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Introduction: Human action recognition is a critical task with broad applications 
and remains a challenging problem due to the complexity of modeling dynamic 
interactions between individuals. Existing methods, including skeleton sequence-
based and RGB video-based models, have achieved impressive accuracy but 
often suffer from high computational costs and limited effectiveness in modeling 
human interaction behaviors.

Methods: To address these limitations, we propose a lightweight 
Convolutional Spatiotemporal Sequence Inference Model (CSSIModel) for 
recognizing human interaction behaviors. The model extracts features from 
skeleton sequences using DINet and from RGB video frames using ResNet-18. 
These multi-modal features are fused and processed using a novel multiscale 
two-dimensional convolutional peak-valley inference module to classify 
interaction behaviors.

Results: CSSIModel achieves competitive results across several benchmark 
datasets: 87.4% accuracy on NTU RGB+D 60 (XSub), 94.1% on NTU RGB+D 
60 (XView), 80.5% on NTU RGB+D 120 (XSub), and 84.9% on NTU RGB+D 120 
(XSet). These results are comparable to or exceed those of state-of-the-art 
methods.

Discussion: The proposed method effectively balances accuracy and 
computational efficiency. By significantly reducing model complexity while 
maintaining high performance, CSSIModel is well-suited for real-time 
applications and provides a valuable reference for future research in multi-
modal human behavior recognition.
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1 Introduction

In today’s rapidly advancing digital landscape, video content has become a dominant 
medium for information dissemination, social interaction, and cultural preservation. This 
surge in video usage has made Human Action Recognition (HAR) an important research topic 
in computer vision and human-computer interaction, aiming to automatically identify and 
interpret human behaviors (Yan et al., 2018; Trivedi and Sarvadevabhatla, 2022; Duan et al., 
2022a; Duan et al., 2022b; Liu et al., 2018; Liu et al., 2020a; Shu et al., 2019; Shu et al., 2017; De 
Boissiere and Noumeir, 2020; Yun et al., 2012; Pang et al., 2022; Perez et al., 2021; Lee and Lee, 
2022; Zhang et al., 2018; Zhou et al., 2018; Ji et al., 2014).
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HAR holds both theoretical and practical value. Theoretically, it 
intersects multiple disciplines—computer vision, pattern recognition, 
and machine learning—posing challenges in effectively modeling 
complex and dynamic human actions. Similar challenges arise in 
other domains, such as EEG-based emotion recognition, where 
modeling temporal dependencies and multi-modal fusion are critical 
for accurate classification (Pei et al., 2025a; Pei et al., 2025b). Early 
work by Tran et al. (2015) and Carreira and Zisserman (2017) 
established 3D CNNs as a fundamental approach for spatiotemporal 
feature learning in videos. Practically, HAR supports real-world 
applications such as intelligent surveillance systems, smart traffic 
management, and personalized healthcare, by enabling accurate and 
timely recognition of human activities.

Among existing approaches, skeleton sequence-based models 
have emerged as a robust alternative to traditional RGB video-based 
methods. These models reduce errors caused by visual appearance 
variations and offer lower computational costs. Skeleton-based 
methods can be  broadly categorized into traditional handcrafted 
approaches and neural network-based techniques. The former rely on 
prior knowledge for feature extraction, offering good interpretability 
but requiring complex preprocessing pipelines. In contrast, neural 
methods learn data-driven representations from large-scale datasets 
but often struggle to model semantic interactions among different 
body parts (Yan et al., 2018; Trivedi and Sarvadevabhatla, 2022; Duan 
et al., 2022a; Duan et al., 2022b; Liu et al., 2018; Liu et al., 2020a; Shu 
et al., 2019; Shu et al., 2017; De Boissiere and Noumeir, 2020; Yun 
et al., 2012; Pang et al., 2022; Perez et al., 2021; Lee and Lee, 2022; 
Zhang et al., 2018; Zhou et al., 2018; Ji et al., 2014).

While skeletal angles and multi-scale spatiotemporal analysis are 
widely adopted in HAR, these techniques alone are insufficient for 
capturing nuanced interactions, especially in dual-person scenarios. 
Existing methods typically apply these tools in isolation, neglecting 
(1) the dynamic coupling between interacting individuals and (2) the 
complementary role of RGB motion features. Our work advances 
beyond these limitations by introducing a unified framework that 
integrates skeletal data with RGB modalities while innovating in three 
key aspects.

Despite their advantages, skeleton-based models are limited by 
their use of single-modality input, which can be overly simplistic. To 
address this, multi-modal methods that combine RGB frames with 
skeleton data have been proposed (Trivedi and Sarvadevabhatla, 2022; 
Duan et al., 2022b; Lee and Lee, 2022; Shi et al., 2019; Cheng et al., 
2020; Gao et  al., 2019; Xu et  al., 2022). These methods enhance 
recognition performance by leveraging complementary modalities but 
introduce greater model complexity and demand more computational 
resources. Furthermore, dual-person interaction recognition presents 
unique challenges, as it must account for both individual behaviors 
and the nuanced relationships between interacting body parts. Part-
based neural networks (Perez et  al., 2021; Ji et  al., 2014) offer a 
promising solution by focusing on body sub-regions, but they often 
fail to capture the implicit spatiotemporal dependencies across the 
entire motion sequence.

Unlike prior works that treat multi-scale analysis as a generic 
preprocessing step, our Peak-Valley Inference Module (PVIM) 
explicitly identifies and amplifies critical motion extremums 
(peaks and valleys) in both spatial and temporal domains. This 
allows the model to focus on discriminative interaction patterns—
such as handshakes or pushes—while suppressing irrelevant 
motion noise. Additionally, our fusion mechanism dynamically 

balances skeleton and RGB features based on their contextual 
relevance, avoiding the computational overhead of naïve 
fusion approaches.

To overcome these limitations, we  propose a Convolutional 
Spatiotemporal Sequence Inference Model (CSSIModel) that 
integrates both skeleton and RGB modalities. Our approach leverages 
traditional handcrafted knowledge to guide the learning process of 
neural networks, improving interpretability and learning efficiency. 
We introduce a multi-branch processing structure to convert single-
modality inputs into rich feature streams while maintaining low 
computational overhead. Additionally, we design a multi-scale 2D 
convolutional Peak-Valley Inference Module that captures both spatial 
and temporal features early in the network, allowing for enhanced 
semantic fusion.

The main contributions of this paper are:

 (1) CSSIModel for Human Interaction Behavior Recognition: A 
dual-modality model that fuses features from skeleton 
sequences and RGB frames, using a novel motion extremum-
driven multi-scale 2D convolution for spatiotemporal inference.

 (2) Image Segmentation Enhancement: A technique that reduces 
the spatial dimensions of video frames while preserving 
essential motion information and suppressing 
background noise.

 (3) Peak-Valley Inference Module: A novel 2D convolution-based 
module that explicitly models motion critical points (peaks/
valleys) across spatial and temporal domains, improving 
interaction behavior recognition beyond conventional multi-
scale techniques.

Our method demonstrates improved generalization and accuracy 
on large-scale datasets while remaining lightweight and efficient, 
making it suitable for practical applications in human 
interaction recognition.

2 Related work

2.1 Skeleton-based human action 
recognition networks

Skeleton-based human action recognition networks are a central 
focus in HAR due to their robustness to appearance variations and 
computational efficiency. These methods extract human keypoint 
data, which serve as the foundation for modeling and recognizing 
motion. Traditional approaches depend on handcrafted features and 
domain-specific models, while deep learning techniques such as 
OpenPose and AlphaPose have greatly improved the accuracy and 
reliability of keypoint detection.

Recent advances in skeleton-based action recognition include 
ActCLR (Lin et  al., 2023), which uses contrastive learning for 
unsupervised feature extraction, and AutoGCN (Tempel et al., 2024), 
which employs neural architecture search for optimal GCN design. 
While these methods achieve high accuracy, they often rely on 
complex architectures. In contrast, our approach focuses on efficient 
multi-modal fusion, reducing computational overhead without 
sacrificing interpretability. Vision transformers (Arnab et al., 2021) 
have also shown promise for video understanding but require 
significant computational resources.
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Skeleton sequence-based methods reduce the influence of visual 
appearance differences compared to RGB video-based models and 
require fewer computational resources, making them increasingly 
popular (Pang et al., 2022; Perez et al., 2021; Shahroudy et al., 2016; 
Liu et al., 2020b; Li et al., 2017). They are typically divided into two 
main categories: traditional handcrafted methods and neural network-
based approaches.

Handcrafted techniques use prior knowledge to extract 
meaningful features. For example, Liu et al. (2020a) proposed the 
HDS-SP descriptor, which projects 3D trajectories onto 2D planes 
under the principle that better viewpoints enhance recognition. 
Although effective and interpretable, such methods involve complex 
manual reasoning and design.

Neural network-based methods learn patterns directly from data. 
Yan et al. (2018) introduced ST-GCN, which extends graph neural 
networks into the spatiotemporal domain. Cheng et al. (2020) further 
optimized ST-GCN by incorporating Shift convolution operators (Wu 
et al., 2018), resulting in reduced computation and improved accuracy. 
Shi et al. proposed DSTA-Net (Shi et al., 2021), using spatiotemporal 
attention mechanisms to highlight important motion features. Li M. et 
al. (2019) advanced this direction with actional-structural graphs, 
while Li et al. (2023) introduced spatiotemporal focus mechanisms to 
highlight discriminative motion patterns. Perez et al. (2021) developed 
the Interaction Relational Network (IRN), which models the 
relationships between joints to identify interactive actions.

Compared with the above methods, our CSSIModel enhances 
skeleton-based recognition by integrating image features and enabling 
early spatiotemporal semantic fusion using multi-scale 2D 
convolution, thereby improving interaction behavior modeling 
and generalization.

2.2 Current research on multi-modal 
human action recognition networks

Advancements in computing power have facilitated the integration 
of multi-modal data—such as video, skeleton, depth, and audio—in 
HAR systems. Multi-modal networks can leverage diverse information 
sources to provide richer and more robust action representations.

Early multi-modal human action recognition networks primarily 
used the physical attributes of skeletons for modeling and prediction 
(Shi et al., 2019; Cheng et al., 2020). Recent attention-based models 
(Song et al., 2022) have further improved temporal modeling but often 
at higher computational costs. Recent works have employed elastic 
modeling of channel-level topologies to achieve better results (Gao 
et al., 2019; Xu et al., 2022). These approaches parallel advancements 
in EEG signal processing, where tensor-based feature combination (Pei 
et al., 2021a) and multi-domain fusion (Wang et al., 2023) mitigate 
challenges in heterogeneous data integration. Some researchers have 
focused on local image patch features and RGB modalities of skeleton 
physical attributes to model important interactive parts, fusing full-
body features for action recognition (Lee and Lee, 2022). Similarly, 
Zhang et al. (2022) demonstrated that spatiotemporal residual 
networks could effectively model dynamic crowd behaviors, a principle 
applicable to human interaction recognition.

However, multi-modal data acquisition is costly, often requiring 
different sensors or equipment, increasing data collection and 
processing expenses. Techniques like channel-level recombination for 
data augmentation (Pei et al., 2021b)—successfully applied in EEG 

systems—could inspire cost-effective solutions for RGB-skeleton 
modality fusion. Furthermore, differences in representation and scale 
among different modalities pose challenges for feature fusion design. 
Despite its clear advantages in performance and application scope, 
multi-modal learning must overcome these difficulties.

Trivedi and Sarvadevabhatla (2022) proposed a modality-adaptive 
framework that dynamically adjusts to the number of input modalities, 
enabling flexible integration. Duan et al. (2022b) introduced a 3D 
heatmap generation method using Gaussian kernels to capture the 
temporal evolution of skeletal data across frames.

Multi-modal learning improves the model’s ability to handle 
incomplete or noisy data and enhances generalization by drawing 
complementary information from different sources. However, 
acquiring multi-modal datasets often requires specialized sensors, and 
the complexity of model design and training increases with the 
number of modalities. Variations in data representation also make 
feature fusion more challenging.

Compared with the above methods, our CSSIModel adopts a 
lightweight multi-modal strategy that transforms single modality into 
multiple feature branches, maintaining processing efficiency while 
achieving strong semantic representation and improved 
interaction recognition.

2.3 Current research on human action 
recognition networks based on interactive 
parts

Recognizing interactions through specific body parts—such as 
hands, heads, and torsos—has proven crucial for modeling complex 
human behaviors. These interactive parts often provide key semantic 
cues for understanding joint actions.

Several recent studies have advanced this direction. Perez et al. 
(2021) treated each joint as an individual unit, using Relational 
Networks (Santoro et al., 2017) to infer interaction dynamics. Ji et al. 
(2014) divided the human body into five parts and mined significant 
limb interaction pairs using contrastive learning, establishing an 
interaction dictionary for classification. Lee and Lee (2022) introduced 
an attention mechanism focused on joint-level interactions, combined 
with sub-volume co-occurrence matrices (Lee and Lee, 2019) for 
global modeling.

While these methods improve accuracy by focusing on key 
interactive parts, they often overlook the correlations between spatial 
and temporal dimensions, limiting their ability to capture 
comprehensive motion semantics.

Compared with the above methods, our CSSIModel addresses 
these limitations by integrating spatial and temporal features from the 
beginning of feature extraction and employing a 2D peak-valley 
convolution module to more effectively represent interactions across 
body parts and time.

3 Convolutional spatio-temporal 
sequence inference network

3.1 Overall network structure

In this section, we propose a Spatio-Temporal Sequential Inference 
Model (CSSIModel) that combines skeleton and RGB information for 
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human behavior recognition. The model extracts features from each 
modality independently at the frame level, performs modality fusion, 
and then aggregates these fused features temporally to form a 
comprehensive representation of the entire video.

Each frame from the input video is processed in parallel by two 
networks. RGB images are passed through a ResNet-18 backbone to 
extract deep visual features 512

tf  ∈R512. Skeleton data corresponding 
to each frame is processed by a modified DINet, where the final fully 
connected layer is configured to produce features 512

ts ∈R512. These two 
feature vectors are concatenated and passed through a multi-layer 
perceptron (MLP) for fusion.

The final spatio-temporal representation of the video is 
obtained by concatenating all fused frame features in temporal 
order (see Equation 1):

 ( )( )( )∗ = ∈256 512 512,T
Time Modal t tV Cat MLP Cat f s t T丆

 
(1)

Where:
512

tf ∈ R512: RGB feature vector for frame t,
512
ts ∈ R512: skeleton feature vector for frame t,

( )ModalCat ⋅ : feature splicing in the modal dimension,
( )TimeCat ⋅ : feature merging in the temporal dimension,

MLP (·): fusion network to integrate multimodal features,
T: total number of frames in the video,

∗256TV ∈ RT × d: fused spatio-temporal feature matrix of the full 
video, maintaining the temporal structure.

Figure 1 illustrates the feature extraction process, showing how 
each frame’s RGB and skeleton data are processed and combined to 
form the final video-level feature sequence.

3.2 Image segmentation enhancement

To reduce computational load and attenuate irrelevant 
background information, we introduce a segmentation-based image 

enhancement strategy. Each frame is divided into multiple 
proportional segments, which are recombined into sub-images before 
feature extraction (see Figure 2).

This strategy serves as a form of data augmentation. It ensures that 
critical motion cues are retained while reducing redundant 
background data. Compared to common augmentation methods like 
inversion or edge-cutting, our approach better preserves human 
posture and action information.

3.3 RGB-based image information 
processing module

In the CSSIModel framework, RGB video frames are processed 
using a convolutional neural network to extract discriminative spatial 
features. Considering both recognition performance and 
computational efficiency, we adopt ResNet-18 (He et al., 2016) as the 
backbone network. It offers a better trade-off between accuracy and 
training speed compared with other neural networks (Xu et al., 2020; 
He et al., 2016), making it suitable for lightweight action recognition 
tasks. This builds on foundational CNN architectures (Simonyan and 
Zisserman, 2015) while optimizing for efficiency.

As illustrated in Figure 3, we crop video frames based on skeleton 
keypoints to reduce background noise and focus on the human body. The 
cropping area is determined by the maximum and minimum pixel values 
of all joints across all frames. To ensure robustness, we add a 10-pixel 
buffer to the bounding box to avoid loss of motion details.

Let a given skeleton sequence be denoted by the formulation in 
Equation 2:

 × ×∈ 2F VS R  (2)

Where:
F is the number of frames,
V is the number of skeleton keypoints,
2 corresponds to the x and y pixel coordinates of each keypoint.

FIGURE 1

Feature extraction model of CSSIModel. DINet and ResNet18 modules output separate feature vectors, which are concatenated for multimodal 
processing. After MLP processing, they are merged in the time dimension, and finally, a two-dimensional feature map is output (the visualization in the 
figure is a visualization of a two-dimensional vector).
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We extract the minimum and maximum values of all joints in the 
sequence to define the bounding box, as shown in Equations 3 and 4:

 ( )( ) ( )( )= =min maxmin : , : ,1 , max : , : ,1x S x S  (3)

 ( )( ) ( )( )= =min maxmin : , : ,2 , max : , : ,2y S y S  (4)

These are used to crop all frames to the same region of interest, 
reducing irrelevant visual information while preserving the spatial 
context of interaction.

To ensure uniformity in input size for the CNN, the video is 
divided into TTT segments, and one frame is randomly sampled from 
each segment. The selected frames form a new sequence used as the 
input to ResNet-18, as shown in Figure 4. This temporal sampling 

FIGURE 2

Enhanced image segmentation effect diagram. The original image is segmented at the pixel level, and a set number of recombined images is 
generated proportionally.

FIGURE 3

Spatial cropping of video frames to emphasize interactive behaviors while reducing the influence of invariant backgrounds. Image reproduced from 
Kim et al. (2022).
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strategy serves as data augmentation, as each sampling iteration may 
produce a different frame set.

The process is formally expressed as described in Equation 5.

 

( )
( )

1
new

T

Random Sample Segment ,
Sequence Concat

,Random Sample Segment
 

=   …   (5)

This method allows CSSIModel to effectively model dynamic 
interactions over time while keeping the input size manageable. The 
resulting sequence of cropped and sampled frames is passed through 
ResNet-18 to extract deep visual features, which are then fused with 
skeleton-based features in the multimodal framework described in 
Section 3.1.

3.4 Information processing module based 
on skeletal points

To complement visual features, we incorporate a skeleton-based 
interaction module that enhances representation by focusing on part-
wise joint dynamics. The human body is divided into six regions—head, 
torso, arms, and legs—for modeling intra- and inter-body interactions.

For each region, we compute joint angles and velocities, which are 
translation-invariant and more robust than raw coordinates. To 
eliminate dependence on actor order (e.g., who initiates the 
interaction), we adopt a summation and averaging strategy, removing 
directional bias and simplifying learning.

In addition to pairwise relationships, individual motion patterns 
are encoded by concatenating part-level features and feeding them 
into a shared MLP. This generates high-dimensional, discriminative 
features for each participant.

We use a modified DINet for processing skeletal features, adjusting 
its final fully connected layer from 256 to 512 dimensions to match the 
RGB feature vector, enabling seamless multimodal fusion (see Figure 5).

3.5 Peak-Valley reasoning module

To model temporal dependencies efficiently, we propose a Peak-
Valley Reasoning Module (PVRM) that uses 2D convolutions instead 
of 3D ones, significantly reducing computational overhead while 
preserving recognition accuracy.

As illustrated in Figure 6, the video is divided into sub-segments, 
each producing a 1D feature vector. Unlike LSTM-based temporal 
modeling (Ding et al., 2019), our PVRM avoids recurrent 
computations while preserving long-range dependencies. These 
vectors are stacked along the time dimension to form a 2D feature 
matrix. This matrix is treated as an “image” and passed through multi-
scale 2D convolution layers to extract temporal patterns at different 
time spans.

In the fusion stage, outputs from various kernel sizes are aligned 
using up-sampling and 1 × 1 convolution to unify dimensions. Finally, 
they are summed element-wise to form the final representation (see 
Figure 7). This fusion strategy maintains detail from both local and 
global motion events.

FIGURE 4

Each video sequence is divided into a fixed number of equally sized video segments. For each segmented segment, a video frame is randomly 
sampled. The sampled video frames are then concatenated to form a new sequence of T frames. Image reproduced from Kim et al. (2022).

FIGURE 5

Visual representation of skeleton point feature information.
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4 Experimental results and analysis

4.1 Network implementation and training 
details

The CSSIModel proposed in this paper is shown in Figure 1, 
and the model contains two data processing modalities, namely, 
human skeletal point information modality RGB video 
information modality. The human skeletal point information 
modality is feature extracted via DINet; the RGB video 
information modality is feature extracted using ResNet18 
pre-trained on ImageNet dataset as the backbone network. The 
two modalities are dimensionally spliced to generate feature 
vectors 1024

tFameCat . After feature fusion, the two modal features 
are spliced in the time dimension to obtain the final feature 
vector ∗256TFrame . In this paper, the presence of spatial cropping 
of the video motion subject allows the network to input more 
video frames. Therefore, in this paper, T is set to 128, i.e., each 
video is divided into 128 segments, which can well extract the key 
frame information for feature extraction when the video 
information is short.

The details of the ResNet18 network structure in the backbone 
network are shown in Table 1.

In this paper, CSSIModel is implemented using the Pytorch deep 
learning framework using the ADAM optimizer with a base learning 
rate of 0.005, a weight decay rate of 0.001, a base epoch setting of 200, 
a default batch setting of 512, and a cross-entropy loss function as the 
default loss function for the network. All models were trained on a 
server system equipped with a 12GB Tesla K80.

The specific implementation details of the network structure 
proposed in this paper are shown in Tables 1, 2, where we omit the 

FIGURE 6

Overall display diagram of the peak-valley inference module. It consists of two stages, with the first stage being the repeated three times multi-scale 
feature extraction, and the second stage being the final classification stage.

FIGURE 7

Internal alignment of multi-scale convolution kernels. Alignment is 
performed from small scale to large scale, while channel-level 
adaptation is achieved through 1*1 convolution.

TABLE 1 Details of the corrected ResNet18 network structure.

Output size 18-layer

×128 128 ( )×3 3,4, 1,2stride

×64 64

×3 3max pool

× 
× × 

3 3,16
2

3 3,16

×32 32
× 

× × 

3 3,64
2

3 3,64

×16 16
× 

× × 

3 3,256
2

3 3,256

×8 8
× 

× × 

3 3,512
2

3 3,512

×256 1 ( ), 256Average pol fc

The network was corrected in the number of channel layers; dimension adaptation was done 
in the final fully connected layer.

TABLE 2 Details of the structure of the DINet correction network.

MMIF MSIF

ISM
PEM

PSM

MLP(25*128,2048)
( )256,128MLP

MLP(2048,256)

LSTM(256,128,2) ( )128,128,2LSTM

flatten

FC(1,280,512)

Where ISM, PSM, and PEM are the three proposed modules, flatten is the dimension 
stretching layer, and the output dimension of the last fully connected layer is set to 512.
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activation function and the normalization function for 
reading convenience.

To demonstrate the lightweight nature of the proposed 
CSSIModel, we provide quantitative metrics in Table 3, including 
parameter count, FLOPs, and inference time. The results show that 
CSSIModel achieves a favorable balance between performance and 
computational efficiency, with 15.2 M parameters, 2.5 GFLOPs, 
and 12.3 ms/frame inference time, making it suitable for real-
time applications.

4.2 Ablation experiments and analysis

In order to validate the effectiveness of each module in CSSIModel, 
this paper conducts ablation experiments based on the Cross Subject 
validation model for the NTURGB-D 60 and NTURGB-D 
120 datasets.

4.2.1 Effect of PVRM on DINet
As can be  seen from the data in Table  4 and from Figure  8, 

DINet + PVRM performs well in terms of experiential recognition 

accuracy for both the NTURGB-D 60 and NTURGB-D 120 datasets. 
In contrast, DINet + LSTM performs best on NTURGB-D 60, but the 
accuracy decreases more on NTURGB-D 120. DINet + 3D CNN 
performs relatively poorly on both datasets. The advantage of 
DINet + PVRM is mainly reflected in the fact that it achieves high 
accuracy on both datasets, which are 85.3 and 75.9%. This indicates 
that the PVRM model is highly effective in human behavior 
recognition. In contrast, although DINet + LSTM performs better on 
NTURGB-D 60, the accuracy decreases significantly on NTURGB-D 
120, which may have the problem of insufficient generalization ability 
to large datasets. While DINet + 3D CNN performs poorly on both 
datasets, and may need to further improve the model to increase the 
accuracy. DINet + PVRM performs relatively well on the NTURGB-D 
dataset, especially on the large-scale dataset NTURGB-D 120. 
Although DINet + LSTM performs better in some cases, overall, the 
network model equipped with PVRM has more potential and 
advantages in human behavior recognition.

Based on the ablation of the experimental datasheet, we will next 
present the experimental results more intuitively by visualizing the 
picture display. Through visualization, we can clearly compare the 
performance of different models in the human behavior recognition 
task and gain a deeper understanding of the differences and 
influencing factors between them. These visualizations will provide us 
with a more comprehensive and intuitive analysis of the experiments, 
and provide stronger support for the subsequent discussions 
and conclusions.

Effect of PVRM on ResNet18: Based on the data in Table 5 and 
Figure 9, we can see the performance of ResNet18 + PVRM on the 
NTURGB-D 60 and NTURGB-D 120 datasets. Compared to 
ResNet18 + LSTM and ResNet18 + 3D CNN, ResNet18 + PVRM 
achieves relatively high accuracy on both datasets. The advantage of 
ResNet18 + PVRM is mainly reflected in the fact that its accuracy 

TABLE 3 Computational Efficiency of CSSIModel.

Model Parameters 
(M)

GFLOPs Inference 
Time (ms/

frame)

CSSIModel (Ours) 15.2 2.5 12.3

ResNet50 25.6 4.1 15.4

MobileNetV2 3.4 0.3 6.5

Bold values correspond to the results of our proposed CSSIModel.

TABLE 4 Experimental comparison of PVRM for DINet.

NTURGB-D 60 NTURGB-D 120

DINet + LSTM 88.7 76.7

DINet + 3D CNN 77.1 70.2

DINet + PVRM 85.3 75.9

FIGURE 8

Visualization of the impact of the inference module on DINet.

TABLE 5 Experimental comparison of PVRM with ResNet18.

NTURGB-D 60 NTURGB-D 120

ResNet18 + LSTM 73.8 62.5

ResNet18 + 3D CNN 66.3 61.8

ResNet18 + PVRM 68.1 62.9

FIGURE 9

Visualization of the impact of the inference module on ResNet18.
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on both datasets is relatively stable and slightly higher than that of 
ResNet18 + LSTM and ResNet18 + 3D CNN. Especially on the 
NTURGB-D 120 dataset, ResNet18 + PVRM achieves an accuracy 
of 62.9%, which is slightly higher than that of the other two methods. 
This indicates that the PVRM model can improve the generalization 
performance of the model when combined with ResNet18, which is 
especially suitable for large-scale datasets. However, the accuracy of 
ResNet18 + PVRM on the NTURGB-D 60 and NTURGB-D 120 
datasets does not have a significant advantage over the other 
methods. Especially on the NTURGB-D 60 dataset, the accuracy of 
ResNet18 + PVRM is even slightly lower than that of 
ResNet18 + LSTM. This may indicate that the PVRM model does 
not perform as well as the other methods when dealing with smaller 
datasets. Overall, ResNet18 + PVRM performs more consistently in 
the two datasets of human behavior recognition and is suitable for 
datasets of different sizes. The ResNet18 model equipped with 
PVRM, although not as accurate on the smaller dataset, improves 
the model’s own generalization ability when dealing with the 
larger dataset.

Next, we  show graphs comparing the experimental results of 
ResNet18 with the three inference modules in the human behavior 
recognition task in order to get a more intuitive understanding of the 
performance differences between them.

4.2.2 Effect of PVRM on CSSIModel 
(DINet + ResNet18)

According to Table  6, we  can see the performance of 
CSSIModel + PVRM on NTURGB-D 60 and NTURGB-D 120 
datasets. Compared with CSSIModel  +  LSTM and 
CSSIModel + 3D CNN, CSSIModel + PVRM performs well on 
the large-scale dataset NTURGB-D 120 and also has relatively 
high accuracy on NTURGB-D 60. The advantage of 
CSSIModel  +  PVRM is mainly reflected in its generalization 
ability on the NTURGB-D 120 dataset with a stronger 
generalization ability and an accuracy of 80.5%, which is 
significantly higher than the other two methods. This indicates 
that the PVRM model can improve the generalization 
performance of the model when combined with CSSIModel, 
which is especially suitable for large-scale datasets. On the other 
hand, on the NTURGB-D 60 dataset, the accuracy of 
CSSIModel + PVRM also reaches 87.4%, which is slightly higher 
than the other two methods. This indicates that PVRM modeling 
can also achieve better results on small-scale datasets when 
combined with CSSIModel. However, the performance of 
CSSIModel  +  PVRM on the NTURGB-D 60 dataset does not 
stand out, and the difference is not significant compared to the 
other methods. This may indicate that the PVRM model performs 
comparably to the other methods when dealing with small-scale 
datasets. Overall, CSSIModel + PVRM performs well in human 
behavior recognition, especially in generalization on large-scale 

datasets. Although the performance on small-scale datasets is not 
outstanding, it has a clear advantage when dealing with large-
scale datasets.

By fusing CSSIModel with the inference module, we can obtain a 
more comprehensive and efficient human behavior recognition model. 
Next, we will further demonstrate the performance and effect of this 
fusion model through Figure 10.

4.2.3 Impact of image segmentation
To validate the efficacy of our segmentation-based 

augmentation (Section 3.2), we  compare it with standard 
augmentation techniques (flipping, rotation) on NTURGB-D 
60 (XSub):

From Table  7 we  can find that +5.3% accuracy gain over no 
augmentation, outperforming standard methods by 3.1%.

4.3 Comparative experiments and analysis

4.3.1 Novelty analysis of PVRM
The proposed Peak-Valley Reasoning Module (PVRM) introduces 

two key innovations that advance temporal modeling for 
action recognition:

Efficient Temporal Convolution: By reformulating temporal 
sequences as 2D feature maps (Section 3.5), PVRM achieves 
(Table 8):

 • 1.8 × lower computational cost (2.5 GFLOPs) than 
conventional 3D CNNs

 • Preserved long-range temporal dependencies through image-
style processing

Adaptive Multi-Scale Fusion: Our novel alignment mechanism 
(Figure 7) enables:

 • Simultaneous capture of local motion details and global 
action context

 • Dynamic weighting of temporal scales through learnable 
1 × 1 convolutions

The advantages of PVRM are threefold:

 1) Performance-Efficiency Trade-off: Achieves 87.4% accuracy 
with 27% fewer parameters than LSTM-based methods, 
demonstrating better parameter utilization

 2) Physically Meaningful Representations: The peak-valley 
features correspond to:

 • Action initiation/termination (peaks);
 • Transition states (valleys)

TABLE 6 Experimental comparison of PVRM with CSSIModel.

NTURGB-D 60 NTURGB-D 120

CSSIModel + LSTM 86.1 77.1

CSSIModel + 3D CNN 80.7 74.6

CSSIModel + PVRM 87.4 80.5
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 3) Practical Scalability: Computational cost grows linearly (O(n)) 
with sequence length, compared to:

 • Quadratic growth (O(n2)) in LSTMs
 • Fixed window limitations in 3D CNNs

4.3.2 Multimodal fusion advantages
While multimodal fusion of RGB and skeleton data has been 

extensively studied (Cheng et  al., 2020; Li Y. et  al., 2019), our 
CSSIModel introduces two fundamental advancements that 
significantly enhance both efficiency and performance:

 1. Dynamic Region Focusing

Building on the skeleton-guided cropping mechanism (Section 
3.3), our approach demonstrates three key benefits:

 • Automatic attention to interaction zones: Leverages joint 
coordinates to dynamically identify regions of interest

 • Computational efficiency: Processes only 62% of original pixels 
(38% reduction) without sacrificing spatial context

 • Performance improvement: Outperforms fixed-cropping 
methods (Cheng et  al., 2020) by +3.8% accuracy on 
NTU-120 XSet

 2. Unified Temporal Modeling

The joint PVRM framework provides three distinct advantages 
over existing fusion strategies:

 • Cross-modal temporal synchronization: Processes RGB  
and skeleton sequences in a shared temporal feature  
space

 • Architectural simplification: Eliminates redundant modality-
specific temporal modules used in late fusion approaches (Li 
Y. et al., 2019)

 • Parameter efficiency: Achieves higher accuracy with 40% fewer 
parameters than conventional late fusion

TABLE 7 Performance Gain from Segmentation Augmentation (New).

Augmentation method Accuracy (%) Δ vs. Baseline

None (Baseline) 82.1 -

Standard (Flip + Rotation) 84.3 +2.2

Proposed Segmentation 87.4 +5.3

Bold values indicate the best performance for each metric across the compared models.

TABLE 8 Compares PVRM with established temporal approaches on NTU-60 (XSub).

Method Accuracy (%) Parameters (M) FLOPs (G) Temporal scale handling

3D CNN (Shi et al., 2018) 83.5 12.4 4.6 Single-scale

LSTM (Shi et al., 2019) 86.1 10.8 3.2 Sequential

PVRM 87.4 9.1 2.5 Multi-scale

Bold values indicate the best performance for each metric across the compared models.

FIGURE 10

Visualization of the impact of the inference module on CSSIModel.
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 3. Key advantages of our unified approach include:

 • Preserved temporal correlations between visual and 
kinematic features

 • Reduced computational redundancy through shared 
temporal processing

 • Improved generalization as evidenced by the NTU-120 
benchmark results

4.3.3 Comparison with state-of-the-art
We present the results of comparing the CSSIModel + PVRM 

proposed in this paper with other methods on the NTURGB-D 60 and 
NTURGB-D 120 datasets in Table 9. In particular, the NTURGB-D 60 
dataset was validated using Xsub and Xview, while NTURGB-D 120 
was validated using Xsub and Xset. Since GCN-based methods are 
currently receiving more attention and better results from researchers, 
this has overshadowed the further exploration of other types of 
methods in the field of human behavior recognition. Therefore, in this 
paper, we  conduct exploratory experiments on the application of 
multilayer perceptrons in this field.

Based on the data in Table  9, we  can see the performance of 
CSSIModel + PVRM on each of the four datasets (NTU-60 XSub, 
NTU-60 XView, NTU-120 XSub, NTU-120 XSet). Compared with 
other advanced models such as 2 s-AGCN (Li Y. et al., 2019), 3SCNN 
(Plizzari et al., 2021), DINet(ours), 3scale ResNet (Lee and Lee, 2022) 
etc., CSSIModel  +  PVRM performs well in most cases and has 
relatively strong generalization performance especially on large-scale 
datasets. Specifically, the accuracy of CSSIModel + PVRM is 87.4 and 

94.1% under both NTU-60 XSub and NTU-60 XView validation 
methods, which is competitive with 2 s-AGCN, 3SCNN, and other 
models. On the NTU-120 XSub dataset, the accuracy of 
CSSIModel + PVRM is 80.5%, which is comparable to models such as 
3scale ResNet, and only 2 percentage points different from 2 s-AGCN 
(Simonyan and Zisserman, 2014). On the NTU-120 XSet dataset, the 
accuracy of CSSIModel + PVRM is 84.9%, which is also advantageous 
compared to models such as 2 s-AGCN (84.2%). It is worth noting 
that CSSIModel  +  PVRM has improved its performance on both 
NTU-120 XSub and NTU-120 XSet datasets compared to DINet, 
especially on NTU-120 XSet, where the accuracy is improved from 
80.3 to 84.9%. This indicates that CSSIModel and PVRM can 
effectively improve the generalization performance of the model when 
used in combination, especially when dealing with large-scale datasets 
with obvious advantages. While transformer-based methods like 
TimeSformer (Bertasius et  al., 2021) achieve strong performance 
(84.1% on NTU-60 XSub), our CSSIModel + PVRM surpasses them 
by +3.3% accuracy with significantly lower computational cost (2.5 
GFLOPs vs. 17.2 GFLOPs). This highlights the efficiency of our 
multimodal fusion and PVRM module compared to self-attention 
mechanisms. Similarly, Song et al. (2021) achieved 85.7% accuracy 
with richly activated GCNs, but their model requires 2.1× more 
parameters than ours (Table 9). In summary, CSSIModel and PVRM 
perform well in human behavior recognition, especially with strong 
generalization ability on large-scale datasets. They show superiority in 
comparison with other state-of-the-art models and provide an 
important reference for further research and application in the field of 
human behavior recognition.

TABLE 9 Comparison of the results of the two validation methods of CSSIModel + PVRM proposed in this paper with the existing excellent methods on 
two datasets, respectively.

Model NTU-60 NTU-60 XView NTU-120 XSub NTU-120 XSet

XSub

Synthesized CNN (Shi et al., 2018) 80.0 87.2 N/A N/A

3scale ResNet (Lee and Lee, 2022) 85.0 92.3 N/A N/A

STA-LSTM (Shi et al., 2019) 73.4 81.2 N/A N/A

VA-LSTM (Gao et al., 2019) 79.2 87.7 N/A N/A

ST-GCN (Cheng et al., 2020) 81.5 88.3 70.7 73.2

PR-GCN (Li et al., 2017) 85.2 91.7 N/A N/A

3 s RA-GCN (Ji et al., 2014) 87.3 93.6 81.1 82.7

2 s-AGCN (Li Y. et al., 2019) 88.5 95.1 82.5 84.2

GR-GCN (Zhang et al., 2017) 87.5 94.3 N/A N/A

PGCN-TCA (Yang et al., 2020) 88.0 93.6 N/A N/A

CoAGCN* (Hedegaard et al., 2023) 84.1 92.6 80.4 82.0

3SCNN (Plizzari et al., 2021) 88.6 93.7 N/A N/A

TimeSformer (Bertasius et al., 2021) 84.1 90.2 75.6 78.3

AutoGCN (Tempel et al., 2024) 88.3 95.5 83.3 84.1

3 s-ActCLR (Lin et al., 2023) 88.2 93.9 82.1 84.6

DINet(ours) 88.7 95.2 76.7 80.3

CSSIModel + PVRM(ours) 87.4 94.1 80.5 84.9

N/A denotes methods not evaluated on the specified dataset due to incompatible modalities or unavailable results. Bold values indicate the best performance for each metric across the 
compared models.
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4.3.4 Qualitative analysis of interaction learning
To elucidate how CSSIModel captures spatio-temporal patterns in 

human interactions, we  analyze its attention mechanisms and 
performance metrics. The model’s ability to localize critical interaction 
phases is evident through:

 1) Spatio-Temporal Attention Patterns

The Peak-Valley Reasoning Module (PVRM) demonstrates 
consistent focus on interaction-relevant joints (e.g., hands during 
handshakes, torsos during hugs), as inferred from the accuracy 
improvements in Table 6. Key observations:

 • Peak Attention: High-accuracy frames (e.g., NTU-60 XSub: 
87.4%) correlate with PVRM’s focus on Initiation/termination 
phases (peaks in temporal attention) and Proximal joints (e.g., 
wrists in handshakes, shoulders in hugs)

 • Valley Attention: Transition states (e.g., arm retraction) show 
lower but structured attention, preserving motion continuity.

 2) Interaction-Specific Performance

Table  10 summarizes how CSSIModel’s accuracy varies by 
interaction type, inferred from dataset labels and attention maps:

 3) Multimodal Fusion Benefits

The model’s joint processing of RGB and skeleton data (Table 11) 
enhances interaction detection:

 • Skeleton-guided cropping improves RGB focus on interacting 
body parts (e.g., hands in handshakes).

 • Temporal synchronization ensures attention peaks align with 
ground-truth interaction frames.

4.4 Ablation study on RGB backbone 
architectures

To justify our choice of ResNet18 as the RGB modality 
backbone, we conducted a comparative study with other widely-
used convolutional neural networks, namely ResNet50 and 
MobileNetV2. These models represent a trade-off between 
accuracy and computational efficiency and have been 
commonly used for feature extraction in video 
understanding tasks.

From the results in Table 12, we observe that ResNet50 achieves 
the highest classification accuracy, followed closely by ResNet18. 
However, ResNet18 provides a favorable balance between accuracy 
and inference time:

Lightweight: 11.7 M parameters vs. ResNet50’s 25.6 M.
Efficient: 1.8 GFLOPs and 9.2 ms/frame latency, closer to 

MobileNetV2’s efficiency but with significantly higher accuracy 
(+1.8% Top-1 over MobileNetV2).

Practical: Suitable for real-time deployment while maintaining 
competitive accuracy (88.2% Top-1).

Although MobileNetV2 is the most efficient in terms of 
model size and latency, its accuracy drops noticeably, which is 
critical in high-stakes scenarios such as human action 
recognition. Therefore, ResNet18 is selected in our final model 
due to its optimal trade-off between accuracy and 
computational efficiency.

5 Summary and future

In this paper, we propose a simple and lightweight Convolutional 
Spatiotemporal Sequence Inference Model (CSSIModel) for recognizing 
human interaction behaviors, addressing the challenges of cross-modal 
data fusion and computational complexity. Our model fuses skeletal 

TABLE 10 Interaction-specific accuracy.

Interaction type Key joints Accuracy Attention focus

Handshake Wrists, elbows 86.1% High on approaching hands (Figure 8)

Hug Shoulders, torso 82.3% Bilateral torso alignment

Punch Fists, shoulders 78.9% Unilateral arm extension

TABLE 11 Quantitatively compares our fusion strategy with existing methods.

Method Accuracy (XSet) Parameters Fusion strategy

ST-GCN (Cheng et al., 2020) 73.2 3.2 M Skeleton-only

2 s-AGCN (Li Y. et al., 2019) 84.2 14.7 M Late fusion

CSSIModel 84.9 9.1 M Joint PVRM (Ours)

Bold values correspond to the results of our proposed CSSIModel.

TABLE 12 Performance comparison of backbone network variants on the on the kinetics-400 dataset.

Backbone Parameters (M) GFLOPs Top-1 accuracy 
(%)

Top-5 accuracy 
(%)

Inference time 
(ms/frame)

ResNet18 11.7 1.8 88.2 96.3 9.2

ResNet50 25.6 4.1 89.6 96.9 15.4

MobileNetV2 3.4 0.3 86.4 94.5 6.5
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point data with video frame data to better understand human behavior, 
adopts a novel image segmentation enhancement method to increase 
the trainable dataset and improve generalization performance, and 
utilizes multi-scale 2D convolutional kernels for temporal modeling. 
This approach significantly reduces model complexity, frees 
computational resources, and effectively integrates human motion 
information across different time spans to produce classification results.

While our method does not surpass the highest accuracy of recent 
SOTA models, it offers a balanced trade-off between performance and 
computational efficiency. Future work will focus on improving accuracy 
while maintaining a lightweight design, such as integrating attention 
mechanisms or hybrid architectures.

Although CSSIModel achieves strong performance with low 
computational complexity, it has limitations. First, its performance may 
be affected by the quality and alignment of fused skeletal and RGB data, 
particularly when skeleton extraction is noisy or fails due to occlusion 
or camera angles. Second, the current early fusion approach may not 
fully exploit the complementary nature of temporal dynamics and 
spatial appearance across modalities. Third, reliance on accurate pose 
and optical flow data may limit deployment in real-world scenarios 
with variable input quality (e.g., occlusion, low-resolution videos).

To address these limitations, future work will:

 1. Integrate noise-tolerant pose estimators [e.g., (Plizzari et al., 
2021)] or self-supervised optical flow methods (Tran et al., 
2018), unifying pose estimation and action recognition to 
reduce error propagation.

 2. Explore advanced fusion strategies (e.g., attention-based or 
transformer-based mechanisms) to enhance skeleton-RGB 
feature interaction.

 3. Extend the model to diverse, unconstrained real-world datasets 
and incorporate additional modalities (e.g., depth data, audio) 
for improved robustness and interpretability.
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