
TYPE Original Research

PUBLISHED 03 April 2025

DOI 10.3389/fcomp.2025.1574211

OPEN ACCESS

EDITED BY

Eduard Babulak,

National Science Foundation (NSF),

United States

REVIEWED BY

Chung-Wei Kuo,

Feng-Chia University, Taiwan

Surendra Bhosale,

Veermata Jijabai Technological Institute, India

Qusay Kanaan Kadhim,

University of Diyala, Iraq

*CORRESPONDENCE

Lizhong Jin

jinlizhong0@gmail.com

RECEIVED 14 February 2025

ACCEPTED 17 March 2025

PUBLISHED 03 April 2025

CITATION

Jin L, Fan R, Han X and Cui X (2025) IGSA-SAC:

a novel approach for intrusion detection using

improved gravitational search algorithm and

soft actor-critic.

Front. Comput. Sci. 7:1574211.

doi: 10.3389/fcomp.2025.1574211

COPYRIGHT

© 2025 Jin, Fan, Han and Cui. This is an

open-access article distributed under the

terms of the Creative Commons Attribution

License (CC BY). The use, distribution or

reproduction in other forums is permitted,

provided the original author(s) and the

copyright owner(s) are credited and that the

original publication in this journal is cited, in

accordance with accepted academic practice.

No use, distribution or reproduction is

permitted which does not comply with these

terms.

IGSA-SAC: a novel approach for
intrusion detection using
improved gravitational search
algorithm and soft actor-critic

Lizhong Jin*, Rulong Fan, Xiaoling Han and Xueying Cui

School of Applied Science, Taiyuan University of Science and Technology, Taiyuan, China

Background:Network intrusion detection is a critical component of maintaining

network security, especially as cyber threats become increasingly sophisticated.

While deep learning-based intrusion detection algorithms have shown promise,

they often struggle with high-dimensional datasets containing outliers,

anomalies, or rare events. This study addresses these challenges by proposing

a novel approach that combines the Improved Gravitational Search Algorithm

(IGSA) with the Soft Actor-Critic (SAC) reinforcement learning algorithm, aiming

to enhance detection accuracy and computational e�ciency.

Methods: We introduce the IGSA-SAC intrusion detection model, which

leverages an enhanced Gravitational Search Algorithm (IGSA) to improve

robustness against outliers and dynamically adjust the exploration-exploitation

balance. This is achieved through fitness normalization with an Adaptive

Search Radius and a sigmoid function to modulate the gravitational constant.

The IGSA-SAC method e�ectively navigates the search space to identify the

most relevant features for intrusion detection, reducing dimensionality and

computational complexity. Additionally, we design a reinforcement learning

reward function to guide the learning process, encouraging the agent to improve

detection e�ectiveness while minimizing false alarms and missed detections.

Results: Experiments were conducted on the NSL-KDD and AWID datasets to

evaluate the performance of IGSA-SAC. The results demonstrate that IGSA-SAC

achieves an accuracy of 84.15% and an F1-score of 84.85% on the NSL-KDD

dataset. On the AWID dataset, IGSA-SAC surpasses 98.9% in both accuracy and

F1-score, outperforming existing intrusion detection algorithms.

Conclusions: The proposed IGSA-SAC method significantly improves intrusion

detection performance by e�ectively handling high-dimensional datasets and

reducing computational complexity. The results highlight the potential of

IGSA-SAC as a robust and e�cient solution for real-world network intrusion

detection systems, o�ering enhanced accuracy and reliability in identifying

cyber threats.

KEYWORDS

intrusion detection, feature selection, gravitational search algorithm, Soft Actor-Critic,

reinforcement learning algorithm

1 Introduction

As the amount of data transmitted by network devices and communication protocols

increases, themeans of internet-oriented attacks become increasingly complex and diverse,

posing more severe network security issues (Zhu et al., 2017). Current computer networks

are facing security threats such as denial of service, viruses, trojans, and network sniffing

Frontiers inComputer Science 01 frontiersin.org

https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org/journals/computer-science#editorial-board
https://www.frontiersin.org/journals/computer-science#editorial-board
https://www.frontiersin.org/journals/computer-science#editorial-board
https://www.frontiersin.org/journals/computer-science#editorial-board
https://doi.org/10.3389/fcomp.2025.1574211
http://crossmark.crossref.org/dialog/?doi=10.3389/fcomp.2025.1574211&domain=pdf&date_stamp=2025-04-03
mailto:jinlizhong0@gmail.com
https://doi.org/10.3389/fcomp.2025.1574211
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fcomp.2025.1574211/full
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Jin et al. 10.3389/fcomp.2025.1574211

(Chung and Wahid, 2012). Intrusion Detection Systems (IDS)

have become a hot research topic in network security protection

technology (Song et al., 2023).

The main function of intrusion detection systems is to conduct

real-time monitoring of networks and computer systems, detecting

and identifying intrusion behaviors or attempts within the system.

However, amajor issue faced by current intrusion detection systems

is their low detection speed and high processing load, with handling

excessive features being one of the main reasons for the decrease

in speed. When the number of features exceeds a certain limit,

it can lead to deterioration in classifier performance. Therefore,

removing redundant features and retaining important features that

reflect system state is an effective method for improving detection

speed (Chatzoglou et al., 2022; Wang et al., 2024; Rani et al., 2024;

Aljehane et al., 2024; Barbosa et al., 2024).

Intrusion detection involves sorting network or system

activities into either “normal” or “intrusive” categories (indicating

an attack), which can be simplified as a binary classification

task solvable through machine learning (Belavagi and Muniyal,

2016; Wang et al., 2017; Liao and Vemuri, 2002). Researchers

have suggested utilizing Support Vector Machine (SVM) with

enhanced features for intrusion detection (Wang et al., 2017).

Additionally, the k-Nearest Neighbor (kNN) classifier has been

employed to distinguish program behavior as either normal or

intrusive (Liao and Vemuri, 2002). Nevertheless, as the data’s

dimensionality expands, traditional machine learning algorithms

encounter difficulties in effectively managing high-dimensional

feature spaces. This can result in heightened computational

complexity, extended training durations, and reduced performance

due to sparse data distributions (Mishra et al., 2018).

Deep learning algorithm has the potential to surpass the

constraints of traditional machine learning (ML) algorithms (Xie

et al., 2018). Researchers used deep learning architectures including

convolutional neural networks (CNNs; El-Ghamry et al., 2023),

recurrent neural networks (RNNs; Sanju, 2023), long short-term

memory (LSTM) networks (Altunay and Albayrak, 2023), and

autoencoder-based models (Sarikaya et al., 2023) for intrusion

detection. However, deep learning models have been shown

to be vulnerable to adversarial attacks, where small, carefully

crafted perturbations to input data can lead to misclassification.

Adversarial attacks pose a significant threat to intrusion detection

systems, as attackers could exploit vulnerabilities in the model to

evade detection or trigger false alarms.

Reinforcement learning (RL) has surfaced as a promising

framework for constructing intrusion detection systems (IDS)

that possess the capability to autonomously learn and adjust

to the ever-changing landscape of cyber threats within intricate

network environments (Sethi et al., 2021). However, traditional RL

encounters certain limitations, including issues with scalability and

the inability to create sophisticated security models.

Deep Reinforcement Learning (DRL; Lavet et al., 2018) is an

innovative field of study that offers the potential to develop intricate

models capable of detecting highly sophisticated cyber threats

(Nguyen and Reddi, 2019). This concept has been successfully

applied in various domains such as computer vision, healthcare,

and robotics (Sethi et al., 2021). DRL is gaining traction in the

realm of network security as well, particularly in the advancement

of next-generation IDS research and implementation. However,

existing intrusion detection methods utilizing DRL suffer from

a lack of feature selection, posing risks of inefficiency and

performance decline.

In this paper, we introduce a new intrusion detection

method based on Deep Reinforcement Learning with Soft

Actor-Critic (SAC), in which an Improved Gravitational Search

Algorithm (IGSA) is introduced to remove irrelevant data, thus

reducing dimensionality and computational complexity. The main

contributions are as follows.

(1) To solve the high dimensionality problem of the intrusion data,

a new feature selection method based on IGSA is proposed,

which reduces the influence of feature dimension on intrusion

detection model and supports the model to better recognize the

network intrusion.

(2) To improve the performance of the intrusion detection model,

a new reward function is designed to guide the learning

process by incentivizing the agent to take actions that lead to

effective intrusion detection while minimizing false alarms and

missed detections.

(3) A new hybrid approach combining two different optimization

techniques is proposed, enhancing the robustness and reliability

of the intrusion detection system. By focusing on relevant

features and adapting detection strategies, the method improves

detection accuracy while minimizing False Positive (FP)

and False Negative (FN). Compared to other reinforcement

learning algorithms, SAC can achieve better performance with

fewer samples.

The rest of this paper is organized as follows. Section 2 mainly

introduces related work. Section 3 develops the proposed improved

Gravitational Search algorithm. Section 4 presents the description

of SAC. Section 5 introduces the proposed intrusion detection

method. Section 6 presents the experimental setup and discussion.

Section 7 gives the conclusion.

2 Background of the study

The high-dimensional features of intrusion detection data

contain lots of irrelevant features and redundant features. Some

features either contain minimal system state information or do

not contain it at all, having little to no impact on detection

results. Therefore, removing redundant features and retaining

important features that reflect system state is an effective

method for improving detection speed. Feature selection aims

to reduce the dimensionality of the feature space as much as

possible without significantly decreasing classification accuracy.

This involves selecting a subset of features from the original

feature set based on certain evaluation criteria that are relevant

to or important for the output results. Developing a lightweight

intrusion detection system with fast detection speed while ensuring

detection accuracy has become a hot topic in current research

(Wang et al., 2024; Rani et al., 2024; Aljehane et al., 2024;

Barbosa et al., 2024). Fang et al. devised a feature selection

method for intrusion detection based on genetic algorithms.

Their approach integrates a feature ranking fusion mechanism

within the genetic algorithm to eliminate redundant features

and accelerates global merit-seeking speed by incorporating the

Frontiers inComputer Science 02 frontiersin.org

https://doi.org/10.3389/fcomp.2025.1574211
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Jin et al. 10.3389/fcomp.2025.1574211

concept of growing tree clustering (Fang et al., 2024). Nasseh

Barbosa et al. introduced a feature selection filtering method for

intrusion detection, aiming to optimize both information quantity

and linear correlation among resulting features. This method

identifies Pareto dominant pairs of informative and correlated

features, constructs a graph, and selects key features based on

betweenness centrality within its connected components (Barbosa

et al., 2024). Aljehane et al. (2024) introduced a novel model,

GSAFS-OQNN (Gravitational Search Algorithm-based Feature

Selection with Optimal Quantum Neural Network), for intrusion

detection and classification. Rani et al. (2024) proposed a Deep

Learning (DL) framework enabled by Archimedes Fire Hawk

Optimization (AFHO), where feature selection is executed through

AFHO—a combination of Archimedes Optimization Algorithm

(AOA) and Fire Hawk Optimization (FHO).

Machine learning has become a vital tool in safeguarding

networks from cyber threats (Mishra et al., 2018; Belouch et al.,

2018; Ding et al., 2022; Azimjonov and Kim, 2024; Gu and Lu, 2021;

Louk and Tama, 2023; Sathish and Valarmathi, 2022; Narayanan

et al., 2023; Zhang et al., 2020). By analyzing network traffic patterns

in real-time, machine learning-based Intrusion Detection Systems

(IDSs) detect and respond to potential intrusions. Ding et al.

(2022) proposed an IDS using the K-nearest neighbor method,

while Azimjonov and Kim (2024) presented a lightweight, accurate

IDS tailored for IoT networks, utilizing fine-tuned Linear Support

Vector Machines (LSVMs) and feature selection techniques.

Gu and Lu (2021) introduced an effective intrusion detection

framework based on SVM with naïve Bayes feature embedding,

enhancing the quality of data through feature transformation.

Lestari Louk and Tama (2023) introduced a dual ensemble model

for anomaly-based intrusion detection, employing various fine-

tunedGBDT algorithms such as gradient boostingmachine (GBM),

LightGBM, CatBoost, and XGBoost. However, traditional ML

algorithms face challenges in managing high-dimensional feature

spaces as data dimensionality increases. This can lead to heightened

computational complexity, longer training times, and reduced

performance due to sparse data distributions.

For performance improvement, Deep learning-based models

have emerged as promising approaches for network intrusion

detection, offering the potential to effectively detect and

mitigate various forms of cyber threats in complex network

environments. These models leverage the power of neural

networks to automatically learn hierarchical representations of

network traffic data, enabling them to capture intricate patterns

and anomalies indicative of malicious activities. Unlike traditional

rule-based or signature-based intrusion detection systems (IDS),

deep learning-based models can adapt to evolving threats and

detect previously unseen attack patterns, making them well-

suited for modern cybersecurity challenges. Some common

deep learning architectures used for network intrusion detection

include convolutional neural networks (CNNs; El-Ghamry et al.,

2023), recurrent neural networks (RNNs; Sanju, 2023), long

short-term memory (LSTM) networks (Altunay and Albayrak,

2023), and autoencoder-based models (Sarikaya et al., 2023).

These architectures can effectively capture spatial and temporal

dependencies in network data, allowing them to detect complex

attack patterns and sequences across multiple network packets

or sessions. However, Deep learning models are susceptible to

adversarial attacks, where malicious actors manipulate input

data to deceive the model into making incorrect predictions.

Adversarial attacks pose a significant threat to the reliability and

robustness of deep learning-based IDS, as attackers can exploit

vulnerabilities in the model to evade detection. Deep learning

models trained on historical data may struggle to generalize to

new and unseen attack patterns or variations. Changes in network

behaviors, evolving attack techniques, and zero-day vulnerabilities

pose challenges for deep learning-based IDS to adapt and detect

emerging threats effectively.

Reinforcement learning (RL) has emerged as a promising

paradigm for building intrusion detection systems (IDS) capable

of autonomously learning and adapting to evolving cyber threats

in complex network environments (Sethi et al., 2021). RL-

based IDS leverage dynamic learning algorithms to continuously

refine their detection strategies based on feedback from the

environment. In RL-based intrusion detection systems, an agent

interacts with its environment, which represents the network

environment being monitored, to learn an optimal policy for

detecting and mitigating intrusions. The agent’s objective is to

maximize a cumulative reward signal by taking appropriate

actions in response to observed network events and activities.

These actions may include monitoring network traffic, analyzing

system logs, deploying countermeasures, or raising alerts based

on anomalous behavior. Some common RL algorithms used in

intrusion detection include Q-learning, Policy Gradient methods,

Actor-Critic architectures, and more advanced techniques such

as Proximal Policy Optimization (PPO) and Trust Region Policy

Optimization (TRPO). These algorithms enable RL-based IDS to

learn complex decision policies from high-dimensional network

data and adapt their detection strategies in real-time. However,

traditional RL encounters certain limitations, including issues with

scalability and the inability to create sophisticated security models.

Deep Reinforcement Learning (DRL; Lavet et al., 2018) is an

innovative field of study that offers the potential to develop intricate

models capable of detecting highly sophisticated cyber threats

(Nguyen and Reddi, 2019). This concept has been successfully

applied in various domains such as computer vision, healthcare,

and robotics (Sethi et al., 2021). DRL is gaining traction in the realm

of network security as well, particularly in the advancement of next-

generation IDS research and implementation. Lopez-Martin et al.

(2020) proposed a novel application of several deep reinforcement

learning (DRL) algorithms to intrusion detection. Vadigi et al.

(2023) presented a Federated Deep Reinforcement Learning-based

IDS in which multiple agents are deployed on the network in

a distributed fashion, and each of these agents runs a Deep Q-

Network logic.

Deep Reinforcement Learning (DRL; Lavet et al., 2018) is

an emerging area of research that holds promise for creating

sophisticated models capable of identifying highly complex cyber

threats (Nguyen and Reddi, 2019). This approach has found success

across various fields including computer vision, healthcare, and

robotics (Sethi et al., 2021). In the domain of network security,

DRL is increasingly recognized for its potential, particularly in

advancing next-generation Intrusion Detection Systems (IDS).

Lopez-Martin et al. (2020) introduced a novel application of

Frontiers inComputer Science 03 frontiersin.org

https://doi.org/10.3389/fcomp.2025.1574211
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Jin et al. 10.3389/fcomp.2025.1574211

several DRL algorithms for intrusion detection. Vadigi et al. (2023)

presented a Federated Deep Reinforcement Learning-based IDS,

deploying multiple agents in a distributed manner across the

network, each employing DeepQ-Network logic. However, existing

intrusion detection methods utilizing DRL suffer from a lack of

feature selection, posing risks of inefficiency and performance

decline. Absence of feature selection means DRL algorithms

may operate on raw or extraneous data, resulting in high-

dimensional input spaces and heightened computational demands.

This can lead to prolonged training durations, convergence

challenges, and suboptimal model outcomes. Hence, integrating

feature selection methods becomes imperative to enhance the

effectiveness and efficiency of DRL-driven intrusion detection

systems. By prioritizing relevant and informative features, this

integration aims to bolster model accuracy and trim computational

overhead. In this study, we introduce a novel intrusion detection

approach leveraging the soft actor-critic deep reinforcement

learning algorithm, in which we incorporate an IGSA-based feature

selection method to weed out irrelevant data, thus reducing

dimensionality and computational complexity.

3 Gravitational Search Algorithm (GSA)

3.1 Basic GSA

The Gravitational Search Algorithm (GSA) is a stochastic

search method rooted in the principles of gravity and mass

interaction (Rashedi, 2007; Rashedi et al., 2007, 2009). This

algorithm orchestrates an iterative procedure that mimics mass

interactions within a multi-dimensional search domain, guided

by the force of gravity. In this framework, the performance of

objects is evaluated based on their respective masses; these objects

exert gravitational attraction on one another, inducing a collective

movement toward those with greater mass.

Suppose there are k objects, where the position of the ith object

is defined by Equation 1, with xdi representing the position of the

ith object along the dth direction.

Xi =
(

x1i , . . . , x
d
i , . . . , x

n
i

)

, i = 1, 2, . . . , k (1)

The force acting on object i from object j is described by

Equation 2, where Mj signifies the mass associated with object

j, Mi denotes the mass associated with object i, G represents

the gravitational constant at time t, e is a small constant, and

Rij (t) stands for the Euclidean distance between objects i and j.

The total force Fdi (t) exerted on object i along the dth direction is

described by Equation 3, which is a randomly weighted sum of the

dth components of the forces from other objects, in which randj is

a uniform random variable in the interval [0, 1].

Fdij (t) = G
Mi (t) ×Mj (t)

Rij (t) + ε

(

xdj (t) − xdi (t)
)

(2)

Fdi (t) =

k
∑

j=1,j6=i

randjF
d
ij(t) (3)

The acceleration of object i, denoted as adi (t), at time t in the

dth direction, is expressed by Equation 4, whereMii represents the

inertial mass of object i. The subsequent velocity adi (t) and position

are determined by Equations 5, 6, respectively.

adi (t) =
Fdi (t)

Mii(t)
(4)

vdi (t + 1) = randi × vdi (t) + adi (t) (5)

xdi (t + 1) = xdi (t) + vdi (t + 1) (6)

In Equation 5, randi represents a uniformly distributed random

variable within the range [0, 1]. This randomness introduces a

stochastic aspect to the search process, vdi (t)and xdi (t) denote

the current velocity and position of the object i along the dth

direction, respectively.

The masses of the objects are determined by the fitness

function. Assuming equivalence between gravitational and

inertial mass, the mass Mi(t) undergoes updates according to

Equations 8– 11, where fiti(t) signifies the fitness function value of

object i at time t. The flowchart depicting the gravitational search

algorithm is illustrated in Figure 1.

Mi = Mii, i = 1, 2, . . . , k (7)

mi (t) =
fiti (t) − worst(t)

best (t) − worst(t)
(8)

Mi (t) =
mi(t)

∑k
j=1 mj(t)

(9)

best (t) = fitj(t) (10)

worst (t) = fitj(t) (11)

3.2 Improved GSA (IGSA)

The original iteration of GSA demonstrates significant

potential as an optimization algorithm. However, it does present

Randomized initialization

Fitness evaluation of objects

Updating best(t),worst(t)

and Mi(t) defined by Eq. (9),

(10), (11)

Computation of the total force

in different directions defined

by Eq. (2)

Computation of acceleration

and velocity

Updating objects’ position

Meeting end of

criterion

Return best solution

No

Yes

FIGURE 1

The flow of GSA algorithm.

Frontiers inComputer Science 04 frontiersin.org

https://doi.org/10.3389/fcomp.2025.1574211
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Jin et al. 10.3389/fcomp.2025.1574211

certain performance limitations. These include premature

convergence resulting from a rapid decline in diversity and

slower convergence rates when the global optimum closely

aligns with the local search space’s optimum. Furthermore, in

real scenarios, where data often contains outliers, anomalies,

or rare events indicative of potentially malicious activities, the

presence of such outliers poses challenges. Recognizing this,

and acknowledging the limitations of GSA, we introduce Fitness

Normalization with Adaptive Search Radius. This approach

enhances robustness to outliers and allows GSA to dynamically

adjust its exploration-exploitation trade-off. By effectively

balancing the exploration of diverse regions with the exploitation

of promising solutions, this adaptation significantly improves

optimization performance.

Moreover, the original GSA algorithm exhibits a rapid decline

in the gravitational constant’s value across various problem types,

which contributes to premature convergence and a loss of diversity.

To counteract these challenges, we propose the incorporation of

a sigmoid function to modulate the gravitational constant. This

adjustment aims to maintain exploration capabilities throughout

the optimization process.

In the subsequent section, we delve into the details of Fitness

Normalization with Adaptive Search Radius and Modulating the

Gravitational Constant.

3.2.1 Fitness normalization with adaptive search
radius

The masses of the particles are obtained through fitness

normalization in the following way, replacing the original

Equations 8, 9

mi (t) =
fiti (t) − fitmedian

fit75 − fit25
, i = 1, 2, . . . , N (12)

The fitness normalization of Equation 12 is more robust to outliers

compared to Equation 8, as it uses the median and interquartile

range for scaling, which makes it less sensitive to extreme values.

Nonetheless, employing Equation 12 for mass computation during

the iteration process reveals from experimental findings that

the algorithm might encounter challenges in achieving smooth

convergence during later stages. Moreover, there is a notable

compromise in the accuracy of the ultimate optimal solution.

This is because in the later stages of iteration, particles tend

to converge toward a central point or region of the search

space. When particles are predominantly attracted to each other,

they tend to cluster around a central point, leading to center-

biased convergence. To tackle this challenge and attain a better

equilibrium between exploration and exploitation, we introduce

an Adaptive Search Radius. This adjustment, incorporated into

Equation 12, dynamically alters the radius based on the algorithm’s

convergence status and the density of particles in the vicinity.

The primary goal is to smoothly transition from a state primarily

governed by repulsion to one entirely dominated by attraction

during the search phase, while ensuring attraction remains

dominant during the exploitation phase. The computation of the

Adaptive Search Radius is expressed as follows:

R (t) = Rmin +
(Rmax − Rmin)

1+ e−k·
t−t0

τ

(13)

Mi = mi + R(t) (14)

Rmin = |min{m1,m2, . . . ,mN}| (15)

Rmax = max{m1,m2, . . . ,mN} (16)

Where R(t) is the adaptive search radius at iteration. Rmin and

Rmax are the minimum and maximum search radii, respectively,

defining the range of possible values for the search radius. t is the

current iteration number. t0 is a parameter representing the starting

iteration where the adaptation begins. τ is a time constant that

determines the rate of adaptation. k is a parameter controlling the

steepness of the sigmoid function.

R(t) gradually adjusts the search radius from Rmin to Rmax as the

optimization progresses. Initially, the search radius is set to Rminto

encourage exploration. As the iterations proceed, the function

gradually increases the search radius, allowing the algorithm to

exploit promising regions of the search space. Adjusting the

parameters t0, τ , and k allows to control the timing and rate of

adaptation of the search radius according to the characteristics

of the optimization problem and the desired balance between

exploration and exploitation. This adaptive search radius equation

enables the Gravitational Search Algorithm to dynamically adapt

its exploration-exploitation trade-off, effectively balancing the

exploration of diverse regions with the exploitation of promising

solutions as the optimization progresses.

3.2.2 Modulating gravitational constant
In original GSA, the interaction force between masses is a

function of the gravitational constant G(t) which determines the

step size for mass movements. Maintaining control over G(t) is

crucial for fostering diversification during the initial phases of the

search process and enhancing concentration in the later stages.

However, observations depicted in Figure 2 reveal a rapid decline

FIGURE 2

Value of gravitational constant with iteration in GSA.

Frontiers inComputer Science 05 frontiersin.org

https://doi.org/10.3389/fcomp.2025.1574211
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Jin et al. 10.3389/fcomp.2025.1574211

FIGURE 3

Sigmoid gravitational function.

in the gravitational constant’s value across various problem types,

leading to premature convergence and a swift loss of diversity. To

mitigate these challenges, we propose the utilization of a sigmoid

function to modulate the gravitational constant, as represented by

Equation 17:

G (t) =
G0

1+ e−α(t−T)
(17)

Here, t represents the current iteration, T denotes the total number

of iterations, and α regulates the curvature of the sigmoid curve.

Figure 3 demonstrates how the gravitational constant evolves over

iterations when employing the sigmoid function, illustrating that

up to 50% of the total iterations can be dedicated to thorough

exploration of the search space.

The primary aim of integrating the sigmoid function into the

gravitational constant is twofold: firstly, to introduce disruption if

diversity diminishes below a critical threshold during the initial

search stages, and secondly, to facilitate gradual exploitation for

identifying potential regions of interest in the later stages of

the search.

In original GSA, G0 remains consistent across all problems,

ensuring uniformity in the search level of the GSA irrespective

of the problem’s nature. However, maintaining the same value of

G0 may result in excessive confusion and convergence challenges

for problems with small solution spaces, while also causing

slow progress and insufficient search efforts for problems with

large solution spaces. To address this issue, G0 is redefined in

Equation 18 as a quantity proportional to the maximum distance

between two particles in n-dimensional space:

G0 = max







2

N(N − 1)

N
∑

i=1

N
∑

j=i+1

dis(xi, xj),C0







(18)

Here, N represents the total number of particles in the population,

xi and xj denote the positions of particles i and j, respectively, dis(xi,

xj) signifies the Euclidean distance between particles i and j in the

solution space, and C0 denotes the minimum limit of G0 to ensure

adequate search efforts.

The force exerting on the object i from the object j is redefined

as Equation 19:

Fdij (t) = Gm (t) ×
Mi (t) ×Mj (t)

Rij (t) + ε

(

xdj (t) − xdi (t)
)

(19)

Gm (t) =
max

{

2
N(N−1)

∑N
i=1

∑N
j=i+1 dis(xi, xj),C0

}

1+ e−α(t−T)
(20)

4 Soft actor-critic (SAC)

Soft Actor-Critic (SAC; Haarnoja et al., 2018) is a deep

reinforcement learning algorithm operating within an off-policy

framework, meaning it can learn from a separate data stream

without needing to interact with the environment continuously.

SAC aims to maximize the expected cumulative reward while

also learning an approximation of the state-value function. At

its core, SAC employs a soft policy update mechanism, which

incorporates an entropy term in the objective function. This term

encourages exploration by penalizing overly deterministic policies.

By maximizing the entropy-adjusted expected return, SAC achieves

a balance between exploration and exploitation, facilitating robust

learning in complex environments.

One key feature of SAC is its use of twin Q-functions to

estimate the state-action value (Q-value) function. This approach

helps mitigate the overestimation bias commonly encountered in

single Q-function methods, enhancing the stability and accuracy

of the learned policies. Moreover, SAC utilizes a replay buffer

to store and sample experiences, enabling efficient learning from

past data. This buffer facilitates the decorrelation of samples and

promotes data efficiency, making SAC suitable for real-world

applications where data collection can be expensive or time-

consuming.

As shown in Figure 4, Soft Actor-Critic (SAC) combines

entropy regularization, twin Q-functions, off-policy learning, and

experience replay to achieve effective and efficient learning in

continuous action spaces, making it a powerful algorithm for a wide

range of reinforcement learning tasks.

5 Materials and methods

5.1 Overview of IGSA-SAC

Data sets of network intrusion are typically raw sensory

inputs or high-dimensional state spaces. The presence of

irrelevant features in the input data can increase the likelihood

of False Positive (FP) in intrusion detection. Therefore, we

propose the IGSA-SAC method for intrusion detection as

illustrated in Figure 5, in which IGSA efficiently explores

the search space to select the most relevant features for

intrusion detection, reducing dimensionality and computational

complexity, the classifier agent of SAC adapts its detection

policy based on real-time feedback, enabling the system to

respond dynamically to evolving threats and network conditions.

The hybrid approach combines two different optimization

techniques, enhancing the robustness and reliability of the

intrusion detection system. By focusing on relevant features and

Frontiers inComputer Science 06 frontiersin.org

https://doi.org/10.3389/fcomp.2025.1574211
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Jin et al. 10.3389/fcomp.2025.1574211

FIGURE 4

The framework of SAC algorithm.

Initialization

Feature Selection

By IGSA

Dataset

Scaling

Training Set Evaluating Set

Train SAC Classifier With the feature subset

The fitness value defined by Eq. (18)

Stop

Optimized feature set

Retrain SAC

Classification

Yes

No

FIGURE 5

Flowchart of the IGSA-SAC intrusion detection.

adapting detection strategies, the method improves detection

accuracy while minimizing False Positive (FP) and False Negative

(FN). Algorithm 1 give the pseudo-code of the proposed IGSA-

SAC method.

In the subsequent section, we delve into the details of feature

selection based on IGSA, the state space and action space, the

reward function, and the process training of the classifier agent

of SAC.

Input: Original dataset

Output: detection results on the test data set

1. Initialize individual and position of a

population.

2. Do while

3. For i = 1 to population size

4. Train SAC and evaluate fitness function.

5. Update individual of the ith object.

6. Modify position of the ith object.

7. Update of the ith object.

8. Next i

9. Until termination criterion is met

Algorithm 1. The proposed IGSA-SAC method.

5.2 Feature selection based on IGSA

The efficacy of intrusion detection systems, as measured

by metrics such as accuracy, relevance, and redundancy, does

not consistently yield superior outcomes. Situations may arise

where both false alarm rates and detection rates are low, yet

accuracy remains high. Moreover, reducing the number of features

often results in decreased classification accuracy. Consequently,

addressing intrusion detection in IoT networks presents a complex,

multi-objective challenge that necessitates the utilization of multi-

objective optimization algorithms (MOA) to deliver optimal

solutions efficiently and promptly.

In this study, we leverage the Improved Gravitational Search

Algorithm (IGSA) to select optimized features. IGSA is employed

to minimize false alarm rates, enhance classification accuracy,

reduce response time, and streamline computational complexity,

thereby offering a holistic solution to intrusion detection challenges

Frontiers inComputer Science 07 frontiersin.org

https://doi.org/10.3389/fcomp.2025.1574211
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Jin et al. 10.3389/fcomp.2025.1574211

in IoT networks. Figure 6 presents a diagram of feature selection

based on IGSA.

5.2.1 Mass representation
In IGSA, trajectories denote alterations in position across

various dimensions, with each dimension bearing binary values of

0 or 1. These trajectories represent changes in the probability of a

coordinate adopting a 0 or 1 value.Moving along a dimension entail

transitioning its value from 0 to 1 or vice versa.

The binary vector encoding for feature selection is illustrated

in Figure 7. Each vector comprises binary values representing a

subset of features. Within these vectors, elements can either be 1

or 0, signifying the inclusion or exclusion of a feature in the agent,

respectively. Individuals in the search space represent potential

feature subsets, utilizing a standardized notation: for a problem

with d dimensions, each state comprises d bits, with each bit

indicating the inclusion (1) or exclusion (0) of a feature. The

length of the vector aligns with the total number of features,

where the ith feature is included if the ith bit equals 1, otherwise,

it’s excluded.

Randomized initialization

Fitness evaluation of objects

Updating best(t),worst(t)

and Mi(t) defined by Eq. (14),

(10), (11)

Computation of the total force

in different directions defined

by Eq. (19)

Computation of acceleration

and velocity

Updating objects’ position

Meeting end of

criterion

Optimized feature subset

No

Yes

Classification with feature

subset

FIGURE 6

The diagram of feature selection based on IGSA.

5.2.2 Fitness function definition
The fitness function is formulated considering two key criteria:

classification accuracy and the quantity of selected features. A

favorable fitness value indicates a balance between heightened

classification accuracy and reduced feature dimensions. To address

the challenge of multiple objectives, we devise a fitness function that

amalgamates these two aims into a singular objective. The fitness

function is expressed as Equation 21:

fiti = ω1 × accui + ω2 ×

[

1−

∑p
j=1 fj

p

]

(21)

Within the equation, two predefined weight factors, denoted as

ω1 and ω2, are employed. ω1 serves as the weight factor for Soft

Actor-Critic (SAC) classification accuracy, represented by accui,

while ω2 corresponds to the weight factor for the quantity of

selected features, with fj denoting the feature mask value. Adjusting

the weight factor of accuracy to a higher value, such as 100%,

is feasible if prioritizing accuracy is paramount. Objects with

elevated fitness values possess a greater likelihood of influencing the

positions of other objects in the subsequent iteration, underscoring

the importance of setting these values judiciously. The accuracy

accui is computed using Equation 22, where corr signifies the

number of correctly classified examples, and incorr represents the

number of incorrectly classified examples.

accui =
corr

corr + incorr
× 100% (22)

5.3 State space and action space

The intrusion detection problem can be viewed as a

reinforcement learning problemwith a discrete action space. In this

paper, we use the classifier agent of Soft Actor-Critic reinforcement

learning approach to detect the network intrusions. The input of

Soft Actor-Critic has two parts: state space and action space.

We consider the relevant features identified by improved

GSA to be the state representation. This state encapsulates the

essential characteristics of the network environment and provides

the necessary information for the IDS to make decisions. The

features selected through improved GSA ensure that the state

representation captures relevant information about the network

traffic while being suitable for consumption by the reinforcement

learning model.

1 0 1 1 0 0 0 1 1 ... 1 1

Length of Vector

edulcxEedulcnI

FIGURE 7

Encoding of a binary vector for feature selection.

Frontiers inComputer Science 08 frontiersin.org

https://doi.org/10.3389/fcomp.2025.1574211
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Jin et al. 10.3389/fcomp.2025.1574211

S0 α0

S1 α1

Sn-1 αn-1

αn

.

.

.

Sn

Selected Features With Improved GSA Labels

St αt St+1

St+1 αt+1 St+2

St+n-1 αt+n-1 St+n-1

St+n αt+n St+n

Sampling

FIGURE 8

Sampling from selected features with improved GSA are mapped to

the state space and labels are mapped to the action space.

Actions typically correspond to the decisions or responses

that the system can take in response to observed network traffic.

These actions include classifying traffic as normal or malicious,

applying specific security policies or rules, or triggering alerts or

countermeasures. The feature labels, which indicate the ground

truth classification of network traffic (e.g., benign ormalicious), can

be mapped to the set of actions that the IDS can take. Each action

represents a distinct response or decision based on the observed

network traffic characteristics.

We consider the selected features to be states and feature labels

to be actions. As shown in the upper part of Figure 8, S= {s0, s1, ...,

sn, sn+1} is the selected feature and A = {a0, a1, ..., an, an+1} is the

feature label.

5.4 Design of the reward function

To evaluate the performance of the intrusion detection model,

we design a reward function to guide the learning process by

incentivizing the agent to take actions that lead to effective

intrusion detection while minimizing false alarms and missed

detections. The formulation of the reward function along with the

weighting of each component is designed as follows:

• Intrusion Detection Reward (Positive Reward): If the agent

correctly identifies an intrusion in the network traffic data,

it receives a positive reward. The magnitude of the positive

reward can be fixed or proportional to the severity of the

detected intrusion.

• False Positive Penalty (Negative Reward): If the agent

incorrectly classifies benign network traffic as malicious (False

Positive), it incurs a negative penalty. The magnitude of the

negative penalty can be fixed or proportional to the severity of

the False Positive.

• Resource Utilization Penalty (Negative Reward): If the

agent’s actions result in excessive resource utilization (e.g.,

high computational cost), it incurs a negative penalty. The

magnitude of the negative penalty can be based on the amount

of resources consumed.

• Exploration Reward: the agent can receive a positive reward

for exploring new detection strategies or discovering new

intrusion patterns. This encourages the agent to explore

different actions and strategies.

The overall reward function is the weighted sum of these

components, as illustrated below:

R
(

s, a, s
′
)

= ainstrusion · Rinstrusion

(

s, a, s
′
)

+βfalse positive·Rfalse positive

(

s, a, s
′
)

−γresource · Rresource

(

s, a, s
′
)

+δexploration · Rexploration

(

s, a, s
′
)

(23)

The weights ainstrusion, βfalse positive, γresource, and δexploration

determine the importance of each component in the reward

function and can be adjusted based on the specific requirements

and characteristics of the network environment.

5.5 Training process of SAC

The selected features obtained from IGSA is then normalized

by a data preprocessor to create a learned state representation. This

preprocessed state vector serves as input to the classifier agent of

SAC, which learns a policy directly and approximates the value

function using a soft Q-function. Using the learned policy and value

function, the model is rewarded with a reward r, facilitating weight

updates to the SAC network. The precise steps followed by the agent

are delineated in Algorithm 2.

In each iteration of the training process for Soft Actor-Critic

(SAC), the agent is provided with a batch of training samples.

For each feature vector, the current vector is designated as the

current state and is inputted into the agent’s SAC algorithm. SAC

learns a policy that maps states to actions. The agent predicts an

action using the learned policy. The action chosen corresponds to

the one with the highest expected return, as estimated by the soft

Q-function, which approximates the value function in SAC.

Frontiers inComputer Science 09 frontiersin.org

https://doi.org/10.3389/fcomp.2025.1574211
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Jin et al. 10.3389/fcomp.2025.1574211

Input: Environment E, Replay buffer D, Actor

network π with parameters θ_π, Soft Q-network Q

with parameters θ_Q, Target Q-network Q’ with

parameters θ_Q’, Entropy temperature α, Target

entropy α_target, Learning rate η, Discount

factor γ, Batch size B, Number of episodes N

Output: detection results on the test data set

1. Initialize actor network parameters θ_π,

critic network parameters θ_Q, and target

critic network parameters θ_Q’

2. Initialize replay buffer D, entropy

temperature α, and target entropy α_target

3. for episode = 1 to N do:
4. Initialize state s

5. Initialize episode reward r = 0

6. while not done do:
7. Sample action a from policy π(a|s)

8. Execute action a in environment E and

observe next state s’, reward r, and done

9. Store transition (s, a, r, s’, done) in

replay buffer D

10. if D contains enough transitions for a

minibatch then:

11. Sample a minibatch of transitions (s_i,

a_i, r_i, s’_i, done_i) from D

12. Compute target Q-values for each sample:

target_Q = r_i + γ ∗ (1 - done_i) ∗

Q’(s’_i, π(s’_i))

13. Compute critic loss:

critic_loss = 1/B ∗
∑

[i=1 to B] (Q(s_i,

a_i) - target_Q)2

14. Update critic network parameters θ_Q using

gradient descent:

θ_Q = θ_Q - η ∗ ∇_θ_Q critic_loss

15. Compute actor loss:

actor_loss = −1/B ∗
∑

[i=1 to B] (Q

(s_i, π(s_i)) + α ∗ logπ(a_i|s_i))

16. Update actor network parameters θ_π using

gradient ascent:

θ_π = θ_π + η ∗ ∇_θ_π actor_loss

17. Update target Q-network parameters θ_Q’

periodically:

if episode mod target_update_interval == 0

then:

θ_Q’ = (1 - η) ∗ θ_Q’ + η ∗
θ_Q

18. Update entropy temperature α:

α = α - η ∗ ∇_α (α ∗ logπ(a|s))

19. Update state and episode reward:

s = s’

episode_reward + = r

20. end while

21. Print episode information
22. end for

Algorithm 2. Core algorithm for agent.

TABLE 1 Parameter settings of compared heuristic algorithms.

Algorithm Parameter settings

Practical genetic algorithms (RGA) a= 3, tl = 0.8,m= 0.7, c= 0.7

Comprehensive learning PSO (CLPSO) wo = 0.9, pc = 0.4, c= 1

Standard gravitational search algorithm (SGSA) G0 = 100, α = 20

Improved gravitational search algorithm (IGSA1) G0 = 100, α = 20, β = 10−16

Improved gravitational search algorithm (IGSA2) G0 = 200, β = 3

If the action with the highest expected return corresponds to

action 0, it signifies that the agent predicts the current state or

sample belongs to the non-malicious category. Conversely, if action

1 yields the maximum expected return, it indicates that the agent

predicts the current state belongs to an attack ormalicious category.

Following the prediction, the agent receives a reward r based on

the original category of the sample from the dataset. Additionally,

SAC employs a target Q-value network to stabilize training. The

agent then updates the policy and value function parameters of its

SAC algorithm using the reward obtained, applying the principles

of reinforcement learning, whichmay involvemaximizing expected

return through gradient ascent.

In the training process of Soft Actor-Critic (SAC), an error

metric is computed by measuring the discrepancy between the

predicted value function and the target value function. This error

metric is then utilized in the calculation of the weight assigned

to each experience for prioritized experience replay. Specifically,

the weight of each experience is computed as the summation

of the elements in the error vector raised to the power of a

hyperparameterω, which governs the prioritizationmechanism. At

the onset of training, a replay buffer is allocated to store experiences

for prioritized experience replay. Subsequently, each experience

tuple, along with its associated state loss weight, is stored in this

replay buffer. This iterative process contributes to the training of

the agent’s SAC algorithm. During training iterations, a batch of

experiences is sampled from the replay buffer. The probability

of selecting an experience for training is directly proportional

to its loss weight, calculated earlier. This prioritized sampling

strategy ensures that experiences with higher error metrics, and

thus greater potential for learning, are more frequently included

in the training batch. The training cycle continues iteratively,

with sampled batches being used to update the parameters of the

SAC algorithm, fostering improved learning from experiences that

require greater attention.

6 Result and discussion

6.1 Experimental results for IGSA

This section evaluates the performance of the proposed

IGSA using twenty-three standard benchmark functions

(Supplementary Tables A.1–A.3). A comparison with five

heuristic algorithms across different dimensions is presented

in Section 6.1.3.

Frontiers inComputer Science 10 frontiersin.org

https://doi.org/10.3389/fcomp.2025.1574211
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Jin et al. 10.3389/fcomp.2025.1574211

6.1.1 Benchmark functions
The benchmark functions used in the experiments are listed

in Supplementary Tables A.1–A.3 (Rashedi et al., 2009, 2010;

Yao et al., 1999). Here, n = 30 represents the function’s

dimension, and F (x∗) denotes its optimal value. The functions

in Supplementary Tables A.1, A.2 generally have an optimum

value of zero, except for F8 in Supplementary Table A.2, which

has an optimum of −418.9829 × n. A detailed description of

Supplementary Table A.3 functions is provided in Appendix A.

6.1.2 Parameter settings
The IGSA is compared with five heuristic algorithms, with

parameter settings adopted from their respective references. Table 1

summarizes the key parameters (Li and Zhou, 2011; Mahadevan

and Kannan, 2010; Musharavati and Hamouda, 2011; Sarafrazi

et al., 2011).

To ensure a fair evaluation, all algorithms were independently

run 30 times, using a maximum function evaluation limit (FEmax

= 3.00E+05) or until the exact solution was found.

6.1.3 Comparison with other heuristic algorithms
The performance of IGSA is assessed using the mean

fitness value (Fmean). Table 2 presents Fmean results for

all six algorithms, with bolded values indicating the

best performance.

The comparison is summarized using “w/t/l” and “#BMF”:

• w/t/l: Number of functions where IGSA wins (w), ties (t), or

loses (l) against competitors.

• #BMF: Count of test functions where other algorithms

achieved the best Fmean value.

Table 2 shows that IGSA outperforms its competitors in 18

out of 23 benchmark functions, demonstrating superior accuracy.

While CLPSO achieved the best Fmean once (#BMF = 1), IGSA1

and IGSA2 each achieved it twice (#BMF = 2).

IGSA successfully identifies the global optima for all

unimodal high-dimensional and multimodal low-dimensional

functions, except F8, F16, and F22. In multimodal high-

dimensional cases, overall accuracy declines, but IGSA remains

TABLE 2 Fmean values for the comparison of our proposed IGSA and five other heuristic algorithms.

RGA (Musharavati
and Hamouda,

2011)

CLPSO
(Mahadevan and
Kannan, 2010)

SGSA (Rashedi
et al., 2009)

IGSA1
(Sarafrazi

et al., 2011)

IGSA2 (Li and
Zhou, 2011)

IGSAours

F1 6. 95E−02 5.13E−12 4.80E−06 3.46E+01 0.00E+00 1.45E+01

F2 2.52E+02 1.82E+02 3.10E+01 8.12E+01 5.18E+00 0.00E+00

F3 3.21E+02 0.00E+00 1.83E+02 0.00E+00 5.90E+02 0.00E+00

F4 3.35E−02 5.77E−01 3.78E+01 8.02E−01 7.78E+00 0.00E+00

F5 1.00E−02 6.91E+01 3.84E+00 2.54E+01 3.62E−01 0.00E+00

F6 3.20E−02 1.65E−01 3.45E−02 0.00E+00 3.52E+00 0.00E+00

F7 4.67E−01 3.45E−12 1.35E−12 1.45E−10 3.92E+00 0.00E+00

F8 3.42E−01 0.00E+00 3.41E−05 3.50E−15 7.08E−01 3.23E−11

F9 4.79E−03 2.05E−13 1.49E−10 1.05E+03 4.01E−03 0.00E+00

F10 3.53E+01 5.03E+03 2.12E+04 3.96E+01 6.43E+00 0.00E+00

F11 5.15E+01 2.68E+01 1.50E+01 1.12E+01 2.04E+01 4.82E+01

F12 1.11E+04 3.29E+02 3.89E+02 1.38E+02 4.55E+01 0.00E+00

F13 4.20E+02 1.15E+04 3.32E+02 1.78E+02 4.76E+01 0.00E+00

F14 4.98E+02 3.58E+00 1.23E+00 5.47E+00 3.83E−04 3.72E−04

F15 2.72E−03 5.68E−12 3.70E−11 3.96E+02 3.32E+02 8.36E−14

F16 1.45E+03 1.13E+01 1.32E+02 3.58E+07 3.37E+07 2.34E+01

F17 5.64E−01 1.44E−03 1.79E+00 2.26E+01 3.13E−02 3.86E−04

F18 8.29E−01 3.43E+01 3.11E+01 3.61E+02 3.55E+02 3.00E−02

F19 0.00E+00 2.82E−07 2.02E−03 3.47E+03 0.00E+00 1.87E−07

F20 1.01E−04 2.33E−09 2.32E−11 7.86E+00 2.64E+00 6.05E−12

F21 6.95E−01 4.49E−02 3.13E−02 2.64E+01 1.87E−02 1.65E−02

F22 3.96E+00 2.74E−04 3.18E−01 2.39E+02 2.04E-04 1.51E−02

F23 4.86E+01 5.87E+01 9.74E+01 2.42E+01 2.30E+01 1.81E+01

w/t/l 23/0/0 21/1/1 23/0/0 19/2/2 20/0/2 18

#BMF 0 1 0 2 2

Bolded values indicate the best performance (highest Fmean score) across all six algorithms.

Frontiers inComputer Science 11 frontiersin.org

https://doi.org/10.3389/fcomp.2025.1574211
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Jin et al. 10.3389/fcomp.2025.1574211

the most effective, locating near-global optima for all such

functions except F11.

6.2 Experimental results for IGSA-SAC
method

6.2.1 Datasets and preprocessing
We evaluated the proposed IGSA-SAC method on three widely

used intrusion detection datasets: NSL-KDD (Tavallaee et al., 2009),

AWID (Kolias et al., 2015), and CICIDS2017 (GitLab, n.d.; Engelen

et al., 2021). These datasets were chosen for their public availability,

inclusion of anomalies, and sufficient sample sizes for training

and testing.

• NSL-KDD: This dataset contains 41 features, including

38 continuous and three categorical variables. After

preprocessing (max-min normalization and one-hot

encoding), the dataset was expanded to 122 features. It

includes five classes: Normal, DoS, Probe, R2L, and U2R (see

Figure 9 and Table 3 for details).

• AWID: Collected from a real-worldWiFi network, this dataset

was reduced to 46 features after removing irrelevant attributes.

It includes one normal class and three attack classes: Injection,

Simulation, and Flooding (see Figure 10).

• CICIDS2017: This dataset was preprocessed to handle null

values and normalize features, ensuring compatibility with the

IGSA-SAC model.

Preprocessing Steps:

1. Data Cleaning: Infinity values were replaced with−1, and rows

with NaN or NULL values were removed.

2. Data Conversion: Non-numeric features (e.g., protocol types,

services) were converted to numeric data using one-hot

encoding (Potdar et al., 2017).

3. Data Normalization: Features were scaled to the range [0, 1]

using max-min normalization to ensure consistent value ranges,

as illustrated in Equation 24.

fnew =
fold − fmin

fmax − fmin
(24)

where fold is a network traffic feature vector, and fmin and fold are the

minimum and maximum values of fold, respectively.

6.2.2 Experiment setup
The experiments were conducted on a PC with an Intel Core

i7-10750H CPU, 24 GB RAM, and libraries including Scikit-Learn,

TensorFlow 2.0, and Keras. The SAC model used a neural network

structure with three hidden layers of 100 neurons each, optimized

using the Adam algorithm (see Table 4 for details).

The SAC algorithm serves as the classifier agent. In this

paper, the Actor network, Q Critic network, and V Critic network

within the SAC model adopt a straightforward neural network

structure. Table 4 presents the Network structure of the classifier

F
re

q
u
en

cy

FIGURE 9

Distribution frequency of each class of NSL-KDD.

TABLE 3 Attack categories, including four types of attacks: Dos, Probe,

R2L, and U2R.

Dos back, land, neptune, pod, smurf, teardrop, mailbomb, apache2,

processtable, udpstorm

Probe ipsweep, nmap, portsweep, satan, mscan, saint

R2L ftp write, guess passwd, imap, multihop, phf, spy, warezclient,

warezmaster, sendmail, named, snmpgetattack, snmpguess, xlock,

xsnoop, worm

U2R buffer overflow, loadmodule, perl, rootkit, httptunnel, ps, sqlattack,

xterm

agent. Below is a detailed explanation of the network structure

notation “122(46)-100-100-100-5(4)”:

Input Layer: The first number, 122(46), represents the number

of neurons in the input layer. 122 denotes the number of input

features for the NSL-KDD dataset. 46 (in parentheses) denotes the

number of input features for the AWID dataset. This indicates that

the network is designed to handle both datasets, with the input layer

dynamically adjusting based on the dataset used.

Hidden Layers: The notation 100-100-100 represents three

fully connected hidden layers, each containing 100 neurons. These

hidden layers are responsible for learning hierarchical features from

the input data. All hidden layers use the ReLU (Rectified Linear

Unit) activation function, which introduces non-linearity and helps

the network learn complex patterns.

Output Layer: The final number, 5(4), represents the number of

neurons in the output layer. 5 denotes the number of output classes

for the NSL-KDD dataset. 4 (in parentheses) denotes the number

of output classes for the AWID dataset. For the Actor network,

the output layer uses the Softmax activation function to produce

a probability distribution over the possible actions (classes). For

the Critic networks, the output layer does not use any activation

function, as it outputs a single value representing the estimated

Q-value or state value.

Fully Connected Architecture: All networks (Actor, Q Critic,

and V Critic) employ a fully connected (dense) architecture,

meaning every neuron in one layer is connected to every neuron

in the next layer.

Optimization: The parameters of all networks are optimized

using the Adam algorithm, a popular stochastic optimization

method known for its efficiency and adaptability.

Frontiers inComputer Science 12 frontiersin.org

https://doi.org/10.3389/fcomp.2025.1574211
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Jin et al. 10.3389/fcomp.2025.1574211

F
re

q
u
en

cy

FIGURE 10

Distribution frequency of each class of AWID.

TABLE 4 Network structure of the classifier agent.

Name Network struct

Actor 122(46)-100-100-100-5(4)

Q Critic 122(46)-100-100-100-5(4)

V Critic 122(46)-100-100-100-1

FIGURE 11

Trend of accuracy with the number of hidden layers.

FIGURE 12

Trend of accuracy with the number of neurons.

Grid search was employed to identify the optimal

hyperparameters for the SAC model. This method conducts a

thorough search for specific hyperparameter values automatically,

thereby conserving time and resources. The determination of the

number of hidden layers and neurons in each layer was conducted

through grid search. The chosen optimal values represent those

yielding the highest accuracy across all parameters. Figures 11, 12

depict the outcomes of the grid search, revealing that the SAC

model achieves satisfactory classification results with only three

hidden layers, each comprising 100 neurons. While employing

additional hidden layers and neurons may enhance classification

performance, it would necessitate longer training times due to

the increased complexity of the SAC model compared to other

reinforcement learning models. It’s important to note that the

three network actors, Q Critic, and V Critic in the SAC model

are solely utilized to approximate the probability distribution

function, state-action value function, and state value function. In

contrast, traditional deep learning networks typically directly learn

a classifier, requiring more hidden layers and neurons.

The effectiveness of the proposed IGSA is evaluated by

comparing it with existing methods such as GA (Ibrahim et al.,

2011a), BPSO (Huang and Dun, 2008), QBPSO (Ibrahim et al.,

2011b), and BGSA (Ibrahim et al., 2012). The aim of this

comparison is to identify the most suitable feature selection

algorithm for intrusion detection. To ensure fairness in the

comparison, all optimization parameters are standardized, as

outlined in Table 5, which presents the required parameter

configurations for all optimization techniques employed in

this study.

6.2.3 Performance of IGSA-SAC
To assess the effectiveness of the method proposed in this

paper, we utilize our IGSA for intrusion detection on NSL-KDD

and AWID datasets. We conduct a comparative analysis by pitting

our IGSA against other feature selection algorithms, namely GA

(Ibrahim et al., 2011a), BPSO (Huang and Dun, 2008), QBPSO

(Ibrahim et al., 2011b), and BGSA (Ibrahim et al., 2012), for

intrusion detection tasks. Additionally, we select existing network

intrusion detection models, including the AE-RLmodel (Caminero

et al., 2019), AESMOTE model (Ma and Shi, 2020), SSDDQN

(Dong et al., 2021), and SHIA (Vinayakumar et al., 2019), for

comparison on NSL-KDD and AWID datasets. Throughout the

remainder of this section, we delve into a detailed performance

comparison between our proposed IGSA-SAC and the following

models: SAC, GA-SAC, BPSO-SAC, QBPSO-SAC, BGSA-SAC, AE-

RL, AESMOTE, SSDDQN, and SHIA.

To highlight the significance of our proposed method, we

present a comprehensive comparison of the performance metrics

(accuracy, precision, recall, and F1-score) of IGSA-SAC with other

state-of-the-art methods on the NSL-KDD datasets. The results are

summarized in Table 6.

Figure 13 presents the experimental comparison results

concerning accuracy, precision, recall, and F1-score in the

multi-classification scenario. Among the models compared,

only BGSA-SAC attains an accuracy of 82.12%, whereas the

remaining models achieve a maximum accuracy of 81.11%.

Notably, our proposed IGSA-SAC model achieves an accuracy of

84.15%, outperforming all other models, including state-of-the-art

methods such as SHIA and QBPSO-SAC. This represents a

2.73% improvement over the best-performing existing methods

Frontiers inComputer Science 13 frontiersin.org

https://doi.org/10.3389/fcomp.2025.1574211
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Jin et al. 10.3389/fcomp.2025.1574211

TABLE 5 Parameter settings used in GA, BPSO, BGSA, QBPSO, and BIGSA.

Parameter GA BPSO BGSA QBPSO BIGSA

Population size 40 40 40 40 40

Max, iteration 150 150 150 150 150

c1 and c2 – 2 – – –

G0 – – 100 – 100

wmin/θmin – 0.4 – 0.001π 0.001π

wmax/θmax – 0.9 – 0.050 π 0.050 π

Crossover rate 0.95 – – –

Mutation rate 0.05 – – –

Kbestmin – – 2.5% – 2.5%

Kbestmax – – 100% – 100%

Effective distance (τ) – – – – 8%

TABLE 6 Performance comparison of IGSA-SAC with existing methods on

the NSL-KDD dataset.

Method Accuracy
(%)

Precision
(%)

Recall (%) F1-Score
(%)

IGSA-SAC 84.15 84.23 84.13 84.85

GA-SAC 78.59 77.12 75.78 79.34

BPSO-SAC 80.45 81.23 82.18 82.27

QBPSO-SAC 79.45 79.67 81.23 81.12

BGSA-SAC 82.12 81.21 79.98 81.11

AE-RL 79.56 80.13 78.85 80.23

AESMOTE 79.11 79.78 75.28 79.91

SSDDQN 81.11 80.11 79.98 81.02

SHIA 81.01 80.78 81.09 82.12

FIGURE 13

Performance scores of IGSA-SAC compared to other methods

(KDDTest+).

(SHIA and QBPSO-SAC) and a 5.51% improvement over the

worst-performing method (GA-SAC).

The IGSA-SAC model also demonstrates a clear advantage in

terms of precision, recall, and F1-score. Specifically, it achieves

precision and recall rates exceeding 84%, which are significantly

higher than those of other models. While precision and recall

are ideally both high, they are typically mutually constraining in

FIGURE 14

Accuracy comparison of IGSA-SAC method and other methods on

the KDDTest21 dataset.

FIGURE 15

Performance scores of IGSA-SAC compared to other methods

(AWID).

practice. Therefore, we use the F1-score to evaluate these metrics

collectively. The F1-score of our IGSA-SACmodel is 84.85%, which

is 2.73% higher than the best-performing existing methods (SHIA

and QBPSO-SAC) and 5.51% higher than the worst-performing

method (GA-SAC). These results underscore the robustness of our

approach in handling multi-classification tasks.

The superior classification performance of our proposed

method on the NSL-KDD dataset can be attributed to its ability

to better distinguish between normal and malicious activities by

eliminating irrelevant or redundant features. Generally, as the

number of features increases, classifier performance improves

initially but then declines. This indicates that having too many or

too few features can significantly reduce a classifier’s effectiveness.

With too few features, data overlap is more likely; with too many

features, the same category can become more distant and sparser

in space, leading to the failure of many classification algorithms.

After processing, the NSL-KDD dataset has 122 dimensions, which

can severely impact classifier performance. Our IGSA-SACmethod

effectively addresses this challenge by optimizing feature selection,

resulting in improved performance.

Figure 14 illustrates the accuracy of our proposed IGSA-

SAC model compared to other models on the KDDTest21

dataset. Despite KDDTest21 being more challenging to recognize

than KDDTest+, our IGSA-SAC model achieves an accuracy of

79.51%, outperforming other methods. This demonstrates the

generalizability of our approach, even on more complex datasets.

Frontiers inComputer Science 14 frontiersin.org

https://doi.org/10.3389/fcomp.2025.1574211
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Jin et al. 10.3389/fcomp.2025.1574211

FIGURE 16

Accuracy comparison of IGSA-SAC method and other methods on

the CICIDS2017.

Figure 15 highlights the performance of our proposed IGSA-

SAC method compared to state-of-the-art methods on the AWID

dataset. Our IGSA-SAC model achieves an accuracy of 98.9%,

surpassing AESMOTE (97.1%) and SHIA (96.8%). Notably, all

metrics (precision, recall, and F1-score) exceed 98.9%, representing

a 1.8% improvement over the best-performing existing method

(AESMOTE). Despite the processed AWID dataset having only

46 feature dimensions, feature selection remains a crucial factor

influencing model performance, and our method demonstrates its

effectiveness in this regard.

Figure 16 presents the experimental results comparing the

accuracy of our proposed IGSA-SAC model with other methods

on the CICIDS2017 dataset. Our IGSA-SAC model achieves

an accuracy of 98.41%, surpassing that of the other methods.

This further validates the robustness and generalizability of our

approach across diverse datasets.

The comparative analysis demonstrates that our proposed

IGSA-SAC method consistently outperforms existing approaches

across multiple datasets and evaluation metrics. The superior

performance of IGSA-SAC can be attributed to its effective feature

selection mechanism, which eliminates irrelevant or redundant

features, thereby enhancing the model’s ability to distinguish

between normal and malicious activities. This is particularly

evident in the NSL-KDD dataset, where IGSA-SAC achieves

an accuracy of 84.15%, significantly higher than the next best

model (BGSA-SAC at 82.12%). Similarly, on the AWID and

CICIDS2017 datasets, IGSA-SAC achieves accuracy rates of

98.9% and 98.41%, respectively, further validating its robustness

and generalizability.

In conclusion, the experimental results and comparative

analysis highlight the significance of our proposed IGSA-

SAC method in advancing the field of network intrusion

detection. Its ability to consistently outperform state-of-the-

art methods across multiple datasets, including NSL-KDD,

AWID, and CICIDS2017, underscores its potential for real-world

applications. The improvements in accuracy, precision, recall,

and F1-score demonstrate the effectiveness of our approach in

addressing the challenges of high-dimensional data and complex

classification tasks.

6.2.4 Dimensionality reduction and
computational e�ciency

To further demonstrate the effectiveness of the proposed IGSA-

SAC method, we quantify the improvements in dimensionality

reduction and computational complexity. Table 7 shows the

number of features before and after applying IGSA for the NSL-

KDD, AWID, and CICIDS2017 datasets. The results indicate a

significant reduction in dimensionality, which directly contributes

to reduced computational complexity.

The reduction in dimensionality not only improves the

efficiency of the intrusion detection system but also reduces

the computational overhead during training and inference. For

instance, the NSL-KDD dataset, which originally contains 122

features, was reduced to 50 features after applying IGSA,

resulting in a 59.02% reduction in dimensionality. This reduction

significantly speeds up the training process and reduces the

memory footprint of the model.

To evaluate the computational efficiency of the proposed IGSA-

SAC method, we compare the training and inference times with

other baseline methods, including GA-SAC, BPSO-SAC, QBPSO-

SAC, and BGSA-SAC. Table 8 presents the training time, inference

time, and computational complexity of each method.

The results demonstrate that IGSA-SAC achieves the lowest

training and inference times among all methods. For example,

the training time for IGSA-SAC is 120 s, compared to 180 s for

GA-SAC, representing a 33.33% improvement in computational

efficiency. This improvement is attributed to the reduced

dimensionality and the efficient exploration-exploitation balance

achieved by IGSA.

The reduction in dimensionality achieved by IGSA directly

impacts the computational complexity of the intrusion detection

system. By selecting only the most relevant features, the training

and inference times are significantly reduced. For instance, the

NSL-KDD dataset, which originally contains 122 features, was

reduced to 50 features after applying IGSA, resulting in a

59.02% reduction in dimensionality. This reduction not only

speeds up the training process but also reduces the memory

footprint of the model. Additionally, the improved exploration-

exploitation balance in IGSA ensures faster convergence, further

reducing the computational overhead. As shown in Table 8, the

IGSA-SAC method achieves a training time of 120 s, compared

to 180 s for GA-SAC, demonstrating a clear improvement in

computational efficiency.

To visually demonstrate the relationship between

dimensionality reduction and computational complexity, we

plot the training time against the number of features for different

methods. Figure 17 shows that as the number of features decreases,

the training time also decreases, and IGSA-SAC consistently

outperforms other methods in terms of computational efficiency.

6.2.5 Discussion
The superior performance of IGSA-SAC can be attributed to:

1. Effective Feature Selection: IGSA eliminates irrelevant or

redundant features, improving the model’s ability to distinguish

between normal and malicious activities.

Frontiers inComputer Science 15 frontiersin.org

https://doi.org/10.3389/fcomp.2025.1574211
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Jin et al. 10.3389/fcomp.2025.1574211

2. Dynamic Exploration-Exploitation Balance: The use of an

adaptive search radius and sigmoid function in IGSA ensures

sustained exploration capabilities, leading to faster convergence

and better optimization.

3. Reinforcement Learning Rewards: The designed reward

function encourages the agent to improve detection

effectiveness while minimizing false alarms and

missed detections.

The results demonstrate that IGSA-SAC consistently

outperforms state-of-the-art methods across multiple datasets,

TABLE 7 Dimensionality reduction achieved by IGSA.

Dataset Original
features

Selected
features (IGSA)

Dimensionality
reduction (%)

NSL-KDD 122 50 59.02

AWID 46 20 56.52

CICIDS2017 80 35 56.25

TABLE 8 Computational complexity comparison.

Method Training
time (s)

Inference
time (s)

Computational
complexity (Big-O)

IGSA-SAC 120 0.5 O(nlogn)

GA-SAC 180 0.8 O(n2)

BPSO-SAC 200 1.0 O(n2)

QBPSO-SAC 190 0.9 O(n2)

BGSA-SAC 170 0.7 O(n2)

making it a robust and efficient solution for real-world intrusion

detection systems.

7 Evaluation metrics

The performance of IGSA-SAC was evaluated using

four metrics:

• Accuracy: Overall effectiveness of the model.

• Precision: Proportion of correctly identified intrusions.

• Recall (Detection Rate): Proportion of actual

intrusions detected.

• F1-Score: Harmonic mean of precision and recall, providing a

balanced measure of performance.

The formulas for these metrics are as follows:

Accuracy =
TF + TN

TP + TN + FP + FN
(25)

Precision =
TP

TP + FP
(26)

Recall =
TP

TP + FN
(27)

F1− score =
2× Precision× Recall

Precision+ Recall
(28)

Where:

• TP (True Positive): Correctly identified intrusions.

• FP (False Positive): Incorrectly identified intrusions.

• TN (True Negative): Correctly identified normal traffic.

• FN (False Negative): Missed intrusions.

FIGURE 17

Training time vs. number of features.

Frontiers inComputer Science 16 frontiersin.org

https://doi.org/10.3389/fcomp.2025.1574211
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Jin et al. 10.3389/fcomp.2025.1574211

8 Conclusion

This paper proposes an improved Gravitational Search

Algorithm (IGSA) with fitness normalization and an Adaptive

Search Radius to enhance robustness against outliers and balance

exploration and exploitation. To maintain sustained exploration,

we introduce a sigmoid-modulated gravitational constant.

Based on IGSA, we develop the IGSA-SAC method for

intrusion detection, where IGSA selects relevant features, and the

SAC classifier adapts to evolving threats. Our experiments on 23

benchmark functions demonstrate IGSA’s superior performance

over five heuristic algorithms. For intrusion detection, IGSA-SAC

achieves 84.15% accuracy on NSL-KDD and over 98.7% on AWID,

with improved computational efficiency. The feature selection

reduces dimensions from 122 to 50, cutting training time to 120 s,

and inference time is the fastest among comparedmethods, making

it suitable for real-time applications.

Despite these advancements, IGSA-SAC struggles with the

U2R category due to limited training samples. Future work will

explore SMOTE and generative adversarial networks to address

this limitation.

Data availability statement

The data analyzed in this study is subject to the

following licenses/restrictions: Data will be made available on

request. Requests to access these datasets should be directed

to sxlzjin@tyust.edu.cn.

Author contributions

LJ: Writing – original draft, Writing – review & editing. RF:

Software, Writing – review & editing. XH: Investigation, Writing

– review & editing. XC: Validation, Writing – review & editing.

Funding

The author(s) declare that financial support was received for the

research and/or publication of this article. This work was supported

by the Fundamental Research Program of Shanxi Province [Grant

No. 202303021221144].

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.

Generative AI statement

The author(s) declare that no Gen AI was used in the creation

of this manuscript.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found

online at: https://www.frontiersin.org/articles/10.3389/fcomp.

2025.1574211/full#supplementary-material

References

Aljehane, N. O., Mengash, H. A., Hassine, S. B. H., Alotaibi, F. A., Salama, A.
S., and Abdelbagi, S. (2024). Optimizing intrusion detection using intelligent feature
selection with machine learning model. Alex. Eng. J. 91, 39–49. doi: 10.1016/j.aej.2024.
01.073

Altunay, H. C., and Albayrak, Z. (2023). A hybrid CNN+LSTM-based intrusion
detection system for industrial IoT networks. Eng. Sci. Technol. Int. J. 38:101322.
doi: 10.1016/j.jestch.2022.101322

Azimjonov, J., and Kim, T. (2024). Designing accurate lightweight intrusion
detection systems for IoT networks using fine-tuned linear SVM and feature selectors.
Comput. Secur. 137:103598. doi: 10.1016/j.cose.2023.103598

Barbosa, G. N. N., Andreoni, M., and Mattos, D. M. F. (2024). Optimizing
feature selection in intrusion detection systems: Pareto dominance set approaches
with mutual information and linear correlation. Ad Hoc Netw. 159:103485.
doi: 10.1016/j.adhoc.2024.103485

Belavagi, M. C., and Muniyal, B. (2016). Performance evaluation of supervised
machine learning algorithms for intrusion detection. Proc. Comput. Sci. 89, 117–123.
doi: 10.1016/j.procs.2016.06.016

Belouch, M., El Hadaj, S., and Idhammad, M. (2018). Performance evaluation of
intrusion detection based on machine learning using Apache Spark. Proc. Comput. Sci.
127, 1–6. doi: 10.1016/j.procs.2018.01.091

Caminero, G., Lopez-Martin, M., and Carro, B. (2019). Adversarial environment
reinforcement learning algorithm for intrusion detection. Comput. Netw. 159, 96–109.
doi: 10.1016/j.comnet.2019.05.013

Chatzoglou, E., Kambourakis, G., Kolias, C., and Smiliotopoulos, C. (2022).
Pick quality over quantity: expert feature selection and data preprocessing
for 802.11 intrusion detection systems. IEEE Access 10, 64761–64784.
doi: 10.1109/ACCESS.2022.3183597

Chung, Y. Y., and Wahid, N. (2012). A hybrid network intrusion detection
system using simplified swarm optimization (SSO). Appl. Soft Comput. 12, 3014–3022.
doi: 10.1016/j.asoc.2012.04.020

Ding, H., Chen, L., Dong, L., Fu, Z., and Cui, X. (2022). Imbalanced
data classification: A KNN and generative adversarial networks-based hybrid
approach for intrusion detection. Future Gener. Comput. Syst. 131, 240–254.
doi: 10.1016/j.future.2022.01.026

Dong, S., Xia, Y., and Peng, T. (2021). Network abnormal traffic detection model
based on semi-supervised deep reinforcement learning. IEEE Trans. Netw. Serv.
Manage. 18, 4197–4212. doi: 10.1109/TNSM.2021.3120804

El-Ghamry, A., Darwish, A., and Hassanien, A. E. (2023). An optimized CNN-
based intrusion detection system for reducing risks in smart farming. Internet Things
22:100709. doi: 10.1016/j.iot.2023.100709

Frontiers inComputer Science 17 frontiersin.org

https://doi.org/10.3389/fcomp.2025.1574211
mailto:sxlzjin@tyust.edu.cn
https://www.frontiersin.org/articles/10.3389/fcomp.2025.1574211/full#supplementary-material
https://doi.org/10.1016/j.aej.2024.01.073
https://doi.org/10.1016/j.jestch.2022.101322
https://doi.org/10.1016/j.cose.2023.103598
https://doi.org/10.1016/j.adhoc.2024.103485
https://doi.org/10.1016/j.procs.2016.06.016
https://doi.org/10.1016/j.procs.2018.01.091
https://doi.org/10.1016/j.comnet.2019.05.013
https://doi.org/10.1109/ACCESS.2022.3183597
https://doi.org/10.1016/j.asoc.2012.04.020
https://doi.org/10.1016/j.future.2022.01.026
https://doi.org/10.1109/TNSM.2021.3120804
https://doi.org/10.1016/j.iot.2023.100709
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Jin et al. 10.3389/fcomp.2025.1574211

Engelen, G., Rimmer, V., and Joosen, W. (2021). “Troubleshooting an intrusion
detection dataset: the CICIDS2017 case study,” in 2021 IEEE Security and Privacy
Workshops (SPW) (Piscataway, NJ: IEEE), 7–12. doi: 10.1109/SPW53761.2021.00009

Fang, Y., Yao, Y., Lin, X., Wang, J., and Zhai, H. (2024). A feature selection based on
genetic algorithm for intrusion detection of industrial control systems. Comput. Secur.
139:103675. doi: 10.1016/j.cose.2023.103675

GitLab (n.d.). CICFlowMeter [Computer software]. GitLab repository. Available
online at: https://gitlab.com/hieulw/cicflowmeter (accessed June 8, 2024).

Gu, J., and Lu, S. (2021). An effective intrusion detection approach
using SVM with naïve Bayes feature embedding. Comput. Secur. 103:102158.
doi: 10.1016/j.cose.2020.102158

Haarnoja, T., Zhou, A., Hartikainen, K., Tucker, G., Ha, S., Tan, J.,
et al. (2018). Soft actor-critic algorithms and applications. arXiv [Preprint].
doi: 10.48550/arXiv.1812.05905

Huang, C. L., and Dun, J. F. (2008). A distributed PSO–SVM hybrid system
with features selection and parameter optimization. Appl. Soft Comput. 8, 1381–1391.
doi: 10.1016/j.asoc.2007.10.007

Ibrahim, A. A., Mohamed, A., and Shareef, H. (2012). “Application of quantum-
inspired binary gravitational search algorithm for optimal power quality monitor
placement,” in Proceedings of the 11th WSEAS International Conference on Artificial
Intelligence, Knowledge Engineering and Data Bases (AIKED ‘12), Cambridge, UK.

Ibrahim, A. A., Mohamed, A., Shareef, H., and Ghoshal, S. P. (2011a).
“Optimal placement of power quality monitors in distribution systems using
the topological monitor reach area,” in Proceedings of the International Electric
Machines and Drives Conference, Niagara Falls, Canada (New York, NY: IEEE Press).
doi: 10.1109/IEMDC.2011.5994627

Ibrahim, A. A., Mohamed, A., Shareef, H., and Ghoshal, S. P. (2011b). “An
effective power quality monitor placement method utilizing quantum inspired particle
swarm optimization,” in Proceedings of the International Conference on Electrical
Engineering and Informatics, Bandung, Indonesia (New York, NY: IEEE Press).
doi: 10.1109/ICEEI.2011.6021845

Kolias, C., Kambourakis, G., Stavrou, A., andGritzalis, S. (2015). Intrusion detection
in 802.11 networks: empirical evaluation of threats and a public dataset. IEEE Commun.
Surv. Tutor. 18, 184–208. doi: 10.1109/COMST.2015.2402161

Lavet, V. F., Henderson, P., Islam, R., Bellemare, M. G., and Pineau, J. (2018). An
introduction to deep reinforcement learning. arXiv preprint, arXiv:1811.12560 [cs.LG].
doi: 10.1561/9781680835397

Li, C., and Zhou, J. (2011). Parameters identification of hydraulic turbine governing
system using improved gravitational search algorithm. Energy Convers. Manage. 52,
374–381. doi: 10.1016/j.enconman.2010.07.012

Liao, Y., and Vemuri, V. R. (2002). Use of K-Nearest Neighbor classifier for
intrusion detection. Comput. Secur. 21, 439–448. doi: 10.1016/S0167-4048(02)00514-X

Lopez-Martin, M., Carro, B., and Sanchez-Esguevillas, A. (2020). Application of
deep reinforcement learning to intrusion detection for supervised problems. Expert
Syst. Appl. 141:112963. doi: 10.1016/j.eswa.2019.112963

Louk, M. H. L., and Tama, B. A. (2023). Dual-IDS: A bagging-based gradient
boosting decision tree model for network anomaly intrusion detection system. Expert
Syst. Appl. 213(Part B):119030. doi: 10.1016/j.eswa.2022.119030

Ma, X., and Shi, W. (2020). AESMOTE: adversarial reinforcement learning
with SMOTE for anomaly detection. IEEE Trans. Netw. Sci. Eng. 8, 943–956.
doi: 10.1109/TNSE.2020.3004312

Mahadevan, K., and Kannan, P. S. (2010). Comprehensive learning particle
swarm optimization for reactive power dispatch. Appl. Soft Comput. 10, 641–652.
doi: 10.1016/j.asoc.2009.08.038

Mishra, P., Varadharajan, V., Tupakula, U., and Pilli, E. S. (2018). A detailed
investigation and analysis of usingmachine learning techniques for intrusion detection.
IEEE Commun. Surv. Tutor. 21, 686–728. doi: 10.1109/COMST.2018.2847722

Musharavati, F., and Hamouda, A. S. M. (2011). Modified genetic algorithms for
manufacturing process planning in multiple parts manufacturing lines. Expert Syst.
Appl. 38, 10770–10779. doi: 10.1016/j.eswa.2011.01.129

Narayanan, S. L., Kasiselvanathan, M., Gurumoorthy, K. B., and Kiruthika, V.
(2023). Particle swarm optimization based artificial neural network (PSO-ANN)model
for effective k-barrier count intrusion detection system in WSN. Measure. Sens.
29:100875. doi: 10.1016/j.measen.2023.100875

Nguyen, T. T., and Reddi, V. J. (2019). Deep reinforcement learning for
cybersecurity. arXiv [Preprint]. doi: 10.48550/arXiv.1906.05799

Potdar, K., Pardawala, T. S., and Pai, C. D. (2017). A comparative study of
categorical variable encoding techniques for neural network classifiers. Int. J. Comput.
Appl. 175, 7–9. doi: 10.5120/ijca2017915495

Rani, B. S., Vairamuthu, S., and Subramanian, S. (2024). Archimedes Fire Hawk
Optimization enabled feature selection with deep maxout for network intrusion
detection. Comput. Secur. 140:103751. doi: 10.1016/j.cose.2024.103751

Rashedi, E. (2007). Gravitational search algorithm (M.Sc. thesis). Electrical
Engineering Department, Shahid Bahonar University of Kerman, Iran.

Rashedi, E., Nezamabadi-Pour, H., and Saryazdi, S. (2007). “Allocation of static
var compensator using gravitational search algorithm,” in Proceedings of the First Joint
Conference on Fuzzy and Intelligent Systems, Mashhad, Iran.

Rashedi, E., Nezamabadi-Pour, H., and Saryazdi, S. (2009). GSA: a gravitational
search algorithm. Inf. Sci. 179, 2232–2248. doi: 10.1016/j.ins.2009.03.004

Rashedi, E., Nezamabadi-Pour, H., and Saryazdi, S. (2010). BGSA:
binary gravitational search algorithm. Nat. Comput. 9, 727–745.
doi: 10.1007/s11047-009-9175-3

Sanju, P. (2023). Enhancing intrusion detection in IoT systems: a hybrid
metaheuristics-deep learning approach with ensemble of recurrent neural networks.
J. Eng. Res. 11, 356–361. doi: 10.1016/j.jer.2023.100122

Sarafrazi, S., Nezamabadi-Pour, H., and Saryazdi, S. (2011). Disruption, a
new operator in gravitational search algorithm. Scientia Iranica 18, 539–548.
doi: 10.1016/j.scient.2011.04.003

Sarikaya, A., Kiliç, B. G., and Demirci, M. (2023). RAIDS: Robust autoencoder-
based intrusion detection system model against adversarial attacks. Comput. Secur.
135:103483. doi: 10.1016/j.cose.2023.103483

Sathish, N., and Valarmathi, K. (2022). Detection of intrusion behavior in cloud
applications using Pearson’s chi-squared distribution and decision tree classifiers.
Pattern Recognit. Lett. 162, 15–21. doi: 10.1016/j.patrec.2022.08.008

Sethi, K.,Madhav, Y. V., Kumar, R., and Bera, P. (2021). Attention basedmulti-agent
intrusion detection systems using reinforcement learning. J. Inf. Secur. Appl. 61:102923.
doi: 10.1016/j.jisa.2021.102923

Song, D., Yuan, X. Y., Li, Q. L., Zhang, J., Sun, M. F., Fu, X., et al. (2023).
Intrusion detectionmodel using gene expression programming to optimize parameters
of convolutional neural network for energy internet. Appl. Soft Comput. 134:109960.
doi: 10.1016/j.asoc.2022.109960

Tavallaee, M., Bagheri, E., Lu, W., and Ghorbani, A. A. (2009). “A detailed
analysis of the KDD CUP 99 data set,” in 2009 IEEE Symposium on Computational
Intelligence for Security and Defense Applications (Piscataway, NJ: IEEE), 1–6.
doi: 10.1109/CISDA.2009.5356528

Vadigi, S., Sethi, K., Mohanty, D., Das, S. P., and Bera, P. (2023). Federated
reinforcement learning based intrusion detection system using dynamic
attention mechanism. J. Inf. Secur. Appl. 78:103608. doi: 10.1016/j.jisa.2023.
103608

Vinayakumar, R., Alazab, M., Soman, K. P., Poornachandran, P., Al-Nemrat, A.,
and Venkatraman, S. (2019). Deep learning approach for intelligent intrusion
detection system. IEEE Access 7, 41525–41550. doi: 10.1109/ACCESS.2019.
2895334

Wang, H. W., Gu, J., and Wang, S. S. (2017). An effective intrusion detection
framework based on SVMwith feature augmentation.Knowl. Based Syst. 136, 130–139.
doi: 10.1016/j.knosys.2017.09.014

Wang, Q., Jiang, H., Ren, J., Liu, H., Wang, X., and Zhang, B. (2024).
An intrusion detection algorithm based on joint symmetric uncertainty and
hyperparameter optimized fusion neural network. Expert Syst. Appl. 244:123014.
doi: 10.1016/j.eswa.2023.123014

Xie, J., Song, Z., Li, Y., Zhang, Y., Hong, Y., Zhan, J., et al. (2018). A survey on
machine learning-based mobile big data analysis: challenges and applications.Wireless
Commun. Mobile Comput. 2018, 1–19. doi: 10.1155/2018/8738613

Yao, X., Liu, Y., and Lin, G. (1999). Evolutionary programming made faster. IEEE
Trans. Evolut. Comput. 3, 82–102. doi: 10.1109/4235.771163

Zhang, W. A., Miao, Y., Wu, Q., Yu, L., and Shi, X. (2020). Intrusion
detection of industrial control system based on double-layer one-class support
vector machine. IFAC-PapersOnLine 53, 2513–2518. doi: 10.1016/j.ifacol.2020.
12.226

Zhu, Y. Y., Liang, Y. W., Chen, Z. Y., and Ming, Z. (2017). An improved NSGA-
III algorithm for feature selection used in intrusion detection. Knowl. Based Syst. 116,
74–85. doi: 10.1016/j.knosys.2016.10.030

Frontiers inComputer Science 18 frontiersin.org

https://doi.org/10.3389/fcomp.2025.1574211
https://doi.org/10.1109/SPW53761.2021.00009
https://doi.org/10.1016/j.cose.2023.103675
https://gitlab.com/hieulw/cicflowmeter
https://doi.org/10.1016/j.cose.2020.102158
https://doi.org/10.48550/arXiv.1812.05905
https://doi.org/10.1016/j.asoc.2007.10.007
https://doi.org/10.1109/IEMDC.2011.5994627
https://doi.org/10.1109/ICEEI.2011.6021845
https://doi.org/10.1109/COMST.2015.2402161
https://doi.org/10.1561/9781680835397
https://doi.org/10.1016/j.enconman.2010.07.012
https://doi.org/10.1016/S0167-4048(02)00514-X
https://doi.org/10.1016/j.eswa.2019.112963
https://doi.org/10.1016/j.eswa.2022.119030
https://doi.org/10.1109/TNSE.2020.3004312
https://doi.org/10.1016/j.asoc.2009.08.038
https://doi.org/10.1109/COMST.2018.2847722
https://doi.org/10.1016/j.eswa.2011.01.129
https://doi.org/10.1016/j.measen.2023.100875
https://doi.org/10.48550/arXiv.1906.05799
https://doi.org/10.5120/ijca2017915495
https://doi.org/10.1016/j.cose.2024.103751
https://doi.org/10.1016/j.ins.2009.03.004
https://doi.org/10.1007/s11047-009-9175-3
https://doi.org/10.1016/j.jer.2023.100122
https://doi.org/10.1016/j.scient.2011.04.003
https://doi.org/10.1016/j.cose.2023.103483
https://doi.org/10.1016/j.patrec.2022.08.008
https://doi.org/10.1016/j.jisa.2021.102923
https://doi.org/10.1016/j.asoc.2022.109960
https://doi.org/10.1109/CISDA.2009.5356528
https://doi.org/10.1016/j.jisa.2023.103608
https://doi.org/10.1109/ACCESS.2019.2895334
https://doi.org/10.1016/j.knosys.2017.09.014
https://doi.org/10.1016/j.eswa.2023.123014
https://doi.org/10.1155/2018/8738613
https://doi.org/10.1109/4235.771163
https://doi.org/10.1016/j.ifacol.2020.12.226
https://doi.org/10.1016/j.knosys.2016.10.030
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

	IGSA-SAC: a novel approach for intrusion detection using improved gravitational search algorithm and soft actor-critic
	1 Introduction
	2 Background of the study
	3 Gravitational Search Algorithm (GSA)
	3.1 Basic GSA
	3.2 Improved GSA (IGSA)
	3.2.1 Fitness normalization with adaptive search radius
	3.2.2 Modulating gravitational constant

	4 Soft actor-critic (SAC)
	5 Materials and methods
	5.1 Overview of IGSA-SAC
	5.2 Feature selection based on IGSA
	5.2.1 Mass representation
	5.2.2 Fitness function definition

	5.3 State space and action space
	5.4 Design of the reward function
	5.5 Training process of SAC

	6 Result and discussion
	6.1 Experimental results for IGSA
	6.1.1 Benchmark functions
	6.1.2 Parameter settings
	6.1.3 Comparison with other heuristic algorithms

	6.2 Experimental results for IGSA-SAC method
	6.2.1 Datasets and preprocessing
	6.2.2 Experiment setup
	6.2.3 Performance of IGSA-SAC
	6.2.4 Dimensionality reduction and computational efficiency
	6.2.5 Discussion

	7 Evaluation metrics
	8 Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Generative AI statement
	Publisher's note
	Supplementary material
	References

