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This paper presents a systematic review of quantum computing approaches to 
healthcare-related computational problems, with an emphasis on quantum-theoretical 
foundations and algorithmic complexity. We adopt an optimized machine learning 
methodology—combining Particle Swarm Optimization (PSO) with Latent Dirichlet 
Allocation (LDA)—to analyze the literature and identify key research themes at the 
intersection of quantum computing and healthcare. A total of 63 peer-reviewed 
studies were analyzed, with 41 categorized under the first domain and 22 under 
the second. This approach revealed two primary research directions: (1) quantum 
computing for artificial intelligence in healthcare, and (2) quantum computing for 
healthcare data security. We highlight the theoretical advances underlying these 
domains, from novel quantum machine learning algorithms for biomedical data 
to quantum cryptographic protocols for securing medical information. A gradient 
boosting classifier further validates our taxonomy by reliably distinguishing between 
the two categories of research, demonstrating the robustness of the identified 
themes, with an accuracy of 84.2%, a precision of 88.9%, a recall of 84.2%, an F1-
score of 84.5%, and an area under the curve of 0.875. Interpretability analysis using 
Local Interpretable Model-Agnostic Explanations (LIME) exposes distinguishing 
features of each category (e.g., references to biomedical applications versus 
blockchain-based security frameworks), offering transparency into the literature-
driven categorization, with the latter showing the most significant contributions 
to topic assignment (ranging from −0.133 to +0.128). Our findings underscore 
that quantum algorithms offer significant potential to enhance data security, 
optimize complex diagnostic computations, and provide computational speedups 
for health informatics. We also identify outstanding challenges—such as the need 
for scalable quantum algorithms and error-tolerant hardware integration—that 
must be addressed to translate these theoretical advancements into real-world 
clinical impact. This study emphasizes the importance of hybrid quantum-classical 
models and cross-disciplinary research to bridge the gap between cutting-edge 
quantum computing theory and its practical applications in healthcare.
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1 Introduction

Quantum computing represents a revolution in the field of 
informatics, leveraging the principles of quantum mechanics to 
process information in ways that surpass the capabilities of traditional 
computers. Unlike classical bits, which can only take the value of 0 or 
1, qubits can exist in a superposition of states, enabling parallel 
calculations and significantly higher computational power (Chow, 
2024). Moreover, this technology introduces the concept of quantum 
entanglement, a property that allows qubits to be correlated such that 
a change in the state of one immediately influences the other, 
regardless of distance. This phenomenon further enhances 
computational potential, enabling solutions to complex problems such 
as optimization and the simulation of multifactorial systems (Bernal 
et al., 2024; Pomarico, 2023).

In the healthcare sector, quantum computing offers significant 
benefits, pushing the boundaries of personalized medicine. For 
example, quantum algorithms for molecular simulations can 
accelerate the development of new drugs and predict molecular 
interactions with unprecedented accuracy. This approach paves the 
way for targeted treatments for diseases that have been difficult to 
address, such as certain types of cancer and neurodegenerative 
disorders (Blunt et  al., 2022). Another emerging area is the 
improvement of computational epidemiology, where the analysis of 
large datasets through quantum computing allows for more precise 
modeling of disease spread (Joshi, 2024). These advanced models can 
support public health authorities in planning more effective 
interventions during pandemics and other health crises (Wang et al., 
2023). Quantum computing also improves the efficient management 
of hospital resources and treatment planning, optimizing healthcare 
processes through sophisticated algorithms (Ur Rasool et al., 2023). A 
particularly promising area is the integration of quantum artificial 
intelligence (QAI) in healthcare, which combines artificial intelligence 
with quantum computing to enhance drug development, diagnosis, 
and treatment by processing vast amounts of data and executing 
complex calculations (Sunki et al., 2025). The combination of machine 
learning with quantum capabilities has already demonstrated its 
potential in the classification and analysis of complex medical images, 
enhancing diagnostic accuracy, particularly in fields such as radiology, 
where early and accurate diagnoses can save lives (Yan et al., 2024). 
QAI has also shown significant promise in the processing of genomic 
data, improving prediction techniques for precision medicine (Li 
et al., 2021). Another innovation is the quantum Internet of Things 
(QIoT), which is transforming smart healthcare by integrating 
quantum computing with IoT devices. This technology improves data 
security, accelerates diagnoses, and personalizes treatments (Sutradhar 
et al., 2024). For instance, QIoT sensors can monitor patients with 
chronic conditions, sending alerts to physicians in case of anomalies, 
ensuring timely care (Albahri et al., 2021).

The decision to focus specifically on quantum computing, rather 
than on other computational paradigms such as conventional AI or 
classical high-performance computing, lies in its unique potential to 
address unresolved computational challenges in healthcare. Quantum 
technologies offer not only exponential speed-up for specific 
problems, but also novel mechanisms such as superposition, 
entanglement, and quantum tunneling that enable new approaches to 
optimization, secure data transmission, and the modeling of complex 
biological systems. These capabilities are particularly relevant in 

medical domains where classical systems still face critical bottlenecks 
in scalability, interpretability, and processing power.

Despite these promising applications, quantum computing is still 
in its early stages and faces significant challenges, including error 
correction, the management of quantum decoherence, and the 
development of scalable hardware. However, recent advancements 
such as the development of quantum computers with dozens of stable 
qubits and the implementation of machine learning algorithms for 
error correction represent fundamental steps toward the large-scale 
adoption of this technology (Cenedese et al., 2023). With ongoing 
research advancements, quantum computing is poised to become a 
transformative element in healthcare, offering innovative tools to 
address complex problems and improve patients’ quality of life 
(Thantharate and Thantharate, 2024). Although the demonstrated 
potential is immense, the existing literature reveals significant gaps. 
Specifically, the applications of quantum computing in healthcare are 
often limited to isolated case studies, lacking a comprehensive 
framework that explores its large-scale potential. Furthermore, few 
studies directly integrate quantum computing approaches with 
advanced machine learning techniques to tackle complex problems, 
such as the modeling of high-dimensional clinical data or 
personalized therapies.

In particular, existing methodologies that combine topic modeling 
with metaheuristic optimization tend to rely on supervised architectures 
or complex multi-parameter configurations, which limit their 
generalizability and interpretability. No prior work has proposed a fully 
unsupervised, single-variable optimization strategy for topic discovery 
in a systematic review focused on quantum computing in healthcare. 
This reveals a methodological gap in designing lightweight, transparent, 
and reproducible tools for thematic synthesis in emerging research 
domains. This study aims to bridge these gaps through a combined 
approach of systematic literature review and machine learning 
techniques. This approach will enable the synthesis of the state-of-
the-art, identification of key development areas, and proposal of new 
operational frameworks for integrating quantum computing into 
existing healthcare systems. The main contributions of this study are as 
follows. First, it provides a comprehensive and structured systematic 
review of quantum computing applications in healthcare, articulated 
around two core research questions: enhancing data security (Q1) and 
advancing AI-driven healthcare applications (Q2). Second, it introduces 
an unsupervised and reproducible methodological framework that 
combines Particle Swarm Optimization and latent Dirichlet allocation 
for thematic extraction and topic classification. Third, it validates the 
thematic structure through a gradient boosting model and interpretable 
AI tools, ensuring methodological transparency and reliability. Finally, 
the study delivers an experimental classification architecture, and a 
curated dataset intended to support future interdisciplinary research at 
the intersection of quantum computing and healthcare.

The study will be structured into several sections. Section 2 will 
provide an overview of the state-of-the-art and gaps in the literature, 
identifying the basis for the systematic review. Section 3 will describe 
the methodology employed, detailing the process of collecting, 
selecting, and analyzing sources. Section 4 will present the results and 
related discussion, highlighting the study’s implications. Section 5 will 
present experimental extension of the study, introducing a predictive 
model to analyze the two main topics identified in quantum 
computing for healthcare. Finally, Section 6 will conclude the work by 
summarizing the main contributions, discussing limitations, and 
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suggesting future research directions in the field of quantum 
computing applied to healthcare.

2 Background

Quantum computing (QC) is emerging as one of the most 
revolutionary innovations in modern computing, with extraordinary 
potential impact on the healthcare sector. Thanks to its unique ability to 
process complex data and solve problems on a scale unimaginable for 
traditional computers, QC is opening new horizons in biomedical 
research and clinical applications (Shakor and Khaleel, 2024; Gou et al., 
2024). Among the most significant areas of application, drug discovery 
stands out as one of the most promising fields. Quantum algorithms 
enable extremely precise simulations of molecular interactions, 
accelerating drug development processes and improving candidate 
selection. This technology not only allows for the rapid identification of 
therapeutic candidates but also facilitates the personalization of 
treatments based on the genetic and molecular characteristics of patients 
(Shakor and Khaleel, 2024; Łukaniszyn et al., 2024; Szymaszek et al., 
2024). The result is a highly targeted approach capable of reducing side 
effects and enhancing treatment efficacy, which is crucial for complex 
diseases such as cancer (Kumar et al., 2023; Padhi and Charrua-Santos, 
2021). Simultaneously, QC is revolutionizing genomic sequencing. 
Genetic data analysis requires unprecedented computational power, 
especially for identifying rare mutations or genetic variants that might 
elude conventional technologies. With its ability to rapidly process large 
volumes of data, QC is making a significant contribution to precision 
medicine by providing essential tools to understand the genetic basis of 
many diseases and develop targeted therapies (Łukaniszyn et al., 2024; 
Thomford et al., 2018; Manickam et al., 2022). Another domain where 
QC is showing transformative potential is medical imaging. Advanced 
algorithms developed for this technology allow for the analysis of 
diagnostic images with a level of detail and accuracy never achieved 
before. This capability is critical for the early detection of diseases, 
significantly reducing the risk of diagnostic errors (Gou et al., 2024; 
Padhi and Charrua-Santos, 2021; Jamshidi et al., 2023). Moreover, the 
integration of QC into imaging systems enhances the overall efficiency 
of diagnostic processes, enabling more timely and targeted treatments 
(Nosrati and Nosrati, 2023). In addition to direct clinical applications, 
QC is also being employed in optimizing healthcare processes. 
Computational models based on quantum algorithms can significantly 
improve the management of hospital resources, optimizing treatment 
planning and supply chains (Manickam et al., 2022; Nosrati and Nosrati, 
2023). This approach not only reduces operational costs but also 
increases the efficiency of healthcare services, a crucial aspect in an era 
where the sustainability of healthcare systems is a global priority. 
Although QC is still an emerging technology, its progress suggests a 
future where it will become a fundamental component of modern 
healthcare. The combination of QC with other advanced technologies, 
such as artificial intelligence and the Internet of Things, promises to 
radically transform the healthcare landscape. Its applications extend 
beyond drug discovery and advanced diagnostics to the creation of 
digital twins for personalized patient monitoring and the optimization 
of tailored care (Kumar et al., 2023; Jamshidi et al., 2023; Nosrati and 
Nosrati, 2023). While quantum computing offers revolutionary 
prospects for the healthcare sector, promising to transform both clinical 
and operational practices, continued investment in the research and 

development of these technologies is essential to overcome current 
challenges and fully realize their potential.

2.1 Challenges and gaps in the literature

Despite being considered a revolutionary technology, quantum 
computing (QC) faces complex and multidimensional challenges that 
hinder its development and large-scale implementation in the 
healthcare sector, as highlighted in the scientific literature.

One of the main barriers is the technological maturity of QC. The 
stability of qubits, essential for the operation of a quantum computer, 
is limited by decoherence, a phenomenon that disrupts calculations 
and reduces their reliability. Current advancements in hardware 
engineering and error correction, while promising, are not yet 
sufficient to ensure scalable and reliable solutions (Chow, 2024; 
Balasubramaniam and Surendiran, 2024). This limitation restricts the 
application of QC in clinical settings, where system reliability is a top 
priority. Another challenge involves integration with existing 
healthcare infrastructures. Many healthcare institutions rely on legacy 
systems that were not designed to support quantum technologies. 
Moreover, the adoption of QC requires compatibility measures to 
prevent compromising the security and functionality of existing 
systems. Innovative solutions, such as unified architectures integrating 
blockchain and QC, could represent a pathway worth exploring, but 
they remain in experimental stages (Balasubramaniam and Surendiran, 
2024; Odeh et al., 2024). The security of healthcare data is another 
critical concern. Although QC has the potential to enhance encryption 
and protect sensitive data from cyberattacks, it can also pose a threat 
to classical cryptographic systems currently in use. Research in post-
quantum cryptography is essential to prevent vulnerabilities that could 
endanger highly sensitive medical information (Odeh et  al., 2024; 
Zhang et al., 2024). Another gap highlighted in the literature is the lack 
of specialized expertise. QC demands interdisciplinary training that 
combines advanced knowledge of quantum physics, computer science, 
and medicine. However, the educational programs currently available 
are insufficient to meet the growing demand for specialists in this field. 
This shortage of expertise not only limits adoption but also hampers 
innovation in QC applications for healthcare (Hernandez, 2024). 
Finally, the literature emphasizes the need to address economic and 
infrastructural challenges. Implementing quantum systems requires 
significant investments in hardware, research, and training. Without 
sustainable financial support, QC risks being confined to pilot projects 
or highly specialized applications rather than transforming the 
healthcare sector on a global scale (Wang, 2024; Tian and Shi, 2024).

These challenges underscore the necessity of a multidisciplinary 
approach to unlock QC’s full potential in healthcare. Such an approach 
should include investments in technological research, targeted 
educational programs, and supportive policies to promote the security, 
sustainability, and integration of QC into existing 
healthcare infrastructures.

2.2 Future directions and research 
keywords

To transform quantum computing (QC) from an emerging 
innovation into a driving force in the healthcare sector, it is essential 
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to undertake targeted research and development initiatives, addressing 
current challenges with ambitious yet practical strategies. The 
opportunities offered by QC can be realized through collaborative 
efforts among experts and institutions, but they require key 
interventions in several fundamental areas. The creation of specialized 
algorithms is an absolute priority. Medical data, characterized by high 
heterogeneity and complexity, demand tailored algorithms capable of 
addressing clinical needs such as early diagnosis, personalized drug 
discovery, and advanced genomic data processing. These algorithms 
must not only be powerful but also scalable and seamlessly integrable 
into existing workflows, ensuring practical and tangible impacts. 
Another critical pillar is the promotion of interdisciplinary 
collaborations. The convergence of quantum physicists, computer 
engineers, and healthcare professionals is essential for developing 
solutions that are not only technologically advanced but also aligned 
with the real needs of the healthcare sector. Shared initiatives, such as 
pilot projects and collaborative research platforms, could accelerate the 
path toward widespread QC adoption. At the same time, 
standardization and the definition of clear regulations are indispensable 
for building a reliable technological ecosystem. Global guidelines 
should address critical issues such as healthcare data security, ensuring 
compliance with existing regulations and promoting interoperability 
between traditional and quantum systems. Stakeholder trust will be a 
fundamental lever to drive investments and foster innovation. Finally, 
education and awareness play a crucial role. To address the shortage of 
specialized expertise, it is necessary to develop interdisciplinary 
educational programs that combine quantum physics, computer 
science, and biomedical applications. In parallel, awareness campaigns 
aimed at the healthcare sector can enhance understanding of QC’s 
practical benefits and encourage the adoption of these technologies.

To guide a systematic literature review that explores progress and 
gaps in these areas, three primary keywords are proposed. These terms 
represent the essential cores for identifying and analyzing existing 
literature, ensuring a structured and focused approach:

 I Quantum Healthcare: Covers the general applications of QC in 
the healthcare sector, including diagnostics, treatment, and 
optimization of clinical processes.

 II Quantum Algorithms: Focuses on the development and 
implementation of specific algorithms for medical applications, 
such as drug discovery and genomic data analysis.

 III Quantum Security: Represents aspects related to healthcare 
data security, with a focus on post-quantum cryptography and 
the protection of sensitive information.

These keywords will guide the systematic review process, allowing 
the delineation of an accurate state-of-the-art and the identification of 
priority research areas. In this way, it will be possible to provide a 
comprehensive overview of opportunities and challenges, contributing 
to the definition of a roadmap for the future of quantum computing 
in healthcare.

2.3 Research questions

To guide a systematic investigation into the application of 
quantum computing (QC) in healthcare, it is essential to focus on two 
key aspects that reflect the field’s priorities and emerging challenges:

 • Q1: How can quantum technologies enhance data security and 
ensure the integrity of healthcare information?

  The first research question addresses the role of quantum 
computing in security and privacy protection within healthcare 
systems. As medical infrastructures increasingly rely on digital 
records and interconnected devices, ensuring the 
confidentiality, integrity, and resilience of sensitive information 
is a critical challenge. Quantum cryptography, quantum-
enhanced secure machine learning, and privacy-preserving AI 
techniques offer innovative solutions to counter cyber threats, 
mitigate unauthorized access, and enhance trust in data 
exchanges. Investigating these mechanisms will provide 
insights into the development of scalable and robust security 
frameworks, essential for the safe integration of quantum 
computing into healthcare environments.

 • Q2: How can quantum computing improve medical diagnostics and 
AI-driven healthcare applications?

  The second research question focuses on the computational 
advancements enabled by quantum computing, particularly in 
artificial intelligence-driven healthcare applications. The 
complexity and volume of healthcare data—including medical 
imaging, genomic sequences, and patient records—demand 
sophisticated processing capabilities beyond classical 
computing. Quantum-assisted AI, quantum machine learning, 
and optimization algorithms have the potential to accelerate 
diagnostic accuracy, optimize treatment planning, and enhance 
predictive analytics. Understanding how these quantum-
powered solutions can be integrated into existing healthcare 
workflows will be  crucial for their practical deployment 
and adoption.

These research questions encapsulate the two fundamental pillars 
necessary for the successful adoption of quantum computing in 
healthcare. On one hand, it is crucial to establish secure and reliable 
data management frameworks by leveraging quantum-enhanced 
security techniques, ensuring the protection and integrity of sensitive 
medical information. On the other hand, quantum technologies offer 
unprecedented computational power that can drive advancements in 
AI-driven diagnostics and predictive modeling, enabling more 
accurate, efficient, and personalized healthcare solutions. Addressing 
these challenges will not only help overcome existing barriers but also 
pave the way for a well-structured, secure, and effective integration of 
quantum computing into modern healthcare systems.

3 Methodology

To address the research questions, a combination of systematic 
literature review and machine learning techniques was employed, 
focusing on exploring the core aspects of quantum computing in 
healthcare. The methodological approach adhered to established 
guidelines and was structured into distinct phases: defining a precise 
research strategy aligned with the research questions, applying 
rigorous inclusion and exclusion criteria to ensure relevance and 
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quality, selecting studies that directly address the identified challenges, 
and conducting an in-depth analysis of the data. Each step was 
meticulously detailed to ensure transparency, reproducibility, and 
alignment with the objectives of investigating algorithm development, 
interdisciplinary collaboration, and standardization in QC 
applications for healthcare (Santamato et al., 2024).

3.1 Computational infrastructure and work 
environment

The computational environment used for this research was 
designed to ensure efficient and scalable data processing, leveraging 
advanced tools for machine learning and computational optimization. 
The implementation was carried out on an Apple M1 Pro system with 
16 GB of RAM and a 1 TB SSD, running macOS Sequoia 15.0.1, 
providing high computational capacity for processing large datasets 
and executing complex models.

The entire workflow was developed in Python 3.11, integrating a 
set of optimized libraries for data management and machine learning. 
The computational pipeline utilized Scikit-learn for machine learning 
models, Pandas and NumPy for data manipulation, Matplotlib for 
visualization, NLTK for text preprocessing, and Pyswarms for swarm 
intelligence-based optimization. The adoption of Particle Swarm 
Optimization (PSO) allowed for the integration of evolutionary 
optimization mechanisms within the computational environment, 
enhancing the efficiency of decision-making and adaptive processes. 
The infrastructure was configured to support automated and 
optimized operations, ensuring effective management of 
computational resources and memory usage. The choice of a multi-
core configuration enabled faster and more responsive processing, 
reducing execution times for both analysis and optimization tasks. 
Additionally, the system was designed to be modular and adaptable, 
facilitating the integration of new methodologies and allowing for 
scalability to larger datasets without compromising efficiency.

3.2 Search strategy

A thorough search of electronic databases was conducted to 
identify peer-reviewed articles published between 2021 and 2025, a 
period characterized by significant advancements in Quantum 
Computing and its growing influence across multiple fields. The 
databases utilized for this review included ACM Digital Library, 
Emerald, Google Scholar, IEEE Xplore, PubMed, ScienceDirect, 
Scopus, and SpringerLink, ensuring a diverse and comprehensive 
selection of relevant academic sources. The search approach employed 
Boolean operators such as AND and OR to refine and structure the 
selection process. The use of AND facilitated the identification of 
studies that addressed multiple interconnected aspects, ensuring a 
focused retrieval of literature, while OR broadened the scope by 
incorporating related but distinct topics within Quantum Computing. 
This method allowed for both specificity and inclusiveness, ensuring 
a balance between precision and comprehensive coverage. To 
maximize the identification of relevant studies, the search was 
conducted across titles, abstracts, and keywords, ensuring that only 
the most pertinent articles were considered. The review was 
deliberately limited to peer-reviewed journal articles and review 

papers, excluding conference proceedings and preprints to prioritize 
rigorously vetted and high-impact research. Furthermore, only 
English-language publications were included, covering both open-
access and subscription-based content to ensure accessibility to a wide 
range of academic contributions.

This systematic and well-defined search strategy reduced the 
likelihood of omitting critical studies while adhering to best practices 
for literature reviews in computational sciences and emerging 
technologies. The structured use of Boolean operators and filtering 
techniques ensured that only highly relevant publications were 
selected, establishing a strong foundation for the subsequent 
examination of Quantum Computing research.

3.3 Inclusion and exclusion criteria

To ensure the selection of high-quality and relevant studies, a 
well-defined set of inclusion and exclusion criteria was applied. The 
eligibility of articles was determined based on the following factors:

 I Language and Relevance: The selected studies were required to 
be written in English, the dominant language in scientific and 
technical publications, and had to focus explicitly on Quantum 
Computing, Healthcare, Algorithms, and Security. Both open-
access and subscription-based resources were included to 
enhance accessibility and ensure comprehensive coverage of 
the literature.

 II Empirical Foundation: Only research articles presenting 
empirical findings or substantial theoretical contributions in 
the field of Quantum Computing were considered. Studies that 
provided practical insights, case studies, or applications 
relevant to the research themes were prioritized.

 III Publication Type and Timeframe: Eligible studies included 
peer-reviewed journal articles published between 2021 and 
2025, ensuring that only recent and methodologically sound 
contributions were included. Conference papers and preprints 
were excluded to maintain a focus on validated and high-
impact scholarly work.

Any studies that did not satisfy these conditions were excluded 
from the review. Specifically, papers written in languages other than 
English or those that did not directly examine the interplay between 
Quantum Computing and the key research domains were not 
considered. By implementing these rigorous selection criteria, only 
methodologically robust and thematically relevant studies were 
retained, forming a solid foundation for further analysis in the 
review process.

3.4 Query application

The article selection process commenced with the application of 
a general query to retrieve publications relevant to Quantum 
Computing, Healthcare, Algorithms, and Security. The initial search 
was structured to capture studies that included these keywords in the 
title, abstract, or keywords, ensuring an inclusive dataset. The query 
was applied across eight major academic databases—ACM Digital 
Library, Emerald, Google Scholar, IEEE Xplore, PubMed, 
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ScienceDirect, Scopus, and SpringerLink—and resulted in an initial 
dataset of 1,474 articles. Although comprehensive, this broad retrieval 
process also included studies of varying relevance and methodological 
rigor, some of which did not fully align with the study’s 
research objectives.

The first-stage query used for this broad search was:

 a) Initial Query: TITLE-ABS-KEY (quantum AND healthcare) 
AND TITLE-ABS-KEY (quantum AND algorithms) AND 
TITLE-ABS-KEY (quantum AND security)

This formulation ensured that only studies explicitly mentioning 
Quantum Computing in relation to Healthcare, Algorithms, and 
Security were included in the initial dataset.

To refine the dataset and isolate high-quality, methodologically 
sound articles, a structured query with explicit inclusion and exclusion 
criteria was subsequently applied. This enhanced search approach 
allowed for an automated filtering process, narrowing the dataset to 
the most relevant and peer-reviewed studies. The refined query 
included the following parameters:

 b) Advanced Query with Inclusion/Exclusion Criteria: TITLE-
ABS-KEY (quantum AND healthcare) AND TITLE-ABS-KEY 
(quantum AND algorithms) AND TITLE-ABS-KEY (quantum 
AND security) AND PUBYEAR > 2020 AND PUBYEAR < 2026 
AND (LIMIT-TO (DOCTYPE, “ar”) OR LIMIT-TO 
(DOCTYPE, “re”)) AND (LIMIT-TO (SRCTYPE, “j”)) AND 
(LIMIT-TO (LANGUAGE, “English”)) AND (LIMIT-TO 
(OA, “all”))

This structured query enabled an automated selection of articles 
based on the following criteria:

 I Publication Year: Only studies published between 2021 and 
2025 were included (PUBYEAR > 2020 AND PUBYEAR < 
2026), ensuring that the review reflected recent and up-to-
date research.

 II Document Type: The search was restricted to original research 
articles and systematic reviews (LIMIT-TO (DOCTYPE, “ar”) 
OR LIMIT-TO (DOCTYPE, “re”)), excluding conference 
papers and preprints.

 III Source Type: Only studies published in scientific journals 
(LIMIT-TO (SRCTYPE, “j”)) were considered to ensure peer-
reviewed rigor.

 IV Language: The dataset was limited to English-language 
publications (LIMIT-TO (LANGUAGE, “English”)), aligning 
with standard scientific practices.

 V Accessibility: Both open-access and subscription-based articles 
were included (LIMIT-TO (OA, “all”)), providing a 
comprehensive representation of the literature.

Applying this refined query significantly reduced the initial 
dataset from 1,474 articles to 133, representing a curated selection of 
highly relevant, peer-reviewed contributions. This systematic filtering 
process was critical in constructing a focused, methodologically 
rigorous foundation, ensuring that the selected studies aligned with 
the research objectives and provided a robust basis for 
further analysis.

3.5 Data extraction and analysis

The process of data extraction and analysis followed a systematic 
and structured methodology, integrating machine learning techniques 
to optimize study selection and classification. Figure  1 presents a 
PRISMA Flow Diagram Enhanced with Machine Learning, outlining 
the key steps involved in filtering, categorizing, and refining the 
selected literature.

The identification phase began with an extensive search across 
eight major academic databases—ACM Digital Library, Emerald, 
Google Scholar, IEEE Xplore, PubMed, ScienceDirect, Scopus, and 
SpringerLink—which retrieved an initial dataset of 1,474 papers. The 
query was designed using Boolean operators (AND, OR) to ensure a 
comprehensive selection of relevant papers. Specifically, OR was used 
to include studies related to Quantum Healthcare, Quantum 
Algorithms, and Quantum Security, while AND was applied to refine 
the search by integrating additional filtering criteria, such as 
publication years and document types.

During the screening phase, 133 papers were retained after 
applying inclusion and exclusion criteria, ensuring that only peer-
reviewed, English-language journal articles published between 2021 
and 2025 were considered. After removing 7 duplicate papers, 126 
remained. After a rigorous full-text review, 55 studies were excluded 
as they did not align with the research questions, leaving 71 eligible 
studies. At this stage, a threshold-based anomaly detection method 
was applied to identify and exclude outliers (n = 8) from the final 
dataset. The outlier detection process was based on the maximum 
topic probability assigned to each paper by the Latent Dirichlet 
Allocation (LDA) model. Specifically, the dominance threshold was 
set at 0.6, meaning that any paper with a maximum topic probability 
below this threshold was classified as an outlier. These papers exhibited 
a uniform topic probability distribution, indicating that they did not 
strongly belong to any of the extracted topics and were therefore 
excluded to maintain the thematic coherence of the analysis. To 
enhance the categorization of the final dataset, machine learning 
techniques were applied. Latent Dirichlet Allocation (LDA), an 
unsupervised learning model, was used for topic modeling, enabling 
the automatic discovery of thematic clusters within the dataset. The 
number of topics was not pre-defined; instead, Particle Swarm 
Optimization (PSO) was employed as an optimization technique to 
determine the most coherent and meaningful topic distribution. PSO 
dynamically adjusted the number of topics by minimizing the variance 
in topic probabilities across documents, ensuring optimal clustering 
of research themes.

The final dataset comprised 63 papers, categorized into two 
primary research topics, each with a balanced number of studies 
(Topic 1 = 41, Topic 2 = 22). This systematic, data-driven approach 
reinforced the rigor of the study selection process, ensuring a robust 
and thematically coherent systematic review.

3.6 Data selection criteria

The final dataset of 63 articles was meticulously curated to ensure 
a robust foundation for thematic analysis, maintaining alignment with 
the systematic approach applied in this study. The selection criteria 
emphasized relevance, methodological rigor, diversity of perspectives, 
and data type, ensuring a comprehensive and structured literature 
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review on Quantum Computing, with a specific focus on Healthcare, 
Algorithms, and Security.

 I Relevance: Each article was assessed based on its direct 
contribution to understanding the role of Quantum Computing 
in Healthcare, Algorithms, and Security. Particular attention 
was given to empirical studies investigating key aspects such as 
quantum algorithms for healthcare applications, security 
challenges in quantum systems, and advancements in 
quantum-based computational models. Articles that were only 
marginally related to the core topics, even if technically 
relevant, were excluded to maintain a coherent thematic focus.

 II Quality and Rigor: High academic standards were prioritized 
to ensure the scientific integrity of the selected studies. 
Only peer-reviewed journal articles were included, 
excluding conference proceedings and preprints. Special 
attention was given to the methodology, depth of analysis, 
and empirical validation of each study, ensuring that the 
dataset comprised reliable and rigorously 
validated contributions.

 III Diversity of Perspectives: The dataset was structured to capture 
the multidisciplinary nature of Quantum Computing research, 
with a focus on Healthcare, Algorithms, and Security. Studies 
from various fields, including computational sciences, 
cryptography, medical informatics, and emerging quantum 
technologies, were included to provide a comprehensive 
perspective on how Quantum Computing is being explored in 
different technological and applied contexts.

 IV Type of Data: The dataset emphasized empirical research, 
incorporating qualitative, quantitative, and mixed-method 
studies. The selection included experimental research on 
quantum security, case studies on quantum applications in 
healthcare, algorithmic evaluations, and systematic reviews. 
This diversity in data sources enhanced the depth and 
breadth of the analysis, allowing for a nuanced exploration 
of trends and challenges in Quantum Computing, 
specifically within Healthcare, Algorithms, and Security.

By applying these systematic selection criteria, the final dataset of 
63 articles ensured both thematic relevance and methodological 
robustness, offering a strong foundation for analyzing the role of 
Quantum Computing in Healthcare, Algorithm Development, and 
Security Innovations.

3.7 Screening and selection

A systematic method was employed to identify, filter, and process 
the dataset, ensuring a rigorous selection of relevant studies on 
Quantum Computing with a focus on Healthcare, Algorithms, and 
Security. The screening process incorporated automated and manual 
techniques, alongside machine learning-driven optimization, to refine 
the dataset. Initially, duplicate entries were removed by leveraging 
Python-based preprocessing techniques. The dataset was processed 
using Pandas for data manipulation and NLTK for natural language 
processing, ensuring that each study was assessed based on its title and 

FIGURE 1

PRISMA flow diagram enhanced with machine learning for study selection and classification.
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author information to detect exact duplicates. This was followed by a 
manual verification to eliminate any remaining redundancies 
overlooked by the automated step. Following deduplication, a structured 
review of the articles was conducted by applying predefined inclusion 
and exclusion criteria. Any disagreements among researchers regarding 
the inclusion of specific studies were resolved through discussion until 
a unanimous consensus was reached. This phase allowed the data set to 
be  refined to 63 articles included in the review from 71 articles 
considered eligible, from which an additional 8 studies were excluded 
as outliers identified for nonalignment. The selected articles were 
structured into a spreadsheet format to facilitate systematic processing. 
To ensure consistency, a comprehensive stopword list was created by 
merging standard stopwords from NLTK with a customized list of terms 
deemed irrelevant to the study’s thematic focus. The text cleaning 
process involved removing numerical values and punctuation, 
converting text to lowercase, and eliminating stopwords. The cleaned 
document cleand  was defined as follows equation 1:

 { }= ∈ ∉:clean rawd w d w S  (1)

where rawd  represents the original document, w is a word in the 
document, and S is the combined stopword set. To transform the 
cleaned textual data into a numerical representation, CountVectorizer 
was applied to generate a document-term matrix (DTM). Terms with 
a document frequency (df) above 95% or below 2 were removed to 
minimize noise, ensuring that only relevant terms contributed to topic 
identification. The weighting function was defined as equation 2:

 ( ) ( ), 0.02 0.95i j j i jD freq w d where df w= ∈ ≤ ≤
 (2)

where ,i jD  represents the frequency of term jw  in document id .
The Latent Dirichlet Allocation (LDA) model was then employed 

to uncover latent topics within the dataset. LDA operates under the 
assumption that each document is a mixture of topics, while each 
topic consists of a distribution of words. The topic distribution for a 
given document d is drawn from a Dirichlet distribution, as defined 
by equation 3:

 ( )θ α~d Dirichlet  (3)

where θd  represents the vector of topic probabilities for d, and α 
controls the sparsity of the distribution. For each word w in d, a topic 
z is assigned using equation 4:

 ( )θ~ dz Multinomial  (4)

The word is then generated from the topic-specific word 
distribution βz  equation 5:

 ( )β~n zw Multinomial  (5)

To ensure the number of topics was optimized, Particle Swarm 
Optimization (PSO) was implemented. Instead of predefining K topics, 

PSO dynamically optimized the topic distribution, reducing variance 
across topic probabilities and ensuring thematic coherence. The 
optimization process minimized the dispersion of topic probability scores, 
effectively tuning LDA to produce a robust, data-driven categorization.

PSO was employed to determine the optimal number of topics (K) 
for the LDA model. The fitness function used in the optimization process 
aimed to maximize the coherence of topics while minimizing redundancy. 
The optimization process followed these key steps: each particle in the 
swarm represented a potential value of K (i.e., the number of topics). The 
objective function evaluated the coherence score of the LDA model for 
each proposed K. The velocity iv  and position ix  of each particle were 
updated iteratively using the standard PSO equations 6, 7:

 
( ) ( ) ( ) ( )+    = + − + −   

   
1

1 1 , 2 2
t t t t

best i besti i i iv wv c r p x c r g x
 

(6)

 
( ) ( ) ( )+ += +1 1t t t
i i ix x v  (7)

where w is the inertia weight, balancing exploration and exploitation, 
1c , 2c  are acceleration coefficients influencing personal and global best 

solutions, 1r , 2r  are random numbers sampled from a uniform distribution 
U (0,1), ,best ip  is the best position found by particle i, and bestg  is the 
global best position across the swarm. The optimization continued until 
convergence was reached, identifying the optimal K that maximized 
topic coherence.

Once the optimal number of topics was determined via PSO, each 
document was assigned a dominant topic based on the highest probability 
( )P kd  calculated as follows equation 8:

 
( ) ( )= arg max

k
Assigned Topic d P k d∣

 
(8)

This assignment ensured that each paper was classified under the 
most relevant research theme, while still recognizing that LDA allows for 
overlapping thematic distributions across documents. To enhance 
interpretability, a function was implemented to extract and display key 
terms associated with each topic, providing a clear semantic representation 
of each category.

To maintain a high-quality dataset, a threshold-based anomaly 
detection technique was applied to detect and exclude outliers. Articles 
exhibiting a uniform probability distribution across multiple topics were 
classified as outliers, as they lacked a clear thematic association. Outliers 
were identified based on a dominance threshold δ = 0.6, where equation 9:

 
( )

( ), max |

,

k
k

True if P k d
f x

False otherwise

δ <= 
  

(9)

Papers with max topic probabilities below 0.6 were excluded, as their 
unclear topic alignment indicated that they did not strongly contribute to 
the study’s key research domains. A total of 3 outliers were identified 
and removed.

The results, including assigned topics and excluded outliers, were 
exported to a spreadsheet file to ensure transparency and reproducibility. 
This structured approach facilitated an efficient and systematic analysis, 
offering a clear thematic classification of the literature. By integrating LDA 
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for topic modeling, PSO for optimization, and threshold-based anomaly 
detection for outlier exclusion, the screening and selection process was 
methodologically rigorous, ensuring thematic consistency in the 
systematic literature review on Quantum Computing with a focus on 
Healthcare, Algorithms, and Security.

3.8 Predictive algorithm

In the experimental analysis discussed in Section 5, a Gradient 
Boosting predictive algorithm was implemented to classify research 
papers into the thematic categories identified during the systematic 
review. The classification task was designed to assess the potential of 
quantum computing in the healthcare sector, ensuring an accurate and 
interpretable model. The target variable was defined as a binary variable, 
consisting of the two topics identified through the combination of 
Systematic Literature Review, Latent Dirichlet Allocation (LDA), and 
Particle Swarm Optimization (PSO). The features were represented by 
three binary variables, selected as transversal factors present across the 
analyzed studies. The classification was performed using a Gradient 
Boosting model, which iteratively builds an ensemble of decision trees to 
minimize classification error. The final prediction was obtained as a 
weighted sum of individual weak learners, following the general 
equation 10:

 
( ) ( )γ

=
= ∑

1
F x

M

m m
m

h x
 

(10)

Where F(x) is the final predictive model, ( )mh x  represents the output 
of the m-th weak learner (a decision tree), and γm is the corresponding 
weight learned during training. The model was optimized using a loss 
function based on log loss, suitable for binary classification equation 11:

 
( )( ) ( ) ( ) ( )

=

 = − + − − ∑
1

, log 1 log 1
N

i i i i
i

L y F x y p y p
 

(11)

where iy  is the true label (0 or 1) of the i-th document, and ip  is the 
probability estimate of belonging to one of the two thematic categories. 
The integration of a Gradient Boosting-based predictive model ensured 
a robust and effective approach for categorizing studies related to 
quantum computing in healthcare. The strategic selection of features 
improved model accuracy and interpretability, reinforcing the 
methodological rigor of the analysis and providing a clear understanding 
of the impact of key factors in the emerging landscape of quantum 
computing applications in healthcare and technology.

3.9 Data measurement

The topics identified through LDA and PSO will undergo further 
classification based on cross-cutting characteristics common to all 63 
selected studies. This additional step will allow for refinement and 
contextualization of the thematic clusters, ensuring that they represent 
broader interdisciplinary connections and emerging trends in the study 
of Quantum Computing, with a particular focus on Healthcare, 
Algorithms, and Security. To ensure an accurate assignment of topics, a 

performance evaluation of the predictive model was conducted using 
advanced statistical metrics, based on the confusion matrix. The key 
metrics considered are as follows:

 I AUC-ROC (Area Under the Curve-Receiver Operating 
Characteristics)—This metric evaluates the model’s ability to 
distinguish between thematic categories. The AUC-ROC score 
ranges from 0.5 (random classification) to 1 (perfect 
classification). The macro-average score is calculated as 
equation 12:

 =
= ∑o 1

1 n
macr iiAUC AUC

n  
(12)

where n represents the number of topics, and iAUC  is the AUC 
computed for each topic i, given by equation 13:

 ( )− =  ∫
1 1
0i i iAUC TPR FPR u du

 
(13)

 II Accuracy—Represents the proportion of correct classifications 
relative to the total number of instances analyzed equation 14:

 

= =

=

+
=
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(14)

 III Precision—Measures the proportion of correct positive 
predictions relative to all instances predicted as positive for a 
given topic equation 15:

 = ≠

=
+∑ 1,  

i
i n

i jij j i

TruePositivesPrecision
True Positives False Positives

 

(15)

where  jiFalse Positives  represents the number of times topic j was 
incorrectly classified as topic i.

 IV Recall (Sensitivity)—Evaluates the model’s ability to correctly 
identify all relevant cases for a given topic while minimizing 
false negatives equation 16:

 = ≠

=
+∑ 1,  

i
i n

i ijj j i

TruePositivesRecall
True Positives False Negatives

 

(16)

where  ijFalse Negatives  represents the number of times a topic i 
instance was misclassified as another topic.
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 V F1 Score—Represents the harmonic mean of Precision and 
Recall, providing a balanced evaluation when both metrics are 
equally important equation 17:

 
=

+
1 2 i i

i
i i

Precision x Recall
F Score x

Precision Recall  
(17)

 VI Matthews Correlation Coefficient (MCC)—Measures the 
overall quality of predictions, considering both true positives 
and true negatives. MCC ranges from-1 (completely incorrect 
classification) to 1 (perfect classification) equation 18:

 ( ) ( )
−

=
− −

∑
∑ ∑2 2 2 2

k kk

k kk k

CxS P x T
MCC

S P x S T
 

(18)

Where C is the sum of correct predictions (true positives + true 
negatives), S is the total number of predictions, kP  represents 
the total predictions for topic k, kT  represents the actual 
instances for topic k.

These metrics validated the model’s reliability, ensuring that the 
identified topics accurately reflect the key themes of research in 
Quantum Computing. The further classification based on cross-
cutting characteristics will enhance the depth of the analysis, providing 
a more detailed representation of interdisciplinary connections and 
emerging trends in the fields of Healthcare, Algorithms, and Security.

4 Results and discussion

The integration of Particle Swarm Optimization (PSO) with 
Latent Dirichlet Allocation (LDA) provided a robust framework for 
identifying and optimizing thematic structures within the selected 
literature on Quantum Computing in Healthcare, Algorithms, and 
Security. This section presents the results obtained through the 
optimization process and discusses the implications of the identified 
topics in relation to the research questions. After analyzing and 
identifying the cross-cutting characteristics of the selected studies, a 
predictive machine learning model will be developed to help us better 
understand how the topics align coherently with the research questions.

4.1 Comparison with optimization 
strategies in topic modeling

The integration of probabilistic topic modeling with evolutionary 
optimization algorithms has produced a range of methodological 
solutions, often marked by structural complexity or a strong reliance 
on supervised architectures. In certain approaches, PSO has been 
applied to determine the optimal number of topics, but the 
optimization process is guided by supervised objectives, such as the 
accuracy or F1-score of external classifiers trained on the generated 

topic features. While these methods may be effective in annotated and 
controlled settings, their applicability is significantly reduced in 
exploratory contexts where supervision is absent and thematic 
generalization is a core objective (Krishnan et al., 2021). Other models 
have replaced LDA entirely, using PSO to generate semantic clusters 
directly through dense vector representations. In these configurations, 
topics emerge as geometric centroids within an embedding space, 
eliminating the probabilistic structure that traditionally captures the 
distributional relationships between documents and topics. As a 
result, the interpretability and generative nature of the model are 
compromised (Miles et al., 2022). Some solutions have proposed joint 
optimization of several internal parameters of LDA, including α and 
β, using PSO. Although such methods offer fine-grained control over 
the generative process, they also introduce substantial computational 
overhead and rely on delicate balancing across hyperparameters that 
may be highly sensitive to data characteristics. In the absence of prior 
knowledge or structural constraints, these approaches risk instability 
and limited generalizability (Onan, 2018).

In this study, it was deliberately decided to avoid optimization 
of internal hyperparameters such as α and β, and instead focused 
exclusively on the variable K, the number of topics to be generated. 
This choice was motivated by two key considerations. First, it avoids 
overreliance on arbitrary prior assumptions that often lead to 
overfitting or model instability. Second, it preserves the simplicity, 
clarity, and interpretability of the original LDA model by keeping 
its generative structure intact. The optimization process is thus 
centered on the most thematically impactful parameter, ensuring 
that the model adapts to the data without distorting its underlying 
structure. Optimizing K via PSO in a fully unsupervised setting 
yields a topic configuration that is semantically coherent, adaptable, 
and free from the interactional noise typical of multi-parameter 
tuning. This design makes the framework lightweight, replicable, 
and transparent qualities that are essential in the context of 
systematic literature reviews. To the best of our knowledge, this is 
the first application of a PSO-based strategy for automatic topic 
selection in a systematic review focused on quantum computing in 
healthcare, highlighting both its methodological novelty and its 
domain-specific relevance.

4.2 Methodological justification of the 
chosen approach

The Latent Dirichlet Allocation model was selected as the core 
mechanism for thematic extraction, as it remains one of the most 
established, interpretable, and reliable solutions for identifying latent 
topics in unstructured text corpora. Unlike more recent methods 
based on dense vector representations, such as BERTopic, Embedded 
Topic Models, or Non-negative Matrix Factorization, LDA provides a 
probabilistic distribution of topics across documents and of words 
across topics, offering an effective balance between semantic 
coherence and interpretability. This makes it particularly suitable for 
exploratory and systematic analyses of scientific literature 
(Charitopoulos et al., 2025; Hanny and Resch, 2024). While neural-
based models may yield finer semantic granularity, they often rely on 
pretrained vector spaces and require more complex architectures, 
thereby increasing computational cost and reducing 
model transparency.
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For the optimization phase, Particle Swarm Optimization was 
employed to automatically determine the optimal number of topics, 
as it adapts efficiently to discrete, low-dimensional search spaces. PSO 
offers a solid balance between exploration and exploitation of the 
objective function, with fast convergence rates and flexible 
configuration, making it a stable, lightweight, and reproducible 
solution in unsupervised settings (Raji et  al., 2022). Traditional 
alternatives such as grid search have shown to be less efficient due to 
their exhaustive nature and lack of adaptivity (Elgeldawi et al., 2021). 
Bayesian optimization, although theoretically advanced, relies on 
surrogate functions and prior distribution assumptions over the 
search space, which are often misaligned with exploratory scenarios 
where the objective is simple and well-defined, such as the 
maximization of topic coherence (Sultana et al., 2022; Zulfiqar et al., 
2022). Other metaheuristic algorithms, including genetic algorithms, 
were also considered, but tend to exhibit greater tuning instability and 
computational overhead when applied to single-variable optimization 
problems (Divasón et  al., 2023). These methods often depend on 
crossover, mutation strategies, and constraint balancing, making them 
less suitable in the absence of strong structural priors. In contrast, PSO 
enables effective search without the need for surrogate models or 
probabilistic assumptions, making it particularly suitable for 
determining the number of topics in a fully unsupervised 
environment. Its simplicity and adaptability to discrete configurations 
support its methodological alignment with the nature of the problem 
addressed (Raji et al., 2022; Divasón et al., 2023).

Recent applications of Particle Swarm Optimization in 
healthcare-related domains further support its effectiveness in 
similar contexts. In cybersecurity frameworks, PSO has been 
employed to optimize hybrid models for intrusion detection and 
bio-inspired feature selection with notable gains in accuracy and 
computational efficiency (Qi et al., 2024; Bakro et al., 2024). In 
edge and cloud computing for healthcare monitoring systems, 
PSO-enhanced models have shown improvements in threat 
detection, quality of service, and remote diagnostic accuracy, 
supporting scalable and secure health data management (Pavithra 
et al., 2023; Lalit et al., 2024). Other studies have demonstrated the 
success of PSO variants in deep learning architectures, time series 
forecasting, and disease prediction tasks in cloud-based 
environments, confirming its suitability for optimizing non-convex 
objective functions in low-dimensional settings, particularly 
within complex health infrastructures (Xu and Ren, 2022; 
Ramachandran et  al., 2023; Bo and Lei, 2025). These findings 
corroborate the choice of PSO in this study, emphasizing its 
stability, adaptability, and methodological compatibility with 
unsupervised topic modeling in systematic literature reviews.

In recent years, several nature-inspired algorithms have emerged, 
such as Crayfish Optimization, Reptile Search Algorithm, and Red 
Fox Optimizer, aiming to overcome limitations of classical approaches. 
However, comparative studies show that while these newer methods 
can be competitive in specific applications, they do not demonstrate 
systematic superiority over PSO. Their higher sensitivity to control 
parameters and the lack of extensive validation in topic modeling 
contexts make them less robust for general-purpose use (Abd Elaziz 
et al., 2023; Fakhouri et al., 2024; Mohammed and Rashid, 2023). PSO 
remains advantageous particularly when the optimization task 
involves a single discrete variable, and the objective function is 
straightforward and computationally accessible.

This selection is also consistent with the foundational principle 
expressed by the No Free Lunch Theorem, which states that no 
optimization algorithm can universally outperform all others across 
every problem class. The effectiveness of any metaheuristic must 
be assessed in relation to the specific problem structure, context, and 
analytical goals (Wolpert and Macready, 1997). The choice of PSO in 
this study reflects a methodological rationale grounded in simplicity, 
efficiency, and a balanced compromise between adaptability and 
interpretability, rather than in the assumption of absolute superiority.

4.3 PSO-driven optimization of topic 
modeling

The Particle Swarm Optimization (PSO) approach was employed 
to dynamically determine the optimal number of topics for the Latent 
Dirichlet Allocation (LDA) model, ensuring that the thematic 
distribution was based on semantic coherence and relevance. Particle 
Swarm Optimization (PSO) is an optimization algorithm inspired by 
the social behavior of bird flocks and fish schools. In this method, a 
population of candidate solutions, referred to as “particles,” navigates 
the search space by leveraging both individual and collective 
experiences to locate the optimal solution. This approach has been 
extensively studied and applied across various fields of engineering 
and computer science (Gad, 2022). For instance, by integrating 
ensemble pruning with topic modeling optimized through Particle 
Swarm Optimization (PSO), it is possible to enhance predictive 
performance by fine-tuning the parameters of the Latent Dirichlet 
Allocation (LDA) model, including determining the optimal number 
of topics (Wang et al., 2019).

Integrating PSO into the topic modeling process eliminated the 
arbitrary selection of the number of topics, providing a quantitative 
and methodologically rigorous solution. The objective function 
governing the optimization process was designed to maximize topic 
coherence, formulated as the minimization of the negative coherence 
score equation 19:

 
( )min

K
C K

 
(19)

where K represents the number of topics to be optimized, while 
C(K) is the average topic coherence score, calculated based on the 
semantic similarity between the terms belonging to the same cluster. 
This formulation allowed for the identification of the optimal number 
of topics, ensuring maximum intra-topic homogeneity and minimal 
semantic overlap across different groups, facilitating an informative 
and meaningful segmentation of the analyzed corpus.

The computational implementation of PSO was conducted using 
the pyswarms library, executing iterative optimization with the 
following command:

import pyswarms as ps
# Definition of the PSO optimizer with specific parameters
optimizer = ps.single.GlobalBestPSO(n_particles=10, 

dimensions=1, options={'c1': 1.5, 'c2': 1.5, 'w': 0.9}, bounds=(np.
array([2]), np.array([6])))

# Execution of the optimization to determine the optimal number 
of topics

best_cost, best_pos = optimizer.optimize(evaluate_lda, iters=20)
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# Optimal number of topics identified
best_num_topics = int(best_pos[0])
This iterative process tested different configurations of topic 

numbers, evaluated their coherence scores using LDA, and selected 
the configuration that achieved the highest coherence.

To ensure an optimal balance between exploration and 
exploitation in the search for the ideal number of topics, the following 
hyperparameters were adopted:

 • Inertia weight (w) = 0.9; Balances the trade-off between solution 
space exploration and local convergence.

 • Cognitive coefficient (c1) = 1.5; Determines the weight of an 
individual particle’s experience in the optimization process.

 • Social coefficient (c2) = 1.5; Defines the degree of influence 
exerted by the global best solution found by the swarm.

 • Number of particles = 10; Ensures sufficient exploration of the 
parameter space without compromising computational efficiency.

 • Number of iterations = 20; Allows for the progressive refinement 
of the solution until convergence is achieved.

 • Topic number range: 2–10; Restricts the search to prevent over-
segmentation or excessive generalization of topics.

This configuration enabled PSO to converge toward an optimal 
solution, ensuring a coherent and meaningful thematic 
partitioning. The optimization process identified the optimal 
number of topics as 2, with a final cost function value of 9.087, 
indicating a high level of thematic coherence within the optimized 
topic distribution. The best particle position converged to 2.32, 
which was rounded to 2. To assess the robustness of the 
optimization process, 30 independent PSO runs were executed. 
The fitness scores across these runs yielded the following statistical 
indicators: best = 9.087, worst = 39.121, mean = 20.591, 
median = 21.575, standard deviation = 11.780, and 
variance = 138.779. These results confirm the convergence stability 

and consistency of PSO in identifying a reliable and semantically 
coherent topic structure. These findings suggest that a two-topic 
segmentation provides the best balance between granularity and 
coherence, preventing excessive fragmentation while ensuring 
clear and meaningful classification.

To further assess the robustness and consistency of the 
optimization process, the Particle Swarm Optimization (PSO) 
algorithm was executed across 30 independent runs. Figure 2 displays 
the distribution of the fitness function values obtained in each run. 
The median fitness value was approximately 21.8, while the minimum 
and maximum values observed were 8.8 and 39.1, respectively. The 
interquartile range lies between ~9.3 and 29.0, indicating that most 
runs yielded consistent results without significant outliers. The box is 
shown in light blue, while the central orange line indicates the median 
of the distribution.

Figure 3 illustrates the average convergence behavior of the PSO 
algorithm over 20 iterations. Starting from a mean fitness of about 
28.1, the optimization rapidly improves within the first 5–7 iterations, 
gradually stabilizing around 20.6. The blue curve with circular 
markers shows the average fitness value across all particles and runs 
at each iteration. This pattern reflects efficient convergence dynamics 
and confirms that the PSO configuration used (c1 = 1.5, c2 = 1.5, 
w = 0.9, 10 particles, 20 iterations) enables reliable identification of the 
optimal number of topics with minimal performance variability 
across runs.

These results confirm that the PSO-based optimization is not only 
effective but also repeatable and stable, ensuring methodological 
reliability and replicability in unsupervised topic modeling. Table 1 
provides a structured representation of the topics identified through 
the application of Latent Dirichlet Allocation (LDA) optimized with 
Particle Swarm Optimization (PSO), highlighting their association 
with the key research questions (RQ1 and RQ2). Each thematic 
category is described through the most representative keywords, a 
summary of its content, the related research domain, and an 

FIGURE 2

Boxplot of fitness function values across 30 independent PSO runs.
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identifying label that facilitates reference to the different 
conceptual clusters.

Table 1 establishes the connection between the extracted research 
topics and their corresponding research questions, forming a 
structured framework to explore the thematic scope of the study.

The first topic revolves around quantum computing applications 
in healthcare security, learning systems, and infrastructure. The 
keywords highlight a focus on data security, system integration, and 
AI-driven learning models. As quantum computing becomes more 
prevalent, ensuring robust cybersecurity, data privacy, and secure 
machine learning frameworks in healthcare is essential. The associated 
research question (Q1) investigates how quantum technologies can 
enhance the security, privacy, and interoperability of healthcare data. 
This includes solutions such as quantum encryption, privacy-
preserving AI, and the integration of secure quantum computing in 
medical infrastructures.

The second topic focuses on the potential of AI-driven 
quantum computing in healthcare applications, particularly in 
medical diagnostics, predictive modeling, and computational 

medicine. The inclusion of terms like AI, quantum computing, and 
machine learning suggests that this topic explores the intersection 
of quantum computation and artificial intelligence for healthcare 
advancements. The corresponding research question (Q2) examines 
how AI-enhanced quantum computing can optimize diagnostics, 
predictive healthcare models, and treatment strategies. By 
leveraging quantum-enhanced machine learning and simulations, 
this approach aims to revolutionize decision-making processes in 
medicine, improve personalized treatments, and increase 
computational efficiency in analyzing large-scale 
healthcare datasets.

The relationship between Q1 and Q2 underscores the 
complementary nature of these two research areas. On one hand, 
quantum security plays a crucial role in ensuring the privacy, 
protection, and secure exchange of sensitive medical data, addressing 
the growing need for cybersecurity in an increasingly digital 
healthcare environment. On the other hand, quantum computing and 
AI build upon this secure foundation, enabling advanced data 
processing, predictive analytics, and more accurate clinical 

FIGURE 3

Mean convergence curve of PSO across 30 runs over 20 iterations.

TABLE 1 Association of topics with research questions.

Topic Keywords Description Research 
questions

Short name

1

Quantum, Data, Security, Learning, 

Healthcare, Computing, Research, 

Systems, Technologies, Key.

Quantum computing applications in data security, learning algorithms, 

and healthcare infrastructure, addressing cybersecurity and technological 

challenges in quantum healthcare systems.

Q1

Quantum Computing 

& Security in 

Healthcare

2

Quantum, Computing, Data, AI, 

Healthcare, QC, Potential, Research, 

Study, Machine.

The integration of AI and quantum computing in medical applications, 

exploring advancements in quantum-assisted AI for diagnostics, 

predictive modeling, and healthcare optimizations.

Q2

AI & Quantum 

Computing for 

Healthcare
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decision-making. By working in tandem, these two domains pave the 
way for a healthcare ecosystem that is not only secure but also more 
efficient, intelligent, and capable of leveraging quantum-driven 
innovations to enhance patient care and medical research. The analysis 
of Table 2 highlights a research landscape with a strong emphasis on 
security and computational advancements. While Quantum 
Computing & Security in Healthcare accounts for 65.08% of the total 
documents, reflecting a significant focus on data protection, privacy, 
and secure system integration, AI & Quantum Computing for 
Healthcare represents 34.92%, emphasizing the transformative role of 
AI and quantum computation in medical applications.

This distribution underscores the interdependence of these two 
areas: while quantum computing has the potential to revolutionize 
medical diagnostics, AI-driven decision-making, and predictive 
analytics, its successful implementation relies on robust quantum 
security frameworks to protect sensitive medical data and ensure 
interoperability with existing healthcare infrastructures. The findings 
reinforce the need for a dual approach in quantum healthcare 
research—one that advances computational capabilities while 
simultaneously ensuring the privacy, security, and resilience of 
healthcare data systems. The PSO-driven topic optimization ensured 
that the thematic classification reflected the natural distribution of 
knowledge within the domain of Quantum Computing in Healthcare. 
The results highlight that:

 I Two dominant thematic areas clearly emerge: (1) Quantum 
Computing & Security in Healthcare, (2) AI & Quantum 
Computing for Healthcare.

 II The approach based on PSO and LDA produced a robust 
segmentation, maintaining thematic diversity while avoiding 
topic dispersion.

 III The identification of topics benefited from the dynamic 
selection of the number of clusters, as opposed to static 
approaches that could introduce bias in segmentation.

The ability of PSO to adapt dynamically to the latent structure of 
the dataset, identifying the optimal number of topics, represents a 
significant methodological contribution to literature analysis in the 
field of Quantum Computing and Healthcare.

4.4 Quantum Computing & Security in 
Healthcare

The adoption of Quantum Computing and advanced security 
technologies is radically transforming the healthcare sector, addressing 
critical challenges related to data protection, computational efficiency, 
and cybersecurity. Innovations in this field focus on advanced 
cryptographic techniques, quantum algorithms, and artificial 
intelligence applied to security, contributing to the protection of 
increasingly complex digital infrastructures.

The analyzed studies are distributed across five key areas, 
representing the main research and development directions in 
Quantum Computing & Security in Healthcare. One major focus is 
the development of quantum algorithms, designed to enhance security 
and computational efficiency in healthcare and cryptographic systems. 
At the same time, researchers are exploring the integration of sensor 
networks and secure data aggregation methods, which play a crucial 
role in protecting healthcare information. Another significant research 
area revolves around lattice-based cryptography and quantum 
security, leveraging advanced techniques to safeguard sensitive data 
from increasingly sophisticated cyber threats. Artificial intelligence is 
also a key player in strengthening healthcare data security, improving 
information protection and management through cutting-edge 
solutions. Lastly, the synergy between quantum and classical 
computing is paving the way for hybrid models that combine the 
strengths of both paradigms, offering superior performance and 
enhanced security in healthcare information systems.

These research areas outline the future directions of quantum 
computing and security technologies in healthcare, aiming to ensure 
robust data protection and strengthen the resilience of 
digital infrastructures.

4.4.1 Quantum computing and algorithms
Quantum computing is rapidly revolutionizing computational 

strategies in healthcare by introducing new methods for data security, 
medical analysis optimization, and advanced cryptographic protocols. 
As the demand for secure and efficient processing of clinical data 
increases, researchers are leveraging quantum algorithms to address 
complex challenges in biomedical informatics, cryptography, and 
drug discovery.

A central area of innovation is quantum cryptography, which 
plays a critical role in protecting sensitive medical data. Wireless Body 
Sensor Networks (WBSNs), essential for remote patient monitoring, 
remain highly vulnerable to cyberattacks. To mitigate these risks, 
hybrid cryptographic techniques that combine symmetric and 
asymmetric encryption have demonstrated notable improvements in 
data protection. One study (Chowdhary et al., 2020) highlighted the 
effectiveness of combining Elliptic Curve Cryptography (ECC), Hill 
Cipher (HC), and Advanced Encryption Standard (AES), resulting in 
a balanced approach that enhances both computational efficiency and 
security. Metrics such as entropy, Peak Signal-to-Noise Ratio (PSNR), 
Number of Pixels Change Rate (NPCR), and Unified Average 
Changing Intensity (UACI) confirm the suitability of these techniques 
for secure telemedicine and remote monitoring. Beyond cryptography, 
quantum sensing is advancing the frontiers of medical diagnostics. By 
implementing Kitaev’s Phase Estimation Algorithm (PEA), quantum 
sensors can surpass the Standard Quantum Limit (SQL), enabling 
highly accurate detection of static magnetic fields. These advances 
promise to enhance non-invasive diagnostic imaging through more 
sensitive and scalable quantum devices (Danilin et  al., 2024). In 
parallel, quantum machine learning (QML) is emerging as a powerful 

TABLE 2 Document frequencies by topic.

Topic Counts % of Total Cumulative %

Quantum Computing & Security in Healthcare 41 65.08 65.08

AI & Quantum Computing for Healthcare 22 34.92 100.00
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tool for analyzing complex, multidimensional healthcare data. Hybrid 
classical and quantum approaches, implemented on quantum 
simulators, have demonstrated superior accuracy compared to 
traditional clustering methods. These results are paving the way for 
personalized medicine and advanced predictive analytics (Deshmukh 
et al., 2023). The growth of these technologies is also giving rise to 
quantum software engineering (QSE) as a distinct field. Transitioning 
from classical to quantum systems requires new development 
paradigms. Solutions such as Quantum Intermediate Representations 
(QIRs) and Quantum Program Dependence Graphs (QPDGs) address 
critical challenges in error mitigation and hybrid system design 
(Murillo et al., 2025). The convergence of quantum computing and 
artificial intelligence is leading to important breakthroughs in 
diagnostics and drug development. Quantum-enhanced neural 
networks, support vector machines, and variational quantum 
classifiers enable faster and more accurate disease classification, risk 
prediction, and drug interaction modeling, demonstrating the 
disruptive potential of quantum systems in computational medicine 
(Zeguendry et al., 2023). Another pillar of quantum development lies 
in nanotechnology, particularly in the use of semiconducting, 
superconducting, and topological nanowires as scalable platforms for 
qubits. These innovations are improving coherence, error correction, 
and gate fidelity, all of which are essential for enabling large-scale 
quantum computing in healthcare (Mimona et  al., 2024). The 
pharmaceutical sector is already benefiting from quantum capabilities. 
Quantum algorithms significantly reduce the computational costs of 
simulating complex molecular structures. These simulations accelerate 
drug discovery by enhancing predictions of protein–drug interactions 
and supporting precision medicine strategies (Blunt et al., 2022). In 
addition, quantum simulations of many-body systems offer new 
avenues for biomedical modeling. Through variational quantum 
algorithms and error mitigation techniques, researchers can simulate 
biological processes and disease mechanisms with greater precision 
(Fauseweh, 2024). Quantum computing is also advancing materials 
science and catalysis modeling, particularly in the design of new drug 
compounds and biochemical processes. By applying quantum 
chemistry algorithms, researchers are simulating catalytic reactions 
with exceptional accuracy. This approach helps optimize synthesis 
pathways and lower experimental costs (Hariharan et al., 2025).

4.4.2 AI and healthcare data security
Artificial intelligence is becoming a foundational pillar in 

healthcare data security and management. It enables more efficient, 
reliable, and intelligent protection mechanisms in an era where the 
volume of medical data is growing exponentially. Ensuring the 
integrity, confidentiality, and accessibility of sensitive information is 
critical. AI-powered technologies, when combined with augmented 
reality (AR), virtual reality (VR), blockchain, and the Internet of 
Things (IoT), are transforming how patient data is collected, stored, 
and protected. One of the most promising applications of AI in this 
domain is the integration of wearable devices within digital health 
platforms. These technologies support continuous monitoring, 
rehabilitation, and the management of chronic conditions, improving 
the quality and responsiveness of remote care. In this context, the 
metaverse offers immersive environments that use biometric sensors 
and haptic feedback to enable secure, real-time health tracking. 
Despite this progress, technical limitations and regulatory gaps still 
exist, calling for further research to ensure the safe and effective 

deployment of wearable healthcare technologies (Vahdati et al., 2024). 
The metaverse is also emerging as a transformative space in healthcare 
more broadly. Virtual environments powered by AI can enhance 
surgical precision, therapeutic delivery, and the security of sensitive 
data. The convergence of AR, VR, and blockchain enables the secure 
exchange of medical records and the seamless integration of Electronic 
Health Records (EHRs). Within these ecosystems, AI plays a central 
role in improving interoperability and ensuring data authenticity, 
restricting access to authorized healthcare professionals only. 
However, important concerns around privacy, ethics, and 
technological maturity remain (Wang et al., 2024). As cybersecurity 
threats evolve, clinicians find themselves at the forefront of a rapidly 
changing risk landscape. AI is increasingly being employed to detect 
and mitigate these threats, offering real-time monitoring and 
automated response mechanisms. Technologies such as Intrusion 
Detection Systems (IDS), multi-factor authentication (MFA), and 
homomorphic encryption provide robust tools for safeguarding 
patient information without compromising usability. Blockchain-
based solutions further enhance data integrity by creating immutable 
patient records that are resistant to tampering and aligned with 
regulatory compliance requirements. Recent applied developments 
show that the integration of blockchain and quantum technologies is 
already being implemented in real-world settings. In the healthcare 
domain, for instance, the adoption of distributed cloud platforms that 
combine blockchain for data integrity management and quantum 
threat protection protocols has been documented in Internet of 
Medical Things (IoMT) scenarios, where clinical data access is 
governed by secure and verifiable mechanisms (Krishnappa et al., 
2024). In parallel, approaches integrating blockchain, quantum 
computing, and zero-trust architectures have been proposed to 
strengthen the security of complex healthcare systems, demonstrating 
how these technologies can work synergistically to protect clinical 
information in distributed and high-risk environments (Kalinaki 
et al., 2023).

While these combined systems show promise, it is important to 
clarify how Quantum Key Distribution (QKD) compares to traditional 
cryptographic methods currently used in healthcare environments. 
Conventional encryption algorithms, such as RSA and AES, rely on 
the computational difficulty of certain mathematical problems, which 
may become solvable with the advent of quantum computing. In 
contrast, QKD offers security based on the fundamental principles of 
quantum mechanics, ensuring that any attempt to intercept the key 
transmission is immediately detectable. This makes QKD inherently 
more secure against future quantum attacks. In a healthcare context, 
where the confidentiality of electronic health records, genomic data, 
and diagnostic information is paramount, the adoption of QKD can 
provide a provable safeguard against both current and emerging 
threats. Although it currently requires dedicated infrastructure and 
presents higher implementation costs, QKD is increasingly being 
considered a strategic investment for critical communication channels, 
particularly in hospital networks and high-value clinical 
data exchanges.

Legal and ethical issues surrounding AI and cybersecurity 
continue to represent major obstacles. Addressing these challenges 
requires coordinated collaboration between healthcare professionals, 
policymakers, and legal experts (Elendu et al., 2024). AI is also driving 
transformation within Industry 4.0 healthcare systems, where 
automation and digitalization are critical to both efficiency and 
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security. The integration of AI, blockchain, IoT, and digital twins is 
enabling the creation of more resilient, secure, and patient-centered 
healthcare infrastructures. Machine learning models are improving 
non-invasive disease diagnosis, while smart health monitoring 
systems are enhancing the tracking of vital signs in real time. Despite 
these gains, data interoperability and privacy remain significant 
hurdles, requiring clear regulatory frameworks and robust security 
protocols (Cardamone et al., 2024). AR and VR are also playing an 
expanding role in data security. These immersive technologies are 
improving not only medical training and education but also real-time 
collaboration and secure patient data visualization. AI-enhanced AR 
and VR platforms offer personalized and protected environments for 
remote consultations, virtual surgical training, and therapeutic 
procedures. As adoption grows, ensuring ethical and secure 
implementation will remain essential (Al-Ansi et al., 2023). Finally, 
automation in Model-Driven Engineering (MDE) is empowering AI 
to take on a larger role in developing security-focused software for 
healthcare. Combining symbolic and non-symbolic AI with 
specialized task-based agents, MDE frameworks are producing 
adaptive software solutions aligned with the complex demands of 
healthcare institutions. The integration of security validation 
techniques and model alignment tools ensures that applications 
remain both scalable and secure (Burgueño et al., 2025).

4.4.3 Quantum-classical hybrid computing
The integration of quantum and classical computing is creating 

new opportunities for breakthroughs in computational performance, 
cybersecurity, artificial intelligence, healthcare, and automation. By 
combining the reliability of classical systems with the computational 
power of quantum mechanics, hybrid models are emerging as a 
practical solution to overcome the current limitations of both 
paradigms. These models enable the exploitation of quantum 
advantages without abandoning the compatibility and infrastructure 
of classical computing. One of the most promising applications of 
quantum classical hybrid computing lies in cybersecurity, particularly 
in defending against Distributed Denial of Service (DDoS) attacks. 
Machine learning models are essential for cyber threat detection, but 
they often require substantial computational resources to process large 
datasets. A novel approach using Quantum Support Vector Machines 
(QSVMs) has demonstrated enhanced speed, accuracy, and precision 
when detecting DDoS attacks in smart microgrid systems. By 
employing the Harrow-Hassidim-Lloyd (HHL) quantum algorithm, 
the model significantly reduces computational complexity, thereby 
improving the efficiency and resilience of cyber defenses (Said, 2023). 
Hybrid computing is also reshaping machine learning itself. 
Traditional classification algorithms often struggle with complex, 
non-linear datasets and are prone to overfitting or bottlenecks. 
Quantum classification models, by utilizing quantum kernels in high-
dimensional Hilbert spaces, exhibit stronger learning capabilities. 
Comparative studies between classical and quantum SVMs show that 
quantum models outperform as dataset complexity increases, 
reinforcing the value of hybrid machine learning frameworks (Tychola 
et al., 2023). In industrial sectors, particularly oil and gas, Industry 4.0 
technologies are driving the adoption of hybrid computing systems. 
Edge computing, digital twins, and quantum computing are being 
explored to optimize operations and support intelligent decision-
making. AI-driven forecasting tools are already improving efficiency, 
and quantum enhancements are expected to accelerate simulations, 

enable real-time analysis, and automate key processes. This 
convergence is positioning hybrid computing as a key enabler of 
sustainable and scalable industrial solutions (Elijah et al., 2021). In 
healthcare and mental health analytics, the fusion of quantum 
computing and deep learning is accelerating progress. Traditional 
deep learning models are computationally expensive due to prolonged 
training times. Quantum Convolutional Neural Networks (QCNNs), 
through the integration of quantum variational circuits and transfer 
learning, reduce training complexity from O(n2) to O(log(n)). This 
reduction enhances the performance of emotion recognition, 
psychological assessments, and medical imaging applications (Hossain 
et al., 2024). Privacy-preserving machine learning is another domain 
benefiting from hybrid architectures. Federated learning, when 
combined with quantum computing, addresses sensitive data-sharing 
concerns across healthcare institutions. A hybrid framework utilizing 
Quanvolutional Neural Networks (QNNs) enables decentralized 
training on non-independent and identically distributed (Non-IID) 
datasets. This approach allows institutions to train robust medical AI 
models without exchanging patient data, reducing communication 
overhead and preserving confidentiality (Bhatia et al., 2023). Evidence 
of empirical quantum advantage (EQA) is also emerging in healthcare 
data analysis. By applying quantum kernels to Electronic Health 
Records (EHRs), researchers have demonstrated superior classification 
performance in specific subsets of medical prediction problems. A 
proposed metric, the phase-space terrain ruggedness index (PTRI), 
helps predict when quantum models will outperform classical 
methods, contributing to the strategic identification of practical 
quantum advantages in biomedical contexts (Krunic et al., 2022). 
Despite these benefits, integrating quantum computing with classical 
IT infrastructures remains challenging. To address this, a middleware 
software architecture known as qSOA® has been developed. It enables 
seamless integration between quantum and classical systems using a 
standardized REST API, simplifying deployment and reducing 
technical barriers. This framework supports the accessibility and 
scalability of hybrid computing environments, allowing industries to 
integrate quantum technologies without overhauling existing systems 
(Hevia et  al., 2024). Hybrid quantum classical computing is also 
showing potential in robotics, particularly in swarm-based search and 
rescue operations. Classical decision-making models in robotics 
demand high computational resources for tasks like motion planning. 
A quantum-based path-planning algorithm, built on Grover’s search 
and quantum logic gates, enables faster convergence and improved 
path optimization. Simulations indicate that this method outperforms 
classical ant-foraging algorithms, providing more stable and efficient 
solutions in dynamic, unpredictable environments (Chella et al., 2023).

4.4.4 Sensor networks and data aggregation
The integration of sensor networks with intelligent data 

aggregation is playing a pivotal role in advancing modern healthcare 
systems, smart infrastructure, and secure digital ecosystems. With the 
exponential growth of data generated by Internet of Things (IoT) 
devices, intelligent sensors, and quantum-enabled networks, the 
demand for scalable, secure, and efficient data processing has become 
increasingly urgent. A significant development in this space is the 
growing use of intelligent sensors in workplace and industrial 
environments. These sensors utilize advanced algorithms, signal 
processing techniques, and data fusion models to extract and interpret 
real-time patterns. Intelligent machines powered by these sensors are 
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enhancing human decision-making, enabling predictive maintenance, 
and optimizing operational performance. However, these advances 
also raise concerns about workforce displacement and the future of 
human-machine collaboration. As a result, many organizations are 
investing in upskilling programs and adaptive strategies to support a 
smooth transition toward the integration of intelligent technologies 
(Annamalai and Vasunandan, 2024). Beyond industrial settings, 
sensor networks are facilitating digital social innovation by 
contributing to global Sustainable Development Goals (SDGs). Digital 
Social Innovations (DSIs), powered by IoT, artificial intelligence, 
blockchain, and autonomous robotics, are helping address challenges 
related to public health, urban infrastructure, agriculture, and poverty 
alleviation. These systems enable the rapid collection and analysis of 
large volumes of social and environmental data, enhancing evidence-
based policy-making. At the same time, ethical issues concerning data 
privacy, automation-driven job displacement, and social equity must 
be addressed to ensure inclusive and beneficial digital transformation 
(Dionisio et al., 2024). In the healthcare domain, one of the most 
impactful implementations is seen in Hospital-at-Home (HaH) 
systems. These models rely heavily on secure data transmission and 
device interoperability in home-based environments. A recent 
solution incorporates trust establishment and key management 
protocols built on post-quantum cryptographic primitives and Merkle 
tree structures. This approach allows medical IoT devices to 
authenticate and exchange data securely, even in offline scenarios. The 
architecture strengthens long-term data integrity and resilience, 
addressing key vulnerabilities in decentralized healthcare systems 
(Åkesson et  al., 2025). In parallel, the growing demand for cost-
effective and sustainable data storage has renewed interest in magnetic 
tape systems. Recent improvements in tape head technology, error 
correction algorithms, and adaptive encoding have made magnetic 
tape a viable long-term storage option. These systems offer high 
capacity and energy efficiency, making them ideal for institutions that 
require reliable archiving of large datasets, such as hospitals, research 
centers, and cloud providers (Lantz et al., 2025). The emergence of 
quantum-enhanced sensor networks marks the next frontier in this 
field. The combination of quantum computing, federated learning, 
and sixth generation (6G) wireless technology is revolutionizing the 
way IoT systems handle security and data aggregation. Conventional 
security frameworks often fall short in heterogeneous IoT 
environments, where devices operate in distributed and constrained 
networks. By integrating Quantum Key Distribution (QKD) and 
quantum-optimized aggregation algorithms, these systems establish 
secure communication channels, enable decentralized processing, and 
detect threats in real time. Moreover, 6G networks with edge-native 
intelligence allow data to be processed locally, reducing reliance on 
centralized servers and improving both bandwidth efficiency and data 
privacy (Javeed et al., 2024).

4.4.5 Lattice-based security and quantum 
security

The emergence of quantum computing is fundamentally reshaping 
the cybersecurity landscape, rendering many traditional cryptographic 
systems vulnerable and necessitating the development of quantum-
resistant alternatives. In response, lattice-based cryptography and 
quantum security technologies are gaining traction as essential tools 
for protecting sensitive data in healthcare infrastructures, IoT 
networks, and blockchain-based systems. These innovations are 

focused on maintaining confidentiality, integrity, and system resilience 
in the face of evolving cyber threats. One of the sectors most at risk is 
medical imaging, which plays a vital role in diagnosis and treatment. 
As healthcare systems become increasingly interconnected, the 
vulnerability of medical image data to cyberattacks grows. To 
counteract this risk, a combination of blockchain, artificial intelligence, 
and quantum cryptographic methods is being deployed to enhance 
data security (Yan et  al., 2023). In the IoT domain, secure 
authentication and data protection are critical. A post-quantum 
identity-based digital signature (PQ-IDS) scheme based on lattice 
cryptography has been introduced to defend against quantum threats. 
This model ensures the immutability, traceability, and confidentiality 
of communications between IoT devices (Zhang et al., 2024). Within 
the Internet of Medical Things (IoMT), secure access and 
authentication are equally essential. A recent protocol, PDAC-CoV, 
leverages lattice-based encryption to ensure secure communication 
while also improving computational efficiency in constrained medical 
environments. This solution helps prevent data breaches and supports 
secure transmission in real-time medical scenarios (Gupta et  al., 
2023). Blockchain infrastructures are also being evaluated for their 
susceptibility to quantum attacks. Platforms such as Ethereum, 
Bitcoin, and Ripple have been shown to exhibit vulnerabilities under 
quantum threat scenarios. To mitigate these risks, researchers are 
exploring quantum-resistant blockchain technologies that enhance 
energy efficiency and boost transaction throughput while maintaining 
robust cryptographic guarantees (Singh et al., 2024). Wireless Body 
Area Networks (WBANs), widely used in remote patient monitoring, 
face growing security risks. The Quantum Spider Cramer Shoup 
Public Key Cryptosystem (QS-CSPKC) protocol provides enhanced 
security for data transmission in WBANs, while also reducing energy 
consumption, making it a viable solution for secure and sustainable 
remote healthcare systems (Menaga and Vanithamani, 2023). In 
software security, long-term durability is vital. A novel security 
evaluation framework based on fuzzy logic and prioritization 
techniques has been developed to identify and strengthen 
vulnerabilities in cryptographic systems. This framework supports 
proactive risk assessment and continuous improvement in resilience 
against quantum threats (Alyami et al., 2021). Secure communication 
in unmanned aerial vehicles (UAVs), including medical drones, is 
another critical area. Quantum Cryptography-as-a-Service (QCaaS) 
uses Quantum Key Distribution (QKD) with the BB84 protocol to 
ensure encrypted, tamper-proof data transmissions. This system 
enhances the security of drone operations in both healthcare and 
defense applications (Ralegankar et al., 2022). Secure key exchange 
remains a pressing challenge in digital health systems. A three-party 
authenticated key exchange protocol combining Ring Learning With 
Errors (RLWE) and Elliptic Curve Cryptography (ECC) ensures 
secure, anonymous user authentication while defending against 
interception attacks and other intrusion vectors (Chaudhary et al., 
2023). For blockchain-based IoT systems, a lattice-based multi-
signature scheme (LBCMS) has been designed to improve security 
and computational performance. This approach enhances resistance 
to quantum attacks while facilitating secure data validation in 
decentralized environments (Bagchi et  al., 2025). In healthcare 
devices, multimodal input integration has advanced significantly 
through engineering-driven innovations. Gesture recognition systems 
used in physical rehabilitation now benefit from improved reliability 
and responsiveness, increasing the accuracy of user inputs in assistive 
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applications (Carayon et al., 2024). The field of sports performance 
monitoring and physical therapy is also benefiting from secure sensor 
technologies. The SMARCyPad system introduces a cost-effective 
cycling performance monitoring method using conductive fabric 
sensors, offering secure data transmission alongside physical 
rehabilitation benefits (Wu et al., 2023). Blockchain-based federated 
learning systems (BFL) are leveraging hybrid security frameworks to 
protect decentralized AI models. A system integrating post-quantum 
cryptography standards such as Dilithium, Falcon, and XMSS 
improves digital signature performance and ensures robust protection 
of patient data during distributed machine learning (Gurung et al., 
2024). Finally, protecting low-power IoT devices requires specialized 
authentication solutions. A Root of Trust mechanism (RoTMR), based 
on Physically Unclonable Functions (PUFs) and hash-based 
signatures, provides secure remote authentication, protects firmware 
integrity, and defends against physical tampering and hardware 
attacks (Román et al., 2023).

4.5 AI & Quantum Computing for 
Healthcare

The integration of Artificial Intelligence (AI) and Quantum 
Computing is transforming the healthcare sector by enhancing 
diagnostic efficiency, optimizing treatment strategies, and improving 
predictive analytics. Advanced digital technologies and software 
development facilitate intelligent clinical data management, 
standardization of care, and automation of healthcare processes. 
Quantum computing enables high-precision molecular simulations, 
accelerating drug discovery and advancing personalized medicine.

These innovations are structured into three key areas. Digital 
technologies and software development enable intelligent healthcare 
platforms, advanced communication networks, and secure data 
management tools. Quantum computing in biomedical applications 
is revolutionizing diagnostics, data security, and predictive modeling 
for complex diseases. Finally, AI and neuromorphic computing 
enhance biological simulations, optimize artificial neural networks, 
and personalize medical education. The advancement of these 
technologies marks a turning point in healthcare, making systems 
more precise, sustainable, and adaptable to future clinical needs.

4.5.1 Digital technologies and software 
development

The evolution of digital technologies and quantum computing is 
transforming the healthcare sector, improving efficiency, scalability, 
and adaptability. mHealth platforms must balance automation and 
community collaboration, adapting to local healthcare structures (Eze 
et al., 2022). The integration of decision support engines based on 
international guidelines optimizes treatments and standardizes care. 
5G/6G networks promise high efficiency and low latency, but 
increasing energy consumption requires more responsible network 
solutions. Intelligent resource management and reducing unnecessary 
data proliferation are essential to balance efficiency and sustainability 
(Cano and March, 2025). In parallel, quantum computing opens new 
possibilities for processing large volumes of clinical data, optimizing 
molecular simulations, predictive diagnoses, and personalized 
therapies. The integration of quantum algorithms with artificial 
intelligence enables tackling computationally complex problems, 

enhancing the speed and accuracy of healthcare analytics (Autili et al., 
2025). Healthcare software development must integrate reliability, 
fairness, and transparency from the design phase. An emerging 
framework emphasizes four key areas: optimizing the development 
lifecycle, user-centric requirements engineering, scalable architectures, 
and robust verification methodologies (Akbar et  al., 2024). This 
approach reduces algorithmic bias risks and increases trust in digital 
systems. The intersection of mobile technologies, communication 
networks, quantum computing, and software engineering is crucial 
for the digital transformation of healthcare. Addressing sustainability 
challenges, data governance, and ethical development is essential to 
ensure reliable and long-lasting solutions.

4.5.2 Quantum computing and biomedical 
applications

Quantum computing is revolutionizing the biomedical sector, 
offering unprecedented potential in data security, diagnostics, 
treatment optimization, and predictive modeling. The integration of 
quantum technologies with artificial intelligence, bioinformatics, and 
cryptography opens new frontiers for healthcare, making medical 
systems more secure, precise, and efficient. These advancements are 
transforming several key areas of healthcare, from disease detection 
and personalized medicine to data security and computational 
biology. The following sections outline the most significant 
contributions of quantum computing in biomedical applications:

 I Quantum Computing for Diagnostics and Precision 
Medicine—Quantum Machine Learning (QML) is significantly 
improving early disease detection through advanced pattern 
recognition techniques. Applications in radiology, pathology, 
and genomics have demonstrated that quantum algorithms, 
such as Quantum Support Vector Machines (QSVMs) and 
Quantum Random Forest, surpass classical methods in 
accuracy and processing speed (Jeyaraman et  al., 2024). 
Moreover, quantum computing applied to bioinformatics is 
enhancing biomarker identification and genomic analysis, 
optimizing personalized therapies and treatments tailored to 
patients’ genetic profiles (Nałęcz-Charkiewicz et  al., 2024). 
Quantum simulations are revolutionizing drug discovery by 
accelerating the study of molecular interactions and protein 
structures. Technologies such as the Quantum Variational 
Eigensolver (VQE) enable the modeling of chemical structures 
with unparalleled precision compared to classical computers, 
expediting pharmaceutical research and improving the 
understanding of molecular mechanisms (Pal et  al., 2024). 
Additionally, a systematic review highlights the role of 
Quantum Machine Learning (QML) in healthcare, 
demonstrating its potential in enhancing biomedical data 
analysis, clinical decision-making, and personalized treatment 
strategies (Ullah and Garcia-Zapirain, 2024).

 II Quantum Applications in Predictive Modeling—The 
integration of quantum machine learning and predictive 
healthcare is significantly impacting chronic disease prevention 
and management. Recent studies highlight the advantages of 
Quantum-Enhanced Machine Learning (QuEML) in heart 
disease prediction, showing superior results compared to 
classical models in terms of diagnostic accuracy and processing 
speed (Babu et al., 2024). Similarly, QSVMs have improved 
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mortality prediction in early-onset colorectal cancer patients, 
demonstrating high precision even in unbalanced medical 
datasets (Yu et al., 2024). Quantum neural networks are also 
being explored for healthcare data generation. The Quantum 
Conditional GAN (QCGAN-ECG) has been utilized to 
generate realistic synthetic ECG data, enhancing the training 
of cardiovascular diagnostic models and ensuring robustness 
against signal distortions (Qu et al., 2023).

 III Quantum Computing for Data Security and Telemedicine—
With the increasing digitalization of healthcare, information 
security is a top priority. Quantum cryptography, particularly 
Quantum Key Distribution (QKD), is strengthening the 
protection of digital medical records and sensitive healthcare 
data, mitigating vulnerabilities to cyber threats (Awan et al., 
2022). Additionally, the application of quantum photonics in 
telemedicine has enhanced data security in e-health systems, 
ensuring secure and private communication between patients 
and healthcare providers (Irfan et al., 2024).

 IV Optimization of Clinical Processes and Computational 
Biology—The use of quantum computing in clinical trials 
enables the simulation of complex scenarios, optimization of 
patient selection, and improved prediction of drug responses. 
Quantum variational algorithms (VQA) and quantum 
annealing allow for the reduction of time and costs in clinical 
research, enhancing medical studies’ efficiency (Doga et al., 
2024). At the same time, computational biology is benefiting 
from the integration of quantum computing with multi-scale 
models. The combined use of Quantum Eigensolver and 
Quantum Phase Estimation (QPE) enhances macromolecular 
modeling and the simulation of gene regulatory networks, 
paving the way for new hybrid quantum-classical approaches 
(Marchetti et al., 2022). Furthermore, emerging classifications 
for quantum bioinformatics, including Q-Bioinformatics, 
QCt-Bioinformatics, QCg-Bioinformatics, and 
QCr-Bioinformatics, structure the integration of quantum 
algorithms into biological and genomic analysis (Mokhtari 
et al., 2024).

4.5.3 Artificial intelligence and neuromorphic 
computing

The convergence of Artificial Intelligence (AI), Neuromorphic 
Computing, and Quantum Computing is progressively reshaping 
biomedical research and healthcare, enabling new paradigms in 
disease detection, personalized treatment, and computational 
medicine. Quantum computing is emerging as a key enabler in 
enhancing AI capabilities through quantum-inspired optimization, 
hybrid modeling, and exponentially faster processing, especially in 
data-intensive clinical scenarios.

Artificial Intelligence (AI) and Neuromorphic Computing are 
revolutionizing the healthcare sector, biomedical research, and 
computational biology, driving advancements in disease detection, 
personalized treatments, and healthcare infrastructure. The 
combination of AI-driven models and neuromorphic architectures is 
enhancing biomolecular simulations, predictive modeling, and 
medical education while addressing challenges related to AI 
governance in healthcare systems. These technologies also address 
critical challenges related to AI governance in healthcare systems, 
especially when considered in light of future quantum integration. The 

integration of AI with big data analysis plays a crucial role in 
supporting the Sustainable Development Goals (SDGs), particularly 
in healthcare, sustainable energy, and infrastructure. AI applications 
are improving disease monitoring, precision medicine, and predictive 
analytics, contributing to more resilient healthcare systems. However, 
ethical concerns such as data privacy, security, and algorithmic bias 
must be reconsidered considering emerging quantum risks, which are 
expected to impact encryption standards and data protection 
strategies (Nedungadi et al., 2024). Generative Artificial Intelligence 
(GAI) is transforming the personalization of medical education, 
enabling adaptive learning experiences tailored to the specific needs 
of healthcare professionals. Large Language Models (LLMs), 
Generative Adversarial Networks (GANs), and Variational 
Autoencoders (VAEs) allow real-time content adaptation, improving 
surgical training and precision medicine programs. The anticipated 
future incorporation of quantum-enhanced models into these 
generative systems will likely further accelerate the customization of 
surgical training and clinical simulations. Ethical considerations, such 
as bias in AI-based educational tools, highlight the importance of 
developing regulatory frameworks that ensure fairness and inclusivity 
in AI applications for medical education (Almansour and Alfhaid, 
2024). The adoption of AI in public healthcare systems is influenced 
by governance structures, macroeconomic conditions, and the 
availability of AI specialists. Studies conducted in EU member states 
reveal that brain drain negatively affects AI readiness, leading to skill 
shortages and a slower adoption of AI innovations in healthcare. 
Addressing these challenges requires policy interventions aimed at 
retaining talent and promoting international collaboration in AI 
research and healthcare applications (Socol and Iuga, 2024). In 
biomolecular research, neuromorphic computing and high-
performance computing (HPC) are accelerating molecular dynamics 
simulations and enabling real-time biomedical analysis. The 
integration of AI with quantum computing is already improving 
protein folding simulations, drug discovery processes, and the 
modeling of complex biological interactions. The potential of 
neuromorphic architectures in reducing computational energy 
consumption further strengthens their applicability in biomedical 
research. Modular supercomputing frameworks that incorporate AI, 
quantum computing, and neuromorphic computing represent a 
transformative factor in large-scale computational biology (Diaz-Pier 
and Carloni, 2024). In oncology, Quantum Machine Learning (QML) 
is demonstrating superior performance in cancer diagnostics and 
treatment planning. Applications include noise reduction in medical 
imaging, enhanced edge detection in breast cancer screening tests, and 
advanced clinical decision support for radiotherapy. Studies confirm 
that QML outperforms classical machine learning models, offering 
greater accuracy in cancer classification and personalized treatment 
strategies. The development of hybrid AI-quantum models is set to 
further improve precision oncology by enabling more accurate 
predictions and individualized treatment plans (Rahimi and Asadi, 
2023). As AI and quantum computing continue to evolve, their role in 
large-scale biomolecular simulations is becoming increasingly 
relevant. Exascale computing, combined with AI-driven predictive 
modeling, is optimizing protein-ligand interactions, genomic analysis, 
and in silico drug discovery. Even in the intermediate era of Noisy, 
Intermediate-Scale Quantum (NISQ) computers, quantum algorithms 
are demonstrating significant potential in biomedical applications. 
These advancements mark a shift toward more efficient and precise 
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computational methodologies in molecular biology and 
pharmaceutical research (Pyzer-Knapp and Curioni, 2024). This 
intersection of AI, neuromorphic systems, and quantum computing 
marks a transformative phase in medicine. Moving forward, the 
development of hybrid AI-quantum frameworks will be essential to 
unlock new levels of precision, efficiency, and ethical intelligence in 
healthcare applications. By integrating these technologies, the medical 
field is poised to achieve new breakthroughs in disease diagnostics, 
personalized treatments, and biomedical research, leading to more 
intelligent and efficient healthcare systems.

5 Experimental extension: 
development and evaluation of a 
predictive model

This section, as an experimental extension of the study, introduces 
a predictive model to analyze the three main topics identified in 
quantum computing for healthcare. The goal is to provide a practical 
and quantitative response to the previously posed research questions, 
offering a deeper understanding of the interconnections between 
different areas of study. To ensure an accurate and targeted 
classification, the model is based on three binary variables, identified 
as transversal factors present across the analyzed studies. The first, 
Biomedical/Life Sciences Application, identifies studies that apply 
quantum computing to biomedicine, genomics, healthcare, or 
biosecurity, highlighting its impact in the medical and biological 
sectors. The second, Blockchain/Distributed Systems Use, highlights 
the integration of these technologies, emphasizing their role in data 
security, information integrity, and decentralized healthcare solutions. 
The third, Ethical & Legal Aspects, evaluates studies that address 
regulatory, ethical, and legal implications of quantum computing in 
healthcare, emphasizing compliance, policy considerations, and 
responsible implementation. The analysis of these variables, 
recognized as transversal elements within the reviewed literature, 
enables the classification of studies into the three main research areas, 
offering a structured perspective on research trends and contributing 
to a better understanding of the intersections between quantum 
computing and healthcare.

5.1 Dataset classification and feature 
analysis in quantum computing for 
healthcare

The dataset created for the classification model has been designed 
to accurately identify research trends and priorities in the application 
of quantum computing in healthcare. To ensure an effective 
classification of studies into the two main topics—Quantum 
Computing & Security in Healthcare, AI & Quantum Computing for 

Healthcare—three key variables have been selected, expressed in a 
binary format. A value of 1 indicates the presence of the characteristic 
in the analyzed study, while a value of 0 denotes its absence. The first 
variable, Biomedical/Life Sciences Application, assesses whether the 
study focuses on quantum computing applications in biomedicine, 
genomics, healthcare, or biosecurity. This characteristic is present in 
55.56% of studies, while 44.44% do not address this aspect. The second 
variable, Blockchain/Distributed Systems Use, evaluates whether the 
study incorporates blockchain or distributed system technologies. 
17.46% of studies include these aspects, while 82.54% do not focus on 
them. The third variable, Ethical & Legal Aspects, identifies research 
centered on system design, infrastructure optimization, or quantum-
enhanced engineering applications. 69.84% of studies demonstrate 
this focus, while 30.16% do not. Table 3 summarizes the distribution 
of the selected features within the dataset, providing an overview of 
their presence across the analyzed studies.

The analysis of feature distribution provides a clear picture of 
current research directions. Biomedical and life sciences applications 
remain a significant area of focus, with more than half of the studies 
addressing this topic. However, a substantial portion of the research 
still explores other domains. Blockchain and distributed systems are 
the least frequently addressed aspect, indicating that their integration 
in quantum computing research is still developing. Ethical and legal 
aspects, system design, and infrastructure optimization emerge as a 
major theme, reflecting efforts to enhance system performance 
and scalability.

5.2 Machine learning model for quantum 
computing classification in healthcare

Machine learning techniques have proven to be  essential in 
deriving valuable insights and constructing accurate predictive models 
from intricate datasets across various domains. Previous research has 
demonstrated their effectiveness in diverse applications, including the 
prediction of neurological developmental disorders in children (Toki 
et al., 2024) and the development of AI-driven IoT-based diagnostic 
models for cardiovascular diseases (Marengo et al., 2024). Likewise, 
their relevance is further underscored in studies examining hospital 
facility efficiency, public health impact, and patient health mobility, 
reinforcing their potential to optimize healthcare systems (Santamato 
et al., 2023; Santamato et al., 2024; Santamato et al., 2024). Moreover, 
the combination of systematic reviews and machine learning 
techniques has been shown to be effective in studying the impact of 
artificial intelligence on healthcare management (Santamato et al., 
2024). Recently, the application of advanced machine learning 
techniques has led to significant improvements in the security and 
efficiency of healthcare data management. For instance, the adoption 
of deep learning-based models has ensured secure and sustainable 
access to data in industrial wireless sensor networks (IWSN), 

TABLE 3 Feature distribution in the dataset.

Feature Present (1) % of Total Absent (0) % of Total

Biomedical/Life Sciences Application 35 55.56 28 44.44

Blockchain/Distributed Systems Use 11 14.46 52 82.54

Ethical & Legal Aspects 44 69.84 19 30.16
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addressing issues related to security and energy consumption (Alzubi, 
2022). Similarly, the implementation of blockchain and artificial 
intelligence approaches has enhanced the secure transmission of 
medical data within the Internet of Things (IoT), increasing diagnostic 
accuracy (Alzubi et  al., 2021). Furthermore, the combined use of 
blockchain and federated learning has helped preserve the privacy of 
electronic health records (EHR) in the context of the Industrial 
Internet of Things (IIoT), ensuring the integrity and confidentiality of 
healthcare data (Alzubi et al., 2023). Finally, the adoption of advanced 
optimizers has improved feature selection in medical diagnosis, as 
evidenced in real cases of COVID-19, contributing to increased 
diagnostic accuracy and the efficiency of predictive models (Braik 
et al., 2023).

In this study, it was implemented and evaluated a diverse set of 
predictive models, encompassing Logistic Regression, Neural 
Networks, Support Vector Machines (SVM), Random Forest, 
Gradient Boosting, Naïve Bayes and Stochastic Gradient Descent 
(SGD). This systematic comparison enabled us to determine the 
most effective model for the specific application, ensuring a 
comprehensive and rigorous assessment of the available predictive 
methodologies. The selection of the predictive model was carried out 
through a structured computational approach, utilizing Python 
scripts to implement advanced machine learning techniques that 
ensured both automation and interpretability. The workflow was 
designed to maintain methodological rigor while optimizing 
performance. Data preparation began with dataset partitioning 
using train_test_split, assigning 70% of the data for training and 30% 
for testing. This configuration preserved a substantial portion for 
model learning while reserving an independent set for evaluating 
generalization. The partitioning strategy aimed to maximize 
predictive accuracy while preventing overfitting. Following the 
preprocessing phase, eight predictive models were implemented. A 
stratified 10-fold cross-validation approach was applied to enhance 
the reliability of performance evaluation across different dataset 
splits. To further refine the models, hyperparameter tuning was 
performed using GridSearchCV, systematically identifying the most 
effective configuration for each model. To address the slight class 
imbalance present in the dataset, models that support weighting, 
such as Logistic Regression, SVM, Random Forest, and SGD, were 
configured with class weight balancing to improve classification 
performance. This adjustment helped mitigate bias toward the 
majority class, ensuring a more robust evaluation of the minority 
class. For model selection, AUC (Area Under the Curve) was chosen 
as the primary evaluation metric, as it measures the model’s ability 
to distinguish between classes, making it particularly suitable for 

applications where sensitivity and specificity are crucial. Table 4 
presents a comparative analysis of the optimized predictive models, 
summarizing their classification performance and highlighting the 
most effective approach for the given dataset.

The comparative analysis of Machine Learning models showed 
that Gradient Boosting, Neural Networks, Random Forest, Logistic 
Regression, SVM, and SGD all achieved the highest AUC (0.875), 
indicating strong discriminative capability. However, since AUC was 
the primary selection metric, additional performance measures were 
considered in case of ties. Among these models, Gradient Boosting 
emerged as the best-performing due to its highest values in Accuracy 
(0.842), Precision (0.889), Recall (0.842), F1-score (0.845), and MCC 
(0.725), ensuring the best balance between predictive power and 
model stability. In contrast, Neural Networks (Accuracy 0.684, 
F1-score 0.679, MCC 0.519) and Random Forest (Accuracy 0.632, 
F1-score 0.617) demonstrated weaker overall classification 
performance. Logistic Regression, SVM, and SGD, despite sharing the 
same AUC (0.875), performed even worse (Accuracy 0.526), while 
Naïve Bayes (AUC 0.792) had the lowest performance. Given its 
superior performance across all key metrics, Gradient Boosting was 
selected as the most effective model for analyzing quantum computing 
applications in healthcare.

To ensure methodological transparency and facilitate 
reproducibility, the final hyperparameters selected through 
GridSearchCV are reported as follows. For the Gradient Boosting 
classifier, which achieved the best performance, the model was 
optimized with n_estimators = 200 and learning_rate = 0.1. Other 
optimized models included Neural Networks (hidden_layer_
sizes = (100, 50)), SVM (C = 1, kernel = ‘rbf ’), Random Forest (n_
estimators = 200, max_depth = 20), Logistic Regression (C = 1), and 
SGD (alpha = 0.001). The Naïve Bayes classifier was used with its 
default configuration, as it does not rely on tunable hyperparameters. 
All hyperparameter selections were based on 10-fold stratified cross-
validation, using AUC as the primary optimization criterion.

To further enhance methodological transparency and 
performance interpretation, class-specific metrics were also computed 
for the best-performing model (Gradient Boosting). These include 
precision, recall, and F1-score for each class, along with macro and 
weighted averages. The model achieved perfect scores (1.0) across all 
metrics for the Quantum Computing & Security in Healthcare class. 
For the AI & Quantum Computing for Healthcare class, it recorded a 
precision of 0.70, recall of 0.64, and F1-score of 0.67, demonstrating 
strong discriminative power despite class imbalance. The macro-
average F1-score was 0.835, reflecting a high level of classification 
quality across both classes. To mitigate the effects of class imbalance, 

TABLE 4 Comparison of predictive model performance post-optimization.

Model AUC Accuracy Precision Recall F1 MCC

Gradient Boosting 0.875 0.842 0.889 0.842 0.845 0.725

Neural Networks 0.875 0.684 0.830 0.684 0.679 0.519

Random Forest 0.875 0.632 0.816 0.632 0.617 0.456

Logistic Regression 0.875 0.526 0.793 0.526 0.477 0.331

SVM 0.875 0.526 0.793 0.526 0.477 0.331

SGD 0.875 0.526 0.793 0.526 0.477 0.331

Naive Bayes 0.792 0.526 0.793 0.526 0.477 0.331
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class weighting was applied in the models that support it, improving 
the recognition performance for the minority class.

Figure 4 represents a confusion matrix, a fundamental tool for 
evaluating the performance of a classification model. This matrix 
illustrates the relationship between the model’s predicted categories 
and the actual categories, showing the proportion of correctly 
classified instances.

The color intensity facilitates interpretation: darker blue shades 
indicate higher classification accuracy, while lighter shades represent 
lower values. In this case, the model demonstrates 100% accuracy in 
predicting the “Quantum Computing & Security in Healthcare” 
category, indicating perfect classification for this class. The “AI & 
Quantum Computing for Healthcare” category was classified with 
70% accuracy, meaning that 30% of these instances were misclassified 
into the “Quantum Computing & Security in Healthcare” category. 
Notably, there are no false positives for “AI & Quantum Computing 
for Healthcare,” as the model never misclassified an instance from the 
second category into the first. These results confirm the strong 
discriminative power of the Gradient Boosting model, particularly in 
recognizing the Quantum Computing & Security in Healthcare 
category with maximum precision, while some misclassifications 
occur within the AI & Quantum Computing for Healthcare category. 
Figure 5 displays the Receiver Operating Characteristic (ROC) curve, 
which evaluates the classification model’s ability to distinguish 
between the two analyzed categories. The X-axis represents the False 
Positive Rate (FPR), while the Y-axis indicates the True Positive Rate 

FIGURE 4

Confusion matrix (proportion of predictions)—Gradient Boosting 
model.

FIGURE 5

ROC curve for the Gradient Boosting model.
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(TPR). The closer the curve is to the upper left corner, the better the 
model’s discriminative ability. In this case, the solid blue curve 
represents the ROC for the Gradient Boosting model, achieving an 
AUC of 0.88, which indicates a strong overall classification 
performance. The dashed diagonal line represents a random classifier 
(AUC = 0.5), serving as a baseline for comparison. The model’s ROC 
curve being well above this line confirms its superior predictive 
capability in distinguishing between the two categories.

The comparison between Figure  4 (confusion matrix) and 
Figure  5 (ROC curve) confirms the robust performance of the 
Gradient Boosting model. The confusion matrix highlights its strong 
classification accuracy, while the ROC curve further validates its 
discriminative power and balanced trade-off between sensitivity 
and specificity.

5.3 Model interpretation

To enhance the interpretability of the classification model and 
gain deeper insights into the decision-making process, LIME 
(Local Interpretable Model-agnostic Explanations) was employed 
in Python. The analysis was conducted using well-established 
libraries such as LIME, NumPy, and Pandas, which enabled the 
generation of local explanations for individual predictions. LIME 
approximates the behavior of complex machine learning models 
through simpler, interpretable models, providing a detailed 
analysis of the factors influencing classification decisions. This 
approach is particularly valuable in quantum computing 
applications, where model transparency is crucial for ensuring 
reliability and trust in automated decision-making systems. In 
healthcare, transparency is not merely a technical requirement but 
a fundamental ethical imperative. The integration of explainability 
techniques such as LIME enables clinicians and researchers to 
understand not only the outcome of a classification but also the 
rationale behind it. For instance, identifying which keywords or 
topic distributions most significantly influenced the model’s 
assignment allows users to verify whether the system’s logic aligns 
with domain knowledge or reveals potential biases. This is 
especially critical in sensitive healthcare domains, where incorrect 
or unexplainable predictions may have clinical or policy 
implications. By improving interpretability, these methods promote 
accountability, support informed decision-making, and enhance 
the credibility of AI-assisted analyses in biomedical contexts (Tjoa 
and Guan, 2021). The interpretability analysis focused on two 
classification categories: Quantum Computing & Security in 
Healthcare and AI & Quantum Computing for Healthcare. 
Figures 4, 5 illustrate the impact of key features on classification 
outcomes, using bar charts where positive contributions are 
represented in green and negative contributions in red. Positive 
values indicate a higher probability of assignment to a given 
category, while negative values suggest a lower probability.

Figure  4 illustrates the Feature Importance Analysis for the 
“Quantum Computing & Security in Healthcare” class using LIME, 
providing insight into the model’s decision-making process. Among 
the key factors, Ethical & Legal Aspects had the most significant 
impact, with a value of −0.133, making it the strongest element 
reducing the probability of classification in this category. Similarly, 
Biomedical/Life Sciences Application also contributed negatively, 

though to a lesser extent, with an impact of −0.030. In contrast, 
Blockchain/Distributed Systems Use showed a positive influence, 
with a value of 0.016, slightly increasing the likelihood of 
classification. These results highlight the different roles that features 
play in shaping model predictions, confirming that while regulatory 
and biomedical considerations tend to push classifications away 
from this category, the presence of blockchain-related aspects 
provides a modest reinforcing effect.

Figure 5 presents the Feature Importance Analysis for the “AI 
& Quantum Computing for Healthcare” class using LIME, 
providing insights into how different features influence the model’s 
classification decision. Among the key factors, Ethical & Legal 
Aspects had the most significant positive impact, with a value of 
0.128, making it the strongest contributor to the classification of 
instances into this category. Biomedical/Life Sciences Application 
also played a reinforcing role, with an impact of 0.031, though to a 
lesser extent. Conversely, Blockchain/Distributed Systems Use 
exhibited a negative influence, with a value of −0.014, slightly 
reducing the likelihood of classification in this category. These 
findings highlight the model’s reliance on Ethical & Legal Aspects 
and Biomedical/Life Sciences Application as primary indicators for 
assigning instances to the AI & Quantum Computing for 
Healthcare category, while blockchain-related factors appear to act 
as a limiting element in this classification.

The integration of explainable AI techniques such as LIME into 
quantum computing research has significant implications for 
interpretability, accountability, and the practical deployment of 
AI-driven quantum solutions. The findings demonstrate that feature 
importance analysis provides valuable insights into model decision-
making, helping to validate classification boundaries, optimize 
fairness, and ensure that automated decision-making aligns with 
domain-specific priorities. A key takeaway from this analysis is that 
explainability enhances trust in AI models, particularly in domains 
like quantum computing and cybersecurity, where transparent, 
auditable, and robust decision-making processes are essential. As 
quantum computing advances, understanding how models 
differentiate between AI-driven healthcare applications and quantum 
security frameworks becomes critical to ensuring that these 
technologies align with ethical, regulatory, and scientific best practices 
(Figures 6, 7).

The results also highlight the necessity of domain-specific model 
training in quantum computing applications. The distinct thematic 
separation between AI & Quantum Computing for Healthcare and 
Quantum Computing & Security in Healthcare suggests that 
interdisciplinary AI models must be  carefully curated to prevent 
feature misattributions and ensure clear category differentiation. This 
is particularly relevant in areas such as quantum-safe cryptography, 
quantum-enhanced AI, and blockchain applications, where 
classification precision directly impacts security, privacy, and 
computational efficiency. A closer examination of feature importance 
reveals compelling insights into how different factors shape 
classification decisions. Ethical & Legal Aspects emerge as a decisive 
influence, yet their impact varies across categories. Their strong 
positive contribution to AI & Quantum Computing for Healthcare 
suggests that ethical and regulatory considerations are paramount in 
AI-driven medical applications, where transparency, compliance, and 
data security are key. Conversely, their negative effect on Quantum 
Computing & Security in Healthcare implies that research in 
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quantum security prioritizes technical and infrastructural concerns 
over regulatory oversight. Biomedical/Life Sciences Application 
follows a similar pattern, reinforcing classification into the healthcare 
category while reducing the likelihood of classification in the 
security-focused category. This indicates a strong association between 
AI-driven quantum computing and biomedical research, whereas 
quantum security applications tend to focus more on computational 
architectures rather than medical advancements. In contrast, 
Blockchain/Distributed Systems Use has an inverse effect. Its positive 
contribution to Quantum Computing & Security in Healthcare 
underscores its role in strengthening quantum-safe cryptography and 
secure decentralized infrastructures. However, its negative impact on 
AI & Quantum Computing for Healthcare suggests that blockchain 
is not a dominant factor in AI-driven medical applications, 

potentially introducing complexities rather than enhancing 
predictive capabilities.

These findings not only validate the model’s decision-making but 
also provide strategic insights into the evolving relationship between 
AI and quantum computing, emphasizing the need for precise and 
context-aware model training. Furthermore, the insights gained from 
LIME reinforce the importance of interpretability in hybrid 
AI-quantum computing frameworks, where the integration of classical 
and quantum computational paradigms requires models to be both 
powerful and explainable. As machine learning plays an increasing 
role in quantum-assisted optimizations, error correction, and hybrid 
neural network architectures, the ability to interpret classification 
outcomes at multiple levels will be essential for developing the next 
generation of quantum-aware AI models.

FIGURE 6

Feature importance analysis for the “Quantum Computing & Security in Healthcare” class using LIME.

FIGURE 7

Feature importance analysis for the “AI & Quantum Computing for Healthcare” class using LIME.
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5.4 Research answers

The analyses conducted provide a clear and in-depth perspective 
on the potential of quantum computing and quantum technologies in 
the healthcare sector, offering strategic and innovative insights in 
response to the original research questions:

 • Q1: How can quantum technologies enhance data security and 
ensure the integrity of healthcare information?

  Quantum technologies introduce revolutionary advancements 
in data security, offering cutting-edge solutions to mitigate 
cybersecurity risks and protect healthcare information. 
Quantum Key Distribution (QKD) enables the establishment 
of ultra-secure communication channels, making 
eavesdropping on cryptographic key exchanges virtually 
impossible. Alongside this, Post-Quantum Cryptography 
(PQC) employs advanced algorithms that safeguard sensitive 
healthcare data against emerging quantum-enabled cyber 
threats. The integration of advanced authentication 
frameworks, such as PDAC-CoV, reinforces access control 
mechanisms, ensuring that only authorized personnel can 
modify or retrieve patient records. Moreover, blockchain 
solutions integrated with quantum security protocols, such as 
QUMA, enhance data immutability and traceability, preventing 
unauthorized alterations while ensuring long-term integrity 
verification. However, the findings indicate that the role of 
blockchain in AI-driven healthcare applications is not as 
pronounced as in security-focused quantum computing 
research, suggesting that its integration may introduce 
complexities rather than providing a clear advantage in 
predictive AI models. As the Internet of Medical Things 
(IoMT) expands, quantum sensor networks and secure data 
aggregation techniques are becoming pivotal in protecting 
medical data transmissions. In Hospital-at-Home (HaH) 
models, these technologies ensure the confidentiality, accuracy, 
and reliability of patient-generated health data, strengthening 
the foundation for remote healthcare ecosystems. Interpretable 
AI techniques, such as LIME, further validate the need for 
robust security frameworks, reinforcing the role of Ethical & 
Legal Aspects in defining security policies for quantum-driven 
healthcare systems. By integrating quantum-enhanced security 
solutions with explainable AI frameworks, the healthcare 
sector can ensure a resilient, scalable, and transparent digital 
infrastructure capable of safeguarding sensitive medical data 
while maintaining regulatory compliance.

 • Q2: How can quantum computing improve medical diagnostics and 
AI-driven healthcare applications?

  Quantum computing is redefining medical diagnostics and 
AI-driven clinical applications, unlocking the ability to process 
large-scale, high-dimensional healthcare datasets with 
unprecedented efficiency. Quantum Machine Learning (QML) 
advances medical image analysis, significantly improving 
anomaly detection and early disease identification compared 
to classical deep learning models. Quantum Artificial 

Intelligence (QAI) accelerates drug discovery and personalized 
treatment design, enabling quantum simulations of molecular 
interactions that predict patient responses with unparalleled 
accuracy. The findings suggest that Biomedical/Life Sciences 
Applications play a crucial role in shaping the classification of 
quantum healthcare research, reinforcing the alignment of 
AI-driven quantum computing with biomedical advancements. 
Conversely, Blockchain/Distributed Systems Use appears to 
play a more central role in security applications, highlighting 
the need for context-specific quantum AI models rather than a 
one-size-fits-all approach. The fusion of quantum computing 
and digital twin models allows for personalized patient 
monitoring and predictive healthcare, optimizing treatment 
strategies while minimizing adverse effects. Quantum 
Convolutional Neural Networks (QCNNs) enhance deep 
learning architectures, significantly accelerating training 
efficiency and improving the analysis of complex health data, 
such as mental health assessments and facial expression 
recognition. Additionally, the interplay between Federated 
Learning and Quantum Computing is set to revolutionize 
secure data sharing among healthcare institutions, fostering 
privacy-preserving AI models while enhancing the robustness 
and generalizability of predictive analytics. The explainability 
provided by LIME further strengthens the interpretability of 
these quantum-driven AI models, ensuring that classification 
outcomes align with clinical priorities and regulatory 
standards. This convergence of quantum computing, AI, and 
healthcare is ushering in a new era of precision medicine, 
AI-assisted diagnostics, and computationally secure healthcare 
infrastructures. However, ensuring the transparent and ethical 
deployment of quantum AI models will require strategic 
advancements in hybrid quantum-classical computing, as well 
as standardized protocols for explainability, reliability, and 
security in healthcare AI applications.

5.5 Limits and future directions

The adoption of quantum computing in the healthcare sector is 
still in its early stages and faces several challenges that limit its full 
implementation. One of the primary obstacles is technological 
maturity: qubit decoherence and current hardware limitations 
compromise computational reliability, making continuous investment 
in research essential to improve stability and scalability. Data security 
is another critical concern, as existing infrastructures are not designed 
to support advanced quantum technologies. Integrating quantum 
systems with legacy healthcare infrastructures requires solutions that 
ensure interoperability without compromising performance, while 
post-quantum cryptography emerges as a crucial research area to 
prevent vulnerabilities and safeguard sensitive information.

In addition to hardware constraints, current quantum algorithms 
themselves present significant limitations for clinical adoption. Many 
models remain fragile and sensitive to noise, requiring extensive error 
correction methods that are not yet ready for routine clinical use. 
Furthermore, most algorithms are designed and tested in idealized or 
simulated environments, making their translation to real-world 
clinical workflows highly challenging. These models often demand 
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specialized knowledge and bespoke hardware, restricting their 
practical deployment to highly resourced institutions. Finally, a 
considerable gap persists between proof-of-concept quantum 
solutions and clinically validated tools, as very few have undergone 
trials or met regulatory approval. Bridging this gap will require 
coordinated efforts in translational research, standardization, and 
clinical validation.

At the same time, the lack of specialized expertise could slow the 
adoption of these technologies. The convergence of quantum physics, 
computer science, and medicine requires highly skilled professionals, 
who are currently scarce. Addressing this challenge calls for the 
development of interdisciplinary educational programs to train 
experts capable of leading the implementation of quantum computing 
in healthcare. Economic and infrastructural aspects also present 
barriers: the high cost of quantum hardware and research limits 
widespread deployment, making it essential to adopt a strategy that 
combines targeted investments, supportive policies, and incentives for 
experimentation in clinical applications. Another key direction for 
future research involves developing specialized algorithms tailored to 
the unique needs of the healthcare sector, from early disease detection 
to personalized treatment strategies. These algorithms must be scalable 
and seamlessly integrated into existing workflows to ensure tangible 
clinical impact. Advancing quantum healthcare also requires 
interdisciplinary collaboration, bringing together quantum physicists, 
computer engineers, and healthcare professionals to develop solutions 
aligned with real-world needs. Pilot projects and shared research 
platforms can accelerate this process, fostering experimentation 
and innovation.

From a regulatory standpoint, the lack of global standards for data 
security and interoperability between traditional and quantum 
systems is a major challenge. Establishing common guidelines is 
essential to facilitate a structured transition to these new technologies 
while ensuring transparency and compliance with existing regulations. 
Additionally, awareness and education among medical professionals 
and industry stakeholders will be crucial: disseminating knowledge 
about the practical advantages of quantum computing can encourage 
adoption and drive investment in this field. The integration of 
emerging technologies, such as blockchain and distributed systems, 
holds immense potential for improving security and reliability in 
healthcare infrastructures. However, their adoption within quantum 
computing frameworks remains limited. Research must explore how 
these technologies can enhance data protection, traceability, and 
information security in quantum-powered healthcare systems. Lastly, 
ethical and legal considerations must be carefully addressed to ensure 
the responsible implementation of quantum computing in healthcare. 
In the specific context of quantum AI applications in healthcare, 
ethical concerns acquire new dimensions. Quantum algorithms, when 
combined with machine learning models, may amplify biases present 
in clinical datasets due to the non-transparent and probabilistic nature 
of quantum processing. This raises concerns regarding fairness in 
decision-making, particularly in diagnostic or treatment 
recommendation systems. Moreover, the integration of quantum 
computing with sensitive health data introduces heightened privacy 
risks. For example, entangled systems and cloud-based quantum 
services may challenge current data localization and encryption 
standards. Regulatory frameworks such as GDPR or HIPAA may not 
yet account for the unique characteristics of quantum data processing, 
creating potential gaps in accountability, traceability, and informed 

consent. Addressing these concerns will require proactive ethical 
guidelines, updated legal frameworks, and the integration of 
explainable quantum AI models to ensure trust, transparency, and 
patient safety. AI models must be developed with transparency and 
fairness in mind, avoiding bias and ensuring clear differentiation 
between thematic categories analyzed. The integration of explainable 
AI techniques will be essential to enhance model interpretability and 
reliability in automated decision-making systems.

A further area requiring critical attention concerns the 
computational cost and practical feasibility of hybrid quantum-
classical models in healthcare. While these models offer a promising 
bridge between current classical systems and quantum capabilities, 
their implementation often demands high-performance computing 
environments, specialized middleware, and precise synchronization 
between quantum and classical components. This significantly raises 
the infrastructural and operational requirements, particularly in 
clinical contexts where real-time processing, system reliability, and 
compatibility with legacy infrastructure are essential. Moreover, only 
a limited number of hybrid frameworks have demonstrated scalability 
outside controlled research environments. Future efforts must 
therefore evaluate not only the theoretical performance gains of these 
models, but also their sustainability, cost-effectiveness, and 
adaptability to real-world healthcare systems.

In summary, the future of quantum computing in healthcare will 
depend on overcoming technological, infrastructural, and ethical 
challenges while promoting cutting-edge research, security, 
interdisciplinary collaboration, and standardization. The goal is to 
transform quantum potential into practical, scalable, and seamlessly 
integrated solutions, ensuring long-term innovation and sustainability 
in healthcare.

6 Conclusion

This study highlights the emerging role and transformative 
potential of quantum computing in the healthcare sector, outlining 
both its most promising applications and the challenges that must 
be  addressed. By combining a systematic literature review with a 
predictive model optimized through Latent Dirichlet Allocation 
(LDA) and Particle Swarm Optimization (PSO), this research 
categorizes existing studies into Quantum Computing & Security in 
Healthcare and AI & Quantum Computing for Healthcare, providing 
a comprehensive mapping of the state of the art and future 
research directions.

The findings confirm that quantum technologies have the 
potential to redefine data security, advanced diagnostics, and 
AI-driven healthcare applications. However, technological barriers 
such as qubit decoherence, quantum hardware scalability, and the lack 
of efficient error correction mechanisms remain major obstacles to 
large-scale adoption. At the same time, the integration of quantum 
computing into existing healthcare infrastructures presents 
interoperability challenges, requiring hybrid quantum-classical 
models to enable a secure and gradual transition to quantum-powered 
systems. From a security perspective, quantum computing presents 
both risks and opportunities. While Quantum Key Distribution 
(QKD) strengthens data transmission security, the emergence of 
quantum algorithms threatens classical cryptographic standards, 
making post-quantum cryptography (PQC) essential for long-term 
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healthcare data protection. Blockchain technologies, particularly in 
security-focused quantum computing applications, reinforce data 
integrity, but findings suggest that their role in AI-driven healthcare 
remains secondary.

On the computational side, quantum computing holds great 
promise for machine learning optimization, significantly improving 
the ability to process complex healthcare datasets. The increasing 
interest in Quantum Neural Networks (QNNs), Quantum Machine 
Learning (QML), and Quantum Convolutional Neural Networks 
(QCNNs) underscores their potential to advance medical imaging 
diagnostics, precision medicine, and predictive disease modeling. 
However, explainability remains a challenge, making interpretable AI 
techniques like LIME essential for ensuring transparency and trust in 
quantum AI systems. The results highlight that Biomedical/Life 
Sciences Applications and Ethical & Legal Aspects play a key role in 
defining AI-driven quantum computing research, whereas blockchain 
is more relevant in quantum-enhanced security applications.

Another critical factor that emerged is the shortage of 
interdisciplinary expertise, which is crucial for accelerating the 
transition to a quantum-powered healthcare ecosystem. The 
convergence of quantum physics, artificial intelligence, and biomedical 
sciences necessitates the development of specialized educational 
programs to train professionals capable of bridging theoretical 
advancements with real-world applications. Additionally, economic 
and infrastructural barriers require targeted investments in quantum 
hardware and software research, supported by both public and 
private initiatives.

The future of quantum computing in healthcare will depend on 
the ability to address these challenges through a multidisciplinary and 
collaborative approach, involving academia, industry, regulatory 
bodies, and healthcare professionals. The establishment of global 
standards for data security, ethical AI practices, and quantum system 
interoperability will be crucial to enabling a structured and responsible 
adoption of these technologies.

In conclusion, this study provides a scientifically rigorous 
assessment of the current landscape and the emerging challenges in 
quantum computing for healthcare, offering a solid foundation for 
future research. Quantum computing is no longer a theoretical 
concept but an evolving technology transitioning toward real-world 
applications, with the potential to redefine digital healthcare through 
AI-driven innovations and enhanced security frameworks. However, 
ensuring tangible and sustainable impact will require targeted research 

strategies, hybrid computational models, regulatory alignment, and 
ethical AI frameworks, ultimately accelerating the integration of 
quantum computing into a secure and transparent 
healthcare ecosystem.
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