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Collaboration between improvising musicians requires a dynamic exchange of

subtleties in human musical communication. Many musicians can intuit this

information, however, translating this knowledge to embodied computer-driven

musicianship systems—be they robotic or virtual musicians—remains an ongoing

challenge. Methods of communicating musical information to computer-driven

musicianship systems have traditionally been accomplished using an array of

sensing techniques such as MIDI, audio, and video. However, utilizing musical

information from the human brain has only been explored in limited social

and musical contexts. This paper presents “BrAIn Jam,” utilizing functional

near-infrared spectroscopy to monitor human drummers’ brain states during

musical collaboration with an AI-driven virtual musician. Our system includes

a real-time algorithm for preprocessing and classifying brain data, enabling

dynamic AI rhythm adjustments based on neural signal processing. Our formative

study is conducted in two phases: (1) training individualized machine learning

models using data collected during a controlled experiment, and (2) using

these models to inform an embodied AI-driven virtual musician in a real-time

improvised drumming collaboration. In this paper, we discuss our experimental

approach to isolating a network of brain areas involved in music improvisation

with embodied AI-driven musicians, a comparative analysis of several machine

learning models, and post hoc analysis of brain activation to corroborate our

findings. We then synthesize findings from interviews with our participants

and report on the challenges and opportunities for designing music systems

with functional near-infrared spectroscopy, as well as the applicability of

other physiological sensing techniques for human and AI-driven musician

communication.

KEYWORDS

functional near-infrared spectroscopy (fNIRS), brain-computer interfaces, embodied

AI, music, neuroscience, machine learning, music improvisation, human-computer

interaction

1 Introduction

Music improvisation is an incredibly demanding team task that necessitates

instantaneous synchronization among two or more skilled musicians, each possessing a

shared lexicon of musical knowledge. Many actions must be executed within milliseconds,

and even minor deviations in timing can have adverse consequences for musical

performance (Chafe et al., 2004; Schuett, 2002; Chew et al., 2004). To meet these demands,
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collaborating musicians often communicate using their bodies,

using eye contact, and other means to make musical information

more predictable over several time frames (Hopkins et al., 2022b).

In the context of collaborative music improvisation (also known

as jamming), the integration of embodied AI collaborators opens

new creative avenues, as well as challenges for human-computer

musical interaction. A central issue being the AI’s capability to

extract meaningful musical information from human musicians

during a jam session (Bretan and Weinberg, 2016; Miranda, 2021;

McCormack et al., 2019).

Traditionally, computer systems in real-time musical

interaction have used music information retrieval techniques

(Weinberg et al., 2005; Bretan and Weinberg, 2016; Rowe, 2004;

Hopkins et al., 2021, 2020, 2023d). These methods enable AI-

driven musicians (AIMs) to “listen and react” to the output from

human musicians. However, this approach is limited by several

factors including processing speed, computational demands,

introduction of latency, and eschewing other communication

cues that human musicians often rely on–including gesture and

other forms of embodied communication (Hopkins et al., 2022b,

2024, 2023c; Bretan and Weinberg, 2016). Drawing inspiration

from strategies that improvising musicians use to navigate these

challenges (Leman, 2007; Lesaffre et al., 2017; Hallam et al., 2009;

Lewis and Piekut, 2016; Midgelow, 2019), alternative approaches

have been developed (Bretan and Weinberg, 2016; Lesaffre et al.,

2017). These include gesture analysis through computer vision

and motion capture (Bretan and Weinberg, 2016; Hopkins et al.,

2022b), brain-computer interfaces (Miranda, 2021; Yuksel et al.,

2016, 2019), and the incorporation of electrodermal activity

sensors to gauge the confidence levels of humans collaborating

with AIMs (McCormack et al., 2019).

In this paper, we focus on a metric we call “rhythmic

predictability,” which has been broadly explored in the

neuroscience of rhythm and improvisation (Vuust et al., 2018;

Berkowitz and Ansari, 2008). We enable an embodied AIM to

adjust its playing based on the neural signals of a human drummer

and their perception of rhythmic predictability throughout the

improvised drumming session. The AIM differentiates neural

signals associated with incoherent rhythms from musical ones and

refines its drumming as a result.

We draw on several areas of research in neuroscience of music

improvisation and rhythm perception, as well as AI collaboration

to inform our metric. First, the perception of rhythm has been

associated with activation in the supplementary motor area and

pre-motor cortex, both of which are located within the frontal

lobe (Patel and Iversen, 2014; Vuust and Witek, 2014; Grahn

and Rowe, 2009). Secondly, generative music activities such as

those exhibited in music improvisation have been associated

with activation patterns in the dorsolateral prefrontal cortex and

supplementary motor area (Bengtsson et al., 2007), as well as the

temporoparietal junction de Manzano and Ullén (2012). Other

literature in creative music cognition suggests activation in the

default mode network may play an important role (Beaty et al.,

2023). However, these regions are too deep within the brain to

measure reliably with neuroimaging techniques used in ecological

settings, such as functional near-infrared spectroscopy (fNIRS) or

electroencephalography (EEG).

Additionally, inspired by the broader metric of “trust and

reliability,” which is often used for quantifying collaboration

effectiveness in embodied AI-human interaction (Bobko

et al., 2022; Eloy et al., 2022; Glikson and Woolley, 2020;

McCormack et al., 2020), activation in these same areas are also

implicated with an additional emphasis on the temporoparietal

junction and frontal lobe (Eloy et al., 2022; Bobko et al.,

2022).

While the dynamics of trust have been explored in musical

settings (Hopkins et al., 2023a; McCormack et al., 2019, 2020),

much of the relevant literature comes from a long history

of human-automation interaction studies (Eloy et al., 2022;

Bobko et al., 2022; Howell-Munson et al., 2022; Eloy et al.,

2019). These studies often manipulate agent characteristics

such as reliability to assess trust. In particular, when agents

provide unreliable information, their human collaborators are

likely to ignore the information and rely solely on their own

experience, resulting in a lack of trust in the agent (Hoff

and Bashir, 2015; Glikson and Woolley, 2020; Eloy et al.,

2022).

To measure real-time brain data, choosing a neuroimaging

technology often requires assessing trade-offs between spatial

and temporal resolution. The two most popular nueroimaging

techniques used in ecological settings are fNIRS (the more

spatially resolute option) and EEG (the more temporally resolute

option). Because the supporting neuroscientific findings in

music perception are region-specific and studies related to

trust in human-AI collaboration utilize fNIRS for real-time

neural signal detection hardware, we opt for fNIRS in the

design of our system. fNIRS is also more robust for use in

real-time drumming and is becoming increasingly popular in

real-time neural signal detection generally (Seidel-Marzi et al.,

2021). Though there is more latency associated with fNIRS

than EEG, the desire for spatial resolution and activity-resistant

neural signal detection hardware led us to design our system

using fNIRS.

Throughout the article, we explore the concept of rhythmic

predictability as a quantifiable metric, enabling AIMs to evaluate

the predictability of their generated rhythms. Grounded in both

our observations and existing research, including jam sessions

and musician interviews (Hopkins et al., 2022b,a), this notion

addresses the inherent capacity of musicians to assess their own

rhythmic predictability, as well as that of the ensemble. Such

capabilities become apparent whenmusicians spontaneously adjust

their performance to enhance synchronization, particularly when

the musical harmony appears to be misaligned (Weng et al.,

2023).

To operationalize the concept of rhythmic predictability,

we implement a two-step approach. First, we define rhythmic

predictability as a neurologically measurable attribute, capturing

it through fNIRS. Second, we incorporate this metric into

“BrAIn Jam,” an innovative real-time system that monitors the

neural activity of human drummers during interactive musical

collaboration with an embodied AI-driven virtual musician

(AIVM) (Hopkins et al., 2023b) (see Figure 1). The system employs

a real-time algorithm specifically designed for preprocessing and

classifying brain data. This enables the AI to dynamically adapt
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FIGURE 1

(A) fNIRS signal and equipment for reading neural signals. (B) Drummer playing with the BrAIn jam system using fNIRS to read brain activation while

playing with a AI-Driven Virtual Musician.

its rhythmic patterns based on the fNIRS readings (with 3-5

second delay due to hemodynamic response time), which serve as

indicators of the human player’s affective state. Lastly, we explore
how this affective information can be utilized in an open-ended
creative setting to enhance the level of synchronization and overall

musical performance between human and AI musicians.
Building on the foundation of rhythmic predictability, we make

several key contributions that extend the current understanding
of AI-human musical interaction and offer practical tools for real-

time, affective state-informed musical collaboration:

(1) We formalize the concept of rhythmic predictability as a

metric and how to reliably measure it during collaboration

with an embodied AI musician. We substantiate our claims

through an empirical investigation that integrates an analysis

of both neural and machine learning data. This provides a

nuanced understanding of how musicians inherently gauge

rhythmic predictability with embodied AI musicians and how

this can be quantified for use in adaptive AI systems.

(2) We introduce “BrAIn Jam,” an adaptive system that

employs fNIRS to capture real-time neural activity of human

musicians. The system features a real-time preprocessing

algorithm for fNIRS data, which we make available for

future explorations in brain-computer interfaces using fNIRS

technology.

(3) We offer valuable insights into the practicalities and

limitations of incorporating affective state data into real-time

musical systems. These insights are derived from a player test

of the BrAIn Jam system and address the specific constraints

posed by fNIRS technology.

2 Related work

2.1 Embodied AI-driven musicianship

Recent advancements in music technology have led to the

development of AI-driven systems that can assist in musical

performance and composition. Musical and automated robots

have a long history of use in musical performance (Kapur, 2005;

Singer et al., 2003, 2004; Rowe, 2004; Dannenberg et al., 2011;

Kajitani, 1989; Raman, 1920; Roads, 1986; Takanishi et al., 1996;

Williamson, 1999). However, only within the last few decades have

researchers focused on creating adaptive, improvisational robots

that display musicianship. One of the earliest works in the field

of robotic musicianship was conducted by (Weinberg et al., 2005)

and Eigenfeldt and Kapur (2008), who independently introduced

robotic drumming systems that used sensors and actuators to

control a robotic drummer. Though the system was able to play

complex rhythms, it was limited in its ability to generate music and

was only able to improvise with human input in a call and response

manner. Hoffman later proposed a robotic marimba player which

was capable of call and response, overlay improvisation, and

phrase-matching (Weinberg and Driscoll, 2007; Miranda, 2021;

Bretan and Weinberg, 2016). The authors showed that the system

was able to generate accompaniments that were consistent with the

human player and had a high degree of musical coherence.

Nonetheless, the field faces inherent challenges, notably the

“concatenation cost” and “embodiment cost,” which refer to

the computational and physical time required to assemble and

execute musical phrases, respectively (Bretan and Weinberg, 2016;

Miranda, 2021). While efforts are underway to enhance these
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systems by enabling them to anticipate musicians’ decisions,

this is primarily achieved through the integration of extra-

musical information to inform musical predictions (Bretan and

Weinberg, 2016; Lesaffre et al., 2017). Despite these advancements,

considerable work remains to enhance the responsiveness and

social adaptability of these systems in the context of improvised

music (Bretan and Weinberg, 2016).

2.2 Use of extra-musical information in
interactive musical systems

While existing work has attempted to bridge the

communication gap between human musicians and interactive

systems, they often rely on overt cues that may not accurately

represent the internal emotional or cognitive state of the human

participant. Commonly used strategies such as gesture analysis,

electrodermal activity, and brain-computer interfaces are described

in the following sections.

2.2.1 Gesture analysis
Communicating via gesture is vital for musicians in improvised

and live performance. Players often coordinate the movement

of different sections, whether to take a solo, or even to end

a song synchronously (Bretan and Weinberg, 2016; Hopkins

et al., 2022b). Additionally, gesture-based anticipation in human-

robot interaction has been shown to increase anthropomorphic

inferences and acceptance of the robots by humans (Eyssel et al.,

2011). Gesture analysis has been explored in the robotic marimba

player, Shimon, through the use of computer vision (Bretan and

Weinberg, 2016; Miranda, 2021). By analyzing head movement,

Shimon can make inferences about tempo and rhythm that can

support the analysis of musical information. OpenCV has been

employed to enhance the accuracy and efficiency of this gesture-

based analysis, contributing to more nuanced and responsive

musical interactions (Miranda, 2021).

2.2.2 Electrodermal activity
The use of skin conductance as a measure of engagement

has been explored but lacks the specificity to decode complex

cognitive states. Skin conductance has been positively correlated

with sympathetic nervous system responses (also known as fight

or flight responses), and is particularly useful at discerning

levels of stress in adaptive computational systems (McCormack

et al., 2019; Williams et al., 2019). McCormack et al presents

a collaborative improvising AI drummer that communicates its

confidence through an emoticon-based visualization. The AI

system was trained on both musical performance data and real-

time skin conductance of musicians improvising with professional

drummers (McCormack et al., 2019). The electrodermal activity

data served as extra-musical cues to inform the AI’s generative

process. Temporal Convolutional Networks were used to analyze

this skin conductance data, adding a layer of complexity to the AI’s

understanding of the musician’s engagement levels (McCormack

et al., 2019).

2.2.3 Brain-computer interfaces
EEG has also been employed to explore collaborative

sonification and the emotional states of musicians (Leslie et al.,

2014; Mullen et al., 2015; Leslie and Mullen, 2011). Leslie

and Mullen (2011) utilized EEG data to create a collaborative

sonification system called MoodMixer, which aimed to enhance

musical collaboration by translating EEG signals into auditory

feedback. This approach opened up new avenues for understanding

the emotional and cognitive states of musicians during live

performances inspiring several interactive musical systems using

EEGMullen et al. (2015).

Music systems that adapt to the player based on affective

state have been exhibited by Yuksel et al. (2016) to inform music

training systems and support creativity. In this project, fNIRS

devices were used to measure workload and adapt the learning or

creative environment accordingly. The team proposes a training

mode and a creativity mode, whereby separate affective states and

brain regions are recorded and act as a proxy to discern level of

cognitive workload. A Support VectorMachine (SVM)with a linear

kernel to adapt music training systems based on fNIRS-measured

workload, was used to provide a method for real-time adaptation

(Yuksel et al., 2016).

2.3 Neuroscience of rhythmic predictability

Rhythmic predictability is a quantifiable metric inspired by the

neuroscience of rhythm, music improvisation, and social reliability.

2.3.1 Neural underpinnings of rhythm
Rhythm is a complex cognitive construct that entails a

dynamic interplay between several regions of the brain. There

is substantial evidence to suggest that auditory-motor coupling

plays a strong role in how we perceive and interact with our

environments. The predictive coding framework—though difficult

to measure at the neuronal level—provides a model for explaining

how the brain minimizes prediction errors in the processing of

rhythmic auditory stimuli and has been used to explain how

the brain processes incongruous rhythms (Vuust and Witek,

2014; Vuust et al., 2018). This framework predicts the existence

of a tightly connected network in the brain that processes

auditory stimuli and plans motor movement as a result. This

is validated through electrical signals sensed from the brain

that correspond to unexpected deviations in rhythmic patterns,

otherwise known as mismatch negativity (Vuust and Witek,

2014; Patel and Iversen, 2014; Chen et al., 2006; Hallam et al.,

2009).

Additionally, according to the action simulation for auditory

prediction hypothesis, the motor system simulates periodic

movement to assist in predicting beat timing (Patel and Iversen,

2014). This theory suggests that sound is processed and relayed

to areas closely associated with the latter stages of planning motor

output, such as the premotor cortex and supplementary motor area

of the frontal lobe (Grahn and Rowe, 2009; Hallam et al., 2009;

Bengtsson et al., 2007). Areas of the brain associated with planning

and coordinating more complex motor patterns such as the areas in
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the prefrontal cortex (Thaut et al., 2014; Fukuie et al., 2022; Chen

et al., 2006) and cerebullem (Chen et al., 2008; Hallam et al., 2009)

have also been shown to be recruited to assist in the processing and

response to more complex rhythms.

Other theories focus more on attention, such as the dynamic

attending theory, implicate similar regions to explain the

processing and execution of rhythms. The dynamic attending

theory proposes that attentional oscillations synchronize with

external rhythmic stimuli to form temporal expectations (Hallam

et al., 2009; Vuust and Witek, 2014; Vuust et al., 2018). These

theories implicate further contribution from the basal ganglia

[playing a role in filtering motor output (Vuust and Witek,

2014; Kung et al., 2013)], as well as frontal and parietal lobes

in dynamically attending to and predicting rhythms (Vuust and

Witek, 2014).

These models as well as neuroimaging evidence suggests that

brain area networks are able to respond to incongruous rhythmic

patterns. Given the location of these areas in the neocortex, we

postulate that researchers can utilize these signals to build adaptable

music tools.

2.3.2 Neural underpinnings of music
improvisation

Music improvisation is a complex musical activity that

requires musicians to make extemporaneous musical decisions

while communicating with each other. Thus, there are several

components of music improvisation that elicit well-known patterns

of neural activation. However, research that has sought to

isolate neural activation in association with music improvisation,

several areas emerge only in conditions involving improvisation

(Berkowitz and Ansari, 2008; Berkowitz, 2010; Hallam et al., 2009).

From a social cognition perspective, some of these areas have

also been shown to be active while speaking–demonstrating the

connection between music improvisation and speech and language

processing (Berkowitz, 2010; Berkowitz and Ansari, 2008; Hallam

et al., 2009). While other areas such as the temporoparietal

junction and dorsolateral prefrontal cortex have been implicated in

social situational processing generally (Berkowitz and Ansari, 2010;

Carter et al., 2012; Carter and Huettel, 2013; Schurz et al., 2017;

de Manzano and Ullén, 2012; Bengtsson et al., 2007).

From a music cognition perspective, improvised music

activities have also been associated with activity in regions that

support the perception of rhythm (Hallam et al., 2009), complex

musical structure (Fukuie et al., 2022), movement in association

with music (Levitin, 2002), and motor planning (Vuust and Witek,

2014). Activation patterns in the dorsolateral prefrontal cortex and

supplementary motor area have been implicated in improvising

music as well as planning and executing musical motor patterns

(Bengtsson et al., 2007). Other literature in creative cognition

suggests activation in the default mode network also plays a role

in the generation of new creative ideas (Beaty et al., 2023).

These areas have been shown to work together to enable

musicians to make extemporaneous creative musical decisions,

while executing fine motor control over complex musical patterns.

Thus, recognizing these areas as contributors to the signal likely

present in rhythmic predictability is paramount.

2.4 Neural correlates of trust and reliability
in human-agent teaming

Trust is a multifaceted construct that has garnered considerable

attention across various domains, including interpersonal

relationships and human-automation interactions (Fett et al., 2014;

Howell-Munson et al., 2022; Carter and Huettel, 2013; Eloy et al.,

2019). Emerging insights from social neuroscience have pinpointed

specific brain regions involved in interpersonal trust and the ability

to anticipate complex behaviors in social scenarios, notably the

temporoparietal junction (TPJ) (Carter and Huettel, 2013; Carter

et al., 2012). This area has been associated with socially predictive

behavior, a component of the trust areas measured in human-agent

teaming studies.

Building on this neuroscientific foundation, our concept of

rhythmic predictability was inspired by the overlap between trust

and reliability. Observations of drummers demonstrate their ability

to correct for both their own and collective rhythmic predictability

or unpredictability, highlighting the need for adaptive systems to

better anticipate musical decisions (Bretan and Weinberg, 2016;

Hopkins et al., 2023a). In human-agent teaming studies, reliability

when tailored for musical contexts, serves as a cornerstone for

establishing trust (Glikson and Woolley, 2020; Hoff and Bashir,

2015; Howell-Munson et al., 2022; Yuksel et al., 2017; Eloy et al.,

2022, 2019).

In the musical interaction domain, this form of reliability

becomes crucial. Unpredictable or unreliable musical performance

can erode the trust that is essential for successful musical

collaborations (McCormack et al., 2019, 2020). Musicians,

therefore, aim to establish a high level of rhythmic reliability

to build trust with their fellow musicians. This involves a

delicate balance: being predictable enough to maintain the

structural integrity of the musical collaboration, while also

introducing elements of unpredictability and improvisation to

sustain engagement and interest among the participants.

2.5 Functional near-infrared spectroscopy

fNIRS systems can employ different techniques of illumination

(Gervain, 2015), with continuous-wave (CW) fNIRS representing

the most frequently adopted approach in cognitive neuroscience.

In this approach, near-infrared light at two or three different

wavelengths is constantly emitted from sources into the scalp, and

the light collected by detectors indexes changes in concentrations

of oxygenated (1HbO2) and deoxygenated (1HbR) hemoglobin in

the brain.

These local changes in concentrations of HbO2 and HbR are

computed from light intensities at these wavelengths using the

modified Beer-Lambert Law Delpy et al. (1988); Kocsis et al.

(2006), which accounts for light absorption and scattering in

biological tissue:

1A = 1c · ε · d · B,

where A is light attenuation, ε is the absorption coefficient

of the chromophore (e.g., HbR), c is the concentration of the
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chromophore, d is the distance between the points where light

enters and exits the tissue (approximately 3 cm), and B is the

differential pathlength factor (DPF), which accounts for the effect

of scattering on pathlength. Pairs of emitters (i.e., sources) and

detectors form multiple NIRS channels.

Cross-validation of fNIRS as a neuroimaging method: fNIRS

has been cross-validated not only in terms of the temporal

characteristics of hemodynamic changes but also the spatial

localizations of these changes. For example, several combined

fNIRS-fMRI studies have shown that these methodologies are

highly comparable in this respect (e.g., Cui et al., 2011; Heinzel

et al., 2013; Noah et al., 2015; Okamoto et al., 2004; Sato et al.,

2013). For example, Noah and colleagues (2015) developed a

protocol for conducting multi-modal experiments with fNIRS and

fMRI to ensure signal comparability, testing it using a complex

yet naturalistic motor task, namely a dancing video game (Noah

et al., 2015). Thus, fNIRS is a valid neuroimaging method that

has temporal and spatial resolutions which represent an adequate

compromise between that of fMRI and EEG, respectively; that is,

it has greater temporal resolution than fMRI, but not EEG, and

greater spatial resolution than EEG, but not fMRI (Ferrari and

Quaresima, 2012).

2.5.1 “Real-world” neuroimaging
There has been a considerable and rapid rise in technological

advancements to the wearability and portability of fNIRS in recent

years (see Pinti et al., 2018a for review). These systems enable

participants to freely perform tasks without constraints on the body

and researchers to investigate situations that are difficult to contrive

in laboratory settings (e.g., interpersonal interactions), providing

an unprecedented opportunity to study complex cognition more

naturalistically (e.g., Hirsch et al., 2018; Stuart et al., 2019).

For example, researchers have recently investigated prefrontal

hemodynamics whilst participants walked around a real-world

street environment (Burgess et al., 2022; Pinti et al., 2015) and

others have investigated alterations in hemodynamics during

slacklining (Seidel-Marzi et al., 2021). With respect to interpersonal

interaction, Pinti et al. (2021) assessed face-to-face deception in

interacting dyads, and Kelley et al. (2021) recently compared brain

activity during eye-contact interactions with a humanoid robot.

In other words, the neuroscientific questions for which fNIRS is

particularly well-suited are those predicting the involvement of

brain regions in ecological tasks requiring unrestricted movement,

human-to-human interaction, and so forth (Pinti et al., 2018b).

2.5.2 Hemodynamic considerations in naturalistic
situations

Because greater ecological validity increases situational

complexity, tasks that represent real-world activities will often

require behaviors such as free-movement actions and language.

Behaviors such as speech production (i.e., verbal communication)

during interpersonal interactions and intentional body movements

during complex motor tasks (e.g., playing an instrument) create

marked changes in respiration compared to resting states (e.g.,

Scholkmann et al., 2013b,a). Since respiration (e.g., changes

in arterial CO2) is closely linked to cerebral oxygenation and

hemodynamics, task-related changes in physiological systems such

as respiration and heart rate represent sources of noise (e.g., system

confounds) in fNIRS signals (Tachtsidis and Scholkmann, 2016).

Filtering techniques during pre-processing, such as the use of

band-pass filters together with multi-modal monitoring, typically

address this issue in normal, laboratory-based experiments

(see Pinti et al., 2019 for review); however, researchers have

found that HbR signals are typically less affected by systemic

confounds (Dravida et al., 2017) and, therefore, have used

this type of signal for interpreting results in ecologically valid

neuroimaging paradigms (e.g., Crum et al., 2022; Hirsch et al.,

2021, 2017).

2.6 A�ective state classification in machine
learning

fNIRS has emerged as a non-invasive, lightweight

neuroimaging modality that offers significant advantages over

traditional methods like electroencephalography (EEG) and

functional magnetic resonance imaging (fMRI) (Ayaz et al., 2022).

Its portability and wearability have been significantly enhanced

in recent years, enabling naturalistic studies in complex cognitive

and social settings (Pinti et al., 2018a; Hirsch et al., 2018; Stuart

et al., 2019). These advancements have found applications in

various domains, including human-agent teaming and musical

performance (Eloy et al., 2022; Howell-Munson et al., 2022;

Vanzella et al., 2019; Hopkins et al., 2023a).

Concurrently, machine learning techniques, particularly

deep learning architectures, have revolutionized affective state

classification (Bandara et al., 2019). Convolutional Neural

Networks (CNNs) excel at capturing spatial characteristics of

neuroimaging data, while Long Short-Term Memory (LSTM)

networks are adept at learning temporal patterns (Rabbani and

Islam, 2023; Wang et al., 2023). Support Vector Machines (SVMs),

known for their user-friendliness and wide availability, are also

commonly employed (Yuksel et al., 2016, 2019; Wang et al.,

2023). The synergy between fNIRS and machine learning has been

particularly impactful. For instance, CNNs and LSTMs have been

combined to improve the accuracy of time-series classification of

fNIRS data (Bandara et al., 2019), while SVMs have been utilized

for workload adaptation in fNIRS-based systems for music (Yuksel

et al., 2016, 2019; Miranda, 2021).

However, the generalizability of these machine learning models

across different settings and populations remains a concern (Maleki

et al., 2022; Krois et al., 2021). To address this, there is a

growing call for more rigorous validation methods and diverse

datasets. One promising avenue is to focus on intra-individual

variability by collecting data from fewer participants but under

varied conditions (Jankowsky and Schroeders, 2022; Rybner et al.,

2022). This integrated approach not only leverages the strengths of

both fNIRS and machine learning but also addresses the challenges

of model generalizability, thereby offering a comprehensive

solution for affective state classification in complex cognitive and

social interactions.
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3 Materials and methods

3.1 Research methods

To address the challenge of measuring and implementing

rhythmic predictability in real-time musical improvisation, we

adopted a two-phase approach informed by a 40-hour field study

of observed jam sessions. In phase I, we experimentally identified

correlates of rhythmic predictability using fNIRS, formalizing it as

a measurable attribute both neurologically and computationally.

We trained individual models for each participant following

a rigorous standard fNIRS experiment protocol. We established

three experimental conditions in which the participant was asked

to improvise on a drum pad with an embodied virtual AI musician:

1) improvise with musical beats, 2) improvise with a steady

rhythm at 90 beats per minute [a tempo that can easily be

followed (Hopkins et al., 2022a; Leman, 2007)], and 3) improvise

with random rhythms generated computationally randomly.

Additionally, we established a control condition whereby the

participant played along with a steady pulse at 90bpm. Between

conditions participants stared at a fixation cross on screen for 10

seconds.

Throughout the experiment, we split the incoming fNIRS signal

and captured it both in CSV files using Python and in Aurora

2021.9 software for post hoc analysis. The CSV files were later used

to train and compare several machine learning models, with the

best performing models chosen to be used in the system in phase

II. The fNIRS data captured in Aurora was used to verify that our

signal was properly acquired and provide preliminary evidence for

activation in specific regions of the brain during experimentation.

In phase II, we developed “BrAIn Jam,” a system that integrates

this metric into real-time interactions between human drummers

and an AIVM using individualized machine learning models

trained on data from the participant players. Participants played

drums with three versions of the AIVM. The first version used

dynamic switching of drum beats based on the brain activity

of the participant. The second used continuous switching of the

drum beat with no neural feedback. Lastly, as a control condition,

participants mimicked an AIVM that played a consistent steady

pulse at 90bpm.We then conducted semi-structured interviews and

statements to gain insights into their experience with the system.

Further description of methodologies and hypotheses for phase

I and phase II of the experiment are discussed in Section 5

(Experimental Design). In the remainder of this section, we

describe a formative field study, the BrAIn Jam system design, and

equipment used.

3.2 Field study: observations of
collaboration between human musicians

3.2.1 Field study methods
To inform the design of the BrAIn Jam system, we recorded

over 40 hours of jam sessions with 5 musicians (ranging from 25

to 31 years of age) over the course of several months to better

understand how musicians communicate with each other in an

improvised setting. The recordings were made using several web

cameras recording at 1080p and using OBS studio to combine

angles into a single video for post hoc analysis.

The group consisted of two guitarists, a bassist, a keyboardist,

and a drummer. All members of the group had more than five

years of experience playing their respective instruments. The

group regularly engaged in jamming sessions, typically meeting

once or twice a week. When jamming, the group played music

extemporaneously. That is, it was never rehearsed, and known

songs were rarely—if ever—played.

On some occasions, the first author joined some of the

jam sessions to better understand the group dynamics through

ethnography. Notes were taken after the sessions and video was

later analyzed by two other members of the research team. The

video analysis focused on how players communicated with each

other and how they responded when recognizing collective musical

incohesion.

3.2.2 Observations
The dynamics of communication among improvising

musicians has been well explored. Notably, musicians tend

to use body language, eye contact, head motion, and facial

expression (Hopkins et al., 2022b; Bretan and Weinberg, 2016) to

communicate with one another during a jam session.

Our observations surfaced a collective behavior pattern the

musicians used when recognizing the music was suffering (i.e.

melodically, rhythmically) due to incohesive musical actions

between the players. They tended to use three strategies to

overcome this issue. First, they would make eye contact or visibly

demonstrate their confusion. Secondly, they would simplify the

music playing only necessary notes/chords and rhythms to convey

the main musical motif or rhythm. Lastly, they would exaggerate

gestural cues such as rhythm with the body and simplify visual cues

(such as chord shapes on guitar) to better synchronize the group.

We concluded that playing extemporaneously inevitably led to

moments of miscommunication or incohesion between members.

Some members even noted this as a desirable trait of an improvised

jam session.Whereby players could “find where to meet musically”.

We decided to focus on musical incohesion and

unpredictability due to its observed relevance in jam sessions,

supporting frameworks from previous work in the neuroscience of

rhythm, and because of an opportunity to better inform AI-driven

musicians of human dynamics during musical play.

3.3 Equipment and system design

3.3.1 AI-Driven Virtual Musician Equipment
We received musical input from the player using a KAT MIDI

drum that was directly connected to the AIVM. The AIVM system

we used was derived from an open-source AIVM system (Hopkins

et al., 2023b,d) incorporating the Unity Game Engine and Ableton

Live 11. A Python backend running Google Magenta’s LSTM RNN

was used to generate new drum beats for the system, trained on

Google Magenta’s Groove dataset (Gillick et al., 2019). The AIVM

was displayed on a vertically oriented TV screen in front of the

drummer while they played (see Figure 2).
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FIGURE 2

BrAIn Jam system setup and components.

3.3.2 fNIRS equipment
The present study adopted a 50-channel layout that was

configured using fOLD Toolbox (Zimeo Morais et al., 2018)

to collect data from subregions of the prefrontal cortex and

of more posterior, temporoparietal regions that were identified

from previous literature discussed above (see Figure 3). More

specifically, data was collected from two participants using a

portable NIRSport2 system (NIRx, Berlin, Germany) (see Figure 4).

This is a CW-fNIRS device that uses two wavelengths (760 and

850nm) with a sampling rate of 5.0863 Hz.

3.3.3 fNIRS data
Real-world tasks often involve free-movement actions and

language, introducing changes in respiration and heart rate

(Scholkmann et al., 2013b,a). These physiological changes can

introduce noise in fNIRS signals (Pinti et al., 2019). While filtering

techniques are used in laboratory experiments (Pinti et al., 2019),

HbR signals are typically less affected by confounds (Dravida et al.,

2017), making them suitable for ecologically valid neuroimaging

(Crum et al., 2022; Hirsch et al., 2021, 2017). However, real-time

adaptive systems have mainly focused on HbO2 (Howell-Munson

et al., 2022; Yuksel et al., 2016, 2019).

To address this, we developed a real-time preprocessing

algorithm applying a linear bandpass filter (0.01 - 0.5 Hz) and the

modified Beer-Lambert law. Our analysis focused onHbR data for a

cleaner signal, collected for training the real-time model. Both post

hoc fNIRS analysis and real-time data were collected.

NirsLAB software (Version 2019.04, NIRx) was used for data

processing. Time series for each participant were adjusted to

include 5 s before the first round and 30 seconds after the final

round, capturing the full hemodynamic response. Data quality

was assessed using the coefficient of variation (CV), with channels

having elevated CV values inspected for motion artifacts or poor

optode-scalp contact. A CV threshold of 15% was employed,

aligning with standard practices (Piper et al., 2014; Pfeifer et al.,

2018), following guidelines by Yücel et al. (2021). A pre-whitening

autoregressive model-based algorithm was applied to correct for

motion and serially correlated errors (Barker et al., 2013; Yücel

et al., 2021), without prior traditional filtering.

Subsequent analysis used a General Linear Model on

round-level fNIRS data for HbO2 and HbR, resulting in ’beta’

values quantifying the fit between observed brain activity

and the expected hemodynamic response function. Each

NIRS channel was individually fitted for each participant,

yielding unique beta values. Real-time HbO2 data produced

unusable results due to significant extra-cortical physiological

activity caused by vigorous drumming. Contrast analysis in

NirsLAB identified brain regions with significant variations in

activation across conditions. For a comprehensive understanding

of fNIRS analyses using the general linear model, refer

to Barker et al. (2013); Tak and Ye (2014); Yücel et al.

(2021).

3.3.4 System diagram
The BrAIn Jam system is comprised of an fNIRS device and

associated data processing programs, Python scripts, and Unity

Engine. Figure 5 shows how these components are connected and

send information to each other. The system diagram is separated
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into two components: (1) the real-time system, and (2) post hoc

analysis software.

The real-time system comprises two inputs—an fNIRS device

and a MIDI drum pad. The MIDI drum pad is used to capture

drumming information from the player, which is in turn used to

inform the generation of new drum beats played by the virtual

drummer. The fNIRS device is used to stream information that is

passed to a machine learning classifier which determines whether

the music is sufficiently rhythmically musical. If the classifier

determines that the music is not, then it manipulates the drum

beat at a musically relevant interval by launching a new clip

on the downbeat using Ableton’s built-in launching function. All

FIGURE 3

fNIRS source and detector pairs arrangement covering regions of

interest in the neocortex.

generated clips are instantiated in Ableton to control for tempo,

sound quality, and timing of musical changes.

Tempo control is accomplished using the global tempo

setting in Ableton. This ensures that the notes for all generated

drum beats are not faster or slower than any other. This

avoids random speeding or slowing of the tempo between

beats, which could distract the drummer and render the

conditions incomparable. Sound quality and timbre are controlled

using the same instrument pack for all conditions in Ableton,

ensuring a consistent and realistic drum sound is produced

for all drum beats. Ableton then sends OSC messages to

Unity which controls the animation of an embodied virtual

AI drummer.

The post hoc system comprises nirsLAB and Python

code which converts incoming open sound control (OSC)

messages to arrays that populate a CSV file. These files can

be manually verified, as well as used for model training

in post. The nirsLAB software is used to supply evidence

that the acquired signals were clean and to determine

what areas of the brain were most active during the

training periods.

4 Experimental design

4.1 Hypotheses and research objectives

The experimental framework of this study is divided into two

distinct phases, each designed to rigorously investigate specific

aspects of human-AI musical interaction and the neural correlates

of rhythmic predictability. In phase I, we explore the neural

correlates of rhythmic predictability by presenting musicians with

three distinct auditory conditions to improvise with: musical

phrases, random phrases, and a steady pulse. In phase II, we

demonstrate the dynamic neurofeedback system and a non-

dynamic system to musicians and gather feedback on how this

FIGURE 4

Demonstrates fNIRS device. (A) shows the source and detector layout on a flattened brain image. (B) shows the source-detector separation and

signal. (C) demonstrates the source-detector pairs on a fNIRS cap. (D, E) show the source-detector pairs shielded from light and used in a realistic

setting.
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FIGURE 5

BrAIn Jam system diagram.

technology can be used in practice. The research is guided by three

primary hypotheses:

4.1.1 Hypotheses
1. The first hypothesis posits that the neural responses to musical

phrases and the steady pulse will differ in a discernible manner

from those elicited by random phrases. This is premised on

the idea that musical phrases, being inherently structured, will

engage different cognitive and affective processes compared to

random, unstructured phrases.

2. The second hypothesis predicts that the best performing

machine learning model will be the RNN LSTM hybrid model

used to previously predict fNIRS activation in a musical task

(Bandara et al., 2019).

3. The third hypothesis postulates that detecting low rhythmic

predictability and dynamically changing the drumbeat will result

in greater perceived rhythmic cohesionwith an embodied virtual

drummer as compared to continuous switching of a drumbeat

without feedback.

4.2 Phase I: neural correlates and model
training

In the initial phase, participants engaged in musical

improvisation using an electronic drum pad, accompanied

by an AIVM whose actions were triggered by pre-recorded hand

drum beats. This phase incorporated three experimental conditions

along with a control condition.

A virtual musician system (Hopkins et al., 2023b) was

implemented to provide an embodied representation of the AI. This

was important to ensure elements of human-agent teaming studies

remained consistent in the investigation of trust (Yuksel et al., 2017;

Bobko et al., 2022; Eloy et al., 2022). A virtual musician system

was used to accomplish anthropomorphic embodiment without the

embodiment cost, latency, and resources associated with robotics

(Bretan and Weinberg, 2016).

Participants were exposed to four conditions interleaved with

a 10 sec fixation cross to enable hemoglobin signals to return to

baseline between trials (Hopkins et al., 2023a; Crum et al., 2022).

Participants engaged in the following conditions and were asked

to improvise on the electronic hand drum, each corresponding to

several levels of rhythmic predictability (see Figure 6):

1. Condition 1: Randomly generated drum beats. Randomly

generated beats were programatically randomized for note and

time step. This made drumbeats unpredictable to the musicians.

2. Condition 2: Pre-selected musical drum beats. These drum

beats were generated by an Long Short-TermMemory Recurrent

Neural Network (LSTM RNN) trained on 1,200 drum samples

in the Magenta Groove data set (Gillick et al., 2019). After

generation, 200 drum beats were hand selected by a music

educator for their predictability.

3. Condition 3: Pulse-based metronome beat. A regular drum

beat at 90bpm was used to simulate a steady and reliable drum

beat.

4. Control Condition: Mimic a metronome with the AIVM. This

control condition enabled us to compare the other conditions

against a physically similar, rhythmic exercise with the AIVM, to

ensure brain activation in the regions of interest were confined

to aspects of rhythmic reliability rather than the control factors.
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FIGURE 6

Scale of rhythmic predictability from randomly generated beats (non-predictable) to a metronome (very predictable).

4.2.1 Machine learning model comparison
A primary objective of this experiment was to scrutinize the

neural correlates associated with rhythmic predictability and to

address how affective state can be incorporated into a real-time

improvisation system with AIVMs. To address the bias-variance

trade-off in machine learning, we opted for a data-rich approach.

Rather than recruiting a large number of musicians and collecting

limited data from each, we selected two experienced improvising

musicians (Age: M = 28, SD = 1; Years playing: M = 16.5, SD

= 6.5) and exposed them to the conditions for three hours each,

yielding a cumulative six hours of training data. This amount of

data is consistent with averages in capture time by many fNIRS

experiments as surveyed by Eastmond et al. (2022).

We employed this strategy tomitigate the limitations associated

with cross-validation, which often compromises the development

of individualized models (Krois et al., 2021; Rybner et al., 2022;

Jankowsky and Schroeders, 2022; Maleki et al., 2022; Rocks and

Mehta, 2022; Zhang et al., 2022). While a larger participant pool

would enhance the statistical generalizability across subjects, our

focus was on obtaining the most reliable data possible–not cross

validation. Therefore, we maximized the data collection time per

participant to ensure a more nuanced understanding of the neural

correlates of rhythmic predictability.

The primary objective of the implemented model is to classify

time-series data of musicians improvising with one of three

specified conditions Random,Musical, andMetronomicmusic. The

time-series data is chunked into overlapping segments, each of

size approximately 1,900 data points with an overlap of 680 data

points. This corresponded to 34 channels, 11 s (4 bars of music

at 90bpm, time signature 4/4), and 4 s (hemodynamic response

time) respectively at a sampling rate of 5 Hz. Label encoding is

employed to convert these string labels into integers, facilitating

machine learning model training. Following this, the data is split

into training and test sets, with 80% of the data being used for

training and the remaining 20% for testing. Several models were

then implemented for a comparative analysis:

• An SVM model [a commonly used model for fNIRS

classification (Yuksel et al., 2016, 2019)] with a linear kernel

and regularization parameter C = 0.1 is trained on the

segmented and scaled data.

• ARandomForest classifier with 50 estimators and amaximum

depth of 10 is also trained on the same data.

• A hybrid CNN and LSTM model is employed [based on a

recent classification strategy for fNIRS data (Bandara et al.,

2019)], consisting of a 1D convolutional layer with 64 filters

and a kernel size of 3, followed by max-pooling and an

LSTM layer with 64 units. Dropout layers are inserted for

regularization. The model employs sparse categorical cross-

entropy loss and is optimized using the Adam optimizer. Early

stopping is employed during training to prevent overfitting.

• A simple dense neural network model consisting only of dense

layers is trained. This model serves as an additional baseline

for comparison.

• A standalone LSTM model with 64 units is also trained,

serving as another variant for comparison.

Performance metrics, including accuracy, precision, recall,

and F1-score, are computed for each model post-training. This

comprehensive approach gives an in-depth comparison of different

machine learning algorithms, offering valuable insights into their

respective efficacies for fNIRS classification.

4.3 Phase II: interaction with AI-driven
virtual musician

In the second phase, participants engaged with an AIVM

under two experimental conditions, complemented by a control

condition. The aim of this phase was twofold: to assess the model’s

capability to accurately predict brain states and to explore the

integration of rhythmic predictability classification in real-time

systems, such as AIVMs.

1. First Condition: dynamic switching with fNIRS—This

condition utilized functional near-infrared spectroscopy

(fNIRS) to dynamically control the switching of AI-generated

drum beats.

2. Second condition: continuous alteration—In contrast to the

first, this condition did not employ intelligent switching but

instead featured a continuous alteration of AI-generated drum

beats.

3. Control condition: metronome mimicry with AIVM—This

control condition served as a baseline, mimicking a metronome

with the AIVM to isolate brain activation related to rhythmic

reliability from other factors.

To assess the effectiveness of the different conditions, each

participant was interviewed individually after interacting with the

AIVM. The interviews were semi-structured and focused on the
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FIGURE 7

Mean HbR pre-processed signal overtime using our real-time algorithm. Blue and orange lines indicate musical and metronome conditions

respectively, while the green line represents playing to randomly generated drum beats.

differences between the two conditions and overall impressions of

the system. These one-on-one discussions enabled a more in-depth

exploration of the participants’ experiences than could be achieved

through surveys or other quantitative methods. Interviews were

recorded, transcribed, and analyzed separately by two members of

the research team using inductive thematic analysis.

5 Results

5.1 Phase I results

5.1.1 Results for hypothesis 1
The first hypothesis posited that the neural responses to

musical phrases and a steady rhythmic pulse will differ discernibly

from those elicited by random phrases. This is premised on

the idea that musical phrases—being inherently structured—

will engage different cognitive and affective processes compared

to random, unstructured phrases. Our results support this

hypothesis as demonstrated in Figures 7 and 8. The areas

largely associated with differences in each subject are the TPJ,

which are also known to be associated with social cognition,

theory of mind, and predictive social planning (Carter and

Huettel, 2013; Carter et al., 2012; Schurz et al., 2017). Our

results also support this hypothesis as demonstrated in Figure 9.

Dorsolateral prefrontal cortex activation is also shared in the

musical and metronome improvising conditions, while not present

in the random condition. This suggests that the DLPFC is in

part responsible for discerning musical and regular patterns

in music.

5.1.2 Results for hypothesis 2
The second hypothesis predicted that the CNN+LSTM RNN

model would perform the best based on prior work. This was not

supported by our results. Our machine learning model comparison

demonstrates that accuracy, precision, recall, and F1 score all

scored higher for the random forest (RF) model (Table 1). The

random forest model performed better on all scores and also

demonstrated less variance between participants.

5.1.3 Measuring rhythmic predictability in code
The HbR concentration data collected from the real-time data

stream was averaged for both of the players over all of the channels.

Mean standard error was applied to each of the conditions over the

duration of each condition and were shown to be distinct. A t-test

was performed between each of the conditions, and as hypothesized

there was a statistically significant (p = 0.01) difference between

the randomly generated beats and the musical ones (see Figure 7).

This suggests that “rhythmic predictability” can be measured while

improvising on the drum.

5.1.4 Measuring rhythmic predictability in nirsLAB
To further specify the regions associated with the difference

in signal a thresholded t-test (p = 0.05) was performed between

each of the conditions and the control condition (tapping a

drum to a metronome). This suggests that the difference in

signal between improvisation and tapping to a metronome with

an AIVM significantly raises activation in the regions of the
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FIGURE 8

Neural activation in temporoparietal junction significant (p = 0.05) in a contrast image between the random and musical conditions.

FIGURE 9

Neural activation present in each experimental condition subtracted by the control condition. This indicates the neural activation present while

improvising to randomly generated (left), musical (center), and metronomic (right) drum beats. All activation shown are significant (p = 0.05).

brain shown in Figure 9. To summarize, improvisation elicited

signal in the temporoparietal junction for all conditions as

compared to controls. Also, areas of the brain associated with

workload (frontopolar area) became significantly more active

when improvising to random drum beats as compared to the

other conditions. Activation in the right dorsolateral prefrontal

cortex and medial prefrontal cortex in addition to temporoparietal

junction activation were active in the metronome condition as

compared to the control. Interestingly, the musical condition

elicited the most activation in the temporoparietal junction of all of

the conditions with additional activation in the right dorsolateral

prefrontal cortex.

When comparing random generated beats vs musical beats

there is even more evidence of temporoparietal junction activation.

Figure 8 demonstrates statistical significance (p = 0.05) in

activation of the left temporoparietal junction (TPJ). Figure 8 also

demonstrates this on a 3 dimensional representation of the brain

area. This suggests that when musicians are improvising the TPJ is

very active compared to playing with a metronome, and when beats

become perceivably musical, activation in this region increases

again significantly. We discuss the implications of these findings in

the discussion section.

5.1.5 Machine learning results
In the evaluation of various machine learning models

(see Table 1), the Random Forest (RF) algorithm consistently

outperformed other models across all metrics for both Player 1
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TABLE 1 Performance metrics for various models.

Metric Model

Vanilla
LSTM

Dense
Neural
Network

CNN
+

LSTM

SVM RF

Player 1

Accuracy 0.9 0.898 0.9 0.9 0.932

Precision 0.7222 0.9235 0.924 0.8913 0.936

Recall 0.7396 0.9240 0.9 0.8894 0.932

F1 Score 0.7282 0.9235 0.903 0.8854 0.932

Player 2

Accuracy 0.906 0.935 0.809 0.889 0.949

Precision 0.9240 0.9134 0.861 0.9240 0.951

Recall 0.9000 0.9021 0.809 0.9000 0.949

F1 Score 0.9029 0.9040 0.814 0.9029 0.950

Bold figures indicate the highest value per row of data.

and Player 2. Specifically, for Player 1, RF achieved the highest

scores in Accuracy (0.932), Precision (0.936), Recall (0.932), and

F1 Score (0.932), thus exhibiting the most robust performance on

this dataset. The high Precision (0.936) indicates that the Random

Forest model reliably avoided false positives, meaning that nearly

all instances classified as positive were genuinely positive. The

similarly high Recall (0.932) shows that RF effectively captured

most actual positive cases, missing very few. Similarly, for Player 2,

RF again led in Accuracy (0.949), Precision (0.951), Recall (0.949),

and F1 Score (0.950), reinforcing its effectiveness. The consistently

high Precision (0.951) and Recall (0.949) for Player 2 further

underscore RFs capability to accurately identify true positives while

minimizing incorrect classifications.

While generalization across multiple individuals was not

the primary focus of this study, the results do indicate some

intriguing findings regarding model performance and variability

across different datasets. The Vanilla LSTM model exhibited

significantly lower Precision (0.7222) and Recall (0.7396) for Player

1, indicating frequent incorrect positive predictions (false positives)

and simultaneous misses of true positives (false negatives).

These results suggest potential underfitting, where the model

inadequately represented the complexity of the data, failing to

capture critical patterns.

Conversely, the CNN/LSTM hybrid model demonstrated a

notable performance decrease in Precision (from 0.924 for Player

1 to 0.861 for Player 2) and Recall (from 0.900 for Player 1

to 0.809 for Player 2). Such drops imply generalization issues,

indicative of overfitting. Although not initially aimed at exploring

generalization, these results highlight the variability in model

effectiveness across different individuals, offering insights into the

possible limitations of generalized models.

Importantly, obtaining a substantial amount of data for

each individual proved beneficial in addressing the bias-variance

tradeoff inherent in model training (Zhang et al., 2022). The

individualized datasets enabled the Random Forest model to

achieve a balance between bias and variance, demonstrating

both high Precision and Recall consistently. These findings

underscore some advantages of individualized data collection

and suggest that personalized or individualized models might

offer performance benefits by capturing unique patterns

within specific datasets. Consequently, the Random Forest

model emerges as the most reliable and effective choice for

both players.

5.2 Phase II results

5.2.1 Hypothesis 3
The third hypothesis predicted that dynamic switching to

simplified metronomic beats would result in greater cohesion

between the AI and human player. We also received mixed

feedback on the system and the implementation of the adaptive

signal. Though our hypothesis was unsupported, our qualitative

results led to a more nuanced view of how brain signals can be used

for real-time adaptive musical improvisation systems.

5.2.2 Qualitative insights
Both participants reported enjoying musical collaboration

using BrAIn Jam in both conditions, with and without fNIRs-

informed dynamic switching. Furthermore, both participants

experienced differences with the system in the two conditions.

Two researchers independently extracted themes from the

transcribed interviews using grounded theory. These were

thoroughly discussed and agreed upon between the two of them.

Phrases that supported the themes were taken directly from the

transcription for clarity. We extracted the following themes from

the qualitative surveys and interviews:

• Synchronization. Both participants emphasized the ability

to synchronize with the AIVM as a major factor in the

experience. Participant 1 reported an easier time staying in

sync with the AIVM in the first condition because when it

changed beats to the simpler pattern, “it was easier to find

the rhythm again and get back in sync again.” Participant

2 reported that it was tough to get in sync with the AIVM

in the affective classification condition because when they

were adjusting to the AIVM, it would change again. These

experiences support that dynamic switching can facilitate

synchronization between the humanmusician andAIVM for a

more seamless musical collaboration. However, if the dynamic

switching were not applied appropriately, for example, if it

occurred too frequently or with poor timing, it could be more

demanding of the player to work to synchronize to the musical

change.

• Responsiveness. Both participants reported experiencing

that BrAIn Jam with affective classification was responsive

whereas the one without classification was not. According to

participant 1, the AIVM in condition 1 “seemed like it was

adapting to what I played.” On the other hand, the AIVM

in condition 2 “wasn’t dependent on what I was doing at

all.” Participant 2 reported that while BrAIn Jam in condition

1 was more responsive, it did not always respond in a way
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that supported the music making, “like it was listening to you

but wasn’t making the right decision.” These results suggest

that using fNIRs classification, we were able to make our

system more responsive, which is important in a musical

collaboration context; however, the responses can be further

refined through improving the musical fidelity and affective

classification accuracy.

• Consistency. Both participants mentioned that BrAIn Jam

was not very consistent in its musical patterns in both

conditions, as in, it didn’t sustain the same beat pattern for

long periods of time. However, participant 2 reported the

system without affective classification was more consistent.

This could be a result of frequent beat switches due to

detection of low trust states. Although the possible difference

in consistency between 2 conditions was not intentionally

designed, these insights reveal that this is an implicit

factor in designing adaptive systems where the system

behavior changes depending on the player’s state, and can

contribute to experiences of reliability. This element may be

particularly noticeable depending on the interaction task, such

as in musical collaboration. Furthermore, both participants

mentioned that they would like BrAIn Jam to “play the same

thing for longer” overall. Participant 1 comments, “even if

it may be a bit more repetitive, it may be less cognitively

demanding than changing every 20-30 seconds.”

Interestingly, the two participants had different preferences

in terms of interaction with BrAIn Jam, which was largely

based on which system they synchronized more easily with.

Participant 1 preferred the condition with classification because

“when it would change things up, it would go in a more

simple direction, and it was easier to match playing [with

it].” In this case, the musical responsiveness, specifically, the

dynamic switching based on affective state, supported the player’s

experience of drumming with the AIVM. On the other hand,

participant 2 preferred the system without fNIRS-informed

dynamic switching because it was more consistent. Participant

2 experienced that the AIVM with dynamic switching “wasn’t

very solid, it didn’t keep something going for long enough to

pick up on it.” For them, the “main difference and factor in

enjoyment is consistency.” This outcome reveals that personal

preferences with adaptive behavior are critical for shaping

the interaction experience. Participant 1 considered the BrAIn

Jam’s responsiveness helpful for getting back in sync musically;

on the other hand, participant 2 prioritized consistency over

adaptiveness when it came to supporting the musical collaboration

experience.

In terms of the overall interaction with the AIVM, while

participant 1 was more focused on their own instrument,

participant 2 was “definitely focused on the [virtual musician].”

Participant 1 reported that the visual element “could be helpful

at times, seeing the hands hit the drums makes it a bit easier to

match or play along with.” Overall, the participants reported that

they “liked the beats it was playing” and it was “fun all around.”

They both mentioned that they would use a system like BrAIn Jam

in everyday contexts, either in a jam session with multiple players,

or as a practice tool.

6 Discussion

Based on the results two of our three hypotheses were

confirmed. The first two and their implications are addressed in

the discussion of phase 1. The last hypothesis is addressed in phase

II and raises larger questions about including biological signals in

adaptive systems for music.

6.1 Phase I discussion

It’s crucial to interpret our findings in the context of a small

participant pool paradigm. While the results showed statistical

significance, the limited participant pool is a factor that must be

considered. The decision to focus on a high-data, low-participant

pool was made to better understand the bias-variance tradeoff in

machine learning models applied to complex neuroscientific data.

6.1.1 Neuroscientific findings
Our study identified the Temporoparietal Junction (TPJ)

and the Dorsolateral Prefrontal Cortex (DLPFC) as key brain

regions for processing musical and rhythmic patterns. Specifically,

we observed significant differences in TPJ activation between

random and musical beats, suggesting that the TPJ, potentially

in conjunction with the DLPFC, is instrumental in rhythmic

predictability. These neuroscientific findings are particularly

promising for the development of future adaptive musical systems.

They provide a neurologically substantiated metric for rhythmic

predictability that could be augmented by other technologies such

as EEG, EDA, computer vision, or Music Information Retrieval

methods.

The fNIRS technology used in our study is well-suited for “in-

the-wild” recordings, offering greater ecological validity. However,

it’s important to note that the technology has an inherent 3-

5 second lag due to the delay in hemodynamic responses. This

constraint limits its application to capturing longer-form changes

in musical material rather than real-time adjustments. Despite

this limitation, the technology remains valuable for understanding

trends in musical improvisation over extended periods, thereby

enriching our understanding of rhythmic predictability and other

similar metrics in real-world settings.

By incorporating these nuanced neuroscientific insights, we not

only deepen our understanding of the neural mechanisms involved

in musical interactions but also lay the groundwork for more

sophisticated and effective adaptive musical systems.

6.1.2 Machine learning insights
In the realm of machine learning, the RFmodel demonstrated a

superior balance in the bias-variance tradeoff, effectively capturing

the complexity of the data while avoiding overfitting. This

is in contrast to the Vanilla LSTM model, which exhibited

high bias and underfit the data, failing to capture its inherent

complexity. Similarly, the state-of-the-art CNN/LSTM hybrid

model showed high variance, overfitting the data for one player and

underperforming on new data for another.
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The bias-variance tradeoff is crucial in machine learning,

especially in neuroscience where the data often contains complex,

nuanced signals. A high-bias model like Vanilla LSTM would be

too simplistic to capture the intricate neural activation patterns,

while a high-variance model like the CNN/LSTM model would

risk overfitting to noise, making it less generalizable to new,

unseen data.

The RF model’s ability to effectively balance bias and variance

is particularly important for tasks that require distinguishing

clearly defined neural signals. Given that our study identified

specific brain regions the TPJ and DLPFC as key in processing

musical and rhythmic patterns, the RF model’s robustness and

generalizability make it highly applicable. Its balanced performance

allows for more accurate classification or prediction tasks related

to neural activation patterns, offering the potential for deeper

insights into the neural mechanisms underlying musical perception

and cognition.

By integrating these neuroscientific and machine learning

findings, we not only advance the understanding of neural

mechanisms in musical interactions but also pave the way for more

nuanced and effective adaptive musical systems.

6.2 Phase II discussion

From our system implementation and user experiences with

BrAIn Jam, we highlight the following insights for designing

adaptive systems with affective models.

6.2.1 From experiment to real interaction
scenario

Many human-human interaction tasks, including musical

collaboration, are complex and open-ended. However, to integrate

affective information from brain imaging data, it is typically

necessary to identify a specific neural correlate we are interested

in and design a highly controlled experiment to model this metric.

There is an inherent complexity and tension in then applying this

affective model, which relies on simplifications and assumptions,

to a real interaction context. As such, additional steps should be

taken to understand how to apply the model to meet the realities

of the task and support the holistic experience. During our phase

2 testing, we learned many lessons about how to best apply our

affective model in a realistic jam scenario. For example, while we

expected dynamic switching to a metronomic drum pattern would

increase rhythmic predictability, for participant 2, this switch made

the AIVM’s drumming “tough to lean on”, indicating that we have

to further refine how and when BrAIn Jam adapts or introduce

user-specific customization. An iterative testing and design process

can help reveal the role that the affective information plays and how

it interacts with other aspects in ways that one might not anticipate.

Additionally, better understanding the underlying mechanisms

for how musicians change musical elements in an extemporaneous

jam session is important for building a dynamic AI-driven

music system. Tolerable levels of rhythmic predictability likely

vary between participants, may exist on a spectrum, and may

change over time. Simply detecting whether a beat is rhythmically

predictable may not fully expose how musicians communicate

about this or enact change based on predictability. Further

investigating how musicians deal with unpredictability with more

musicians and gradations of rhythmic predictability could lead to a

better understanding of how musicians communicate during a jam

session between each other, as well as with an AIVM.

6.2.2 A�ective information integration for longer
form adaptation

In a musical jam context, musical information is often the

most dominant and immediate factor in shaping the interaction,

as musicians must react nearly instantaneously to achieve

musical synchronization and expression. However, affect is always

underlying this music co-creation and it can interact with the

music making in subtle and complex ways over varying time scales.

Thus, having access to affective information such as rhythmic

predictability provides new opportunities for designing dynamic

adaptive musical systems.

In BrAIn Jam, we used rhythmic predictability to dynamically

switch the complexity of the AIVMs drum beats in real-time.

Although both participants experienced that BrAIn Jam was

responsive, they reported that the system made musical changes

that were too frequent. Thus, depending on the demands of the

situation, affective classification can be more suitable for shaping

changes in interaction that happen over a longer period of time.

Changes at this time scale align with the natural progression of

musical jams. As participant 2 describes, in a jam session, they’ll

“jam on the same loop for minutes at a time.” This application

of affective information also makes sense when considering what

it represents. A metric such as rhythmic predictability is likely

not subject to rapid fluctuation, but rather, builds or decays over

stretches of time. While many interactive systems are designed

for immediate feedback on the primary task at hand (in this case,

making music that sounds good), we can create richer interactions

by taking an interest in how affective experiences unfold over time.

6.2.3 Implications of findings for musical
activities

Our findings suggest that the perception of rhythmic

predictability can be measured and classified. These findings have

the potential to impact collaborative improvisation with virtual

musicians, human-human improvisation, musical practice, play,

and composition.

Specifically, an AIVM drummer that interacts similarly to

a human in a jam session has the potential to transform one’s

ability to practice musicianship. Practice tools in music today

are not commonly dynamic. For example, the most common

practice tool—a metronome—plays one tone at regular intervals.

True, human-like, musical collaboration requires a deep knowledge

of music—and more importantly, human dynamics. Musicians

acquire this knowledge over the course of a lifetime playing with

other musicians; however, many are too embarrassed, lack time, or

ability to play with others. AIVMs may provide a number of those

musicians with the ability to gain and hone these skills on their own,

giving them confidence to seek out jam sessions with other humans.
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TABLE 2 Comparison of di�erent technologies for musical control.

Technology Temporal
Res.

Spatial
Res.

Information Prediction
Types

Speed of
Control

Advantage Limitation

fNIRS 3-5s 3 cm× 2 cm Cognitive Affective Multiphrase Spatial res. Temporal res., rest times

EEG < 1ms 3–4 cm Cognitive Affective Phrase Temporal res. Sweat, motion, spatial artifacts

EDA ms-seconds N/A Arousal Affective Phrase Arousal
reliable

1 channel limited

EMG Immediate N/A Muscular Motion Phrase Immediacy Limited to muscle movement

Eyetracking 20–40ms N/A Vision Attention, indirect Phrase Temporal res. Limited to eyegaze

CV - (10–100 ms) Camera view Movement Motion, affective Note-level Temporal res. Recognition unreliable,
camera-dependent

An improvising AIVM may also be a welcomed addition to

a jam session with a limited number of people. Such an AIVM,

capable of sensing rhythmic predictability, could autonomously

adjust its rhythms in real-time if perceived as unpredictable, thus

supporting cohesive group dynamics. Also, if human musicians

within the session become increasingly rhythmically unpredictable,

an AIVM could detect these changes and proactively contribute

to shifts in musical direction, maintaining engaging and balanced

interactions.

Additionally, gathering data on what is perceived as

rhythmically predictable could further enable databases to be

labeled with this information. This insight could lead to a

better understanding of how predictability in music is observed.

These insights could enable the exploration of critical questions

such as: is unpredictability desirable in some cases? How does

it differ from musician to musician? Does musical expertise

influence perceived rhythmic predictability? How does the ebb

and flow of predictability in music contribute to how musicians

communicate in a jam session? Can rhythmic predictability

be optimized for, and what effects would this have on the

resultant music?

6.2.4 Choosing the right technology for the
adaptive outcome

The insights gained from our BrAIn Jam experiment prompted

us to take a closer look at the capabilities and limitations of

various non-scanner bound technologies that could be harnessed

for musical prediction and real-time interaction. To facilitate

this examination, we created a comparative table summarizing

these technologies along with their respective advantages and

disadvantages (see Table 2).

One notable recurring theme across these technologies is the

inherent limitation in the type and speed of information they can

acquire. For instance, electrodermal activity emerges as a reliable

indicator of sympathetic arousal, providing valuable insights into

the affective dimension. However, it falls short in capturing more

nuanced cognitive states or specific neural network activities.

Electroencephalography, with its rapid data acquisition, excels

in providing timely information. However, it may be less suitable

for interactive and performative environments due to its limitations

in pinpointing precise brain regions’ activations (Asadzadeh et al.,

2020; Liu et al., 2020). This drawback can impede its capacity

to make accurate decisions about neural networks and cognitive

processes, relying more on statistical correlations.

Computer vision and eyetracking, while showing promise

in recording high-density passive affective information quickly

and with fewer technological constraints, have their own set

of limitations. They may not approximate cognitive states as

effectively as direct brain access technologies and are prone

to artifacts stemming from hardware and software constraints.

However, of the mentioned technologies computer vision is the

only that can make note-level predictions before they happen

(Bretan and Weinberg, 2016).

fNIRS emerges as a technology poised to make reliable

predictions about cognitive states. However, its disadvantages

include its limited temporal resolution, which introduces a delay

of 3 to 5 seconds in rendering useful information. Additionally, it

demands rest periods, significantly constraining its applicability in

long-form, uncontrolled settings.

In light of these insights, we recognize that the choice of

technology for musical prediction and interaction should be

thoughtfully tailored to the specific demands of themusical context,

taking into account the temporal and informational requirements

for achieving desired outcomes. Each technology brings its unique

strengths and limitations to the table, and a judicious selection or

combination can lead to more seamless and meaningful musical

interactions.

6.3 Limitations

One of the most significant limitations of this study is the

limited sample size, consisting of only two players. While the

study justified this approach by collecting an extensive dataset

of 6 hours per player, thereby allowing for a more nuanced

understanding of the bias-variance tradeoff, it does raise questions

about the generalizability of the findings. The Random Forest

model, although robust in its performance metrics for these two

players, has not been tested on a broader population, which limits

the external validity of the results.

In the context of neuroscience, our study concentrated on

specific brain regions FPA, TPJ, MPFC, and DLPFC thereby

potentially narrowing the scope of our findings. While a replication

using fMRI could offer more precise insights into the brain

regions involved in rhythmic predictability, it would compromise
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ecological validity. It’s important to acknowledge the inherent

limitations of fNIRS technology and adaptivity based on this

metric. For instance, fNIRS has a 3-5 second delay in sensing blood

flow changes in the brain (Pfeifer et al., 2018). Moreover, long-

term activity can lead to the oversaturation of oxygenated and

deoxygenated hemoglobin, necessitating activity to be limited to

less than five minutes followed by a 10-second rest phase to return

levels to baseline (Crum et al., 2022; Hopkins et al., 2023a).

These constraints primarily affect the technology’s applicability

for real-time improvisational systems, limiting its impact to longer-

form interactions ranging from approximately 5 seconds to 5

minutes or more. These timing constraints lend themselves well

to interactions such as making musical adjustments in a jam;

however, fNIRS may not be a good choice of technology for

interactions that require more immediate musical responses such

as note-level instrument control. Despite these challenges, the

baseline differentiation in activation levels supports the integration

of multiple types of signals, each with their own trade-offs, in

the design of adaptive systems based on biological signals (such

as combining fNIRS for spatial resolution and EEG for temporal

resolution).

6.4 Future works

Given the limited sample size, future work should aim to

validate the Random Forest model on a more diverse and larger

sample while maintaining the depth of data collection. This would

provide a more comprehensive understanding of the model’s

generalizability and effectiveness. Real-time applications of the

model should also be explored, possibly through optimization

techniques that reduce computational load without significantly

sacrificing accuracy.

The present study serves as an initial exploration into the

complex interplay between neuroscience and machine learning

in the context of musical systems. Each biosignal technology,

including fNIRS, comes with its own set of advantages and

limitations. Future research could focus on finding correlates of

the signals measured by fNIRS to understand how this metric

generalizes to other technologies such as EEG, GSR, or computer

vision. Establishing fNIRS as a baseline could yield valuable insights

into the adaptability and reliability of these other technologies.

These findings provide a foundation for designing future

systems that optimizemusical outputs based on perceived rhythmic

predictability. Specifically, if the generative musical output from

a model lacks rhythmic predictability, real-time feedback from

an fNIRS device could be utilized to enhance this predictability

dynamically. This enhancement could occur by using classified

brain states to modulate model logits, guiding the generative

process toward producing music that aligns with the player’s

desired level of rhythmic predictability.

Moreover, the study opens avenues for considering longer-form

adaptive signals in musical systems. Current adaptive mechanisms,

although predictive to some extent, are constrained in their ability

to influence musical form over extended periods. Future systems

could be designed to navigate through a series of smooth musical

transitions, leading to varying levels of rhythmic, melodic, or

harmonic complexity. Such a system would not only enhance the

musical experience, but also offer a more nuanced understanding

of how musical elements evolve over time.

Other aspects of the metric could also be explored. For

instance, can we quantify more specific levels of predictability

versus randomness, and perhaps even quantify musical complexity

in terms of neural signatures? Could we similarly quantify

rhythmic, melodic, or harmonic complexity? Answers to these

questions would not only corroborate data obtained through

Music Information Retrieval techniques but could also inform

musical choices in real-time adaptive systems. These insights would

likely align more closely with the decision-making strategies of

human players (Bretan andWeinberg, 2016), thereby enriching the

interactive musical experience.

By addressing these areas, future work can build upon the

foundational insights gained in this study, offering a more

comprehensive understanding of the role of neuroscience and

machine learning in the development of adaptive musical systems.

6.5 Conclusion

In this study, we have made significant strides in understanding

the complexities of embodied AI-human musical interaction

through several key contributions. Firstly, we formalized rhythmic

predictability as a quantifiable metric, integrating neural and

machine learning data to provide a nuanced understanding of how

musicians gauge this element. Secondly, we introduced “BrAIn

Jam,” an innovative adaptive system that employs fNIRS technology

to capture real-time neural activity. Thirdly, we provided valuable

insights into the practical constraints and opportunities of

incorporating affective state data into real-time musical systems.

Our findings reveal the neural underpinnings of musical

improvisation with embodied AI, particularly the significant

activation of the TPJ and brain regions associated with cognitive

workload. These neural activations varied depending on the type

of beats-random or musical-indicating the TPJ’s critical role in

musical improvisation. Additionally, we observed that machine

learning models like Random Forests outperformed other models

in capturing the complexity of the data, suggesting their potential

utility in real-time adaptive systems.

Interestingly, the study also highlighted the importance of

individual preferences in AI-human interactions. While some

musicians found the BrAIn Jam’s adaptiveness beneficial, others

prioritized consistency, indicating that personal preferences play

a crucial role in shaping the interaction experience. These

findings not only extend our understanding of AI-human musical

collaboration but also offer practical tools and insights for future

research in this burgeoning field.

Looking ahead, our future work should aim to validate the

Random Forest model on a more diverse and larger sample while

maintaining the depth of data collection. This would provide a

more comprehensive understanding of the model’s generalizability

and effectiveness. Real-time applications of the model should also

be explored, possibly through optimization techniques that reduce

computational load without significantly sacrificing accuracy.

Moreover, we can consider longer-form adaptive signals in musical

systems, navigating through a series of smooth musical transitions,

leading to varying levels of rhythmic, melodic, or harmonic
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complexity. Further exploration of the metric, such as quantifying

specific levels of predictability versus randomness and musical

complexity in terms of neural signatures, could also enrich the

interactive musical experience.

By addressing these areas, future work can build upon the

foundational insights gained in this study, offering a more

comprehensive understanding of the role of neuroscience and

machine learning in the development of adaptive musical systems

with embodied AI.
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