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In recent decades, neuroscientific and psychological research has identified

direct relationships between taste and auditory perception. This article explores

multimodal generative models capable of converting taste information into

music, building on this foundational research. We provide a brief review of the

state of the art in this field, highlighting key findings and methodologies. We

present an experiment in which a fine-tuned version of a generative music

model (MusicGEN) is used to generatemusic based on detailed taste descriptions

provided for each musical piece. The results are promising: according to the

participants’ evaluations (n = 111), the fine-tuned model produces music that

more coherently reflects the input taste descriptions compared to the non-fine-

tuned model. This study represents a significant step toward understanding and

developing embodied interactions between AI, sound, and taste, opening new

possibilities in the field of generative AI.
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1 Introduction

Over recent years, the rapid evolution of generative models have opened new

possibilities in manipulating images, audio, and text, both independently and in a

multimodal context. These AI advancements have ignited considerable debate about the

essence of these human-engineered “intelligences.” Critics have termed large language

models (LLMs) as “statistical parrots” (Bender et al., 2021) due to their reliance on data.

However, others view them as advanced tools capable of emulating and exploring the

intricate structures of the human brain (Zhao et al., 2023; Abbasiantaeb et al., 2024; Fayyaz

et al., 2024). Despite this division, it has become increasingly clear that limiting these

models to a few specialized areas greatly restricts their potential to fully grasp and portray

the complexity of the world. Therefore the integration of sensory modalities through

technology, particularly using AI, has emerged as a compelling frontier in computer science

and cognitive research (Murari et al., 2020; Turato et al., 2022). As multimodal AI models

advance, they increasingly offer innovative solutions for bridging human experiences

and machine understanding across diverse sensory domains. These models, which merge

information from different modalities enable machines to interpret complex real-world

scenarios and provide more nuanced outputs. While recent research has predominantly

focused on the intersection of audio and visual modalities, the potential for integrating
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taste and sound remains relatively unexplored. Nonetheless,

advances in neuroscientific and psychological research have

established clear links between taste perceptions and other

sensory inputs, especially auditory stimuli (Spence, 2011, 2021;

Guedes et al., 2023b). These investigations indicate that certain

auditory characteristics can impact how tastes are perceived. For

example, sounds with a low pitch are often linked with bitterness,

whereas high-pitched sounds tend to be associated with sweetness

(Crisinel and Spence, 2010a). This rich area of crossmodal

associations paves the way for cutting-edge AI applications

that craft immersive sensory experiences by integrating taste

and sound. Recent progress in generative AI, notably large

language models (LLMs), has demonstrated exceptional ability

to produce coherent and contextually suitable outputs across

various modalities. In music generation, models such asMusicGEN

(Copet et al., 2023), MusicLM (Agostinelli et al., 2023), among

others, have been designed to craft intricate musical compositions

from textual cues. These models are trained extensively on

datasets with a wide range of music features, enabling them

to generate music that matches particular textual instructions.

Nonetheless, incorporating crossmodal information into these

models remains largely unexplored, offering both challenges and

opportunities for future innovation. To address these challenges,

this article proposes a novel approach to incorporating taste

information into music generation by refining the data provided

to AI models. Building on expert studies and already existing

datasets (Guedes et al., 2023a), a dataset has been generated

that emphasizes the neuroscientific and experimental psychology

knowledge underlying the relationship between taste and music.

Subsequently, a generative model for music (MusicGEN) was

selected for fine-tuning to assess whether the enriched data

contributes effectively to the model’s internal representation.

Through an online survey to evaluate the model’s outputs we

discovered that the model trained in this manner produces music

that more accurately and coherently represents the input taste

descriptions, compared to a non-fine-tuned model. To enhance

visual comprehension of the research process, Figure 1 illustrates

the experimental pipeline.

The research questions guiding this study are as follows:

1. Does the model fine-tuned with a neuroscientifically validated

dataset produce outputs that align more coherently with the

crossmodal correspondences between music and taste?

2. Can the fine-tuned model induce gustatory responses?

3. Which underlying connections make the crossmodal effect

possible?

4. How much do emotions mediate crossmodal evaluations of the

music?

The article is organized as follows: Section 2 provides an

overview of the background and related work in both cognitive

neuroscience and computer science domains, Section 3 discusses
the fine-tuned model and the datasets used in this article,

Section 4 introduces the experiment we organized to evaluate

the model, Section 5 presents the analysis of the experiment’s
results, Section 6 discusses the results and compares them with

previous literature, and Section 7 concludes with considerations
on the implications of our findings and directions for

future research.

MusicGEN

Base Line 

Music Stimuli

Fine-tuned

MusicGEN

Taste & Affect

Music Database 

Fine-tuned

Music Stimuli

Modified Taste &

Affect Music
Database 

Fine tuning

Music generation
with taste-based

prompt

Music generation
with taste-based

prompt

Exp. task A:
models

comparison

Exp. task B:
semantic

differential

FIGURE 1

Experimental pipeline for evaluating taste-based music generation.

The Taste & A�ect Music Database is modified and used to fine-tune

MusicGEN, resulting in a Fine-tuned MusicGEN model. Both the

base and fine-tuned models generate music using taste-based

prompts. The generated stimuli are then evaluated through two

experimental tasks: (A) a comparison between baseline and

fine-tuned models, and (B) a semantic di�erential analysis of the

fine-tuned stimuli.

2 Background and related work

2.1 Cross-modal correspondences
between sounds and tastes

The human brain demonstrates a remarkable capacity to

establish consistent associations across sensory modalities, a

phenomenon broadly termed crossmodal correspondences. These

correspondences, systematically defined by Spence (2011), refer

to reproducible mappings between perceptual dimensions across

different sensory systems. Such associations may occur between

both directly perceived and imagined stimulus attributes and

can arise from shared redundancies or distinct perceptual

features (Spence, 2011). One of the earliest documented examples

of this phenomenon dates back to Köhler (1929)’s seminal

work, where he observed that individuals tended to associate

the pseudoword “baluba” with rounded shapes and “takete”

with angular ones. Later research has revealed a diverse

range of crossmodal correspondences encompassing nearly all

combinations of sensory modalities (Spence, 2011). While much

of the foundational research emphasized pairings between visual

and other sensory modalities, increasing attention has been

directed toward associations involving auditory cues and the

chemical senses, such as taste and smell. Auditory inputs, including

environmental sounds and those emanating from food (e.g., the
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crunch of chips), significantly influence flavor perception and

eating behavior. For example, modifying food sounds has been

shown to enhance perceptions of freshness and crispness (Demattè

et al., 2014; Zampini and Spence, 2004), and environmental music

or soundscapes can modulate meal duration, eating speed, and

consumption patterns (e.g. Mathiesen et al., 2022). Metaphors such

as describing a melody as “sweet” or a voice as “bitter” reflect

intuitive connections between auditory and gustatory modalities

that have long permeated human language. For instance, the

Italian musical term dolce denotes both “sweetness” and a gentle,

soft playing style (Knöferle and Spence, 2012; Mesz et al.,

2012). While taste-related descriptors are infrequent in musical

contexts, they do appear as expressive markers on occasion.

One notable example is the term âpre (bitter), which features in

Debussy’s La puerta del vino (1913), a composition distinguished

by its low pitch register and moderate dissonance. Despite these

intriguing connections, systematic empirical efforts to investigate

such crossmodal associations has emerged relatively recently.

Holt-Hansen (1968, 1976) pioneered this line of investigation

by demonstrating that participants could associate the flavors of

various beers with specific pitches of pure tones. For example,

higher pitches (640—670 Hz) were linked to Carlsberg’s Elephant

beer, whereas lower pitches (510—520 Hz) were matched to

standard Carlsberg beer. Moreover, participants reported richer

sensory experiences when they perceived the pitch and taste

as harmonious. While replications of Holt-Hansen’s findings

(e.g. Rudmin and Cappelli, 1983) yielded mixed results—likely

due to methodological limitations such as small sample sizes—

they provided the groundwork for future research. Crisinel and

Spence (2009, 2010a,b) expanded on these early studies using

implicit association tasks to explore pitch-taste correspondences.

Their findings revealed robust associations between higher-pitched

sounds and sweet or sour tastes, while bitter tastes corresponded

to lower-pitched sounds. Follow-up experiments using actual

tastants (rather than imagined flavors) confirmed these patterns

and additionally identified associations between salty tastes and

medium-pitched sounds.

The researchers also examined the role of psychoacoustic

properties such as timbre—characterized by spectral centroid and

attack time—in shaping these associations. For example, sweet

tastes were linked to piano sounds (perceived as pleasant), while

bitter and sour tastes were associated with trombone timbres

(perceived as unpleasant) (Crisinel and Spence, 2010a). Further

investigations have consistently observed associations between

sweetness (and sometimes sourness) with higher-pitched sounds

and bitterness with lower-pitched sounds (Knöferle et al., 2015;

Qi et al., 2020; Wang et al., 2016; Watson and Gunther, 2017).

For instance, Knöferle et al. (2015) demonstrated that both

simple chord progressions and complex soundtracks were encoded

with “sweet” (high-pitched) or “bitter” (low-pitched) conceptual

associations. Similarly, Wang et al. (2016) used a series of water-

based taste solutions and MIDI-generated tones to reveal a

gradient, with sour solutions paired with the highest pitches,

followed by sweet, and finally bitter solutions paired with the lowest

pitches. Initially, Spence (2011) proposed three potential core

mechanisms underlying crossmodal correspondences: structural,

statistical, and semantic. Structural correspondences derive from

shared neural encoding mechanisms across sensory modalities.

Statistical correspondences are shaped by regularities in the

environment, such as the physical relationship between pitch

and size. Semantic correspondences arise from shared descriptive

language, such as the metaphorical use of terms like “sweet” across

both taste and music (Mesz et al., 2011). More recent literature

has proposed an extension to this classification: Motoki et al.

(2023) introduced emotional mediation as a fourth mechanism,

highlighting how emotional responses to stimuli can influence

crossmodal correspondences. This emotional mediation suggests

that emotionally evocative stimuli, such as music, often elicit

consistent crossmodal mappings (Mesz et al., 2023; Di Stefano

et al., 2024). Music-color and music-painting associations are

frequently predictable based on the emotional valence of the

stimuli (Spence, 2020a). Furthermore, color can modulate music-

induced emotional experiences, as shown by Hauck et al. (2022),

who demonstrated that emotional responses to musical pieces

shifted in alignment with colored lighting. Similarly, Galmarini

et al. (2021) found that the emotional tone of background

music could shape the sensory experience of drinking coffee.

The emotional responses evoked by music and taste could serve

as a link for crossmodal associations by aligning the emotional

qualities of both stimuli. The emotional valence of both the music

and the taste may share similar underlying affective dimensions,

such as pleasantness or unpleasantness, which could drive the

association. Music and taste can elicit emotional reactions, and

when these emotional responses are congruent, it is likely that

the brain establishes connections between them, leading to a

crossmodal association based on shared emotional experiences.

Furthermore, Spence and Di Stefano (2022) have suggested

additional categories of crossmodal correspondences, broadening

the scope of understanding crossmodal correspondences. In

conclusion, crossmodal correspondences offer a compelling

framework for investigating the interconnected nature of sensory

perception. Moreover, these findings highlight the potential for

using auditory stimuli to influence gustatory perception. For

example, restaurants might design soundscapes to enhance specific

taste qualities or improve the overall dining experience.

2.2 Crossmodal generative models

In recent years, crossmodal generative models have advanced

significantly, inspired by an increasing interest in developing

systems capable of seamlessly integrating and translating

information across diverse sensory modalities. This evolution

is driven by the increasing capabilities of artificial intelligence,

particularly within the realm of generative models, which have

demonstrated potential in producing coherent and contextually

relevant outputs across a multitude of domains. The advancement

of crossmodal generative models is grounded in foundational

research within the disciplines of cognitive neuroscience and

experimental psychology, which have long investigated the

interactions among different sensory modalities. These models

endeavor to emulate the human faculty of perceiving and

interpreting multisensory information, a process that is inherently
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complex and nuanced. By utilizing large-scale datasets and

advanced machine learning techniques, researchers have initiated

the creation of models capable of generating outputs that reflect

the intricate interrelations among modalities such as vision,

sound, and taste. Several notable multimodal generative models

have emerged, illustrating the substantial capabilities inherent

within this domain. Text-to-image generation models, such as

DALL · E (Ramesh et al., 2021) and Stable Diffusion (Rombach

et al., 2022), are capable of rendering detailed images from

textual descriptions. Text-to-audio models, including MusicLM

(Agostinelli et al., 2023), translate text prompts into music or

soundscapes, presenting intriguing possibilities for the fields

of entertainment and virtual environments. Although still at a

nascent stage, text-to-video generation (generating both video and

audio) is anticipated to offer significant benefits for media content

production and simulation environments (Singer et al., 2022).

In contrast, image-to-text models (Radford et al., 2021; Li et al.,

2022; Alayrac et al., 2022) transform visual data into descriptive

narratives, thereby facilitating tasks such as automated captioning

and providing assistance to individuals with visual impairments.

Audio-to-text models, which have been widely implemented in

speech-to-text applications, have historically served the domains

of transcription and virtual assistance (Bahar et al., 2019). Recent

developments in generative models have enabled more nuanced

and context-sensitive analyses of spoken language.

An emerging but relatively underexplored field in multimodal

AI is emotional awareness integration. Although significant work

has gone into identifying emotions within just one modality

(Poria et al., 2017), there is growing interest in synthesizing data

from multiple modalities (Poria et al., 2017; Zhao et al., 2019).

This multimodal strategy is beneficial because integrating data

from various sources enhances emotion recognition capabilities

and opens up to new possibilities which are not possible at the

moment with just a text-based approach as in Boscher et al.

(2024). However, research into how different modalities correlate

based on emotions applied to computer science has been rather

limited. Recent developments, such as those discussed in Zhao

et al. (2020), demonstrate viable ways of linking visual and

auditory data through an emotional valence-arousal latent space

using supervised contrastive learning methods. This advancement

enables a more detailed and flexible representation of emotional

states than the traditional concept of distinct emotions, capturing

the intricate and nuanced nature of human emotions and offering a

broader comprehension of their interactions across diverse sensory

stimuli. This approach aligns with the broader goal of creating AI

systems that are not only technically proficient but also capable of

understanding and responding to human emotions in a meaningful

way. Despite these advancements, several challenges remain in

the development of crossmodal generative models. One significant

hurdle is the need for comprehensive datasets that encompass the

full spectrum of sensory experiences. Current datasets often lack

diversity, limiting the ability of models to generalize across different

contexts and populations. Additionally, the complexity of human

emotions and their influence on sensory perception presents a

formidable challenge, requiring sophisticated models that can

accurately capture and interpret these nuances. The future of

crossmodal generative models involves ongoing improvements and

enhancements, particularly in terms of developing their emotional

intelligence and broadening their range of applications. By tackling

present constraints and seizing the possibilities unlocked by

multimodal integration, researchers can advance towardAI systems

that deliver more engaging and tailored experiences, effectively

closing the divide between human perception and machine-

generated results.

3 MusicGEN

In this study, MusicGEN—a cutting-edge generative model

specifically engineered for music—was fine-tuned and then used

to generate music compositions. The fine-tuning process was

pivotal in adapting the model to our research context, which

centers on exploring the nuanced interplay between musical

compositions and sensory-gustatory responses. To facilitate this

adaptation, we utilized a patched version of the Taste & Affect

Music Database (Guedes et al., 2023a). This database originally

encompassed a diverse range of musical pieces, each accompanied

by evaluations reflecting gustatory and emotional responses. We

enhanced this foundational dataset by incorporating descriptive

captions for each audio file, meticulously crafted by the authors

to include detailed information on the correspondent tastes

and emotional qualities associated with each musical piece

as individuated in the original database study. In addition,

these captions encompassed relevant audio metadata such as

tempo, key, and instrumentation. This enhancement was designed

to provide richer contextual information to the model, with

the aim of generating music that more accurately mirrors

the complexities inherent in taste descriptions and emotional

nuances. In our exploration of multimodal generative models

for music synthesis, we critically evaluated several candidates,

including MusicLM, Riffusion (Forsgren and Martiros, 2022),

and MusicGEN. MusicLM, developed by Google, presents a

robust architecture for generating music from textual prompts;

however, its closed-source nature imposes significant restrictions

on customization and adaptability, rendering it less suitable

for our specific research objectives. Riffusion, while innovative

in its approach to music generation through the utilization

of Stable Diffusion, was excluded from consideration due to

inherent limitations such as the necessity of converting audio into

spectrograms that introduces additional computational overhead

and its inability to maintain coherent long-term audio sequences,

as discussed in Huang et al. (2023). Unlike Riffusion, MusicGEN’s

Transformer-based architecture supports the retention of internal

states, enabling the model to produce more coherent and

contextually relevant. MusicGEN, developed by Meta, is an open-

source model that permits extensive modifications and fine-tuning,

making it a far more appropriate choice for our study’s aims. Thus,

MusicGEN was selected for its optimal balance of accessibility,

flexibility, and capacity to generate coherent music that is in line

with taste descriptors. MusicGEN is characterized as a state-of-the-

art autoregressive transformer-based model (Vaswani et al., 2017),

specifically designed to generate high-quality music at a sampling

rate of 32 kHz. The model operates by conditioning on either

textual or melodic representations, which empowers it to produce
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coherent musical pieces that are in harmony with the provided

input context. Its architecture employs a single-stage language

model that leverages an efficient codebook interleaving strategy,

facilitating the simultaneous processing of multiple discrete audio

streams. This innovative approach is made possible through the

integration of an EnCodec audio tokenizer (Défossez et al., 2022),

which quantizes audio signals into discrete tokens, thus enabling

high-fidelity reconstruction from a low frame rate representation.

The design of themodel incorporates Residual Vector Quantization

(RVQ) (Zeghidour et al., 2022), resulting in several parallel streams

of discrete tokens derived from distinct learned codebooks.

The capability of MusicGEN to generate music is further

enhanced by its proficiency in performing both text- and melody-

conditioned generation. This dual conditioning mechanism allows

the model to maintain fidelity to the textual descriptions

while ensuring that the generated audio remains coherent with

the specified melodic structure. However, it is important to

acknowledge that, despite its numerous strengths, the model

does encounter limitations regarding fine-grained control over the

adherence of the generated output to the conditioning inputs. To

adapt MusicGEN for our specific task of generating music based

on taste descriptors, we undertook a comprehensive fine-tuning

process. In our fine-tuning endeavors, we opted to utilize the

smaller variant of MusicGEN, comprising 300 million parameters,

to ensure efficient training while still maintaining sufficient

representational capacity. The fine-tuning process was conducted

over 30 epochs, employing a batch size of 16 and a learning rate

set at 1.0 × 10−4 adjusted according to a cosine schedule. The

AdamW optimizer was used, featuring a weight decay of 0.01,

and the training process involved 2,000 updates per epoch. This

specific configuration was carefully chosen to strike a balance

between convergence speed and overall model performance. The

fine-tuning was executed on the “Blade” cluster at the Department

of Information Engineering (DEI) at the University of Padua,

utilizing two NVIDIA RTX3090 GPUs, each equipped with 24 GB

of VRAM.

3.1 Dataset

MusicGEN has been originally trained on a non-public dataset

of 20k h of music collected by Meta. This kind of dataset is

particularly effective to make the model figure out, after a training

period, the underlying structures embedded in musical artifacts,

on the other side the music generated by the model could lack

in specificity or could have some kind of bias. This is where fine-

tuning comes into play: it allows us to refine the model by focusing

on a specific dataset where particular conditions are met. To fine-

tune the model so that it is aware of the correlations between

auditory and gustatory experiences, we created a patched version

of the Taste & Affect Music Database by Guedes et al. (2023a).

The Taste & Affect Music Database was born as a resource for

investigating the intricate relationships between auditory stimuli

and gustatory perceptions. This dataset comprises 100 instrumental

music tracks, meticulously curated to encapsulate a diverse range

of emotional and taste-related attributes. Each musical piece within

the database is accompanied by subjective rating norms that reflect

participants’ evaluations across various dimensions, including basic

taste correspondences, emotional responses, familiarity, valence,

and arousal. The selection of musical stimuli was guided by

the objective of establishing clear associations between auditory

and gustatory attributes. The tracks were chosen to represent

fundamental taste categories—sweetness, bitterness, saltiness, and

sourness—allowing researchers to explore how these tastes can

be conveyed through music. Each participant provided ratings

on the music tracks using a series of self-report measures that

assessed mood, taste preferences and musical sophistication. This

multi-dimensional approach to data collection facilitated a nuanced

understanding of how individual differences in taste perception

and emotional responses can influence the evaluation of musical

stimuli. To adapt the dataset for fine-tuning, we generated

captions for each music sample. These captions specify musical

elements such as tempo, key and instrumentation. Furthermore, we

incorporated keywords extracted from the original Taste & Affect

Music Database, designating each sample as representative of one

or more taste categories only if its score exceeded 25% in the

original dataset.

3.2 Generated dataset

We then tested the model prompting it to infer different kind

of music, at first few qualitative attempts were made to assess the

correspondence between the prompted text and the model’s output.

In particular we performed a qualitative stress test varying musical

genre asking, with many different prompts, for classical, ambient

and jazz music. We found that the generated audio matched with

varying quality the prompt with the exception of classical music,

where the models (both the base and the fine-tuned version) tend

to disattend the prompt with non-classical music, one reason could

be the fact that the 20k hours training dataset of the MusicGEN

model comprehends just a small percentage of classical music,

while the corpora better represents other genres such as jazz and

ambient. The ambient genre showed to be the most neutral one

and adapt to generate music suited to be evaluated by subject

without being conditioned by the genre, hence we kept specifing

this genre in the successive prompts to avoid other genre biases

during the output evaluation. Following a qualitative assessment,

we created a dataset using both the original and fine-tuned models.

Four prompts were developed, corresponding to each taste under

study, with the structured format: 〈TASTE〉 music, ambient for

fine restaurant, where 〈TASTE〉 represents sweet, bitter, sour, and

salty. Each model produced a total of 100 pieces, each lasting

15 seconds. Of these, 25 were generated using the salty prompt,

25 using the sweet prompt, 25 using the bitter prompt, and 25

using the sour prompt. To compare outputs, we adopted standard

metrics to evaluate the fine-tuned model in relation to the base

version, specifically measuring the Fréchet Audio Distance (FAD)

(Kilgour et al., 2019) between the training dataset and the outputs

of both models when given the same prompt. The evaluation has

been performed adopting the fadtk implementation (Gui et al.,

2024) using VGGish embeddings (Diwakar and Gupta, 2024) as

in the original MusicGEN paper, in addition with the EnCodec

ones, since the model is based on such encoder we think that
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TABLE 1 FAD evaluation results using VGGish and EnCodec embeddings.

Model VGGish EnCodec

Base 3.184 121.513

Fine-Tuned 2.579 107.594

this metric should better match the internal representation of

the model.

The evaluation results shown in Table 1 display that the music

generated by fine-tuned model better matches with the reference

dataset; despite could be an expected result that a fine-tuned model

generates music more similar to the training dataset than its non

fine-tuned version, it is important to denote that the training

dataset was just 1 h length and very specific.

4 Materials and methods

The subjective evaluation of the fine-tuned model was

conducted through an online survey administered through

PsyToolkit, a widely used platform for psychological research

(Stoet, 2017). The survey was structured to gather participants’

opinions on the possible crossmodal correspondences between

music and taste induced by the fine-tuned model compared to

the non-fine-tuned version. Participants were recruited through

various online channels to ensure a diverse demographic

representation.

The listening tasks consisted of two distinct types. In the first

task, participants were asked to express their preference between

two audio files generated by the two models. In the second task,

they quantified their perceptions and emotional responses to each

piece of music. Specifically, participants rated the flavors they

perceived using a graduated scale from 1 to 5 for four primary taste

categories: salty, sweet, bitter, and sour. Additionally, they rated

their emotional responses on various non-gustatory parameters,

including happiness, sadness, anger, disgust, fear, surprise, hot, and

cold, using the same graduated scale. This survey design enabled the

collection of quantitative data specifically related to the qualitative

parameters of the stimuli, facilitating a comprehensive analysis

of the relationship between music and sensory experiences while

acknowledging the mixed nature of the dataset.

To assess the adequacy of the sample size and the reliability

of the findings, a power analysis was conducted for both tasks.

For Task A, which involved a paired comparison between two

audio samples, Cohen’s d was computed with respect to a neutral

reference point (d = 0.16). The corresponding power for detecting

a positive effect with a one-sided paired t-test, given the observed

effect size and a sample size of n = 111, was found to be high (1 −

β = 0.98), indicating a very low probability of Type II error. For

Task B, a one-way ANOVAwas performed to assess the effect of the

prompt variable on participants’ responses, controlling for other

factors such as adjective, hearing experience, eating experience, and

sex. The partial eta squared (η2) for the prompt effect was 0.0064,

corresponding to a small Cohen’s f of 0.08. Despite the small effect

size, the achieved power was exceptionally high (1 − β = 0.99),

owing to the large sample size and balanced distribution across the

four prompt conditions. These results confirm that the study was

sufficiently powered to detect even subtle effects in both tasks.

All materials, including the patched database, survey

instruments, and detailed instructions for the fine-tuning

process, are available for reproducibility and further research.

4.1 Participant selection and demographic
data

Participants were recruited through a combination of online

platforms and local community outreach, ensuring a diverse sample

reflective of the general population. A total of 111 individuals

participated in the study, comprising 61 males, 46 females, 2

individuals identified as other, and 2 who did not specify their

gender. The mean age of the participants was 32 years (with a

minimum age of 19 and a maximum age of 75). Along with gender

and age, we collected a self-evaluation of both the auditory (38

professionals, 43 amateurs, 30 not-experienced) and the gustatory

experience (1 professional, 44 amaterus, 66 not-experienced), the

ethnicity and the type of audio device used to participate in the

survey (headphones, speakers or HiFi stereo). Regarding ethnicity,

the majority of participants identified as white/European American

(n = 90), followed by Latino/a/x or of Spanish origin (n = 4),

Middle Eastern or North African (n = 3), Southeast Asian (n = 2),

Asian (n = 1), Multi-racial (n = 1), and 10 participants did not

disclose their ethnicity.

This study was conducted in accordance with the ethical

principles outlined in the Declaration of Helsinki (most recently

amended in 2024), ensuring respect for participants’ rights, safety,

and wellbeing. Prior to participation, all individuals provided an

informed consent after receiving a detailed explanation of the

study’s objectives, procedures, and voluntary nature. Given the

non-invasive nature of the survey, the study was classified as zero-

risk research according to the ethical self-assessment guidelines of

the Committee for Ethical Research (CER) of the University of

Trento, and thus did not require additional ethical approval.

4.2 Experiment design

The online survey was structured to explore the relationship

between auditory stimuli and taste perception. Initially,

participants selected their preferred language to complete the

survey, with options available in both English and Italian.

Following the language selection, participants engaged in a series

of listening tasks.

4.2.1 Task A
The first task involved the presentation of two audio clips,

each associated with a specific taste category (sweet, salty, bitter,

and sour, see Figure 2). Participants were made aware of the taste

category through a text indicating if the music was supposed

to be perceived as sweet, salty, bitter or sour, then they had

to listen attentively to both clips before indicating which of the

stimuli was the most coherent with the given text by moving a
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FIGURE 2

Survey’s task A interface, where to express song preference.

cursor along a scale ranging from 0 to 10. This scale allowed

for a nuanced expression of preference, where a position of 0

indicated a strong preference for the first audio clip, a position of

10 indicated a strong preference for the second, and a position of

5 signified no preference between the two. To mitigate potential

biases, the order of taste categories and audio clips was randomized

for each participant. Each audio clip was generated by either

the fine-tuned model or the base model as specified in Section

3.2, although the participants were not informed of the specific

model used for each clip. This design choice aimed to improve

the robustness of the findings by controlling for model-related

effects. Participants completed a total of five listening tasks, each

featuring different audio clips corresponding to randomly assigned

taste categories, assuming the uniform distribution of the random

number generator (RNG) provided by PsyToolKit each track has

been evaluated in mean 5 times in this task.

4.2.2 Task B
Following the five items of task A, participans were presented

with three more items, each one including one single audio

stimulus and an evaluation based on the list of 12 adjectives-words

(see Figure 3), this list includes the six basic emotions by Ekman

(1992), the four basic tastes and temperature feeling (hot, cold), for

each of these words participants used a scale from 1 to 5 to quantify

FIGURE 3

Survey’s task B interface.

their perception (where 1 means not at all and 5 means a lot).

We considered these adjective-words to study eventual correlations

between tastes and other domains such as emotions and thermal

perception. This evaluation allowed participants to articulate the

extent to which they recognized each adjective in relation to the

music they had just listened to. Basing on the same assumption

of task A about the RNG each track has been evaluated in mean

3 times in this task.

5 Results

In this section, we present the most meaningful results

obtained from a more in-depth analysis. The full analysis along

with the scripts used to generate the results can be found at

the following website: https://matteospanio.github.io/multimodal-

symphony-survey-analysis/.

5.1 Task A analysis

The objective of analyzing these results is to determine whether

one model is consistently judged as more accurate than the other in

generating music associated with the given prompt. Therefore, we

evaluated whether the scores systematically favor one model over

the other.

At first, due to the random order of the stimuli presentation, we

normalized the scores attributed in task A ordering the preference

according to the score function S as defined in Equation 1. This
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FIGURE 4

Distribution of the task A results, where a score of zero means a

strong preference for the base model, while a score of 10 means a

strong preference for the fine-tuned model.

TABLE 2 p-values and adjusted p-values resulting from the Wilcoxon test

for di�erent taste attributes.

Taste p-value W Adjusted p-value E�ect size (r)

Bitter 0.003 5573 0.013 0.231

Salty 0.996 2784 1.000 0.238

Sour 0.007 4770 0.030 0.211

Sweet <0.001 5320 <0.001 0.397

procedure allows us to interpret scores from 0 to 4 as a preference

for the base model, scores between 6 and 10 as a preference for the

fine-tuned model, and scores of 5 are treated as neutral.

S(x,m) =

{

x, ifm = right

10− x, ifm = left
(1)

where x ∈ {n ∈ N | n 6 10}, and m can take the values

“right” or “left,” according to the position on the survey form of

the stimulus generated with the fine-tuned model.

An histogram of the participants’ ratings is shown in Figure 4,

where a preference for the fine-tuned model is evident, due to the

right-skewed statistical distribution. After a Shapiro-Wilk test with

p < 0.05 that determined the non normal distrubution of the data,

we opted for a Wilcoxon signed-rank test which gave a statistically

significant result supporting the hypothesis that the median score is

greater than 5 (p < 0.001,W = 73966). Furthermore we continued

with a post-hoc analysis performing a Wilcoxon test for each taste

group (sweet, sour, bitter, salty) applying a Bonferroni correction

to adjust for the multiple comparisons and control the family-wise

error rate.

As can be seen from the results of the test reported in Table 2

all audio samples generated by the fine-tuned model but salty,

are statistically chosen as better than the base model. We then

performed the opposite hypothesis test to test just the mean of the

salty group of samples, the result confirm amedian score lower than

TABLE 3 Results of the ANOVA test.

Factor Df Sum Sq Mean Sq F value Pr(>F)

Prompt 3 29.402 9.801 8.739 <0.001

Adjective 11 188.478 17.134 15.279 <0.001

Hearing experience 2 37.299 18.650 16.630 <0.001

Eating experience 1 0.711 0.711 0.634 0.426

Gender 1 0.069 0.069 0.061 0.804

Prompt:adjective 33 214.757 6.508 5.803 <0.001

5, meaning that the base model is overall preferred in the case of

salty text suggestions (p ≈ 0.003,W = 2784).

5.2 Task B analysis

To investigate whether different prompts and adjectives

resulted in significantly different ratings assigned by participants,

and to examine the interaction between taste, emotions, and

thermal perception, we first conducted an Analysis of Variance

(ANOVA), followed by a factor analysis. The ANOVA model is

defined as follows:

value ∼ prompt× adjective+ hearing_experience

+eating_experience+ gender (2)

where × denotes an interaction effect between factors, value

represents the score assigned by the participant to a specific

adjective, prompt refers to the designated taste category used during

stimulus generation, gender corresponds to the participant’s self-

reported gender, while hearing_experience and eating_experience

indicate the participant’s self-assessed expertise in auditory and

gustatory tasks, respectively.

The dataset was filtered to include only participants identified

as Male or Female, excluding other genres and excluding also

participants classified as Professional Eaters due to insufficient

representation of these categories.

Prior to interpreting the results, the homoskedasticity

assumption was assessed by examining the residuals. A Shapiro-

Wilk test indicated deviation from normality (p < 0.001).

Visual inspection of the Q-Q plot suggested that this deviation

was primarily limited to the distribution tails. Given the large

sample size (N = 3, 996) and balanced group sizes, the analysis

proceeded, following established evidence that ANOVA is robust

to moderate violations of the normality assumption when sample

sizes are sufficiently large and balanced (Glass et al., 1972; Harwell

et al., 1992; Lix et al., 1996; Schmider et al., 2010). The ANOVA

results (see Table 3) show a significant effect of both prompt and

adjective, with an even stronger effect for their interaction. In

other words, the prompt influences participants’ ratings across

the different adjectives-words in the semantic scale. Also hearing

experience shows to be relevant in order to evaluate the audio

stimuli, whereas neither eating experience nor participant’s gender

influenced the stimuli evaluations of Task B. A post-hoc analysis
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TABLE 4 Tukey test results for di�erent prompts with a p-value <0.05.

Comparison di� lwr upr p adj

Sour - bitter 0.153 0.027 0.280 0.009

Sour - salty 0.194 0.066 0.322 <0.001

Sweet - sour −0.193 −0.321 −0.065 <0.001

TABLE 5 Tukey test results for di�erent adjectives with a p-value <0.05.

Comparison di� lwr upr p adj

Bitter - anger 0.420 0.143 0.696 <0.001

Cold - anger 0.477 0.201 0.754 <0.001

Hot - anger 0.531 0.255 0.808 <0.001

Sad - anger 0.576 0.300 0.853 <0.001

Sweet - anger 0.372 0.095 0.648 <0.001

Disgust - bitter −0.633 −0.910 −0.357 <0.001

Happy - bitter −0.309 −0.585 −0.032 0.013

Surprise - bitter −0.285 −0.561 −0.008 0.036

Disgust - cold −0.690 −0.967 −0.414 <0.001

Happy - cold −0.366 −0.642 −0.089 <0.001

Sour - cold −0.285 −0.561 −0.008 0.036

Surprise - cold −0.342 −0.618 −0.065 0.003

Fear - disgust 0.432 0.155 0.708 <0.001

Happy - disgust 0.324 0.047 0.600 0.007

Hot - disgust 0.744 0.468 1.021 <0.001

Sad - disgust 0.789 0.513 1.066 <0.001

Salty - disgust 0.468 0.192 0.745 <0.001

Sour - disgust 0.405 0.128 0.681 <0.001

Surprise - disgust 0.348 0.071 0.624 0.002

Sweet - disgust 0.585 0.309 0.862 <0.001

Hot - fear 0.312 0.035 0.588 0.012

Sad - fear 0.357 0.080 0.633 0.001

Hot - happy 0.420 0.143 0.696 <0.001

Sad - happy 0.465 0.189 0.742 <0.001

Sour - hot −0.339 −0.615 −0.062 0.003

Surprise - hot −0.396 −0.672 −0.119 <0.001

Salty - sad −0.321 −0.597 −0.044 0.008

Sour - sad −0.384 −0.660 −0.107 <0.001

Surprise - sad −0.441 −0.717 −0.164 <0.001

was then conducted on the significative factors by means of the

Tukey’s Honest Significant Difference (HSD) test. Tables 4, 5 list

the combinations of, respectively, prompts and adjectives that

show statistically significant differences. Notably the sour prompt

received higher evaluations compared to other ones. Table 5

instead highlights that anger and disgust received lower values

overall, while hot, cold, and sad received the highest evaluations.

The prompt-adjective interaction can be seen in Figure 5. In

particular Figure 5a shows the mean value assigned to each taste

adjective by their prompt, we can clearly see the major diagonal

emerge by the matrix, which means that the mean value assigned to

the adjective that matches the prompt of each sound is the highest.

The rest of the interaction between adjectives and prompts can be

seen in Figure 5b, a deeper analysis of emotional aspect assigned to

the sounds is presented in Section 6.

The Tukey test results for the hearing experience interaction

show that amateur listeners tend to give significantly higher ratings

compared to professionals (diff = 0.23, p < 0.0001) and the

not-experienced people (diff = 0.17, p = 0.0003).

To investigate the connections between sensory qualities and

emotional states, we performed a factor analysis. The scree test

indicated that 4 factors were optimal. Consequently, we employed

a factor analysis with oblique axis rotation and the maximum

likelihoodmethod, utilizing the psych R package byWilliam Revelle

(2024). The loadings obtained are presented in Table 6, showing the

degree to which each variable contributes to the identified factors,

thus offering insights into the data’s underlying structure. Each of

this factors is clearly characterized: the first one is about negative

valence adjectives and groups together bitterness and sourness,

factor two is strongly aligned with sweetness which also correlates

with happiness, hotness and, a little, with sadness, factor three

reaches highest scores in hot and cold defining a temperature

dimension and factor four binds together saltiness, happiness with

surprise.

6 Discussion

The findings of this study reveal that the music produced

by our model refined with a dataset confirmed by psychological

crossmodal research can indeed evoke crossmodal effects.

Additionally, the music is not merely perceived generically as

tasty; the model can be specifically prompted with particular taste

attributes which, according to ANOVA tests, are often identified by

listeners.

Regarding the first research question, focused on evaluating the

ability of the fine-tuned model to generate audio that accurately

describes the investigated flavors, the findings reveal that the fine-

tuned model produced music that is more coherently aligned

with the taste descriptions for sweet, sour, and bitter categories

compared to the non-fine-tuned model. This indicates that the

integration of gustatory information into the music generation

process was effective, enhancing the model’s ability to capture the

sensory nuances associated with various tastes. However, music

intended to represent salty flavors was less effectively captured

by the fine-tuned model than by the base model. Although the

overall assessment shows that the fine-tuned model aligns better

with the crossmodal effect through both objective and subjective

evaluations, the salty music was better represented by the base

model. One possible explanation for this phenomenon could be

attributed to biases in the specified musical genre within the

prompts and the dataset used for fine-tuning, where salty music

is underrepresented compared to other categories. Notably, in the

dataset provided by Guedes et al. (2023a), the compositions are

more frequently perceived as sweet, and many of those scoring
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FIGURE 5

Visualization of the relationship between taste prompts and their perceived characteristics. (a) illustrates the alignment between intended taste

prompts and the corresponding perceived taste intensities, while (b) presents the emotional responses elicited by each taste prompt. Color intensity

represents the mean reported values. (a) Heatmap of perceived taste in correspondence of the intended one. (b) Heatmap of perceived emotional

response in correspondence of the suggested taste.
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TABLE 6 Loadings resulting from the factor analysis with 4 factors: Factor

1 includes negative valence emotions and tastes, Factor 2 is primarily

associated with sweetness and other positive valence traits, Factor 3 is

largely linked to temperature and shows no strong correlation with any

specific taste, and Factor 4 combines saltiness and surprise with

happiness.

Factor 1 Factor 2 Factor 3 Factor 4

Salty −0.231 0.111 0.535

Sweet 0.992

Bitter 0.502

Sour 0.385 −0.128 0.178 0.226

Happy −0.197 0.302 −0.132 0.492

Sad 0.292 0.259 0.236

Anger 0.779

Disgust 0.694 −0.133

Fear 0.662 0.133 0.113

Surprise 0.120 0.526

Hot 0.140 0.361 −0.458 0.267

Cold 0.882

Proportion variance 0.174 0.113 0.096 0.081

Cumulative variance 0.174 0.287 0.382 0.463

well in the salty category also exhibit sweetness. Furthermore, the

Fréchet distance based on both used embeddings suggests that

the music generated by the fine-tuned model is perceptually more

similar to that generated by the other model (Gui et al., 2024). This

implies that the sonic characteristics of the tracks in the dataset

used for fine-tuning do not adequately reflect saltiness. According

to Wang et al. (2021), short and articulated sounds, along with

steady rhythm, can evoke this sensation. The average beats per

minute (BPM) of our dataset is 111—Moderato, not particularly

fast within common Western tempo markings as detailed in Cu

et al. (2012)—and recurring keywords include “small emotions”

and “ambient.” It should be noted that ambient music is often

used as background music, lacking prominent peaks in energy,

timbre, and/or aggressive speed (Scarratt et al., 2023). Therefore,

we conclude that while the fine-tuning was successful, the reference

dataset requires further study and enrichment with music that

better represents saltiness, not limited to the ambient genre.

To explore the second, third, and fourth research questions—

whether the fine-tuned model can induce gustatory responses,

which underlying connections make the crossmodal effect possible,

and how much emotions mediate crossmodal evaluations of

music—the study examined the extent to which the music

generated by the fine-tuned model elicited crossmodal taste

perceptions in participants, with a particular focus on emotional

correlations. The findings indicate that the music did indeed

evoke gustatory sensations, with correlations showing that positive

valence emotions are associated with positive valence tastes and

vice versa, while temperature also plays a significant role in these

correlations. Although emotions explain a substantial portion

of the correlations, the factor analysis revealed that the four

factors accounted for less than 50% of the total variance. The

ANOVA test results confirm that participants perceived taste

suggestions guided by an undergoing logic rather than randomly.

Specifically, as observed in the interaction matrix in Figure 5a,

there is a clear main diagonal, indicating that on average, the

intended taste for which the music was generated is recognized.

This recognition is more apparent for sweet and bitter music,

while sour music is often perceived as bitter, and salty music is

frequently associated with sweetness. This aligns with previous

discussions about the biases present in the dataset used for fine-

tuning. As studied by Wang et al. (2016), our results show a

strict correlation between positive emotions and sweetness and

negative feelings with bitterness, confirming that anger and disgust

were less used in the ratings, a known fact studied by Mohn

et al. (2011). These findings are further corroborated by the

factor analysis. The factor loadings Table 6 highlights that the

first factor is dominated by negative adjectives, bitterness, and

sourness, with a notable inverse correlation with happiness. In

contrast, the second factor is almost exclusively dominated by

sweetness, which resonates with warmth and happiness but also

with sadness, demonstrating that sad music might be perceived

as pleasant (Kawakami et al., 2013; Sachs et al., 2015). The third

factor represents temperature, indicating that negative emotions

and sour and salty flavors align with cold sensations, while warmth

and happiness align in the opposite direction (Spence, 2020b).

The fourth factor combines salty, happiness, surprise, warmth, and

sourness. The first, second and fourth factors, when considered

in terms of emotional aspects, clearly characterize valence, with

positive (factors 2 and 4) and negative (factor 1) dimensions.

Temperature appears to be separate from other dimensions, aside

from minor, non-significant correlations, suggesting its use as an

indicator of perceived arousal from the stimulus. Furthermore,

looking at Figure 5b, the prompt “sour” showed a higher average

response, possibly due to a greater presence of negative scales or

confusion with bitterness. The interaction matrix reveals that bitter

music is often rated as sad and independent of temperature, while

sour music encompasses more negative sensations and is most

associated with disgust, a rarely used adjective in musical contexts,

as observed in Argstatter (2016).

7 Conclusions

In this study, we investigated the potential of a fine-tuned

generative model to induce crossmodal taste perceptions through

music, focusing on the intricate correlations between music,

emotions, and taste. The findings revealed that music could indeed

evoke gustatory sensations, with positive valence emotions closely

aligning with positive valence tastes. Temperature also emerged

as a significant factor in these correlations, suggesting a complex

interplay between sensory modalities. The results, supported by

rigorous ANOVA and factor analysis, underscore the model’s

capability to bridge sensory modalities, providing valuable insights

into the emotional and perceptual connections between sound and

taste. Despite the promising results, several limitations of the study

must be acknowledged. While the sample size of 111 participants

was sufficient from a statistical standpoint—as confirmed by the

power analysis—the main limitation lies in the lack of proper

sample stratification. Most participants self-identified as belonging
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to the same ethnic group (White/European American), and the age

range was relatively narrow. Although participants were recruited

from various regions, the overall demographic homogeneity may

have introduced a sampling bias, limiting the generalizability

of the findings to more diverse populations. Additionally, while

the adjectives used in the study allowed up to a certain degree

of freedom in evaluations, they fell short of covering certain

aspects necessary to fully encompass Russell’s circumplex model

of emotions. This gap suggests that the emotional dimensions

explored in the study might not capture the full spectrum of

human emotional experience. Furthermore, participants were not

presented with preparatory stimuli to align their emotional and

perceptual states, a factor known to influence perception, as studied

by Taylor and Friedman (2014) and Rentfrow et al. (2011). This

oversight could have introduced variability in the participants’

responses, potentially impacting the study’s outcomes.

Furthermore, the concept of “sonic seasoning” (see e.g., Spence

et al., 2024) could be further developed to enhance culinary

experiences by aligning music with taste to influence perception

and enjoyment. This innovative approach could revolutionize

the way we experience food, adding a new dimension to

culinary arts and hospitality. Looking ahead, future research

should focus on addressing the limitations identified in this

study. Developing a more comprehensive dataset that better

represents the diversity of sensory experiences would enhance the

accuracy and applicability of the model. Additionally, advancing

the sophistication of the model itself could deepen synesthetic

and crossmodal inductions, enabling more refined applications.

Integrating additional modalities, as suggested in Spanio (2024),

may further enhance results through emotional mediation. The

improved performance of the fine-tuned model underscores

multimodal AI’s potential to bridge sensory domains, emphasizing

the need for well-curated datasets to support innovative crossmodal

applications.
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