

Total 18.737 2,340 2,254 23,331
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(Intan et al., 2023) sharpens the edges of cancer cells and colored 
cell areas while counting the number of cells (Figure 1). Otsu edge 
thresholding (Chadha et al., 2020) provides a circle boundary on the 
cell membrane object in a clear circle area through feature extraction 
(Figure  2) (Aswathy and Jagannath, 2017)—next, automatic 
convolution feature extraction through the ConvNexTiny model in 
each of its layers. The third stage of feature extraction is the scored 
feature. The results of the feature extraction stage are used to extract 
the number of cells based on their color indications, and then 
scoring (quantification) is carried out.

In handcrafted image processing, Canny focuses on changes in 
sharpness between pixels (high gradient) through the following 
steps: (1) Gaussian blur to reduce noise; (2) Gradient magnitude to 
detect changes in intensity; (3) Non-maximum suppression to 
produce thin edges; (4) Hysteresis thresholding to filter strong and 
weak edges based on pixel intensity; (5) Calculate the average value 
and standard deviation of the number of cell nuclei. Unlike Canny, 
Otsu focuses on area segmentation based on pixel intensity. 
However, Otsu’s nature is used to separate between pixel conditions 
greater than the threshold, where the value is 0, and otherwise, the 
value is 1. Canny performs edge detection using the hysteresis limit 
of the image pixel strength. If the pixel is smaller than 30, it is 
ignored, and if it is above 105, the label is marked as an edge.

The second handcrafted technique uses the Otsu threshold with 
the following steps: (1) calculate pixel intensity using a binary 
threshold (8 bits, 0–255), intensity 0–50 is 0, while 100 is 1; (2) 
calculate the probability of each image intensity (Equation 1); (3) 
iterate for object and background classes; and (4) calculate the mean 
and standard deviation of the brown cell membrane area in the 
HER-2 biomarker.

	
( ) = Number of Selected Intensity Pixels

Total of Pixels
P i

	
(1)

3.3.2 Classifier
Our experimental setup involved two ensemble learning 

models: homogeneous and heterogeneous. For the homogeneous 
ensemble, we employed a majority voting technique among four 
distinct models (Xception, ResNet50V2, InceptionResNet50V2, 
and ConvNextTiny) to determine the best overall performer. 
Through this process, ConvNextTiny consistently demonstrated 
superior performance across various metrics, indicating its 
strength as an individual classifier. Therefore, for the 
heterogeneous ensemble learning model, ConvNextTiny was 
selected as the foundational architecture due to its dominant 
performance within the homogeneous ensemble. This allowed us 
to integrate additional handcrafted cell quantification features 
with ConvNextTiny’s convolutional features, creating a robust 
fusion model.

3.3.2.1 Homogeneous ensemble learning

3.3.2.1.1 Model
The classifier used consists of four models, as follows (Figures 1, 2):
First, Xception (Li et  al., 2023) has a basic CNN architecture; 

convolution is used to process the main features against the deep 
convolution separately from the CNN convolution to achieve feature 
extraction and successful computation, reducing the number of 
parameters (Sharma and Kumar, 2022; Krishna et al., 2023). Second, 
Resnet50V2 (He et al., 2016; Rahimzadeh and Attar, 2020), Residual 

FIGURE 1

Homogeneous ensemble learning.
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Network 50V2, an architecture that has a stack block with the same 
connection shape (Residual 3 Unit). This base model has the following 
advantages: (1) ease of optimization and (2) reducing overfitting, 
unnormalized signals used as input to the next layer, so that all inputs 
are normalized. Third, InceptionNetResnetV2S (Asif et  al., 2022; 
Talukder et al., 2023), each block is followed by an expansion filter 
layer used to increase the filter bank dimension before augmentation, 
according to the input thickness. Fourth, ConvNexTiny (Tanvir et al., 
2024) is a novel convolutional neural network architecture that 
leverages standard CNN modules and incorporates optimization 
techniques inspired by the transformer model. ConvNexTiny has a 
network structure that shows great development potential through 
comprehensive experimental demonstrations covering macro and 
micro designs based on ResNet. This model outperforms the Swin 
Transformer while maintaining the simplicity and efficiency 
characteristics of standard CNN architectures (Yang et al., 2022).

In the homogeneous model ensemble (Figure 1), first, all models 
are applied individually to obtain the best weight hyperparameter 
tuning results. Starting from Exception, Resnet50v2, 
InceptionResnet50V2, and ConvNextTiny are based on convolution. 
We perform the ensemble by majority voting among the four models; 
the results will be  the output of the homogeneous ensemble 
learning model.

Majority voting is a technique used to determine the final decision 
based on the largest number of labels in the entire model (Equation 2). 
Suppose there are M = 4 classification models, K possible classes; the 
m-th model gives a prediction. ŷ is the class label with the most votes, 
and y is an indicator function (1 if true, 0 otherwise).
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Each image will be plotted into an image grid in pixel form using 
“imagenet” weights with a learning rate of 10−3 and 10−4 as its training 

tuning. The image goes through a feature extraction process, starting 
from resizing, convolution, and global average pooling 2D to produce 
1,024 features in the Exception, Resnet50v2, and InceptionResnet50V2 
models and 768 features in ConvNextTiny. This feature is input for a 
neural network that uses the ReLu activation function and the 
“softmax” optimizer. The three models have 1,024 features, while 
ConvNextTiny has 768 features. Those four feature blocks are input to 
the neural network so that the output produces 512 features and 
finally produces two classifications, “positive” and “negative,” or low 
and high. Each single model has the same parameter structure 
initialization. Similarly, parameter tuning is carried out by taking 
several learning rate scenarios.

The results of turning parameters with a learning rate of 10−3 then 
become weights for pre-trained. The results of these weights become 
the initialization when doing the second training to obtain the best 
weights. Pre-trained has a learning rate of 10−4 to load parameters with 
a learning rate of 10−3, down from before, to obtain a smaller gradient 
descent, so that the loss decreases and the accuracy improves during 
training (Equations 6, 7).

3.3.2.2 Heterogeneous ensemble learning model
Medical record data images in ER, PR, Ki-67, and HER-2 images 

were taken from the examination results released by the pathologist. 
The pathologist selected the threshold for cell quantification (nucleus 
and cell membrane) based on WHO standards. The model determines 
the classification of ER, PR, and Ki-67, focusing on the number of 
dark brown cell nuclei, while HER-2 focuses on the area of brown cell 
membranes. The ER and PR use a threshold of 1%. The “negative” class 
has several cells ≤1% in stained cells; conversely, if the number of cells 
is>1%, then the class is “positive.” In HER-2, it does not count the 
number of cells but computes the intensity of the brown color in the 
image. The HER-2 threshold is at 10%; if the intensity of the dark 
brown color is greater, then it is “positive,” and if not, then it is 
“negative.” Unlike the three previous biomarkers, Ki-67 has a higher 
threshold of 20%. The classification results are the labeling of the 

FIGURE 2

Heterogeneous ensemble learning.
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images loaded into the model, and also serve as learning data for the 
model to recognize classification characteristic patterns: positive, 
negative, high, and low.

A heterogeneous ensemble model is a concatenation of 
homogeneous ensemble learning and cell quantification. Cell 
quantification is handcrafted from Canny edge detection and Otsu 
segmentation. Cell quantification, as a Canny edge detection model, 
counts the number of stained cells and Otsu counts segmentation of 
the area of dark brown cell membranes. Canny (Intan et al., 2023) cell 
quantification is an edge detection technique to reduce noise, 
preventing fake edge detection. The image I (x, y) is filtered with a 
Gaussian Kernel to produce a convolution image, IS (x, y), as shown in 
Equations 3, 4.
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To determine the feature map of edge boundaries using binary 
thresholding, 0 and 1. If Tmin then 0 (not an edge boundary) and Tmax 
then 1 (edge boundary) (Equation 5). The morphological kernel is 
rectangular 1 × 1 and produces the number of contours as the number 
of cells for classification.
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Otsu determines the binary threshold using a 3 × 3 elliptical 
kernel to segment the brown cell area. The cell quantification feature 
(Table 2), based on average values and standard deviations, indicates 
that ER, PR, and Ki-67 show average cell nucleus counts and standard 
deviations in the training data. These range from 1,600 to 2,400 and 
1,250 to 1,650, respectively. On the other hand, HER-2 has an average 
area percentage of 0.32886 with a standard deviation of 0.17146. These 
average values are the cell quantification features used to train the 
model and determine the best final parameters. They are also key 
parameters for classifying conditions as “positive” or “negative” and 
“high” or “low.”

The cell quantification model computes the number of cells 
resulting from extracting Canny features, as explained in Intan 
et al. (2023). It then computes the average number of cells in the 
training data and its standard deviation value. The image size, a 
sample patch for each image, is 224 × 224. Patches are partitions of 
each image into smaller square sizes as two-dimensional images 
that will be converted into n-dimensional features according to the 
layer’s dimensions. This number of cells only has one feature to 
be  input to the ConvNextTiny classifier. The layer structure of 

ConvNextTiny consists of four-layer blocks: the first block has 96 
features; the second block has 192 features; the third block has 384 
features; and the last block has 768 features and a ReLu activation 
function. The last block consists of 768 connecting features 
combined with one cell quantification feature to produce 769 
convolution features, also called feature fusion. The process results 
in a modified ConvNextTiny. Feature fusion will simplify the 
features of both techniques that were initially separate, aiming to 
simplify the feature layer while improving the performance of the 
convolution model from 768 features. The 769 features are input to 
the neural network to be  passed through the RELU activation 
function, and then 512 features are produced at its dropout (0.5), 
which are classified into two classes. The ER, PR, and HER-2 
produce “negative” (0 and +1) and “positive” (+2 and +3) classes, 
while Ki-67 produces “low” and “high” classes.

Figure 3 is a general concatenation of ensemble learning. The 
result of homogeneous ensemble learning in the form of the best 
model is ConvNextTiny, then the features of the ConvNextTiny head 
layer consist of 768 convolution features. Cell quantification is a 
manual feature extraction (handcrafted feature extraction) consisting 
of one Canny feature and one Otsu feature, each combined into the 
ConvNextTiny head to form modified ConvNextTiny. Modified 
ConvNextTiny is the last classifier to determine the final detection 
and prediction.

3.3.3 Evaluation
Model performance is an indicator of the success of building a new 

model. A good model will have improved performance with its 
reference model. It requires parameter tuning to obtain better results if 
it does not improve. Model classification requires validation of its 
output; if the probability of correct validation is high, then it is 
confirmed to be a good model; conversely, if the probability is low, it will 
reduce model performance. It is also a factor in the feasibility of a model 
being implemented. This study model uses a confusion matrix (Wang 
et al., 2025; Chicco and Jurman, 2023), which is an element of true 
positive (TP), true negative (TN), false positive (FP), and false negative 
(FN). Some of the parameters measured include:

	 1	 Loss: Computes the predicted and actual values of the model. 
yi is the true label, pi is the predicted probability for some 
samples N (Terven et al., 2025).
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	 2	 Accuracy: Measures the proportion of correct data predictions 
to the overall model predictions (Wang et al., 2025; Chicco and 
Jurman, 2023). Higher accuracy values indicate better model 
performance, indicating that the majority of the data have 
correct classifications.

	
+

=
+ + +

TP TNAccuracy
TP TN FP FN 	

(7)

TABLE 2  Cell quantification features.

ER PR Ki-67 HER-2

Mean 1610.3472 2343.6925 2048.1196 0.32886

Deviation 

standard

1454.9679 1610.3472 1252.7431 0.17146
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	 3	 Precision: This metric assesses the proportion of true positive 
predictions to the total positive predictions (Wang et al., 2025; 
Chicco and Jurman, 2023) (Equation 8). A higher precision 
value indicates false positive errors of the minor data, focusing 
on the model’s ability to classify samples accurately.

	
=

+
TPPrecision

TP FP 	
(8)

	 4	 Recall: This metric measures the proportion of true positive 
predictions from the total number of positive samples (Wang et 
al., 2025; Chicco and Jurman, 2023) (Equation 9). A higher recall 
value indicates fewer false negative errors, reflecting the model’s 
ability to identify positive cases correctly.

	
=

+
TPRecall

TP FN 	
(9)

	 5	 F1-score: The harmonic mean of precision and recall measures 
the model’s performance (Wang et al., 2025; Chicco and Jurman, 
2023) (Equation 10). A higher F1-score indicates better model 
performance, balancing precision and recall.
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	 6	 ROC Curve is a graph that shows the performance of a binary 
classification model at various threshold values by plotting 
(Martínez Pérez and Pérez Martin, 2023; Carrington et al., 
2023): (1) true positive rate (TPR) on the y-axis (also called 
sensitivity), and false positive rate (FPR) on the x-axis (which 
is 1—specificity) (Equations 11, 12).
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+
TPTPR

TP FN 	
(11)
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+
FPFPR

FP TN	
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4 Results and discussion

4.1 Homogeneous ensemble learning

A single model is the original model of each model element 
combined. Simulation of each model has different characteristics, 
including shorter computation speed, epoch, accuracy, and loss, which 
are parameters owned by each model.

In Tables 3–6, all models’ performance and classification results 
show that ConvNexTiny has the highest accuracy and the smallest loss 
for all types of biomarkers, namely ER, PR, HER-2, and Ki-67. The 
model achieved the highest accuracy of 0.9933 and the smallest loss 
of 0.0078. These results indicate that the ConvNexTiny model wins 
the majority voting results on these metrics. Moreover, the 
classification results show that its valid data outperforms other 
models; even its invalid data has the smallest data, so it is very 
appropriate that ConvNexTiny is the best model among other 
single models.

Table 2 summarizes the performance of the ConvNexTiny model 
on the four types of images in detail. The experiments conducted on the 
training model used an initial learning rate of 10−3, and then fine-tuning 
was performed at a learning rate of 10−4 until the model obtained 
optimum weights. These optimum weights are used as a reference for 
testing each biomarker. The lowest learning rate produces higher 
accuracy and lower loss due to the descent of errors through fine-
tuning, which aims to reduce errors in gradient descent (Equation 6).

Table 4 shows the performance capabilities of the four models. 
ConvNexTiny outperforms the other three models, which can only 
recognize approximately 925 valid images, while ConvNexTiny 
can classify as many as 933 valid images and only four invalid 
images. The same thing is also shown in Table 5; ConvNexTiny 
outperforms the accuracy of Exception, Resnet50V2, and 
InceptionResnet50V2 with a value of 0.9974 and the smallest loss 

FIGURE 3

The concatenation of ensemble learning.
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value of 0.0112 on HER-2, as well as on Ki-67. The value has an 
impact on the data that is validated correctly (Table 6), with as 
many as 663 valid data and only two invalid data on HER-2. 
Similarly, on Ki-67, there are 928 valid data and nine invalid data. 
The more valid data depends on the higher accuracy and the lower 

loss. Conversely, if the accuracy is lower and the loss is higher, it 
will affect the number of correctly validated data. Good 
performance is obtained from the fine-tuning process to obtain the 
smallest error and high accuracy, even though the training time 
is longer.

TABLE 3  Model performance of ER and PR.

Models ER PR

Lr = 10−4 Lr = 10−3 Lr = 10−4 Lr = 10−3

Test performance

Acc Loss Acc Loss Acc Loss Acc Loss

Exception 0.985 0.0449 0.9658 0.1051 0.9707 0.0577 0.9512 0.1318

Resnet50V2 0.985 0.0538 0.9573 0.1317 0.9585 0.1133 0.9512 0.1096

InceptionResnet50V2 0.979 0.0479 0.9712 0.0973 0.9732 0.0887 0.9512 0.1369

ConvNextTiny 0.9933 0.0078 0.9916 0.0394 0.9800 0.05 0.9636 0.1105

TABLE 4  Data distribution of ensemble model classification of ER, PR, HER-2, and Ki-67.

Models ER PR

Lr = 10−4 Lr = 10−3 Lr = 10−4 Lr = 10−3

Numbers of data

Valid Invalid Valid Invalid Valid Invalid Invalid Valid

Exception 925 12 905 32 401 9 390 20

Resnet50V2 925 12 897 40 399 11 390 20

InceptionResnet50V2 925 12 910 27 399 11 390 20

ConvNextTiny 933 4 403 7

TABLE 5  Model performance of HER-2 and Ki-67.

Models HER-2 Ki-67

Lr = 10−4 Lr = 10−3 Lr = 10−4 Lr = 10−3

Test performance

Acc Loss Acc Loss Acc Loss Acc Loss

Exception 0.9955 0.0185 0.9835 0.0631 0.985 0.0449 0.9658 0.1051

Resnet50V2 0.9925 0.0129 0.9865 0.0439 0.985 0.0538 0.9573 0.1317

InceptionResnet50V2 0.9925 0.0336 0.9835 0.0477 0.979 0.0479 0.9712 0.0973

ConvNextTiny 0.9964 0.0112 0.9960 0.0157 0.990 0.0419 0.9797 0.038

TABLE 6  Model classification of HER-2 and Ki-67.

Models HER-2 Ki-67

Lr = 10−6 Lr = 10−3 Lr = 10−6 Lr = 10−3

Numbers of data

Valid Invalid Valid Invalid Valid Invalid Invalid Valid

Exception 662 3 654 11 923 14 905 32

Resnet50V2 661 4 656 9 923 14 897 40

InceptionResnet50V2 555 10 654 11 918 19 910 27

ConvNextTiny 663 2 928 9
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4.2 Heterogeneous ensemble learning

Figure 4 shows that the fine-tuning results provide better loss 
conditions. (1a), (2a), (3a), and (4a) show overlapping between train 
and validation at a learning rate of 10−3, while (1b), (2b), (3b), and (4b) 
show that fine-tuning at a learning rate of 10−4 successfully separates 
the training curve and the validation curve so that overlapping is 
resolved. The error is getting smaller, indicating that the model’s ability 
to distinguish between its two classification classes is improving 
during training and testing. To prove it, Table 7 shows the amount of 
data and the percentage of model classification on ER, PR, HER-2, 
and Ki-67.

Heterogeneous ensemble learning is an ensemble model between 
cell quantification and ConvNextTiny. Cell quantification uses 
grayscale, binary, blurred image, canny edge detection, dilated image, 
and contour techniques to determine the radius of the cell circle and 
compute the number of circles resulting from contours. This circle is 
a colored cell observed using a microscope display (Figure 5).

In addition to features learned via convolutional neural networks 
(CNNs), we incorporated a handcrafted feature to quantify cell density 
or stained area, depending on the biomarker type. We estimated cell 
quantification using Canny edge detection for ER, PR, and Ki-67 
datasets. Images were first converted to grayscale and binarized using 
Otsu’s thresholding in inverse mode to isolate foreground structures. 
A Gaussian blur (kernel size: 11 × 11) was applied to reduce noise, 
followed by Canny edge detection with thresholds of 30 and 105. The 

FIGURE 4

Results of train loss with fine-tuning at a heterogeneous ensemble model. (1a), (1b) ER; (2a), (2b) PR; (3a), (3b) HER-2; and (4a), (4b) Ki-67.

TABLE 7  Data distribution of ensemble model classification of ER, PR, 
HER-2, and Ki-67.

Images Train Val Test % Valid % Invalid

ER 4,790 598 506 99.16 0.84

PR 3,268 408 410 97.06 2.94

HER-2 5,309 663 665 99.69 0.30

Ki-67 5,370 671 673 99.25 0.74
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resulting edges were dilated using a 1 × 1 rectangular kernel for two 
iterations, and external contours were counted as a proxy for cell 
nuclei. These threshold values were selected empirically by evaluating 
multiple samples and identifying the settings that produced the most 
accurate and consistent contour quantification relative to visual 
inspection. The extraction of contour cells in ER, PR, and Ki-67 
focuses on the brown nucleus circle of cells, totaling 4,534, 858, and 
4,643, respectively (Figure 5).

For HER-2 images, we  computed the proportion of stained 
(brown) regions to the total image area. Grayscale images were 
binarized using Otsu’s method and inverted to highlight dark-stained 
regions. The morphological opening with an elliptical 3 × 3 kernel 
removed minor artifacts, and the stained ratio was computed as the 
fraction of non-zero pixels in the mask. All extracted features were 
standardized using the mean and standard deviation computed from 
the training set before being concatenated with CNN outputs for final 
classification. The model in Figure 6 does not compute the number of 
cells as circles, but it computes the brown cell area, indicating that the 
cell membrane is 0.45367 or 45.367%. This area is already within the 
threshold limit, the area of brown cells for HER-2 (Figure 7).

Table  8 shows that the results of the heterogeneous ensemble 
model have improved performance beyond the homogeneous 
ensemble model (Table  2). It shows that the ensemble technique 
improves model performance by adding one extraction feature 
(Canny and Otsu). Table  8 shows a fairly significant value of the 
heterogeneous ensemble model, exceeding the capabilities of the 

homogeneous ensemble model compared to the homogeneous values 
found in Tables 3–5. Technically, the homogeneous ensemble results 
of the single ConvNextTiny model show quite good performance, but 
assigning image labels to one technique has not accommodated the 
needs of pathologists based on their fields of science, which require 
observation of cell morphology. These observations are based on the 

FIGURE 5

Cell quantification as results of feature extraction of Canny edge detection: ER (left), PR (center), and Ki-67 (right).

FIGURE 6

Model classification results with labels of ER, PR, Ki-67, and HER-2 (from left to right).

FIGURE 7

Cell quantifications as a result of feature extraction of Otsu edge 
detection (HER-2).
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FIGURE 8

Results of the confusion matrix.

threshold of the number of cells and the brown area on the cell 
membrane. This is very important to provide confidence in 
determining the status characteristics of each sample or patch 
from WSI.

The heterogeneous ensemble model performs classification of ER, 
PR, Ki-67, and HER-2 with labeling and validation between the 
prediction and actual. The image shows that the characteristics of the 
number of cells will be identified based on the brown cycle, as the cell 
nucleus (the first three images from the left). In contrast, the rightmost 
image is the HER-2 image, marked as the distribution of cell 
membranes that dominate the patch area (square images), brown, and 
focuses on its area rather than on the nucleus. The model will visually 
compute the number of cell nuclei, which can be computed manually, 
although it takes an inefficient time. It is unlike the cell membrane, 
which is observed around the brown area and not the cycle contained 
in the patches.

The superiority of the heterogeneous ensemble model is also seen 
in the proportion of correctly recognized image samples. The higher 
the proportion, the higher the confidence in its classification 
performance, as shown in Table 8. Indeed, of course, it depends on the 
train’s performance on all types of biomarkers, which greatly 
determine the performance of the test. Based on the values in Table 8, 
HER-2 outperforms the other three biomarkers because feature 
extraction of the brown cell area makes it easy to determine its 

presence with certainty. In comparison, the other three biomarkers, 
ER, PR, and Ki-67, still need to compute the number of cells, which is 
not always certain for each image sample. Automated cell 
quantification makes it more difficult for the model to classify it, even 
though it already has a threshold number. ER and PR have a threshold 
of 1%, while HER-2 and Ki-67 have value thresholds of 10 and 20%, 
respectively. This superiority of HER-2 is indeed unique, even though 
each type has the same number of image samples. However, HER-2 is 
still superior for the previous reason.

This study is in line with previous studies using other model 
ensembles, in that the output of the ensemble model will reinforce the 
model before the ensemble so that the existence of this technique is 
significant enough to present a model applied to public service access 
in the medical field. It is shown in previous studies, including in 
Table 7.

Figure 8 presents the metrics for evaluating the model using a 
confusion matrix, including accuracy, precision, recall, F1-score, and 
ROC-AUC. The model achieved its highest accuracy of 0.99699 on 
HER-2, recall of 0.998022 on ER, F1-score of 0.99505 on ER, 
ROC-AUC of 0.99426 on HER-2, and precision of 0.9921 on 
ER. HER-2s get superior accuracy when they focus on the cell 
membrane area, which is influenced by the portion of the brown area 
in the image. HER-2 also has the highest number of valid predictions. 
However, accurately counting cancer cells remains challenging due to 

TABLE 8  Performance of a heterogeneous ensemble model of ER, PR, HER-2, and Ki-67.

Images Acc Precision Rec F1-score ROC-AUC

ER 0.99164 0.99211 0.99802 0.99505 0.97773

PR 0.98049 0.97436 0.97436 0.97436 0.97931

HER-2 0.99699 0.97345 0.99099 0.98214 0.99426

Ki-67 0.98662 0.97787 0.98222 0.98004 0.98553
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the uncertain distribution of these cells within the image. Despite 
Ki-67 having the most extensive dataset, in our case, it does not 
surpass HER-2 for prediction percentage. The model struggles to 
differentiate between light, regular, and dark brown shades, leading it 
to rely on edge detection results, which often produce invalid 
classifications. Additionally, the smallest dataset size for PR contributes 
to its lower prediction values.

4.3 Research achievement

We conducted multiple scenarios to enhance the model 
we  developed. As expected, these results were also achieved by 
previous researchers employing different methodologies. Table  9 
compares our research findings with those of previous studies.

The performance comparison involves various variables, including 
different data sources, datasets, feature fusion, ensemble techniques, 
and models (Table 7). We analyze results across smaller and larger 
data clusters relative to our dataset, including datasets with restricted 
access. Our model demonstrates superior performance compared to 
studies with smaller datasets (Mudeng et al., 2023; Zheng et al., 2023; 
Abdullakutty et al., 2024; Alam et al., 2024; Islam et al., 2024; Qasrawi 
et al., 2024; Solorzano et al., 2024; Sreelekshmi and Nair, 2024). It also 
outperforms those with larger datasets (Khan et al., 2023; Kumari and 
Ghosh, 2023; Prezja et al., 2024). However, research by Ahmad and 
Alqurashi (2024) and Rahaman et al. (2024) achieves better results 
using ensembles of older models. Our approach leverages a new 
model that integrates feature fusion from handcrafted with 
ConvNextTiny features in the head block, offering efficient 
computation and simple edge detection.

Here, our feature fusion model has an average performance 
above 99%, including previous models (Alam et al., 2024). These 
features of each class will find their unique patterns and then 
be combined with the convolution features in the transfer learning 
model, so that it will produce a unique pattern if only using the 
convolution model. Feature fusion has provided a unique pattern 
to the model that produces better performance than without 
feature fusion, even though homogeneous ensemble learning is 
carried out. Feature fusion improves model performance on 
adequate datasets, bagging techniques, and robust models. The 
selection of models and feature techniques greatly determines the 
final performance of the model, so that the classification ability 
becomes a reliable and final result.

This research is an ongoing process of interpreting the molecular 
expression of breast cancer patients in immunohistochemistry 
examination. The expression still requires the characteristics of all 
biomarkers to determine the molecular subtypes that play a role in 
determining the enforced prognosis and type of therapy. Research by 
Fan et al. (2024) becomes a reference for the development of this 
research in the future with various feature engineering and models to 
obtain robust performance and contribute to efficient architecture in 
its deployment.

4.4 Limitations

This research endeavors to enhance the model performance 
utilized by pathologists during immunohistochemistry 

examinations, which are concerned with the determination of cell 
morphology and cell proliferation, explicitly focusing on cell 
nuclei and membranes. This investigation leverages computer 
vision to ensure precise and accurate results, thereby facilitating 
reliable diagnostic outcomes. Nevertheless, various limitations 
must be acknowledged and addressed in this research context, 
including:

The fixation of the number of samples for each WSI does not 
represent the entire area because only three to four samples are 
taken for each WSI for each magnification. It will compute the 
number of cells in each WSI accurately and determine the average 
value and standard deviation of each WSI, not only based on each 
sample but also focusing on the mean and standard deviation of 
each WSI. It also overcomes overshooting and overlapping during 
training, which are still relatively high. It will certainly provide 
strong confidence in the results released by pathologists 
for hospitals.

The real-time model integration with the WSI display and 
scanner has not been configured, so the pointer changes or shifts 
can provide detection results for each WSI sample and 
magnification. The real-time configuration between the 
application and the microscope display hardware makes it easy 
to determine the final results of the examination, which are 
released visually.

5 Conclusion

We successfully implemented a heterogeneous ensemble learning 
model to address the problem of feature classification in anatomical 
pathology cases. Pathologists typically observe cell morphology to 
determine the malignant status of cancer, with cell quantification 
being the gold standard in their practice. This method computes the 
number of cells and the area of brown-stained cells to identify the cell 
nucleus and cell membrane. Our study selected the CNN types, 
ConvNextTiny model based on the majority voting results from four 
models experimented with cell quantification. Both ensembles 
demonstrated performance that significantly outperformed the other 
three single models. The result indicates that our approach, which 
concatenated a single feature into ConvNextTiny with the simplest 
structure, achieved performance superior to the more complex 
structures of the three models with a more significant number of 
features. Heterogeneous ensemble learning, which is a feature fusion, 
has significantly better performance on adequate datasets, ensemble 
techniques, and robust models, so its performance is better than that 
of homogeneous ensemble learning.

Further development of this study is necessary through more 
extensive patch exploration for each WSI image sample to achieve a 
more accurate and precise average. Each WSI sample has a fixed 
number of samples, and each WSI has its average and standard 
deviation identified to match the annotation results manually 
performed by pathologists. Additionally, the WSI shift results have 
been read, and the WSI status has been detected for each patch shift 
angle in real-time. This approach will undoubtedly produce an 
accurate analysis that matches the needs of pathologists and hospitals. 
The study aims to provide immunohistochemistry examination results 
that can effectively map the appropriate subtype of malignancy 
expression of breast cancer.
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TABLE 9  Performance of the previous work.

Author Dataset source Number of data Methods Results

Mudeng et al. (2023) BreakHis

DataBiox

7,909

922

InceptionResNetV2; InceptionV3; NASNet-Large; 

ResNet50; ResNet101; VGG19; and Xception as single 

model

Majority voting

Accuracy: 97.67%

F1-score: 97.60%

Zheng et al. (2023) P&D Laboratory 7,909 VGG16 + Xception + ResNet50 + DenseNet201

Weighted voting strategy

Accuracy: 98.90%

Khan et al. (2023) ITMP; University of Bern

RUMC

53,814 U-Net + ViT

Segmentation and classifier

F1-score: 97.4%

Sensitivity: 99.5%

Specificity: 96.7%

Analysis: concatenate

Kumari and Ghosh (2023) IDC

BreaKHis

277,524

7,909

VGG-16 + Xception + DenseNet201 Accuracy: 94. 2%

Sreelekshmi and Nair, 

2024

MIAS 332 U-Net + Auto Encoder Accuracy: 75.3%

Prezja et al. (2024) NCT

UMM

100,000 EfficientNet + Vision Transformer + Random Forest Accuracy: 96.74%

Abdullakutty et al. (2024) Electronic Medical Record 3,764 PCA + auto encoder; VGG-16; ViT; and ResNet-50 Accuracy: 78.84%

Parshionikar and 

Bhattacharyya (2024)

BreakHis

IR Thermal Image Dataset

9,713

1,279

Inception + CapsNet Accuracy: 99.74%

Rahaman et al. (2024) In-House 12,156 EfficientnetB3 + ResNet50 + SCL Accuracy: 99.92%

Precision: 99.88%

Recall: 99.90%

F1-score: 99.89%

Ahmad and Alqurashi 

(2024)

American Oncology 

Institute at Shrimann 

Hospital

1,935 ResNet50 + InceptionV3 Accuracy: 99.80%

F1-score: 99%

Sensitivity: 99%

Specificity: 99%

Solorzano et al. (2024) Clinseq

Sos

355

284; total

2, 502,649 tiles

Majority vote of Inc.

Xception V3, ResNet50, Inception-ResNet V2 and 

Xception

Accuracy: 91.2%

Dice: 86.2%

Specificity: 85.9%

Precision: 83.7%

Qasrawi et al. (2024) HMUH 20,000 YOLO; VGG-16, DenseNet121 Accuracy: 88.9%

Precision: 88.9%

Recall: 88.7%

F1-score: 88.8%

AUC: 89.4%

Karuppasamy et al. (2024) SQUH

BreaskHis

158

7,909

AlexNet + VggNet AUC: 95%

Islam et al. (2024) BUSI

UDAIT

780

163

MobilleNet + Xception Accuracy: 87.82%

Precision: 87.33%

Recall: 85.33%

F1-score: 86.00%

Alam et al. (2024) BUSI 1,312 GAN + SVM + U-Net + VGG-19 Accuracy: 99.48%

Sensitivity: 99.40%

Specificity: 99.55%

Proposed model Hasanuddin University 

Hospital

Wahidin Sudirohusodo 

Hospital

23,154 Majority voting: Exception, ResNet50V2; 

InceptionResnet50V2; ConvNextTiny

Ensemble (feature fusion): Canny/Otsu + ConvNextTiny 

for every Biomarker

Accuracy: 99.7%

Precision: 97.35%

Recall: 99.1%

F1-score: 98.21%

ROC-AUC: 99.43%
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