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survey of methods and future
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1RITMO Centre for Interdisciplinary Studies in Rhythm, Time and Motion, University of Oslo, Oslo,

Norway, 2Department of Informatics, University of Oslo, Oslo, Norway, 3Department of Numerical
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The development of robots that can dance like humans presents a complex

challenge due to the disparate abilities involved and various aesthetic qualities

that need to be achieved. This article reviews recent advances in robotics,

artificial intelligence, and human-robot interaction toward enabling various

aspects of realistic dance, and examines potential paths toward a fully embodied

dancing agent. We begin by outlining the essential abilities required for a robot

to perform human-like dance movements and the resulting aesthetic qualities,

summarized under the terms expressiveness and responsiveness. Subsequently,

we present a review of the current state-of-the-art in dance-related robot

technology, highlighting notable achievements, limitations and trade-o�s in

existing systems. Our analysis covers various approaches, including traditional

control systems, machine learning algorithms, and hybrid systems that aim to

imbue robots with the capacity for responsive, expressive movement. Finally, we

identify and discuss the critical gaps in current research and technology that

need to be addressed for the full realization of realistic dancing robots. These

include challenges in real-time motion planning, adaptive learning from human

dancers, and morphology independence. By mapping out current methods and

challenges, we aim to provide insights that may guide future innovations in

creating more engaging, responsive, and expressive robotic systems.

KEYWORDS

dance, human-robot interaction, expressive movement, sensory feedback, generative

AI, robot control

1 Introduction

Getting robots to dance has been a goal since the dawn of the idea of robotics, an

ultimate expression of human likeness. For roboticists, this can help facilitate trust and

comfort with their creations, while for artists, both human-like and non-human-like

motion are powerful expressive tools. Furthermore, the fact that dance incorporates so

many abilities also makes robotic dance a prime example of “understanding by simulating”

(Simon, 1996).

The specific motor-sensory abilities employed in human dance depend on the setting,

but can include motor sequence learning, real-time imitation, spatial awareness, rhythmic

entrainment, and fluid improvisation. In solo artistic settings, for example, emphasis is

generally placed on precise, expressive, and elaborate motor sequences, possibly in tandem

with music or video. Participatory dance, on the other hand, is relatively more dependent

on real-time response and adaptation to musical cues, spatial constraints and other bodies.
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While many of these dance-related abilities have been implemented

in robots, combining them requires a common framework for

training and executing controllers.

A recent review by LaViers (2024) positions robotic dance

as a field at the frontier of the study of movement, where

imbuing robots with the ability to dance is a precursor to the

general understanding of movement by machines. Indeed, major

advances in robotic control are often demonstrated through

dance performance. One such advance was bio-inspired robotics,

where biological principles are used to overcome differences in

morphology, to integrate multimodal information, and to move in

tandem with others (Aucouturier et al., 2008). Advances in control

techniques led to automated motion retargeting (Ramos et al.,

2015), even demonstrated by dancers in real time (Hoffman et al.,

2018). In industry, dance has been used as a marketing tool by

the well-known robotics company Boston Dynamics. Their dance

videos demonstrate their robots’ control abilities, even resulting

in the development of a Choreographer software development

kit.1 Another recent review of artistic robot dance (Maguire-Rosier

et al., 2024) categorizes works according to their primary focus,

whether it is motion, responsiveness, or the hybridization of human

and robot bodies. The authors point to how dance can help to

free human-robot interaction from cultural expectations such as

human-ness, machine-ness and efficiency.

Now in the era of generative AI, novel expressive movements

of robots and avatars can be learned from training on data

(Wallace et al., 2021; Osorio et al., 2024), with implementation

in dancing robots likely to be around the corner. With the

proliferation of sophisticated machine learning techniques, a

survey of computational methods that can be applied and

combined for general robotic dance ability is required. In this

review, we focus on expressive movement and responsiveness

as key complementary qualities of dance, and the sensorimotor

abilities behind them. Unlike Maguire-Rosier et al. (2024), we

consider a standard human-robot interaction context, where robots

are distinct from any human performers. While morphology has a

profound influence on affective qualities, we are most interested in

control methods that are morphology-independent and hence as

widely applicable as possible. For the purposes of this review, we

define expressiveness and responsiveness as follows:

• Expressiveness. We define expressiveness as the agent’s ability

to move in a manner that conveys a thought or feeling. Highly

expressive robots should be able to signal agency and express

a wide variety of emotional affect. This requires a high level

of variability and flexibility in its movement patterns and

likely also in the level of complexity of these movements. The

dimensions of expressiveness can be captured in various ways,

such as in the 12 principles of animation (Yoshida et al., 2022)

or Laban movement analysis (Burton et al., 2016).

• Responsiveness. Current neuroscientific theory posits that

music and dance help to train predictive networks in the

brain (Koelsch et al., 2019), which may explain the pleasure

associated with sensorimotor entrainment or “groove”

1 https://dev.bostondynamics.com/docs/concepts/choreography/

choreographer.html

(Witek, 2017). This points to real-time responsiveness

as another fundamental aspect of human dance. We

define responsiveness as movement initiated by external

stimulus, or modified in response to changing stimulus.

The appropriateness of the timing of response is generally

important. Also included in this category is an awareness of

context, such that not all stimuli are treated equally.

Movement that is both expressive and responsive requires

combining several abilities of which we provide an overview in

Section 2, focusing on key methods and recent developments.

After surveying research performed on these abilities, Section 3

will discuss their relation to expressiveness and responsiveness, and

identify shared computational methods and principles. Finally, we

provide perspectives on directions for future research on dancing

robotic systems.

2 Dance-related abilities in robots:
state of the art

The key sensorimotor abilities involved in dance are actively

researched within robotics, often with one ability as a sole focus,

and not always applied specifically to dance. In the following

sections, one for each ability that we have identified, we present a

non-exhaustive overview of key papers and recent works in robotics

and AI, focusing specifically on methods that can be transferred to

dance.

2.1 Movement primitive learning

Movement, including dance, can often be divided into discrete

building blocks such as stepping, reaching or kicking, which can

be combined into more complex movements. In neuroscience and

robotics these are often called “movement primitives” (Ijspeert

et al., 2013; Ravichandar et al., 2020), while in human motion

analysis they are sometimes termed “movemes” (Bregler, 1997).

Such division of movement naturally leads to hierarchical control

schemes, where a high-level controller selects and sequences

actions, and low-level controllers execute them with the necessary

proprioceptive feedback as input (Merel et al., 2019a).

A common method to learn and generate primitives in robots

is to learn a trajectory in a low-dimensional space (such as a hand

position) which is then transformed into a stable attractor of a

dynamical system in this space. In doing so, the systemmakes use of

motor synergies, such that groups of associated joints do not need

to be controlled independently. Traditionally, these spaces have

been specified manually (Ijspeert et al., 2001). More recent work

uses unsupervised learning to find reusable low-dimensional latent

spaces (Merel et al., 2019b).

Primitives can also be learned through automated

segmentation of longer demonstrations, using techniques such as

change-point detection (Konidaris et al., 2012). Recent work in

3D animation and robot simulation has used vector-quantized

variational autoencoders to learn a range of primitives from human

movement datasets, also incorporating latent spaces (Siyao et al.,

2022; Luo et al., 2023).
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For robot dance, movement primitives have been used

to incorporate principles of specific dance styles such as

neoclassical (Troughton et al., 2022) and tango (Kroma and

Mazalek, 2021), albeit in a hand-crafted way. Modulating certain

movement primitives in their speed or amplitude can imbue

the motion with affective and expressive qualities (Thörn et al.,

2020). Depending on how feedback is implemented, primitives

can be made more or less responsive to external influences

such as engagement (Javed and Park, 2022), tactile feedback

(Kobayashi et al., 2022) or musical features (Boukheddimi et al.,

2022).

2.2 Movement sequence generation

Over the past decade, there have been significant advancements

in sequence modeling tasks such as text generation using data-

driven deep learning models such as the Transformer (Vaswani

et al., 2017) and variants of the recurrent neural network (RNN)

such as the LSTM (Hochreiter and Schmidhuber, 1997). Movement

data can also be represented as a sequence by segmenting dance

recordings into sequences of individual poses and/or motion

primitives. Using computers to generate dance steps has a

history spanning decades; from the work of pioneers such as

Merce Cunningham (Schiphorst, 2013), to data-driven models

for creating and exploring sequences of choreography (Pettee

et al., 2019; Li et al., 2021; Carlson et al., 2016). In animation,

generative movement models have been used to create realistic,

fluid movements for characters, allowing for lifelike motion in

films, character control in video games (Alemi and Pasquier,

2017), and virtual avatars (Lee and Marsella, 2006). Recently,

the automatic generation of movement for robot control using

deep learning has also emerged (Osorio et al., 2024; Park et al.,

2024).

2.3 Entrainment

When accompanied by music, dancers often need to align

the timing of their motions with a beat. The technical term

“entrainment” refers to the general ability for an oscillating system

to adapt its frequency to that of an external stimulus. Mechanistic

models that achieve this can be divided into two categories.

The first uses adaptive feedback to adjust an intrinsic oscillation

frequency (Mörtl et al., 2014), and has been used to find a natural

walking frequency for a given robot weight (Buchli et al., 2006).

The second method uses self-organized responses of dynamical

systems such as coupled oscillators. This principle has been applied

using gradient frequency networks (Large et al., 2015). In general,

highly nonlinear neural-like oscillators, when connected in the

right way, have a strong tendency to synchronize (Izhikevich,

2007). Neural circuits governing vertebrate locomotion, known

as central pattern generators (CPGs) (Ijspeert, 2008), can also

show entrainment to a wide range of rhythmic stimuli when their

parameters and weights are evolved for this property (Szorkovszky

et al., 2023a).

2.4 Imitation

In the context of dance, imitation is used when learning new

movements from teacher demonstration. Imitation also occurs

in the form of mirroring during dance improvisation. Imitation

comprises two essential components—first, motion characteristics

of a partner need to be recognized through the senses, then

they need to be reproduced (or retargeted) in one’s own body.

Stoeva et al. (2024) reviews progress in robotic imitation. Mapping

can occur on various levels of abstraction, from pure motion

trajectories (e.g. rotation of a hand about an axis formed by its

arm), to classifiable gestures or movement primitives (turning

a door knob), to achievement of a goal (opening a door)

(Lopes et al., 2010). For dance, lower level mapping is most

relevant, as in this case motion is not necessarily connected to

function.

2.4.1 Motion recognition
Various motion recognition systems provide low-level

information of a partner’s actions. Motion capture systems with

reflective markers or inertial measurement units can provide

this directly, although this requires the partner to wear a

specialized suit (Welch and Foxlin, 2002). Deep learning based

pose estimation, such as OpenPose (Cao et al., 2021), are an

emerging way to estimate the same data from single camera

feeds.

2.4.2 Motion retargeting
For humanoid robots, an approximately one-to-one low-level

mapping is feasible using inverse kinematics to solve for body

positions that match the partner’s as closely as possible, while

dealing with constraints such as balance and stiffness. Various data-

driven machine learning approaches also exist to solve the inverse

kinematic problem (Xu et al., 2017). Furthermore, by incorporating

prediction into the model, a robot can be made to anticipate the

partner’s motion and hence increase synchronicity (Dallard et al.,

2023). The robot Alter3 has been equipped with both automated

low-level imitation and a “dream mode,” in which its history is

searched for a movement that is closest to matching the target’s

optical flow, for a more abstract higher level imitation (Masumori

et al., 2021).

For non-humanoid robots, although low level mapping of

joints is not possible, analogous movement primitives can in

principle be learned. In this case, the concept of affordance is

useful (Lopes et al., 2010) yet underexplored. Laban movement

analysis can also be used to describe the characteristics of the

motion to bematched (Burton et al., 2016; Cui et al., 2019). Another

solution is to specify situations where close position mapping is

most important, such as when motion is slowest, and optimize

for smooth transitions at other times (Rakita et al., 2017). In a

dance context, rhythmic entrainment could also be used to find

an analogous movement sequence to that of a partner with a

different morphology (Michalowski et al., 2007; Szorkovszky et al.,

2023b).
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2.5 Stabilization

Balance and stability are important for dancers to execute

complex movements in a controlled manner, allowing their

movements to look effortless while also protecting themselves

from injuries. Similarly, it is essential for legged robots to keep

the center of mass supported at all times. Hence, continuous

feedback control is ubiquitous for such robots in industrial

settings. Typically, this relies on hand-designed motion plans so

that the kinematic equations and hence the necessary feedbacks

are known (Kuindersma et al., 2016). More recently, machine

learning approaches such as reinforcement learning have been

used to automatically find motion plans and corresponding

feedbacks (Castillo et al., 2021). In both of these cases, robots

employing feedback control can be seen as responsive, as the

feedback can “respond” to perturbations quickly much in the same

way as a dancer would if finding themselves in an unnatural

position. However, since adjustments are directed toward a stable

subset of positions, feedback control by itself limits expressiveness

of motion.

2.6 Spatial awareness

Human-robot interaction in dance encompasses a variety of

modes, each presenting distinct challenges and opportunities. A

key distinction can be made between interactions that require real-

time responsiveness and those that do not. For performances with

minimal or no physical touch, such as those by Merritt Moore

with a UR10e robot (Universal Robots, 2020) or Huang Yi with

the industrial robot KUKA (Yi, 2017), the movements can be

intricate and highly expressive. These performances often create

the illusion of responsiveness, despite being pre-designed and

static. In such cases, the lack of real-time interaction simplifies the

computational demands but limits the dynamic exchange between

human and robot. In contrast, partner dancing necessitates real-

time responsiveness to a human partner’s movements. Recent

advances have incorporated tactile (Sun et al., 2024) and haptic

sensors (Kobayashi et al., 2022) to enable robots to detect and

respond to proxemic cues in partner dance scenarios. For human-

robot partner dancing to succeed, the robot’s movements must

be both predictable and highly responsive to the human’s actions.

Responsiveness is not limited to partner dance; it can also be

applied to other contexts, such as using human movement to

control robot swarms (St-Onge et al., 2019).

2.7 Improvisation

Improvisation, the ability to respond spontaneously without

a predefined plan, is an important part of many creative

practices. During training and the ideation stage of choreographic

development, for example, improvisation often plays a central

role. In these contexts, a robot’s ability to perform unexpected

and surprising movements may be favorable compared to more

predictablemovement patterns. In order to achievemore surprising

and interesting interactions, previous work has leveraged the power

of generative AI. AI-generated outputs, often characterized by

their unconventionality or absurdity, have been explored across

various creative domains, including text-based prompts for writing

(Singh et al., 2022) and the ideation phase of dance composition

(Wallace et al., 2024) and could play an important role in

developing robot dancers that can improvise. In the project AI_am

(Berman and James, 2015), a dancer interacts with an AI in

real time, experiencing its “weird grace, punctuated by a glitchy

flow." This was achieved by sampling trajectories through a low-

dimensional “pose map” in an interactive but partially randomized

way. Similarly, Carlson et al. (2016) used evolutionary algorithms

to mutate keyframes in choreography, producing poses that were

unconventional and, at times, impossible for dancers to replicate

directly. The unpredictable nature of these systems enriched the

dialogue between the dancer and the AI, broadening the dancer’s

movement vocabulary.

3 Discussion

How do we imagine a future robot dancer? We might imagine

a human dancer sharing a stage with a robot partner. It’s body may

not be human, but the way it moves and reacts to the human dancer

is. When the dancer changes their use of space on the stage, the

robot accommodates the dancer by moving closer or farther away.

Without mirroring, the robot adjusts the speed and intensity of

its movements to compliment what the dancer is doing. Without

words or designated signals, the robot is capable of interpreting

the dancer’s movements on-the-fly. The robot can determine the

tempo, emotion, ethnographic roots and genre of the dance and

any musical accompaniment, and use these facets to take part in

shaping the story of the performance.

By combining the disparate abilities involved in dance under

the rubric of expressiveness and responsiveness, the life-like

behavior described above can be pursued in a systematic way.

Quantitative measures that capture aspects of expressive movement

can be derived based on Laban movement analysis (Knight and

Simmons, 2014; Burton et al., 2016) or animation principles

(Yoshida et al., 2022). Entropy measures can then capture the

overall utilization of the affective spaces that span a range of

qualities or a learned set of motion primitives (Xiao et al.,

2024). Due to the subjective nature of expressiveness, these

should be combined with surveys following performance and

interaction studies. Metrics that capture responsiveness include

Granger causality for low-dimensional data such as agent position

(Chang et al., 2017) and Markov-based conditional independence

for higher-dimensional data such as motion capture (Castri

et al., 2024). It is likely that these methods would need

to be complemented with measures of entrainment, such as

mean asynchrony (Aschersleben, 2002), as synchronized repetitive

motion will eliminate the temporal differences used to infer

causality.

In Table 1, we summarize the abilities and methods reviewed

in Section 2. For each ability, we have listed the most

promising methods and whether they require online or offline

training/optimization (if relevant). While offline training reduces

the computational load while running, online learning allows

the robot to learn from its environment and interactions,
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TABLE 1 Desired abilities for dancing robots, relevant methods, and their impact on responsiveness and expressiveness.

Ability Impact on
responsiveness

Impact on
expressiveness

Methods Training online/
o	ine

Movement primitive learning Either Increases Trajectory learning Either

Latent variable models Offline

Entrainment Increases Decreases Phase feedback CPGs Online

Self-organized CPGs Offline

Motion recognition Increases Either Pose estimation Offline

Motion capture system None

Motion retargeting Increases Either Inverse kinematics Either

Data-driven Offline

Sequence generation Decreases Increases RNNs Offline

Transformers offline

Evolutionary algorithms Offline

Stabilization Increases Decreases Optimal control Either

Reinforcement learning Online

Spatial awareness Increases Either Tactile sensors None

Haptic sensors None

Improvisation Decreases Increases Sampling strategies Either

Evolutionary algorithms Online

If a method includes automated learning or optimization of parameters, the training column indicates whether this can be done online (i.e. while the robot is functioning), offline (i.e. before

deployment), or either.

avoiding “reality gaps” (Collins, 2022). Therefore this is an

important consideration when combining abilities. We have also

specified whether each ability is expected to increase or decrease

expressiveness and responsiveness, or whether this depends on

context or method (labeled “either”).

Although expressiveness and responsiveness are not mutually

exclusive, care needs to be taken to maintain a balance between

them. For example, stabilizing feedback will make a robot more

reactive to sensory input and less likely to produce extreme

motions. Conversely, sequence generation on its own will plan an

expressive series of movements that are not conditional on the

environment.

A combination of abilities is clearly required to allow a high

degree of both qualities. In order to make these compatible, it is

necessary to identify shared computational methods and principles.

Here, we outline some selected approaches that we believe could be

relevant in an integrated design approach:

• Latent spaces: these are low-dimensional representations

that capture variation or structure in data, well suited to

the high dimensional spatiotemporal data encountered in

the study of movement. As such, they have been used for

learning movement primitives (Merel et al., 2019b), imitation

(Masumori et al., 2021) and improvisation (Berman and

James, 2015).

• Hierarchical control: this divides the control problem into

that of low-level movement aided by proprioceptive feedback

and high level movement selection (Merel et al., 2019a).

While this idea is implicit to movement primitives, it is

has also been fruitfully applied to entrainment (Mörtl et al.,

2014). Although end-to-end control approaches with deep

neural networks have made tremendous progress in recent

years, they would be insufficient in providing the long-term

expressive motion planning required in a dance context. A

hierarchical approach would enable, for example, entrainment

and sequence generation to be executed at the level of discrete

motions, with expressivity and stabilization delegated to a

continuous control scheme.

• Online adaptivity: a fully improvisational and interactive

dancing robot would need to monitor its performance

at runtime, and adaptively manage tradeoffs between e.g.

responsive and expressive behavior, or improvisation and

precision. In this context, an architecture considering

computational self-awareness could be a relevant framework

in the design process (Lewis et al., 2015). Since it is difficult

to optimize several abilities simultaneously, it would also be

useful to include some modules pre-trained offline, leaving

continuous learning formodules where this is most important.

To achieve the goal of a fully capable robotic dancer, we also

identify some important challenges to be considered:

• Morphology dependence: given a common framework for

movement, can it be applied to a biped, quadruped,

hexapod or other body plan? The field of evolutionary

robotics has devised several approaches to adapt controllers

to newly generated morphologies (Le Goff et al., 2022).

Likewise, in reinforcement learning there have also recently
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been significant advances in morphology-agnostic control

architectures (Bohlinger et al., 2024; Doshi et al., 2024).

However, these are generally applied to locomotion or

manipulation. Additionally, since the robots we imagine will

need to be trained primarily on datasets of human dance,

and interact with human partners, finding a morphology-

agnostic way to map gestures in tasks such as retargeting

remains an important challenge. A promising future source

of data in this case is from dancers exploring the affordances

of non-anthromorpic structures (Gemeinboeck and Saunders,

2017).

• Latency: responsive motion, in particular, requires fast motors

and rapid computation. Although hierarchical control allows

for a repertoire of pre-computed low-level actions, there is

very little room to spare when including communication

and motor latency. For this reason, sensory feedback loops

need to be made as short as possible. Castillo et al.

(2021) provide one such architecture that achieves this,

with deep reinforcement learning and low level kinematic

modules operating asynchronously at different sampling rates.

While low-cost platforms can be made rapidly responsive

(Michalowski et al., 2007), expressiveness may be limited due

to lack of computational power.

• Context-aware motion planning: the responsiveness quality

that we have considered so far is purely reactive—a

robot that responds to some stimulus need only alter its

current movement to be considered responsive. However, to

smoothly deal with spatial constraints and aesthetic context,

a competent human dancer would also adjust their plans,

signaling of intention, and predictions of others’ intentions

(Kobayashi et al., 2022). The future robot dancer that we

imagined would require a context-rich state variable to allow

flexibility in where and how it moves ahead in time.

With these obstacles overcome, and with the outlined abilities

combined under a common framework, it is possible that a

robot can dance both expressively and responsively, untethered

to human bodily constraints. It has already been found that AI-

generated movement that would be unrealistic for humans can

facilitate creativity in dancers (Wallace et al., 2024). In human-

robot collaborative dance, we predict that by “closing the loop”

with responsiveness, complex feedback can lead to more and more

surprising movement, outside the bounds of any training data.

Dance is an artform that expands the boundaries of how we

move and perceive motion, and robots are designed, above all,

to move. As such, the emerging field of robotic dance has much

to offer both pursuits (LaViers, 2024). We have reviewed several

sensorimotor abilities that, if integrated in a single robotic system,

can greatly expand both its expressiveness and responsiveness.

Progressing toward this goal can expand the use of robots as

creative tools, advance understanding of the human sensorimotor

system, and stimulate future work in adaptive control and social

robotics.
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