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The lack of labeled sensor data for Human Activity Recognition (HAR) has

driven researchers to synthesize Inertial Measurement Unit (IMU) data from

video, utilizing the rich activity annotations available in video datasets. However,

current synthetic IMU data often struggles to capture subtle, fine-grained

motions, limiting its e�ectiveness in real-world HAR applications. To address

these limitations, we introduce Multi3Net+, an advanced framework leveraging

cross-modal, multitask representations of text, pose, and IMU data. Building

on its predecessor, Multi3Net, it uses improved pre-training strategies and a

mixture of experts classifier to e�ectively learn robust joint representations. By

leveraging refined contrastive learning across modalities, Multi3Net+ bridges the

gap between video and wearable sensor data, enhancing HAR performance

for complex, fine-grained activities. Our experiments validate the superiority

of Multi3Net+, showing significant improvements in generating high-quality

synthetic IMU data and achieving state-of-the-art performance in wearable

HAR tasks. These results demonstrate the e�cacy of the proposed approach in

advancing real-world HAR by combining cross-modal learning with multi-task

optimization.

KEYWORDS
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1 Introduction

Human Activity Recognition (HAR) using wearable devices has gained significant

attention in various real-world applications, including healthcare (Inoue et al., 2019),

manufacturing (Xia et al., 2020), and fitness (Ray et al., 2024; Czekaj et al., 2024). However,

compared to fields like computer vision and natural language processing, HAR with

wearable sensors has made slower progress in leveraging recent advancements in Deep

Learning. This problem is largely due to the lack of large-scale, labeled datasets for sensor-

based HAR tasks, which are readily available in fields like computer vision (e.g., ImageNet,

COCO).
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To address the limitation of lacking large-scale labeled datasets

for sensor-based HAR tasks, several studies have investigated the

synthesis of IMU data from video, capitalizing on the wealth of

labeled activity data available in video formats. While this approach

has proven useful for certain HAR tasks (Kwon et al., 2020; Rey

et al., 2019; Moon et al., 2023), it faces significant challenges

in accurately generating IMU data for fine-grained and subtle

movements (Leng et al., 2024, 2023a). These types of movements,

which are critical in real-world activities such as detailed tasks in

manufacturing or playing a musical instrument, remain difficult

to capture effectively using video-based methods. Existing studies

about generation of synthetic IMU data from monocular video

presents three major challenges:

(1) Inaccurate IMU data generation: current methods for

generating synthetic IMU data from video often rely on kinetic

detection and motion capture. However, these techniques can

introduce errors due to factors like lighting variations, body shape

differences, and occlusions, all of which limit the accuracy of IMU

data generation, particularly for complex activities. Subtle motions,

such as those involving the wrist, are especially challenging to

simulate from monocular video due to the relatively small wrist’s

degrees of movements and representation in pixels.

(2) Unmodeled human attribute variations: monocular video

capture is inherently limited by factors such as the shooting

angle and occlusion, which prevents the task of accurately

modeling consistent human attributes like height, gender, and body

proportions in the video. These variations can lead to significant

differences in the generated synthetic IMU data, especially when

simulating fine-grained movements. Moreover, current methods

are unable to capture IMU data of the same activity from

individuals with different characteristics (e.g., different heights or

body shapes) in a single video, whichmakes the cost of synthesizing

IMU data very high, thus preventing the widespread application of

synthetic IMU data technology.

(3) Loss of information from video to IMU Data: despite

advancements in synthetic data generation, the synthetic IMU data

cannot fully capture the motion details present in the video, leading

to a loss of information. As a result, models trained with synthetic

IMU data may not always demonstrate superior performance in

HAR, particularly for complex, fine-grained activities.

In this paper, we propose Multi3Net+, a novel multi-modal

framework designed to improve the IMU basedHARwith synthetic

IMU data generated by video. To tackle the challenge of Inaccurate

IMUData Generation, we employ the SkinnedMulti-Person Linear

model (SMPL) (Loper et al., 2015), a highly effective tool for

capturing complex human poses with exceptional fidelity. The

SMPL model enables precise pose calibration, allowing us to

generate high-quality synthetic IMU especially for fine-grained

activities.

To address the issue of Unmodeled Human Attribute

Variations, we apply data augmentation techniques to the human

poses generated by SMPL. First, we introduce variations in key

human attributes such as height, weight, and body proportions to

ensure that human attributes remain consistent within each video.

Next, we modify these attributes to efficiently generate a diverse

set of IMU data from the source video, capturing a wide range of

real-world variations in human characteristics.

To address the Loss of Information from Video to IMU

Data, we preserve intermediate representations during the IMU

generation process. In addition to using synthetic data for

pretraining the network, we also incorporate latent representations

from video descriptions and human poses. Specifically, we apply

contrastive learning across video descriptions ↔ pose, video

descriptions ↔ synthetic IMU, and pose ↔ synthetic IMU. This

contrastive framework helps the model learn joint representations

across these diverse modalities, enabling the model to capture

complex relationships between visual cues, human poses, and IMU

data.

Finally, we fine-tune the pretrained model using a small

amount of real IMU data for downstream HAR tasks. This

fine-tuning step leverages the learned representations from the

multimodal training phase, allowing the model to effectively

transfer knowledge from synthetic data to real-world applications.

The key contributions of this paper are as follows:

(1) We introduce a multi-modal, multi-task approach which

uses the contrastive learning to integrate video, pose, and synthetic

IMU data, enabling joint representation learning for improved

HAR performance. (2) We introduce a Mixture of Expert (MoE)

downstream classifier built upon the predecessor work to further

improve the HAR results. (3) We demonstrate the use of SMPL for

generating high-fidelity synthetic IMU data, effectively addressing

inaccuracies in current IMU generation methods along with a

novel data augmentation strategy that accounts for human attribute

variations, ensuring better generalization across diverse real-world

scenarios. (4) We show how the proposed approach can effectively

adapt to real-world IMU-based HAR tasks by validating it on three

publicly available datasets and comparing it to two State of the Art

(SoTA) IMU simulation methods that proves even with limited real

data we can have superior performance, by leveraging pre-trained

multimodal representations.

2 Related work

HAR using wearable sensors offers advantages such as reduced

privacy concerns and lower energy consumption (Lyu et al., 2024)

compared to video-based HAR, making it widely applicable for

daily life activity recognition. However, wearable sensor-based

HAR faces significant challenges (Bian et al., 2022), particularly

in recognizing complex activities and adapting to professional

domains such as nursing care and industrial activity monitoring,

which have gained increasing attention in recent years. A primary

limitation lies in the scarcity of labeled datasets, driven by the

high costs associated with data collection and annotation, posing a

significant obstacle to the development of robust and generalizable

HAR models.

2.1 IMU simulation

To address the limitations of labeled data, synthetic IMU data

generation has become a prominent approach. One technique

involves leveraging videos to synthesize IMU data. For example,

IMUTube utilizes kinetic 3D pose estimation models to track joint
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movements from online videos and employs physical simulation

(IMUSim) to convert these 3D poses into IMU data. However, due

to challenges in generating high-quality IMU data, this approach

has shown promising results primarily for simple and repetitive

activities, such as dumbbell exercises, while its effectiveness

diminishes for more complex activities. Xiao et al. (2021) and

Multi3Net (Fortes Rey et al., 2024) generate SMPL model (Loper

et al., 2015) parameters from motion capture data to track body

movements in videos, offering the advantage of capturing detailed

movements compared to kinetic-based methods. However, these

approaches fail to account for variations in human attributes,

producing only a single IMU data stream corresponding to each

video.

Another emerging approach leverages language-based cross-

modality transfer models, such as T2M-GPT (Zhang J. et al.,

2023), MotionDiffuse (Zhang et al., 2024), ReMoDiffuse (Zhang

M. et al., 2023), and IMUGPT (Leng et al., 2023b, 2024), which

generate 3D human movements from textual descriptions. These

generated movements are subsequently converted into virtual IMU

data streams. However, these motion synthesis models depend

on datasets like HumanML3D (Guo et al., 2022), which lack

diversity in body morphology. Consequently, their ability to

generate complex activities not represented in the motion datasets

is significantly limited.

Other recent studies, such as V2IMU (Santhalingam et al.,

2023), aim to directly map video inputs to IMU outputs using

supervised learning. However, the inherent modality gap and

motion ambiguity between video and sensor data lead to decreased

accuracy, especially in real-world tasks involving fine-grained or

occluded motion.

2.2 Representation learning

In recent years, deep learning models have demonstrated the

ability to transfer video data into IMU data directly (Santhalingam

et al., 2023). However, the inherent domain gap between video

and IMU data often results in poor performance in generating

accurate IMU data especially when the activities are complex (Leng

et al., 2024). To address this challenge, contrastive learning-based

approaches have emerged as promising techniques for learning

joint representations from different domains.

For instance, CLIP (Radford et al., 2021) aligns visual and text

representations using paired images and text, achieving impressive

generalization performance. Similarly, Moon et al. (2023) proposed

a multimodal contrastive framework that aligns IMU data with text

and video, projecting multimodal data into a unified representation

space. Building on this, Yang et al. (2024) enhanced contrastive

learning for text and IMU alignment by introducing a hierarchical

temporal transformer to better capture important representations.

In wearable sensing, recent works such as IMUCLIP (Moon

et al., 2023) and CoHAR (Keyvanpour et al., 2024) have extended

these ideas by learning modality-invariant embeddings specifically

tuned for activity recognition, demonstrating improved robustness

under missing modalities and cross-subject generalization.

Inspired by these advancements, the previous approach

Multi3Net (Fortes Rey et al., 2024) leverages representation

learning techniques to assist in IMU representation learning.

Multi3Net utilizes video representations, text representations, and

synthetic IMU representations to enhance IMU-based HAR tasks.

While the quality of synthetic IMU data may not yet match that of

real IMU data due to information loss during the data generation

process, representation learning helps bridge this gap.

In this study, we propose Multi3Net+, which includes a

novel data augmentation strategy for generating IMU data that

accounts for human attribute variations. Additionally, we introduce

a Mixture of Experts (MoE) classifier to further enhance the

performance of downstream HAR tasks by automatically selecting

important learned features. This architecture builds on previous

contrastive learning pipelines by tightly integrating pose, text, and

IMU branches in a joint training scheme, achieving state-of-the-art

results on multiple benchmark datasets.

3 Background on key frameworks and
components

To improve the readability of the paper, firstly we describe

the key tools and frameworks involved in the Multi3Net+ system

as visualized in Figure 1. The overall pipeline begins with motion

capture (MoCap) files, which are converted into 3D body meshes

via SMPL and processed in Blender to standardize skeleton

geometry. Data augmentation is applied to modify human body

features such as height and limb proportions. The enhanced poses

are then passed through the Orient3IMU model to generate virtual

IMU signals. These multimodal representations (pose, text, IMU)

are used to pretrain the Multi3Net+ model, which is fine-tuned

using a Mixture of Experts (MoE) classifier.

3.1 SMPL

SMPL (Loper et al., 2015) is a parametric 3D human body

model that maps pose and shape vectors to a consistent mesh. It

preserves bone-length consistency and anatomical fidelity, enabling

accurate and structuredmotion representation. SMPL is used in the

pipeline to extract realistic full-body poses for downstream IMU

simulation.

3.2 Blender for skeleton transformation

Blender is a 3D graphics tool used to apply geometric

normalization on SMPL skeletons. We align the global origin to the

feet and standardize body scale (e.g., height set to 1.7 m) to ensure

consistent coordinate systems across MoCap inputs.

3.3 Human attribute augmentation

To model inter-individual variability, we augment pose

sequences by modifying SMPL shape parameters (e.g., limb

length, shoulder width). This produces diverse human geometries
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FIGURE 1

Overview of the Multi3Net+ pipeline: starting from MoCap-based

pose data, we generate synthetic IMU signals via SMPL modeling,

geometric transformation, augmentation, and IMU simulation. The

pose, text, and IMU modalities are encoded and pretrained in a

multi-task contrastive framework, followed by fine-tuning with a

MoE classifier.

while maintaining biomechanical plausibility, thereby improving

generalizability in downstream tasks.

3.4 Orient3IMU and IMUSim

Orient3IMU is a module in IMUSim (Young et al., 2011) that

computes local-frame acceleration and angular velocity from 3D

pose data. We modify it by removing sensor noise and aligning the

body frame using rotation matrices, producing high-fidelity IMU

signals based on kinematic ground truth.

3.5 PoseFormer (pose encoder)

PoseFormer (Zheng et al., 2021) is a spatial-temporal

transformer designed for human motion sequences. It applies

attention mechanisms across both joints and frames, capturing

fine-grained motion patterns. We use PoseFormer as the pose

encoder in the contrastive learning setup.

3.6 ResNet (text encoder backbone)

A lightweight ResNet (He et al., 2016) backbone processes text

embeddings to extract hierarchical features. Residual connections

help stabilize training and ensure effective learning even in deep

architectures.

3.7 Instructor (large) language model

Instructor (Su et al., 2022) is a pretrained language model that

generates semantic embeddings from free-form video descriptions.

These embeddings are used to align textual descriptions with IMU

and pose modalities via contrastive learning.

3.8 MoE classifier

The MoE classifier (Shazeer et al., 2017) consists of multiple

expert networks and a soft gating mechanism that dynamically

routes samples to relevant experts. This architecture improves

adaptability and generalization in downstream HAR tasks with

diverse motion profiles.

4 Data generation

4.1 Simulation pipeline

By leveraging MoCap files, we can accurately compute both

the linear acceleration and angular velocity of objects in motion.

These calculations are made possible by tracking the precise

positions and orientations of markers attached to the body over

time. This meticulous tracking enables the generation of highly

accurate data related to the movement dynamics of the body.

Such data is invaluable for various applications that require a

detailed understanding of human motion, especially in the context

of synthetic IMU data generation.

While synthetic IMU data generated using IMUSim (Young

et al., 2011) as employed in prior works such as IMUTube (Kwon

et al., 2020) and IMUGPT (Leng et al., 2023c) is already a valuable

resource, the proposed method significantly enhances it through

multi-modal representation learning. Specifically, we align IMU,

pose, and text modalities using contrastive learning to create

a robust, semantically meaningful latent space. This is further

regularized through Pose2IMU regression and IMU reconstruction

tasks. Additionally, we introduce a Mixture of Experts (MoE)

classifier that dynamically routes latent representations through

specialized expert branches, improving adaptability across varied

activity types. This integrated strategy helps close the domain

gap between synthetic and real IMU data, resulting in better

generalization and downstream performance even under partial

modality conditions.

The proposed approach to generating synthetic IMU data

draws inspiration from the Orient3IMU model, a component of

IMUSim, but incorporates several modifications to improve the

quality and consistency of the data. Notably, we exclude noise

parameters from the IMUSim framework to ensure a cleaner, noise-

free dataset. The process begins withMoCapmotion data formatted

in SMPL, a widely used human body model. Using Blender, we

transform the skeletal data to generate a shape approximation

corresponding to a human body with specific measurements, such

as an average height of 1.7 m. This ensures uniformity across

all MoCap files, which is critical for standardizing the dataset.

Additionally, we reposition the skeleton’s origin to align the center

of the feet with the global origin (0,0,0) in terms of position and
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orientation. This adjustment simplifies the downstream tasks of

calculating movement and motion dynamics in a consistent and

uniform reference frame.

Transforming linear acceleration to local coordinates

considering Gravity:

alocal(t) = Rlocal(t) ·

(

d2rglobal(t)

dt2
− gglobal

)

(1)

where alocal(t) ∈ R
3 is the linear acceleration of the rigid body

in the local (body-fixed) coordinate system at time t. Rlocal(t) ∈

R
3×3 is the rotation matrix that transforms vectors from the

global coordinate system to the local coordinate system at time t.

rglobal(t) = [x(t), y(t), z(t)]T ∈ R
3 is the position vector of the rigid

body in the global coordinate system.
d2rglobal(t)

dt2
∈ R

3 is the global

linear acceleration, i.e., the second derivative of the global position

vector with respect to time. gglobal = [0,−9.8, 0]T (m/s2) is the

gravitational acceleration vector in the global coordinate system,

assuming gravity acts in the negative y-direction.

Similarly, after calculating global angular velocity from

orientation, we transform it to local coordinates:

ωlocal(t) = Rlocal(t)
T · ωglobal(t) (2)

where ωlocal(t) is the angular velocity of the rigid body in the local

coordinate system.

The motivation of this study is to adopt a custom model

instead of relying solely on IMUSim stems from certain limitations

inherent in the IMUSim framework. One significant drawback is

the absence of IMU calibration signals, which are essential for

producing accurate and high-quality IMU data. Without these

calibration signals, the generated data can deviate significantly from

the expected range, resulting in inaccuracies and inconsistencies. By

developing the proposed approach, we ensure greater uniformity

and control over the generated dataset as visualized in Figure 2. For

instance, we maintain consistent initial positions and orientations

across all motion capture files and enforce uniform body

dimensions, simplifying the neural network’s task of learning

meaningful correlations within the dataset.

Moreover, employing SMPL bodies for pose generation offers

distinct advantages over traditional kinematic 3D pose estimation

techniques. One notable benefit is that SMPL bodies maintain

constant bone lengths, ensuring anatomical consistency across the

dataset. Additionally, the SMPL model provides 3D joint angles,

which are more informative than mere positional data. In contrast,

kinematic 3D pose estimations often require the application of

inverse kinematics to convert 3D poses into MoCap files. This

additional step can introduce inaccuracies or lead to the loss of

valuable information, as highlighted in the Vi2IMU paper. By using

SMPL bodies, we circumvent these issues, preserving the fidelity

and accuracy of the generated data.

In summary, the proposed approach leverages human motion

capture data to generate high-quality IMU data that accurately

captures the linear acceleration and angular velocity of objects in

motion. By addressing the limitations of existing frameworks such

as IMUSim or V2IMU and incorporating SMPL-based modeling,

we achieve a standardized, consistent, and information-rich dataset

that is well-suited for training neural networks and advancing

synthetic IMU data generation as shown by the metrics in Table 1.

4.2 Source dataset

The How2Sign dataset (Duarte et al., 2021) contains over 80 h

of sign language videos accompanied by corresponding transcripts,

providing extensive information on hand and wrist movements.

While How2Sign includes text annotations, it lacks ground-truth

IMU labels, making it suitable for self-supervised multimodal

pretraining. In this approach, pose sequences are extracted from

the video and processed using SMPL andOrient3IMU to synthesize

high-fidelity IMU signals. The associated text transcripts are

not treated as class labels but are instead used as semantic

anchors in a contrastive learning setup. This alignment of

text, pose, and IMU modalities within a shared latent space

effectively creates a pseudo-labeled IMU dataset. By leveraging

these semantically enriched video–text pairs, we can train HAR

models without requiring manually labeled IMU data. This enables

robust joint representation learning across modalities and supports

the transferability of the model to downstream IMU-based tasks.

The generated synthetic IMU signals based on How2Sign are used

for training the IMU encoder in a self-supervised manner. We

have showcased How2Sign accompanying label and generated IMU

signal in Figure 3.

The GRAB dataset (Taheri et al., 2020) consists of ∼4 h of

MoCap data from subjects engaging in the action of grabbing

various everyday objects. It includes contributions from 10 subjects

interacting with 51 different objects and is also designated solely

for pretraining. Unlike How2Sign, GRAB does not provide natural

language descriptions, but it includes detailed 3D pose and hand-

object interaction sequences and annotation cllasses. We use GRAB

similarly like How2Sign for pre-training.

4.3 Simulated IMU signal fidelity

To check the fidelity of the simulated IMU Signals we use

OpenPack dataset simulate the IMU signal and compute the

magnitude of the acceleration and angular velocity vectors, we

eliminate the dependency on the initial orientations of the real and

simulated signals. This orientation-invariant method ensures that

the comparison focuses solely on the overall behavior of the signals

rather than their alignment in a specific coordinate system.

For the acceleration magnitude, ‖a‖ =
√

a2x + a2y + a2z , we

capture the total acceleration experienced by the sensor, which

accounts for all directional components. Similarly, for the angular

velocity magnitude, ‖ω‖ =
√

ω2
x + ω2

y + ω2
z , we measure the

overall rotational speed regardless of axis orientation.

After calculating these magnitudes over all time steps in the

signal, we evaluate the fidelity of the simulated signals against the

real ones using orientation-invariant metrics such asMean Squared

Error (MSE). The MSE is computed as:

MSE =
1

N

N
∑

i=1

(

‖xsim,i‖ − ‖xreal,i‖
)2
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FIGURE 2

Comparison of synthetic IMU signals generated by the proposed method and IMUTube (IMUSim) on the OpenPack dataset. The proposed method

produces signals that more closely resemble real sensor measurements, particularly in terms of motion fidelity and temporal dynamics.

TABLE 1 Fidelity of di�erent IMU simulators tested on normalized IMU

generated from 3D pose of MM-Fit dataset vs. the real collected IMU data

on the wrist.

Simulator MSE‖a‖ MSE‖ω‖

IMUTube(IMUSim) 0.173± 0.018 0.244± 0.032

V2IMU 0.488± 0.021 0.479± 0.044

Proposed 0.149± 0.014 0. 312± 0.037

Bold value depicts best performing model instance.

Here: - N represents the total number of time steps. - ‖xsim,i‖

and ‖xreal,i‖ are the magnitudes of the simulated and real signals at

the i-th time step.

By relying on the magnitudes and using this MSE-based

evaluation, we can objectively assess the quality of the generated

IMU signals without being influenced by variations in orientation,

making it a robust method for evaluating simulated IMU data.

5 Multi3Net+ architecture

5.1 Pre-training

After getting the pose and IMU data generated from video

data, we then pretrain joint representations of text, pose, and

IMU data via Multi3Net+, which consists of three tasks (1) multi-

modal contrastive learning, (2) Pose2IMU regression, and (3) IMU

reconstruction.
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FIGURE 3

Pipeline for generating synthetic IMU signals from How2Sign videos. The process begins with extracting high-quality pose sequences using

SMPL-based modeling, followed by simulation of IMU signals via Orient3IMU. The text annotations accompanying the videos are used as semantic

anchors during contrastive pretraining, enabling the alignment of pose, text, and IMU representations. This multimodal pipeline supports the creation

of pseudo-labeled IMU datasets from raw video-text inputs.

5.1.1 Multi-modal contrastive learning
As illustrated in Figure 4, the pretraining model comprises

three encoders, each mapping text, pose, and IMU data to

a respective latent space. Regarding the Text encoder, the

input consists of the embedding of the text description of the

corresponding video, derived from the output of the last hidden

layer of a large pretrained model Instructor (Large) (Su et al., 2022).

The output of the Text encoder is denoted as et . The encoder

architecture is based on ResNet architecture with three residual

blocks each containing a 1D CNN layer, followed by a batch

normalization layer, and a Residual layer. In contrast to IMU2CLIP,

where the text encoder is frozen to facilitate modality transitivity,

in the proposed approach, the text encoder is trainable during

pretraining to acquire joint representations for multi-modality

data. Similar to the Text encoder, the Pose encoder takes the SMPL

pose parameters of the body with (22, 3) tensor except for the two

hand parameters, and both left and right hand as Mano parameters

(30, 3) tensors to generate the output embedding of ep. The pose

encoder is based on the spatial-temporal transformer architecture

of PoseFormer (Zheng et al., 2021) where each module is passed

to a spatial attention block followed by a temporal attention block

to generate intermediate embedding. For the IMU encoder, to

facilitate adaptable processing across diverse scenarios, we utilize

identical multi-headed attention blocks with positional embedding

for data collected from both the left and right wrists. The input to

the IMU encoder consists of synthetic data segments for each wrist,

and the output comprises embedding for the left and right wrists,

denoted as esl and esr , respectively. Although both encoders share

identical architecture the learnable weights are different.

5.1.2 Pose2IMU regression
The Pose2IMU regression block consists of a Pose encoder

and a Pose2IMU decoder, which has a CNN architecture with

three ConvTranspose and Unpooling layers along with Batch

normalization and Dropout blocks. Since activities in real scenarios

typically involve fine-grained motions, the Pose2IMU decoder is

designed to guarantee that the input pose encoder encompasses the

required features by reconstructing the IMU data from the encoder.

For the Pose2IMU decoder, the input is ep, and the output is the

predicted result of the corresponding synthetic IMU data, denoted

as Xp. The decoder architecture is based on PSN from PresSim (Ray

et al., 2023).

5.1.3 IMU reconstruction
Similar to the Pose2IMU regression block, the IMU

reconstruction block comprises two IMU encoders and an

IMU reconstructor. This IMU reconstructor features an identical

CNN architecture to that of Pose2IMU but that takes the
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FIGURE 4

Overview of the Multi3Net+ pretraining architecture. The model consists of three input modalities–text, pose, and synthetic IMU–encoded by three

modality-specific encoders and supervised with two auxiliary tasks. Text encoder (top): Textual descriptions from the Instructor (Large) model are fed

into a lightweight ResNet-based encoder to produce a semantic embedding. Although this embedding captures contextual information from

high-level descriptions (e.g., “a person grabs a box"), it is not used in the contrastive or reconstruction branches. This is because free-form natural

language descriptions may not correspond to fine-grained sensor-level motion patterns, and enforcing strict alignment could degrade

generalization. Instead, text features are used to enrich joint latent space representations. Pose encoder (middle): SMPL-H body pose data is

encoded via a PoseFormer-based encoder into a 256-dimensional latent embedding. This embedding is used in two downstream tasks: (1) as input

to the Pose2IMU decoder to reconstruct IMU signals, and (2) for contrastive alignment with the IMU encodings. IMU encoders (bottom): Separate

encoders are used for left and right wrist synthetic IMU data. Their 256-dimensional outputs are used in two ways: (1) concatenated and passed to an

IMU reconstructor to reconstruct the original IMU input, and (2) used in contrastive loss with the pose embedding.

concatenation of [esl, esr] and uses one linear layer to map it back

from (256, 2) to 256 vectors to reconstruct one frame input IMU

instance. The predicted IMU data is denoted as Xs.

5.1.4 Loss function
To acquire joint representations for text, pose, and IMU

from the encoders, we propose using instance discrimination by

minimizing the InfoNCE loss (Oord et al., 2018) for each pair

of encoders, which encourages similar representations for positive

pairs closer and pushes representations of negative pairs apart,

leading to meaningful feature representations, the InfoNCE loss is

defined as follows:

InfoNCE(q, k) = −
1

N

N
∑

i=1

log

(

es(qi ,ki)/τ

es(qi ,ki)/τ +
∑N

j=1,j6=i e
s(qi ,kj)/τ

)

(3)

where N is the batch size, qi and ki are the representations of

the i-th data sample under two different augmentations, s(qi, ki)

is the cosine similarity score between qi and ki, normalized by

the temperature τ of 0.07. The cosine similarity score s(qi, ki) is

computed as:

s(qi, ki) =
qi · ki

‖qi‖ · ‖ki‖
(4)

where · denotes the dot product and ‖·‖ denotes the L2 norm.

Thus, the overall InfoNCE loss of the pairs of encoders is

formulated as follows:

LContrastive = InfoNCE(et , ep)+ InfoNCE(et , esl)

+InfoNCE(et , esr)+ InfoNCE(ep, esl)

+InfoNCE(ep, esr)+ InfoNCE(esl, esr)

(5)

To ensure that the pose and IMU encoders preserve the

necessary features to represent activities, MSE loss is applied for

Pose2IMU regression and IMU reconstruction. Taking Xv as the

synthetic IMU data, the MSE loss is defined as follows:

LMSE = LMSE Pose2IMU + LMSE IMURec

=
1

N

N
∑

j=1

1

l

t+l
∑

i=t

(Xi
v − Xi

p)
2 + (Xi

v − Xi
s)
2

(6)

where Xi
v represents the i-th synthetic IMU data point, Xi

p and

Xi
s denote the prediction values of the pose2IMU and IMU2IMU

decoders, respectively. l represents the segment length.

The overall loss for pertaining is LContrastive + LMSE.

5.2 Downstream training

After pretraining the model using video resources containing

rich hand movements, we can subsequently finetune the IMU
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FIGURE 5

Downstream training of the HAR encoder using a MoE classifier on target data. The pretrained multimodal encoder is fine-tuned on specific HAR

datasets, with the MoE module dynamically selecting the most relevant expert pathways based on input features. This enables adaptive

representation learning and improves classification performance across diverse activity types.

encoder with a small amount of target IMU data. This process

enables us to achieve robust HAR performance even with limited

data.

The model structure consists of the pretrained IMU encoder

and a classifier. To prevent the bottleneck problem, we take the

intermediate output H ∈ R
6×256 of the pretrained encoder instead

of the final 1D feature R256 during pretraining.

We used a hybrid decoder where the classifier processes input

feature H ∈ R
6×256 through a sequence of neural network layers,

starting with a convolutional layer:

Hconv = ReLU(BN(Conv1D(H)))

where Conv1D(·) applies a 1D convolution, BN(·) denotes batch

normalization, and ReLU(·) is the activation function.

The features are then reshaped and passed through two stages

of multi-head attention mechanisms:

H
(i)
attn = MHA(LN(H

(i−1)
attn ))+H

(i−1)
attn , i = 1, 2

where MHA(·) represents multi-head self-attention, and LN(·)

is layer normalization. Each attention stage is followed by a

feedforward transformation:

H
(i)
ffn

= ReLU(LN(WiH
(i)
attn + bi)), i = 1, 2

whereWi, bi are learnable parameters.

To enhance model expressivity and generalization, we

introduce a MoE classifier with N experts as visualized in Figure 5.

The MoE classifier learns a weighted combination of expert

predictions, where the gating network determines the contribution

of each expert. Given the final feature representation H
(2)
ffn
, the

expert outputs are:

yj = fj(H
(2)
ffn
), j = 1, . . . ,N

where fj(·) represents the j-th expert network. The gating network

computes a softmax-weighted combination:

gj =
exp(w⊤

j H
(2)
ffn
)

∑N
k=1 exp(w

⊤
k
H

(2)
ffn
)

where wj are learnable parameters of the gating network. The final

classification output is given by:

y =

N
∑

j=1

gjyj

Finally, the predicted class is obtained by averaging across a specific

dimension:

ŷ =
1

6

6
∑

i=1

yi

This MoE-based classifier allows for dynamic selection of

relevant experts, improving robustness in HAR tasks with limited

IMU data.

6 Evaluation

6.1 Datasets and evaluation metrics

We utilized two types of datasets: (1) large video datasets rich in

hand activity representations for pretraining, which were described

at Section 4.2, and (2) target inertial HAR datasets utilizing wrist

IMUs, which will describe as follows. To ensure consistency across

the datasets, all video data were resampled to 60 frames per second.

To clarify, both How2Sign and GRAB are multimodal datasets

that provide pose data and either text annotations (How2Sign)

or structured action labels (GRAB). In the proposed pipeline, we

ensure that text, pose, and synthetic IMU signals are derived from

the same source video within each dataset. That is, for each training

sample, all modalities come from a single video in How2Sign or

GRAB. We do not mix modalities across datasets for contrastive

learning. Instead, we perform staged pretraining using one dataset

at a time and optionally evaluate joint training in ablation studies.

The goal is to build a generalizable multi-modal embedding space

from diverse data sources, without requiring perfect sample-level

alignment across datasets.

TheMM-Fit dataset (Strömbäck et al., 2020) includes data from

10 subjects performing 10 different gym exercises. IMU data was

captured using Mobvoi TicWatch Pro devices, sampled at 100 Hz,
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providing detailed movement information from the participants’

wrists. Furthermore, RGB video data was captured at 30 Hz to

provide visual context for the exercises performed.

The OpenPack dataset (Yoshimura et al., 2024) features

acceleration data collected from both the left and right wrists of

5 workers using an Empatica E4 wristband, with a sampling rate

of 30 Hz. The data was gathered while the workers performed a

packaging task involving 11 distinct activity classes. Additionally,

the workers’ activities were recorded on video to serve as ground

truth.

The ALS-HAR dataset (Ray et al., 2025) has three distinct

scenarios. In this experiment, we focus on the IMU data collected

in an outdoor environment (scenario 3). The dataset includes data

from three subjects, each of whom wore a Samsung Galaxy S20

smartphone on their left wrist, with a sampling rate of 30 Hz.

The activities performed consist of six unique upper body fitness

exercises, along with three additional hand-focused tasks, each

lasting∼20 min.

To evaluate the performance of the proposedmodel, we utilized

the macro F1 score as the primary evaluation metric. We employed

leave-one-user-out experiments for the downstream task. Subjects

in every dataset is divided into five subsets, and the model is trained

on four of these subsets while being validated on the remaining

subset. This process is repeated five times with different random

seeds.

6.2 Results

In this section, we present the Macro F1-scores obtained

from experiments on three distinct datasets: OpenPack, MM-

Fit, and ALS-HAR. Each dataset was evaluated using various

model architectures and training strategies, including DCL, Base,

IMU Reconstruction, Contrastive Pretraining, Multi3Net, and

Multi3Net+.

DCL: This approach employs the DeepConvLSTM (DCL)

architecture as the foundation for HAR tasks, which is widely used

as the baseline method for IMU-based HAR. We use the content in

parentheses to indicate what data is used for pre-training the model

structure. “Real” means this model uses only the real IMU data

from the target dataset for training. “Real + Synthetic IMUTube”

means the model utilizes real and synthetic IMU data for training,

with the synthetic data created using IMUTube. The process begins

by extracting 2D skeletal poses from videos using AlphaPose, then

mapping these 2D poses to 3D using VideoPose3D, and employing

IMUSim to generate synthetic IMU data for specific body joints.

Finally, the simulated IMU is calibrated using real IMU data to

ensure a similar range of variability. “Real + Synthetic IMUGPT”

means the model utilizes real and synthetic IMU data for training,

with the synthetic data created using IMUGPT. Unlike IMUTube,

IMUGPT utilizes ChatGPT to generate synthetic IMU data from

activity word descriptions, making it more flexible in generating

diverse activity data.

Base: We do the downstream training without any pretraining.

The IMU encoder weights are initialized randomly. “Real", “Real +

Synthetic IMUTube", and “Real + Synthetic IMUGPT” correspond

to the training processes using real IMU data, real and synthetic

IMU data created using IMUTube, and real and synthetic IMU data

created using IMUGPT, respectively

IMU Reconstruction: In this method, only the IMU

reconstruction model is applied for pretraining. The content

in parentheses indicates which large video dataset (how2sign or

GRAB) is used for pre-training the model structure and whether

the pretrained model weights are frozen during fine-tuning of the

downstream HAR tasks. “Frozen” means that the learned weights

of the IMU encoder remain unchanged during fine-tuning, which

focuses on measuring the quality of the features learned from

IMU reconstruction. “Not frozen” means that the method also

employs the IMU reconstruction model for pre-training, but the

IMU encoder’s weights are kept frozen during training until the

loss stops decreasing and reaches the patience P for the first time;

after that, the encoder is unfrozen to allow the classifier to learn.

TABLE 2 Macro F1-score for OpenPack dataset.

Model Leftwrist Both wrists

DCL (real) 43.3 ± 0.81 43.1 ± 0.50

DCL (real + synthetic IMUTube) 42.5± 1.56 41.3± 1.48

DCL (real + synthetic IMUGPT) 38.4± 0.88 36.4± 1.31

Base (real) 33.8± 0.39 42.3± 0.25

Base (real + synthetic IMUTube) 35.3± 0.74 40.3± 0.89

Base (real + synthetic IMUGPT) 35.4± 0.79 37.2± 1.23

IMU reconstruction (how2sign:frozen) 33.2± 0.53 41.2± 0.33

IMU reconstruction (how2sign:not frozen) 39.7± 0.24 48.7± 0.45

Contrastive pretrain (how2sign:frozen) 39.4± 0.37 53.7± 0.18

Contrastive pretrain (how2sign:not frozen) 45.3± 0.18 58.2± 0.26

IMU reconstruction (GRAB:frozen) 31.4± 0.13 39.1± 0.19

IMU reconstruction (GRAB:not frozen) 37.3± 0.41 46.2± 0.20

Contrastive pretrain (GRAB:frozen) 40.2± 0.23 53.8± 0.53

Contrastive pretrain (GRAB:not frozen) 44.1± 0.26 57.2± 0.38

Multi3Net (how2sign:frozen) 40.4± 0.17 54.2± 0.28

Multi3Net (how2sign:not frozen) 47.3± 0.13 59.8± 0.27

Multi3Net (GRAB:frozen) 41.2± 0.16 55.1± 0.34

Multi3Net (GRAB:not frozen) 45.2± 0.28 58.3± 0.28

Multi3Net (Both:frozen) 41.9± 0.28 56.4± 0.16

Multi3Net (Both:not frozen) 48.4± 0.18 61.1± 0.39

Multi3Net+ (how2sign:frozen) 41.4± 0.38 55.3± 0.19

Multi3Net+ (how2sign:not frozen) 48.6± 0.28 60.6± 0.38

Multi3Net+ (GRAB:frozen) 42.6± 0.48 56.7± 0.62

Multi3Net+ (GRAB:not frozen) 46.3± 0.38 59.2± 0.67

Multi3Net+ (Both:frozen) 42.6± 0.71 57.6± 0.58

Multi3Net+ (Both:not frozen) 49.6 ± 0.31 62.8 ± 0.28

Bold value depicts best performing model instance.
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Contrastive pretrain: only the multimodal contrastive model

is applied for pre-training. “Frozen” means that all the encoders’

learned weights remain frozen. “Not frozen” means that the

multimodal contrastive model is applied for pre-training, but all

the encoders’ weights are kept frozen during training until the loss

stops decreasing and reaches the patience P for the first time; after

that, the encoder is unfrozen to allow the classifier to learn.

Multi3Net: This method utilizes both IMU reconstruction and

contrastive pre-training methods to learn joint representations.

The large video datasets used for pre-training the model structure

include either how2sign, GRAB, or both datasets. “Frozen” means

that all the learned weights of the encoders are kept frozen during

fine-tuning for downstream tasks. “Not frozen” means that in

the downstream task, all encoder weights remain frozen during

training until the loss stops decreasing and reaches the patience P

for the first time; after that, the encoder is unfrozen to allow the

classifier to learn.

Multi3Net+: This is the proposed model structure that utilizes

improved multi-task pretraining methods with a MoE classfier

TABLE 3 Macro F1-score for MM-Fit dataset.

Model Left wrist Both wrists

DCL (real) 75.5± 2.53 75.8± 2.02

DCL (real + synthetic IMUTube) 75.6± 1.56 76.0± 2.35

DCL (real + synthetic IMUGPT) 78.8± 1.37 80.1± 2.18

Base (real) 85.2± 0.31 88.1± 0.57

Base (real + synthetic IMUTube) 83.4± 0.26 88.9± 0.25

Base (real + synthetic IMUGPT) 86.4 ± 1.51 89.3 ± 0.54

IMU reconstruction (how2sign:frozen) 75.6± 0.18 78.4± 0.41

IMU reconstruction (how2sign:not frozen) 82.7± 0.38 86.6± 0.22

Contrastive pretrain (how2sign:frozen) 80.7± 0.61 84.5± 0.33

Contrastive pretrain (how2sign:not frozen) 89.2± 0.74 93.5± 0.71

IMU reconstruction (GRAB:frozen) 77.2± 0.34 82.1± 0.68

IMU reconstruction (GRAB:not frozen) 83.5± 0.64 87.2± 0.38

Contrastive pretrain (GRAB:frozen) 80.5± 0.49 86.6± 0.53

Contrastive pretrain (GRAB:not frozen) 88.3± 0.61 90.4± 0.18

Multi3Net (how2sign:frozen) 80.6± 0.18 86.4± 0.82

Multi3Net (how2sign:not frozen) 91.0± 0.13 93.8± 0.29

Multi3Net (GRAB:frozen) 82.3± 0.17 87.6± 0.21

Multi3Net (GRAB:not frozen) 89.7± 0.17 92.0± 0.20

Multi3Net (Both:frozen) 81.4± 0.81 86.3± 0.26

Multi3Net (Both:not frozen) 91.2± 0.26 93.4± 0.07

Multi3Net+ (how2sign:frozen) 82.1± 0.38 87.5± 0.62

Multi3Net+ (how2sign:not frozen) 92.5± 0.28 95.1± 0.38

Multi3Net+ (GRAB:frozen) 83.6± 0.48 88.7± 0.52

Multi3Net+ (GRAB:not frozen) 90.7± 0.38 93.3± 0.37

Multi3Net+ (Both:frozen) 82.6± 0.71 87.6± 0.58

Multi3Net+ (Both:not frozen) 92.9 ± 0.31 95.8 ± 0.28

Bold value depicts best performing model instance.

to train a better joint representation for downstream HAR tasks.

Similar to theMulti3Net approach, “Frozen” and “Not frozen” refer

to whether the encoders’ weights are always frozen during training

for the downstream HAR tasks, respectively.

Table 2 displays the Macro F1-scores for the OpenPack dataset.

The Multi3Net+ model achieved the highest scores across both

evaluation conditions, with a score of 49.6 ± 0.31 for the Left wrist

and 62.8 ± 0.28 for Both wrists when the weights were not frozen.

This demonstrates the model’s superior capability in learning joint

representations. In comparison, the standardMulti3Net model also

performed well, with scores of 47.3 ± 0.13 (Left wrist) and 59.8 ±

0.27 (Both wrists) that utilized how2sign dataset for pre-training.

The improvement in Multi3Net+ can be attributed to its enhanced

pre-training strategy and the incorporation of a MoE classifier,

which allows for more adaptive decision-making and better feature

representation for multi-task model structures. The Contrastive

pretrain method, particularly when using the how2sign dataset

with weights not frozen, yielded scores of 45.3 ± 0.18 for the Left

wrist and 58.2 ± 0.26 for Both wrists. This indicates that while

TABLE 4 Macro F1-score for ALS-HAR dataset.

Model Left wrist

DCL (real) 72.2± 0.033

DCL (real + synthetic IMUTube) 68.8± 0.040

DCL (real + synthetic IMUGPT) 63.4± 0.045

Base (real) 58.0± 0.025

Base (real + synthetic IMUTube) 59.8± 0.030

Base (real + synthetic IMUGPT) 57.2± 0.034

IMU reconstruction (how2sign:frozen) 56.3± 0.028

IMU reconstruction (how2sign:not frozen) 60.9± 0.030

Contrastive pretrain (how2sign:frozen) 60.4± 0.025

Contrastive pretrain (how2sign:not frozen) 66.0± 0.020

IMU reconstruction (GRAB:frozen) 53.2± 0.018

IMU reconstruction (GRAB:not frozen) 58.4± 0.022

Contrastive pretrain (GRAB:frozen) 62.2± 0.028

Contrastive pretrain (GRAB:not frozen) 65.5± 0.021

Multi3Net (how2sign:frozen) 63.5± 0.022

Multi3Net (how2sign:not frozen) 69.2± 0.018

Multi3Net (GRAB:frozen) 64.5± 0.023

Multi3Net (GRAB:not frozen) 67.9± 0.027

Multi3Net (Both:frozen) 65.3± 0.026

Multi3Net (Both:not frozen) 70.8± 0.019

Multi3Net+ (how2sign:frozen) 66.8± 0.024

Multi3Net+ (how2sign:not frozen) 72.4± 0.021

Multi3Net+ (GRAB:frozen) 68.2± 0.031

Multi3Net+ (GRAB:not frozen) 71.0± 0.029

Multi3Net+ (Both: frozen) 68.9± 0.030

Multi3Net+ (Both:not frozen) 74.4± 0.025

Bold value depicts best performing model instance.
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the IMU reconstruction and Contrastive pretrain methods show

promise, they do not reach the performance levels ofMulti3Net and

Multi3Net+.

Table 3 summarizes the results for the MM-Fit dataset. The

Multi3Net+ model again achieved the best results with a Macro F1-

score of 92.9± 0.31 for the Left wrist and 95.8± 0.28 for Both wrists

when weights were not frozen. The standard Multi3Net model

also performed admirably, scoring 91.0 ± 0.13 (Left wrist) and

93.8 ± 0.29 (Both wrists), but still lagged behind Multi3Net+. The

IMU Reconstruction and Contrastive pretrain methods showed a

relatively lower scores as well, with 86.6± 0.53 and 93.5± 0.71 for

Both wrists when weights were not frozen, respectively.

The results for the ALS-HAR dataset are presented in Table 4.

Here, Multi3Net+ achieved the highest Macro F1-score of 74.4

± 0.025 when weights were not frozen, indicating its robustness

across different datasets. The standard Multi3Net model achieved

a score of 69.2 ± 0.018, highlighting the advantages brought

by the enhancements in Multi3Net+. The IMU Reconstruction

method, while exhibiting potential with a score of 60.9± 0.030 (not

frozen), and Contrastive pre-training achieving 66.0 ± 0.020, did

not perform as well as the Multi3Net models, further emphasizing

the effectiveness of the Multi3Net+ architecture.

Across all three datasets, the Multi3Net and Multi3Net+

architectures consistently outperformed traditional models

like DCL and Base, particularly when employing contrastive

pretraining methods and unfrozen weights. The proposed

Multi3Net+ model, with its improved pretraining strategy and

MoE classifier, demonstrated superior performance compared to

the standard Multi3Net when pre-trained with different large video

datasets, indicating that leveraging advanced training strategies

can significantly enhance model robustness and effectiveness in

HAR tasks.

6.3 Analysis

6.3.1 Impact of proportion of pre-training
datasets

In this section, we increase the amount of pre-training data

across different large video datasets to measure its impact on

downstream HAR performance. Figure 6 shows the macro F1-

scores of OpenPack, MM-Fit, and ALS-HAR datasets, respectively.

Among the three datasets, the OpenPack dataset presents the

lower overall F1-scores, which is above 60% with both wrists

FIGURE 6

Macro F1-scores for three downstream HAR tasks under various pretraining settings as the percentage of available training data increases. The results

demonstrate the e�ectiveness of contrastive pretraining and the MoE classifier in improving model performance, particularly under low-data regimes.
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when using all large video datasets for pre-training. The fine-

grained segmentation of industrial activities makes distinguishing

between different classes more difficult, leading to smaller but still

meaningful improvements from pretraining. While all pretrained

models outperform the non-pretrained baseline. Interestingly,

pretraining on the how2sign dataset alone provides comparable or

slightly better results than the other strategies at lower percentages

of pre-training data, both pre-training with both datasets ultimately

achieves the best performance. This suggests that the benefits of

multitask pretraining take effect more gradually for highly complex

industrial tasks.

The MM-Fit and ALS-HAR datasets benefit considerably from

multitask pre-training, with all pretrained models surpassing the

baseline at all data percentages. This demonstrates the effectiveness

of the amount of pre-training video datasets for downstream HAR

tasks. For the MM-Fit dataset, which includes relatively simpler

activities (as fitness-related activities are usually repetitive), the

improvements become more obvious as more pre-training video

data is available, increasing by more than 30% when the proportion

of pre-training data is raised from 10% to 100%. This indicates that

the learned features of the pretrained models are more suitable for

simpler activities.

As for the OpenPack and MM-Fit datasets, the gap between the

no pre-training method and other methods using video datasets for

pre-training is smaller when using IMU data from both wrists for

the downstream tasks. This result suggests that as the amount of

real IMU data increases, the impact of the sythetic IMU data on the

results gradually diminishes.

Overall, pre-training using video datasets is highly beneficial

across all three HAR datasets, particularly with the both-multitask

approach. However, the magnitude of improvement varies based

on dataset complexity. For more structured activities (MM-Fit),

pre-training provides a consistent boost. For highly fine-grained

industrial activities (OpenPack), pretraining helps but does not

completely bridge the complexity gap, indicating room for more

domain-specific adaptations.

6.3.2 Impact of number of MoE experts
The impact of varying the number of experts on the macro F1-

Score was evaluated across target HAR datasets, as summarized

in Table 5. In the OpenPack (Left Wrist) dataset, the macro F1-

Score rose from 48.4% with one expert to 49.6% with 16 experts,

representing an improvement of ∼2.48%. In the OpenPack (Both

Wrists) dataset, the score increased from 61.1% with one expert

to 62.8% with 16 experts, reflecting an improvement of about

2.79%. For the MM-Fit dataset, the score from one expert to 16

experts improved 1.87 and 2.55%, respectively. In the ALS-HAR

(Left Wrist) dataset, the score increased from 70.8% with one

expert to 74.4% with 16 experts, representing an improvement of

about 5.68%. Overall, increasing the number of experts consistently

enhances model accuracy across all datasets, with the most

significant performance gains observed when using data from both

wrists. This suggests that both wrist data is particularly effective for

downstream task classification when a MoE classifier is applied.

While the trend of improvement continues with more experts,

the gains appear to diminish as the number of experts increases,

especially for datasets that already have high initial scores (e.g.,

MM-Fit dataset). This suggests a point of saturation where adding

more experts may yield diminishing returns, indicating an optimal

number of experts that balances costs with model performance.

6.4 Limitations

Despite the demonstrated benefits of pretraining and MoE

classifiers, the proposed approach has several limitations. First, the

cost of generating large-scale synthetic IMU data remains high,

which may limit scalability for broader applications. Second, while

pretraining improves performance across all datasets, its impact

on highly complex industrial HAR tasks, such as OpenPack, is

relatively modest, suggesting the need for more domain-specific

adaptations. Lastly, the performance of models trained on synthetic

IMU data is still lower compared to real IMU data, indicating a

domain gap that requires further refinement in data generation or

adaptation techniques.

TABLE 5 Impact of number of experts on the performance for di�erent

datasets.

Dataset Experts Macro F1 score

OpenPack (Left wrist) 1 48.4± 0.18

2 48.9± 0.21

4 49.2± 0.31

8 49.5± 0.17

16 49.6± 0.31

OpenPack (Both wrists) 1 61.1± 0.39

2 62.0± 0.11

4 62.5± 0.31

8 62.7± 0.27

16 62.8± 0.28

MM-Fit (Left wrist) 1 91.2± 0.26

2 91.8± 0.15

4 92.5± 0.25

8 92.9± 0.28

16 92.9± 0.31

MM-Fit (Both wrists) 1 93.4± 0.07

2 94.1± 0.15

4 94.9± 0.52

8 95.5± 0.16

16 95.8± 0.28

ALS-HAr (Left Wrist) 1 70.8± 0.19

2 72.5± 0.25

4 73.3± 0.09

8 74.1± 0.28

16 74.4± 0.25

Bold value depicts best performing model instance.
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7 Conclusion

In this study, we proposed Multi3Net+ a multimodal

framework that generates high-fidelity synthetic IMU data and

learns semantically rich representations by aligning text, pose, and

IMU through contrastive pretraining.We addressed the limitations

of prior approaches by integrating SMPL-based motion modeling,

skeleton normalization, and human attribute augmentation to

improve the quality and generalizability of synthetic data.

Furthermore, our use of a MoE classifier enables adaptive feature

selection, resulting in improved downstream HAR performance.

Our experiments demonstrate that leveraging large-scale video-

text datasets for pretraining allows the model to effectively

learn transferable representations, even in the absence of real

IMU data. This approach achieves state-of-the-art results across

multiple public benchmarks (OpenPack, MM-Fit, ALS-HAR),

especially when applied to structured activity domains. We found

that multitask contrastive pretraining consistently yields robust

representations, and that the impact of pretraining is most

prominent on structured datasets, while still providing meaningful

gains in more complex domains. Performance scales with the

number of MoE experts, though benefits plateau as complexity

increases.

Despite these achievements, challenges remain in bridging

the domain gap between synthetic and real IMU signals and in

optimizing pretraining for highly diverse activity sets. Future work

will explore domain adaptation techniques and further refinements

to simulation fidelity to push HAR performance even further.
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