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Introduction: In theory, wearable physiological sensing devices o�er an

opportunity for institutions to monitor and manage the health and well-being

of a group of people. For instance, schools or universities could leverage these

devices to track rising stress levels or detect signs of illness among students.

Advances in sensing accuracy and utility design in wearables might make this

feasible; however, real-world adoption faces challenges, as users often fail to

wear or use these devices consistently and correctly. Additionally, institutional

monitoring raises privacy concerns.

Methods: In this study, we analyze real-world data from a cohort of 103

Japanese university students to identify periods of cyclical stress while ensuring

individual privacy through aggregation. We identify potential stress patterns by

observing elevated waking heart rate (HR) and maximum waking HR, supported

by related metrics such as sleep HR, sleep heart rate variability (HRV), activity

patterns, and sleep phases.

Results: The physiological changes align with significant academic and societal

events, indicating a strong link to stress.

Discussion: Our findings demonstrate the potential of consumer wearables to

detect collective changes in stress biomarkers within a cohort using in-the-

wild data, i.e., data that is noisy and has gaps. Furthermore, we explore how

universities could implement such monitoring in practice, highlighting both the

potential benefits and challenges of real-world application.
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1 Introduction

Stress describes a combination of physiological phenomena and responses to a stressor

(Fink, 2009). These stressors can be acute, such as a presentation in front of a large audience

or a life-threatening situation, or chronic, such as a stressful everyday job or excessive

worrying (Collier et al., 2017). Stress and stressful situations can occur in regular cycles,

such as yearly health checkups. In this work, we use data from university students whowore

smart rings in the wild to identify cyclical stress typical for different periods of the academic

year. This analysis takes place without adjusting for any other individual source of personal,

work-related, or other non-academic stress, meaning that classification is possible even

with significant noise.

The fight-or-flight hypothesis suggests that physiological changes in response to

stressors have the purpose of mobilizing available energy resources, enhancing an

individual’s ability to either confront or escape a threat. While this response is beneficial for

short-term stressors, the demands of modern work life frequently trigger it in many people

on a routine basis. When stress becomes regular and chronic, it can have serious effects

on people’s mental well-being, as well as causing actual physiological harm to the body.
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It is estimated that 80% of people experience stress at work (Salleh,

2008) and roughly half of the work-related illnesses are related to

stress (European Comission, 2004). The effects of permanent stress

include worsened sleep (Kim and Dimsdale, 2007), anxiety and

depression (Richter-Levin and Xu, 2018), headaches (Stubberud

et al., 2021), weight gain (Scott et al., 2012), digestive problems

(Madison and Kiecolt-Glaser, 2019), problems with memory and

focus (Klier and Buratto, 2020), muscle tension (Zieliński et al.,

2021), and pain, and can, in severe cases, lead to heart disease,

heart attacks (Rozanski et al., 1999), high blood pressure (Laitinen

et al., 1999), and strokes (Reddin et al., 2022). When the body

perceives a situation as threatening, the balance of activity in the

ANS shifts away from the Parasympathetic Nervous System (PNS)

toward the Sympathetic Nervous System (SNS), dilating pupils,

increasing Heart Rate (HR) and forcing vasoconstriction. Heart

Rate Variability (HRV), which is the fluctuation of the length

between heartbeats, is a strong indicator of ANS balance (Shaffer

and Ginsberg, 2017), self-regulation (Laborde et al., 2017) and

all-cause mortality (Jarczok et al., 2022). It is usually calculated

from the tachogram derived from Electrocardiogram (ECG) signals

by analyzing QRS-complexes and obtaining the variance in the

distance between two R-R peaks. The LF/HF power ratio in the

frequency domain analysis of HRV is especially indicative of

ANS activity. Since these measurements require precise medical-

grade equipment, comprehensive detection of these physiological

markers has not been obtainable in the wild for most of the past.

However, the recent ubiquity of wearable health devices (Hood and

Price, 2023) such as smart rings or watches, with their capability

of unobtrusively measuring physiological data like HR, HRV, body

temperature, breathing rate, etc., over prolonged periods of time,

makes this attainable.

Large public-oriented institutions, such as universities, could

benefit from deploying wearables (Laborde et al., 2023) but face

the issues of usage enforcement, data organization, and privacy

concerns (Vargo et al., 2023). Privacy concerns, in particular,

are a barrier to using these devices (González Ramírez et al.,

2023), calling for new methods that allow for effective passive

data acquisition methods that do not burden or endanger

individual users.

In this work, we analyze the physiological data obtained via a

smart ring on a cohort of Japanese university students for group-

wide changes in stress biomarkers. The usage of the device was

not enforced or guided, resulting in natural data that is noisy

and has gaps. We find heightened waking HR and maximum

waking HR during exams, New Year’s, and spring break when the

traditional job hunting season takes place in Japan. Sleep HR, sleep

HRV, activity patterns, and sleep phases further substantiate the

indication of stress-related effects.

The results of this study are promising for a number of

reasons. First, they indicate that identifying stressful periods

in a cohort in the wild is possible, which means that the

results could be applied in education and workplace settings for

managing cyclical stress. This could be especially important for

identifying and designing interventions where participants cannot

self-report stress. In addition, the results represent an important

opportunity for the HCI community to build information

interfaces that allow users to better understand and prepare for

cyclical stress.

The contribution of this work is to demonstrate the feasibility

of detecting group-wide changes in stress-related biomarkers using

data from a cohort wearing wearable health trackers without

compromising individual privacy or imposing restrictions on

device usage.

2 Related work

The significant research corpus on stress detection can be

divided into laboratory settings and in-the-wild settings. In both

settings, physiological and contextual data and stress information

are collected, which is then used to build models for predicting

stress, usually for the individual. In laboratory settings, both precise

medical equipment (Prinsloo et al., 2011; Kirschbaum et al., 1996)

or wearable devices (Wijsman et al., 2011; Abouelenien et al.,

2016; Mozos et al., 2017; Setz et al., 2010; Umematsu et al., 2019)

can be used for the former and controlled stressors for the latter

(Prinsloo et al., 2011; Kirschbaum et al., 1996; Abouelenien et al.,

2016; Wijsman et al., 2011; Mozos et al., 2017; Setz et al., 2010;

Umematsu et al., 2019). In in-the-wild settings, wearable health

devices have been used effectively to gather physiological data.

Here, self-reported stress is often used as ground truth for stress

(Bogomolov et al., 2014; Booth et al., 2022; Järvelin-Pasanen et al.,

2018; Vrijkotte et al., 2000; Vildjiounaite et al., 2019; Gjoreski

et al., 2017; Sano et al., 2018; Gjoreski et al., 2015). Alternatively,

contextual information, e.g., events such as exams, can be used

to infer stress levels (Bauer and Lukowicz, 2012; Bloomfield et al.,

2024; Pakhomov et al., 2020). Can et al. (2020) and Gjoreski et al.

(2017) showed that incorporating data from laboratory-controlled

stressors into the models can aid in stress prediction in real-life

contexts. Kazdagli et al. (2024) take an approach similar to ours, but

look only at exams instead of the whole year and group participants

according to their scores on anxiety assessments.

These research methods (a) typically predict individuals’ stress

and (b) rely mostly on self-reported or in-situ induced (controlled)

stress. A limitation of these studies is their utility for institutions in

real-world environments. Our work aims to address this limitation

by focusing on the collective stress levels of a cohort rather

than predicting individual stress while not requiring explicit stress

surveys or stress induction such as in the works above. This

shift in focus is significant as it highlights the potential of stress

monitoring in institutional settings, such as schools. By leveraging

real-world data from a cohort of 103 Japanese university students,

we demonstrate the capability of off-the-shelf wearable devices

to monitor group stress levels despite the presence of noisy and

incomplete data. Our methodology involves passive sensing and

using the structured academic calendar, eliminating the need

for self-reported stress measures and reducing the burden on

participants. We maintained user privacy by not exposing any

daily activities and ensuring that the data analysts were completely

unknowing of any identifiers of the participants, such as gender or

university grade. Our approach detects group-wide changes within

a rigid curriculum instead of predicting individual participants’

episodes of stress, which to the best of our knowledge is a

unique approach.

In the field of policy making, Laborde et al. (2023, 2022)

proposed a range of strategies for assessment, intervention and
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evaluation across domains such as public health, occupational

settings, education, mental healthcare, and geriatric care. While

their policy recommendations align closely with ours, we advance

their work by presenting the first experimental data supporting

the feasibility of this approach using current wearable technology

under significant noise. Furthermore, we expand on their

framework by addressing additional implementation challenges in

the discussion section.

3 Data collection

Starting in late 2021, volunteers from a Japanese university

joined an in-the-wild experiment wearing the Oura Ring,1 a

commercial finger-worn sleep and fitness tracker. The Oura ring

was chosen due to its unobtrusive form factor (especially the lack

of a screen), long battery life, and sleep-stage tracking abilities.

The participants were graduate and undergraduate students taking

classes affiliated with the university’s engineering school and

were recruited via an open call. The dissemination of the call

was carried out through student mailing lists, the engineering

school’s Slack channel, and during lectures. Participants were

recruited from among university students who agreed to wear

the ring; no additional eligibility criteria were specified. There

was no remuneration for wearing the rings, but participants

could be remunerated for participating in shorter studies for

which recruitment was done separately. The main incentive for

participants was the free use of a wearable and access to their

personal data. In return for this, the participants signed agreements

that their anonymized data could be used for research purposes.

All participants agreed and gave informed consent. Participants

could also drop out from the study any time if they desired to do

so. Participants who joined after the beginning of 2022 received

the updated generation 3 rings instead of generation 2 rings. After

obtaining their rings, students attended an orientation session on

the features and capabilities of the Oura Ring and were informed

about what data the investigators would collect. In particular,

the investigators emphasized that this project is an in-the-wild

study and that participants were free to use the rings as they

wished, including ceasing the use of the ring with no penalty.

Approval of all ethical and experimental procedures and protocols

was granted by the ethics committees of the Graduate School of

Engineering, Osaka Prefecture University, and the Graduate School

of Informatics, Osaka Metropolitan University.

3.1 Choice of wearable

There is a wide range of smart health devices available to

measure physiological signals related to stress (Thapliyal et al.,

2017). An important factor behind the choice to use the Oura

Ring was its form-factor. The Oura Ring is relatively small

and unobtrusive, meaning that its presence would not cause

a distraction for most participants. Additionally, it provides

measurement quality comparable to medical-grade devices for

sleep HR and HRV (Cao et al., 2022; Miller et al., 2022; Kinnunen

1 https://ouraring.com/

et al., 2020; Lu et al., 2025) and sleep staging (Ong et al., 2024;

Svensson et al., 2024). Another deciding factor was the good battery

life, which requires participants to charge it only once every four to

five days. One full charging cycle takes about 2 hours. Participants

have an accompanying smartphone application where they can see

their data. This application needs to be opened once every 4-5 days

so that the ring can connect to the application, send the gathered

data to the servers, and clear its cache. If the application is not

opened for longer periods, the ring can overwrite old data in its

cache, rendering previous unsynced data unusable.

3.2 How the oura ring collects data

The Oura ring automatically collects a range of physiological

data during the day using red, green, and infrared LEDs, as

well as an NTC (Negative Temperature Coefficient) temperature

sensor and a 3D accelerometer. The LEDs measure blood vessel

dilation and contraction and blood oxygen saturation (SpO2)

using photoplethysmography, sampling 250 times per second with

“99.9% reliability compared to a medical-grade electrocardiogram

according to Oura (2020). From this measurement, HR, HRV,

and breathing rate are calculated. While the generation 2 rings

measure HR and HRV only during sleep, generation 3 rings also

measure daytime values. According to Oura (passive) daytime HR

measurement is carried out every 5 min (Oura, 2022a), although

in practice we find the measuring interval to show fluctuations

based on movement (Oura, 2022b) and also on the chosen ring

size (Neigel et al., 2023). Additionally, generation 3 users can

use the smartphone application to get a live measurement of

their HR carried out anytime as well as starting workout or

meditation sessions, during which the sampling rate for HR is

increased. TheNTC temperature sensormeasures skin temperature

every minute, but the temperature data is only published in the

form of the deviation of the average temperature during the last

night compared to a long-term average (Oura, 2021). The 3D

accelerometer tracks movements and is used in classifying periods

of high/medium/low activity, such as walking. An overview of

which data is available for how many participants can be seen in

Table 1.

3.3 Participants considered in this work

Due to the participant onboarding described previously, a total

of 151 users wore the Oura ring for up to 28 months. The first

and last dates considered for analysis are the 30th July 2021 and

the 21st November 2023, respectively. An overview of the usage of

the ring by the participants over that time frame can be seen in

Figure 1. Here, the blue marker denotes the availability of either

a daily activity or daily sleep summary for that user and day,

indicating usage on that day or the previous night. Since some of

the participants are university staff and other non-students, and

our focus was on student body stress, we included only students

in this study, resulting in n = 103 participants. Out of these, 91

identified as male and 12 as female, with a mean age of 21.8 (1.9
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SD). 83 participants used Generation 3, while 20 used Generation

2 rings.

To ensure that no single user dominates the data pool during

any period, we analyze the share of the total data every user makes

up per calendar week. The results are in Figure 2, and show that

our participant and data pool is sufficiently large so that no single

user or small group of users dominates any academic period or

calendar week.

4 Analysis

4.1 Academic year

The host university follows a two-semester system, with the

Spring semester starting in April and ending in September and

the Fall semester starting in October and ending in March. Final

exams are typically given in the first two weeks of August and

February, respectively. Many programs also require students to

accomplish a yearly research project within a lab. The time after

a semester’s final exam until the start of the next semester is

TABLE 1 Oura ring data by generation and percentage of participants.

Generation 2 Generation 3

Participants 23 80

Sleep HR X X

Sleep HRV X X

Daytime HR ✗ X

Daytime HRV ✗ ✗

Sleep Breathing Rate X X

Activity X X

Sleep Skin Temperature Deviation X X

considered a semester break. Our analysis also considered Golden

Week, a period comprising several Japanese national holidays. For

students, it offers a full week of leisure, often dedicated to relaxation

and travel (Hara and Yamaguchi, 2021).

Students also typically begin applying for employment in either

their third year of undergraduate studies or after their first year

of graduate studies. Job hunting follows a calendar structure and

is often stressful as it requires them to travel to companies and

participate in centralized job fairs (Kawanishi, 2020).

4.2 Choice of physiological measurements

As described in Section 1, stress can manifest itself in various

physiological measurements. Similar to existing literature, we look

at daytime (waking HR), nighttime (sleep) HR and nighttime (sleep)

HRV as one of the main indicators of stress (Gradl et al., 2019) that

the Oura ring can gather. The Oura ring does not measure daytime

(waking) HRV. We also look at the daily maximum waking HR of

participants as an indicator of at least one stressful event during

that day. While this daily maximum is more of an indicator of

acute stress, sleep HR and HRV are more indicative of lingering,

potentially chronic, stress (Schubert et al., 2009; Turner, 1994;

Brosschot et al., 2007) or alcohol consumption (Pabon et al., 2022).

Moreover, we also look at sleep-related data such as total sleep

duration, sleep phase percentage, and sleep efficiency or restless

periods to get further insights.

4.3 Data preparation

4.3.1 Removal of seasonal e�ects
As Koskimäki et al. (2019) show, sleep HR and HRV are subject

to seasonal fluctuations related to daily sunlight hours. We detrend

FIGURE 1

Daily Oura ring data availability (indicative of usage) of participants.
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FIGURE 2

Left: User data distribution per calendar week. Every separated color band corresponds to a single user, and the band’s width shows what percentage

of the total data available for that calendar week is from that user. No single user or small group of users dominates the data of any given calendar

week. Right: Age distribution for genders.

FIGURE 3

Left: HR recorded during sleep for one participant (blue). The seasonal fluctuation (in unison with daily sunlight hours) is clearly visible. We fit a

sinusoidal model (orange) in order to detrend the data. Right: Sleep HR after detrending.

the sleep HR and HRV data by first fitting the data points of each

participant to a sinusoidal model:

y = A · sin(Bt + C)+ D, (1)

where t is the time since the first measurement in seconds, A

is the amplitude of the sine wave, i.e., the peak deviation from

the central value D, B is the angular frequency determining how

many cycles there are in a given period, and C is the phase shift.

We fit the parameters to the data by using Maximum Likelihood

estimation. From looking at the experimental data and typical

seasonal fluctuations, for the optimization, we bound parameter A

in the range [0, 5] 1
min for HR and [0, 20]ms for HRV. Parameter

C was fixed to a value representing a wavelength of 365 days. C

was bound to [−π ,π], representing a phase shift between -180 and

180 days since we consider the first recorded data point as t = 0.

D was initialized as the average value for that measure over the

whole observed period and bounded to the range [0.5Dinit , 1.5Dinit]

during optimization. We detrend the data for seasonal effects by

subtracting the computed model value y and re-adding the vertical

shift D. An illustration for one participant with the resulting fit can

be seen in Figure 3.

4.3.2 Baseline estimation
Since baselines for measures like HR or HRV differ between

individuals, in addition to the raw values, we normalize all

measurements of a user to their respective baseline and variance to

ensure comparability in changes between participants. To estimate

the baseline for HR and HRV, we model the distribution of these

measurements as a skewed-normal distribution (see Equation 2 and

Figure 4).
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FIGURE 4

Exemplary illustration of estimation of baseline. A skewed normal

distribution is fitted (blue line) to the distribution of a participant’s

HRV values (scattered dots) from the whole observed period. The

argument maximum of the fit, the mode m0, is considered the

baseline of that measure (here: HRV) for that participant. © 2024

Peter Neigel, Andrew Vargo, Benjamin Tag, and Koichi Kise. Used

with permission.
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Here, ξ ,ω and α are parameters for location, scale and skewness

of the distribution, in that order. We estimate these parameters for

each measure and user individually by using Maximum Likelihood

Estimation. We then consider the mode of the fitted distribution

m0 as the baseline for that measure and that participant, see

Figure 4. During baseline estimation, we ignore HR measurements

obtained during live recorded work-outs since these make up

another overlapping distribution with its own parameters outside

users’ resting baselines.

As a variance measure, we use the median absolute difference

(MAD) of measured values to the respective baselinem0:

MAD(M) =
1

nM

∑

x∈M
|x−m0

M|, (3)

where M is the set of measurements of one type of physiological

measure, i.e. either waking HR, sleep HR or sleep HRV, and nM is

the number of measurements a user has for that measure. Finally,

we normalize all measures by subtracting the baseline and scaling

by the inverseMAD:

x′ =
x−m0

MAD(M)
∀x ∈ M (4)

4.3.3 Daily aggregation
While some measures supplied by the Oura Ring are

timestamped by a specific date and describe a summary or

aggregation of that measure during that day or the previous night

(e.g., total hours slept), other measures like HR or HRV are

available as measurements timestamped multiple times throughout

the day or night (hh:mm:ss). We take the daily maximum value per

participant to analyze the maximum waking HR.

4.4 Linear mixed e�ects model

To analyze the physiological data gathered from our

participants and its changes during the academic year, we

chose to employ linear mixed effects models because they allow

for the modeling of population-wide fixed effects (e.g., periods of

the academic year or calendar week) while also taking into account

individual variability through random effects.

In mixed effect models, the probability model for a disjoint

group i is:

Y = Xβ + Zγ + ǫ, (5)

where Y , X and Z correspond to the observed dependent variable,

the fixed effects and the random effects respectively, and β and the

covariance of γ are estimated using optimization techniques.

More information about the mixed effects linear model as well

as the implementation that we used for our experiments can be

found in Seabold and Perktold (2010).

For all our models we used restricted maximum likelihood

(REML) optimization to fit the parameters to the model.

4.5 Pre-defined periods

In the first part of the analysis, we cluster data into pre-defined

periods based on the academic calendar. The periods and their

explanations can be found in Table 2. Often the boundary between

two periods is soft. There could be effects that spill over into one

period from another. For instance, the effects of the pre-exam

could occur earlier for one student than another. In addition, not

all participants will be experiencing the same influences from the

periods as they are happening. Nonetheless, the definitions provide

a basis for understanding the status of the cohort as a whole.

5 Results

To analyze the physiological data gathered from our

participants and its changes during the academic year, we

employed mixed effects linear models (Seabold and Perktold,

2010). They allow for the modeling of population-wide fixed effects

while controlling individual variability through random effects.

We used restricted maximum likelihood (REML) optimization for

all our models.
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TABLE 2 Pre-defined periods and their descriptions.

Period Explanation

Spring exams Exams end of January, beginning of February. Final exams

for the year.

Spring

pre-exam

Two weeks before the spring exam period.

Spring break Period after spring exams.

Golden week Period containing multiple holidays.

Summer

exams

Exams end of July, beginning of August, marking the end of

the spring semester.

Summer

pre-exam

Two weeks before the spring exam period.

Summer break Period after summer exams.

New Year An extended holiday typically considered the most

important in Japan (Takahashi et al., 2022).

Semester All dates outside the above periods.

5.1 By periods

We fit mixed effects linear models with the un-aggregated

sleep HR and HRV data (one model per data type), where

we set the academic period as a categorical fixed effect and

the users as random effects. We allow for individual intercepts

per participant while keeping a common slope. The results can

be seen in Table 3. For raw values, the intercept is the cohort

average under the semester, measured in BPM for HR and ms for

HRV. The coefficients indicate the group trend in the respective

measure compared to intercept during a period, considering

individual differences. Normalized values represent the fraction of

the individual baseline.

The general trend and ordering of observed periods are similar

for raw and normalized values. The periods with the highest sleep

HR are both semester breaks, the two weeks before the spring exam,

and New Year’s. The period with the lowest sleep HR is the spring

exam period. For sleep HRV, the period with the highest coefficient

is the spring exam period, and the periods with the lowest values

are the semester breaks and both pre-exam periods. Since higher

HR and lower HRV indicate stress or need for recovery, both HR

and HRV agree on the three most stressful and two least stressful

periods, with some variation in the middle. Only the coefficients

for sleep HRV, raw and normalized, during Golden Week lack

significance. However, the Golden Week period shows the highest

variance between participants for all measurements.

For waking HR, we also use the un-aggregated time-stamped

HRs for this model. The results can be seen in Table 4. The periods

with the highest coefficients for waking HR are spring break, spring

exam, and the two weeks prior, followed by New Year’s. In contrast,

summer pre-exam, Golden Week, summer exams, and summer

break periods show lower values. The order of stressfulness does

not change when looking at normalized values. Only Golden Week

and summer pre-exam exhibit non-significance, indicating higher

variance between participants for these periods. Golden Week

shows the highest variance between participants.

Following this, we aggregate the waking HR data into daily

maximum values, as described in Section 4.3.3. This indicates the

maximum severity of physical stress per day. The results can be

found in Table 5.When looking at themaximumwakingHR during

the day, we find that summer exams and the two weeks prior show

the greatest group-wise increase. In contrast, Golden Week shows

the greatest decrease (although with missing significance), followed

by New Year’s, spring pre-exams, and spring break. Again, raw and

normalized values indicate the same stress ranking of periods.

5.2 By calendar week

Since the corner dates of the academic year fall within the same

calendar week or within one week difference maximum every year,

we chose to “fold” multi-year data by reducing every measurement

timestamp to the respective calendar week. Similar to the previous

section, we use the calendar week as a categorical variable that

defines the fixed effect of the mixed effects linear model, with the

participants as random effects. We allow for individual intercepts

per participant but for a common slope. This way, the group-

wide movement over the year can be observed visually by plotting

the coefficients against the respective calendar week. The reference

value for every respective measure to which the denoted intercept

value belongs gives the basis from which the plotted coefficients

show the change compared to that calendar week. For this reference

value, we chose to take themedian of all measurements that fall into

the “semester” category from Section 4.5. The resulting coefficients

can be seen in Figure 5.

Various factors can influence physiological measurements;

however, because our primary focus is on stress, we look at further

confounding factors related to stress to investigate the sources of

changes in the measurements. These factors consist of high activity

time, measured in seconds per day, total daily sleep duration,

and percentage of deep and light sleep for the night. We found

REM sleep to be relatively constant compared to deep and light

sleep changes and omitted the graph. All these are obtained from

the wearable device and the HR and HRV data. The analysis

of these factors is carried out similarly to HR and HRV; the

results of the mixed effects linear models can be seen in Figure 6.

Due to less available data per category, many weeks lack the

required significance, but the movements of coefficients can give

an understanding of patterns nonetheless.

Due to less available data per category, many weeks lack the

required significance, but the movements of coefficients can give

an understanding of patterns nonetheless.

6 Discussion and limitations

6.1 Discussion of results

To interpret these results, it is essential to distinguish between

different types of stress and other confounding factors (Schubert

et al., 2009). While the daily maximum waking HR is indicative

of a physiologically stressful episode during the day, it’s unclear

whether that physiological stress is due to a stressful event exciting

the participant, e.g., an exam, a presentation, an accident, etc., or
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TABLE 3 Mixed e�ects model results for sleep HR and HRV.

Intercept Semester break Gol. week Exam Pre-exam New Year’s

(Semester) Spring Summer Spring Summer Spring Summer

Sleep HR

Raw 57.07** 0.57** 0.59** -0.23** -0.47** 0.28** 0.47** 0.27** 0.34**

± 0.56 0.01 0.01 0.03 0.02 0.02 0.02 0.02 0.02

Normalized 0.77** 0.19** 0.21** -0.06** -0.13** 0.11** 0.17** 0.09** 0.11**

± 0.02 0.00 0.00 0.01 0.01 0.01 0.01 0.01 0.01

Sleep HRV

Raw 63.34** -1.98** -2.11** -0.10 0.71** -0.74** -1.73** -1.47** -0.91**

± 2.23 0.04 0.05 0.12 0.08 0.09 0.09 0.08 0.06

Normalized 3.15** -0.66** -0.74** -0.07 0.19** -0.27** -0.62** -0.45** -0.28**

± 0.87 0.01 0.02 0.04 0.03 0.03 0.03 0.03 0.02

The leftmost value is the intercept for the reference period (under the semester). All other values indicate the slope coefficients for that period (bold indicates maximum, underline minimum).

**p < 0.001, i.e. significant after Bonferroni correction.

Top to bottom: R2
marginal

= [0.016, 0.041, 0.034, 0.035], R2
conditional

= [0.031, 0.078, 0.068, 0.070].

TABLE 4 Mixed e�ects model results for waking HR, raw ( 1
min

) and normalized values.

Intercept Semester break Gol. week Exam Pre-exam New Year’s

(Semester) Spring Summer Spring Summer Spring Summer

Waking HR

Raw 78.12** 2.31** 0.88** 0.11 2.04** 0.60** 2.30** -0.02 1.54**

± 1.09 0.02 0.02 0.05 0.04 0.03 0.04 0.03 0.03

Normalized 0.73** 0.29** 0.10** 0.01 0.26** 0.07** 0.28** -0.01 0.19**

± 0.04 0.00 0.00 0.01 0.01 0.00 0.01 0.00 0.00

The leftmost value is the intercept for the reference period (under the semester). All other values indicate the slope coefficients for that period.

**p < 0.001, i.e. significant after Bonferroni correction.

Top to bottom: R2
marginal

= [0.091, 0.030], R2
conditional

= [0.394, 0.070].

TABLE 5 Mixed e�ects model results for maximum waking HR, raw ( 1
min

) and normalized values.

Intercept Semester break Gol. week Exam Pre-exam New Year’s

(Semester) Spring Summer Spring Summer Spring Summer

W. HR Max.

Raw 119.34** 0.40 1.22** -1.54 1.02 3.55** 0.36 2.52** 0.36

± 1.66 0.30 0.30 0.77 0.55 0.53 0.58 0.51 0.41

Normalized 5.81** 0.08 0.15** -0.17 0.16 0.42** 0.06 0.31** 0.07

± 0.17 0.04 0.04 0.09 0.07 0.06 0.07 0.06 0.05

The leftmost value is the intercept for the reference period (under the semester). All other values indicate the slope coefficients for that period.

**p < 0.001, i.e. significant after Bonferroni correction.

Top to bottom: R2
marginal

= [0.182, 0.030], R2
conditional

= [0.653, 0.070].

due to physical activity like sports. Sleep-related values, however,

are indicative of a different type of stress. Sleep HR can increase

temporarily, i.e. for single nights, due to illness (Park et al., 2017;

Davies and Maconochie, 2009; Vargo et al., 2023) or alcohol

consumption (Pabon et al., 2022), but increased HR over several

nights or long periods are indicative of chronic stress (van Kraaij

et al., 2020), fretting and a general need for recovery. Exercise done

the day before only has an effect on unaccustomed individuals

(Tseng et al., 2020; O’Connor et al., 1993; Koskimäki et al., 2019).

Due to the fact that our observed periods consist of several weeks’

worth of data (since every period includes data from several

calendar years), it is reasonable to assume that one-off events

like illness can be ruled out as causes, especially considering the

significance of most coefficients for the period analysis.

The analysis of waking HR, sleep HR, and sleep HRV reveals

different periods of elevation (HR) or decrease (HRV) for sleep
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FIGURE 5

Mixed e�ects linear model coe�cients (unit: MAD) plotted against the respective calendar week for normalized sleep HR, sleep HRV, waking HR and

waking HR max. Every graph represents a single fitted model for a single variable denoted at the top of the graph. The background coloring indicates

the period according to Section 4.5: pink, pre-exam; red, exam; green, break; gold, golden week; orange lines, grade result release. The gray box

gives the intercept for the reference value—the median of all values during the semester—as well as the model fit (R2). Circle dots denote a p-value

< 0.1, square dots a p-value < 0.05. © 2024 Peter Neigel, Andrew Vargo, Benjamin Tag, and Koichi Kise. Used with permission.

measures than for waking measures. Sleep HR shows significant

group-wide elevation during both spring and summer breaks as

well as spring pre-exam and the end of the year. In contrast,

the spring exam and golden week show significant decreases

compared to the reference period. Sleep HRV reversely mirrors

these movements mostly, showing a rise when sleep HR goes down

and vice versa. Waking HR, on the other hand, is significantly

elevated during the spring months in general: spring exam, pre-

exam, and break show the highest elevation with the new year’s

following. While the summer exams and summer break also

show a significant increase from the reference period, it’s not

as pronounced as during spring, and it’s worth mentioning that
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FIGURE 6

Similar to Figure 5, this plot depicts coe�cients for the mixed e�ects model for the confounding factors high activity time, total sleep duration,

percentage of deep sleep and light sleep. Every graph represents a single fitted model for a single variable denoted at the top of the graph. The

background coloring indicates the period according to Section 4.5: pink, pre-exam; red, exam; green, break; gold, golden week; orange lines, grade

result release. The gray box gives the intercept for the reference value—the median of all values during the semester—as well as the model fit (R2).

Circle dots denote a p-value < 0.1, square dots a p-value < 0.05. © 2024 Peter Neigel, Andrew Vargo, Benjamin Tag, and Koichi Kise. Used

with permission.

the reference period (semester) shows the lowest group-wide HR.

The maximum waking HR has very pronounced and significant

increases for both the summer exams and the summer pre-

exam period, and to a lesser degree for summer break, indicating

stressful events during these periods. Golden week shows a strong

decreasing effect on maximum waking HR but lacks significance.

To better understand the movements before, during, and after

specific periods, the model coefficients for individual calendar

weeks are particularly useful. The strongest indicator for academic-

related stress is the increase in maximum waking HR just

before the summer pre-exam period, when many students are

beginning to prepare for exams, with a significantly elevated
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plateau during the pre-exam weeks and significant global peak

during summer exams (Figure 5). This is accompanied by a

significant reduction in the ratio of deep sleep to total daily

sleep and an increase in light sleep, indicating less restorative

sleep and signs of stress (Kim and Dimsdale, 2007). Meanwhile,

total sleep duration drops much earlier, starting at the beginning

of the semester (Figure 6). After the summer exams (as well as

spring exams), we can see total sleep duration rise sharply, very

likely due to the semester breaks starting and students’ free time

increasing. Heightened activity cannot explain this increase in

maximum HR, as can be taken from the activity coefficients for

that period.

While the apparent increase in stress during the summer exams,

as indicated by the maximum waking HR, is intuitive, the spring

exam period shows a smaller and non-significant increase in the

same measure. This is accompanied by a decrease in nighttime

HR and an increase in HRV as compared to the reference period,

showing an apparent contradiction of the stress hypothesis. At

the same time, un-aggregated waking HR shows a significant peak

during the spring-exam period. This raises the question of how

these findings can be mediated. Several possible explanations can

be speculated based on the data. One such explanation is that

exams – and the studying period beforehand—serve as the primary

stressor, as indicated by waking HR and maximum waking HR.

Physiological recovery from this stress period appears to begin after

the exam ends, during the semester breaks. An indication of this

is that sleep HR is increased for both break periods and especially

seems to increase after the grades are released (see Figure 5 top).

Another possibility is that the regular schedule of studying for

exams leads to more restorative sleep. The reality, however, is

that the analysis in this paper identifies the need for additional

data collection, possibly qualitative, to identify the reason for the

phenomena clearly.

Another period of relevance is the spring break itself. During

spring break, waking HR is notably higher when compared to the

reference period (under the semester). This increased HR is present

not only over the entire break period but also remains elevated in

specific weeks when the data is broken down by calendar week. This

is accompanied by a rise in sleep HR, a drop in HRV, and a drop

in deep sleep duration, indicating that the spring semester break

is a period of stress for the student body. This seems to harmonize

with a peculiarity of the Japanese jobmarket: the job hunting season

(Section 4.1). Further, the spring break is a period of uncertainty for

students, besides looking for, applying to and interviewing for jobs,

many students often need to find new apartments and can have

significant changes to their lifestyles.

Golden week as a period stands out by the fact that for the

period analysis, only sleep HR yielded significant results with a

mild decrease in HR, hinting to a recovery period. That other

measures failed to obtain significant coefficients indicates that this

week is characterized by a high variation between participants in

physiological measurements and possibly behaviors.

The end of the year, including New Year, is again very clear

cut: All measures point to a stressful period for the student body,

although the effect is not as pronounced as it is for summer exams.

New Year’s in Japan is a major holiday, where people typically

visit their families and friends, often involving extensive travel.

Students may be traveling or attending parties, which may explain

the phenomenon.

Looking at the maximum waking HR coefficients by calendar

week, we see that weeks 40 and 51 show significant increases,

indicating that group-wide multi-year stress events are occurring.

While the nature of these events remains unclear, they lead to the

broader implications of this study.

6.2 Broader implications

The results in this paper apply to a specific context: students

at one university in Japan. This environment contains a lot of

structure, benefiting the analyses. However, the results point to

broader implications regarding the possibilities of group-wide

stress detection and implied policy decisions. Our results show that

it is possible today to detect group-wide changes in physiological

measurements indicative of broader factors, as suggested by

Laborde et al. (2023), by using current wearable technology and

without exposing an individual user’s measurements. Moreover,

even though our cohort is homogeneous, it could be split into

more fine-grained groups to improve stress detection. For example,

the distinction by current academic year would offer insights into

which students are facing stressful activities. On an individual

level, features such as GPA could indicate periodic stress. It is

possible to detect these group-wide patterns without these fine-

grained subdivisions, strengthening the general applicability. Our

work shows that even noisy in-the-wild data can detect group-wide

patterns.

Therefore, the implications apply to other types of groups

in a wide range of contexts. This is important because it opens

the opportunities for the usage of consumer wearables for the

purpose of policy-making and management at large institutions

that do not seek or have control over their potential wearers.

This is significant since we know that devices like the Oura Ring

have great potential in contexts where control is maintained, such

as the military (Conroy et al., 2022). In a university context, a

few volunteers wearing sensing devices can help administrators

respond to expected and unexpected stress by adjusting policies and

preparing students better. For example, consistent stress measures

during spring break, as in our sample, suggest the university could

enhance its support systems for job-hunting. Since universally

correct usage is not required, it is also more feasible for an

institution to achieve the required deployment, maintenance, and

analysis schemes.

7 Application in a university setting

Monitoring specific characteristics of students using wearables

has been proposed or experimented in multiple contexts including

pandemic prevention (Vargo et al., 2023; Drury, 2022) or mental

health (Ueafuea et al., 2021; Shin et al., 2023; Gilley et al., 2022;

Laborde et al., 2023). For stress, most methods predict individuals’

stress and rely on self-reported or controlled stress (see Section

2). A significant gap exists between the potential use of a health-

tracking device like the Oura Ring and actual organizational
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implementation. This section considers the value of a passive

monitoring regime in a university and the myriad of possibilities

that will make implementation difficult.

7.1 Usefulness of a passive and
non-individualized monitoring system

A system that is anonymous, opt-in, and can handle missing

data could monitor the whole student body without infringing on

individual privacy, allowing the university to evaluate institutional

changes and proactively support student well-being. By using

statistical aggregation rather than individual tracking, such a

system can provide valuable insights while maintaining ethical

standards and protecting student autonomy. It could also measure

fluctuations in student stress over time, allowing stakeholders

(such as university administrators, faculty, and student support

services) to gain an overview ofmental well-being trends. Real-time

or periodic assessments could highlight peak stress periods (e.g.,

exam seasons, natural disasters) and potential burnout risks. With

this information, the system could reveal hidden stress sources,

such as specific courses, administrative procedures, or campus

environmental factors. Correlations with factors like workload,

housing conditions, financial concerns, or extracurricular pressures

could be explored to identify key issues. The system can assess how

institutional changes, external crises (e.g., pandemics), or campus-

wide events (e.g., policy changes, protests) influence student stress.

Universities can make evidence-based adjustments by comparing

stress levels before, during, and after events. Longitudinal data

gathered in this way over years could be useful for tracking

long-term trends and their effects on student performance and

well-being. This could lead to changes such as restructuring

academic calendars, introducing mental health breaks, adjusting

class loads, or improving counseling resources. Major institutional

decisions, such as revising curricula or modifying exam policies,

could be guided (apart from academic considerations) by objective

well-being data rather than assumptions. Students could receive

recommendations for campus well-being initiatives, including

faculty mentorship or peer support groups. Departments or student

organizations could tailor mental health initiatives based on real

data rather than anecdotal feedback. Campus members could be

offered to take part in well-being health activities.

7.2 Challenges to implementation and
operation

The challenges to implement and operate such a monitoring

system include management of participants and participation rate,

type of wearable device, data hosting solutions that are data

protective, analysis of the data that is privacy-preserving, and

inference of actionable solutions based on the analysis.

The type of wearable chosen for such a system should allow

for passive monitoring, i.e., it should be easy to maintain, require

as little interaction from participants as possible, and not disturb

users’ everyday lives, neither through its form factor nor through

notifications. Ring-shaped devices fulfill most of these criteria,

but other types of wearables might be suited just as well. For

example, students who are used to wearing smartwatches might not

be bothered by a watch-type device. Additionally, these students

will be more open to a monitoring system, as discussed in this

work. Due to the pervasiveness of wearable health devices, an

implementation could even allow participants to use their own

devices optionally. A monitoring system developed by a university

could potentially make use of existing APIs such as SamsungHealth

or Apple Health, although data privacy considerations need to be

addressed. The possibility for future developments in the wearable

sector, especially in terms of ever-decreasing form factors, should

be kept in mind.

To have meaningful aggregate data, the university needs

to ensure a sufficient participation rate. Our work shows that

around 100 people can be sufficient for insights, although higher

participation rates can ensure a better diversity of participants in

terms of age, sex, and student or staff status.

Ensuring data ownership and transparency is crucial for ethical

implementation. Universities need to clearly communicate how

data is collected, stored, and used while granting students control

over their personal information. Transparent policies and opt-

in participation mechanisms can help build trust and encourage

engagement in such monitoring initiatives. Students should be

made aware that their data is used only in aggregation and not

individually, and the analysis results should be accessible to them.

Ideally, data gathered from the participants should be self-

hosted by the institution in a data-secure and privacy-preserving

manner. While there are several ways to anonymizing the data, e.g.

data pseudonymization (Neubauer and Heurix, 2011), differential

privacy (Dwork, 2006) or K-anonymity (Sweeney, 2002), hosting

it securely can be challenging from a technological perspective.

Depending on the jurisdiction, the requirements for this can make

self-hosting infeasible or associated with high costs. In such a

case, hosting with a secure provider adhering to strict protection

laws, e.g., the General Data Protection Regulation (GDPR) of the

European Union (EU, 2016), might be an option.

In terms of analysis, our proposed statistically-aggregated

approach offers a few advantages. It does not require universities

to use individual information, e.g., student status, or gather ground

truth for stress, which is a prerequisite for most approaches that

are not feasible for many institutions. Additionally, most published

work deals with individual stress.

Besides the implementation and operational challenges, there

are possible second-order effects to consider. Having a system

that monitors the students’ or staff ’s stress levels could raise the

expectations of real-time interventions. While in rare cases and

depending on the cause, it is conceivable that some immediate

measures could be taken, in most cases, the bigger benefit

lies in the long-term decision support systems like these can

enable. Other possible second-order effects include the Hawthorne

Effect (McCarney et al., 2007), where students might change

their behavior due to being observed. In this case, it would be

important for the administration to ensure the anonymity of data

collection and storage continually. Another negative possibility

is the Panopticon Effect (Semple, 1993), where administrators

increase the exerted power due to the monitoring. One could
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imagine that using sensing to detect phenomena might lead to

the administration expanding its data monitoring to a level where

campus members are under constant observation.

For interventions based on the data group dynamics have to

be considered (Drury et al., 2021) in order to increase trust and

adherence. In the context of a university, this means fostering

a strong sense of shared identity among students, staff, and

faculty to promote collective responsibility and mutual care.

Health policies should be communicated through trusted in-group

figures, such as student leaders or well-regarded faculty members,

to enhance credibility and adherence. Moreover, the university

should support and recognize student-led initiatives like peer

support and mutual aid groups not only as a means of practical

assistance but also as vital contributors to campus resilience and

behavioral engagement.

7.3 Limitations

This study aims to show the feasibility of in-situ privacy-

preserving stress-tracking for in-the-wild cohorts. However,

some limitations need to be considered to contextualize our

findings appropriately.

First, while we hypothesized that elevated heart rate (HR)

and reduced heart rate variability (HRV) would correspond to

periods of academic stress, our data reveals both supporting and

contradicting patterns across different timepoints (see Tables 3, 5).

This inconsistency likely reflects the complex nature of real-world

stress and the influence of uncontrolled confounding variables in

naturalistic settings. As such, the observed associations in this

study should be regarded as exploratory and correlational rather

than diagnostic.

Second, the small number of female participants in our cohort

limits the generalizability, especially considering the effect of

gender on the relationship between stress and HR (van Kraaij

et al., 2020). While a separate analysis between genders would be

beneficial regarding these differences, the limited data availability

prohibits a similar evaluation as in Section 4. for female participants

only. In addition, the cohort is largely uniform in nationality,

major of study, and age. Future work must be conducted on

diverse populations and contexts to ensure stress detection is

universally viable.

We also only look at purely physiological data, without taking

into account contextual data like movement patterns, smartphone

use, sociability, etc., which were shown to improve stress detection

over just physiological data (Stojchevska et al., 2022). While this is

a limitation in one sense, these added data points would increase

complexity and the amount of data that is required from each user,

thus creating increased privacy risks and making implementation

more difficult for institutions.

We also do not look for the reasons for stress in the cohort.

While the academic calendar allows us to make reasonable

inferences about the causes, underlying factors may be unseen from

our approach alone. Qualitative investigations are needed to find

any underlying causes. However, these investigations could also

increase privacy risks and participant burden.

8 Conclusion and future work

In this paper, we explored the potential of consumer-grade

wearable devices to detect stress-related patterns at the group

level in a university setting. By analyzing HR, HRV, sleep, and

activity data collected over 28 months from 103 participants,

we identified physiological changes that coincided with academic

cycles, including exams and holiday breaks, despite noisy data

and uncontrolled variables. Our findings suggest that distributing

wearable health devices to small groups allows unobtrusive analysis

of group-wide effects without enforcing usage or singling out

individuals. This can also enable the identification of previously

unknown forms of stress or other group-wide effects, having broad

implications for universities’ policies. We also lay out possible ways

for universities to apply this in a real-world setting, highlighting the

benefits and obstacles of institution-wide monitoring of stress.
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