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The fusion of Knowledge Graphs (KGs) and Large Language Models (LLMs)

leverages their complementary strengths to address limitations of both

technologies. This paper explores integration practices, opportunities,

and challenges, focusing on three strategies: KG-enhanced LLMs (KEL),

LLM-enhanced KGs (LEK), and collaborative LLMs and KGs (LKC). The study

reviews thesemethodologies, highlighting their potential to enhance knowledge

representation, reasoning, and question answering. We comprehensively

compile and categorize key challenges such as knowledge acquisition and

real-time updates, providing valuable directions for future research. The paper

also discusses emerging techniques and applications to advance the synergy

between KGs and LLMs. Overall, this work o�ers a comprehensive overview of

the current landscape and the transformative potential of KG-LLM fusion across

various domains.
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1 Introduction

Language Models (LLMs), which are trained on extensive datasets, have demonstrated

impressive advances in a wide range of natural language processing (NLP) tasks. The

exponential growth in model size has endowed LLMs with emergent capabilities, enabling

them to handle increasingly complex problems. Highly sophisticated LLMs equipped with

billions of parameters have shown significant promise in handling complex, real-world

tasks, including educational assistance, code generation, and recommendation systems.

Despite their growing success, LLMs continue to face considerable criticism, particularly

for their shortcomings in handling factual information.

Language Models (LLMs) rely heavily on memorizing facts from the vast amount

of data they are trained on, but research has shown that they frequently struggle to

retrieve these facts accurately, leading to what is commonly known as hallucination.

This phenomenon involves LLMs generating responses that, while sounding plausible,

are factually incorrect. Zhang et al. (2024b) conducted experiments on six main LLMs

on the CoderEval dataset, elaborated on the hallucination phenomena, and analyzed the

distribution of these phenomena in different models. This issue of factual inconsistency is

especially problematic in sensitive applications. Moreover, LLMs, being black-box models,

are often criticized for their lack of transparency (Liao and Vaughan, 2023). The knowledge

they encode within their massive parameters is implicit and difficult to interpret or validate.

Frontiers inComputer Science 01 frontiersin.org

https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org/journals/computer-science#editorial-board
https://www.frontiersin.org/journals/computer-science#editorial-board
https://www.frontiersin.org/journals/computer-science#editorial-board
https://www.frontiersin.org/journals/computer-science#editorial-board
https://doi.org/10.3389/fcomp.2025.1590632
http://crossmark.crossref.org/dialog/?doi=10.3389/fcomp.2025.1590632&domain=pdf&date_stamp=2025-07-16
mailto:yong.zhao@scupi.cn
https://doi.org/10.3389/fcomp.2025.1590632
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fcomp.2025.1590632/full
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Cai et al. 10.3389/fcomp.2025.1590632

To mitigate these problems, a promising strategy is the

integration of Knowledge Graphs (KGs) with LLMs. KGs store

factual knowledge in a structured manner, typically in the form

of a 3-tuple which contains head entity, relation, tail entity, and

have long been valued for their precise and interpretable nature.

By incorporating KGs, LLMs can benefit from a solid foundation

of explicit knowledge that is both reliable and easily understood.

Additionally, KGs excel at symbolic reasoning and evolve as new

knowledge is discovered, making them well suited to providing the

domain-specific information.

In recent years, increasing attention has been paid to unifying

LLMs and KGs, as researchers and practitioners recognize their

complementary strengths. On one side, KGs can be used to inject

external knowledge during both the pre-training and inference

phases of LLMs, offering an additional layer of factual grounding

and improving interpretability. On the other side, LLMs have

shown their utility in performing key tasks for KGs, such as KG

embedding, completion, construction, and question answering,

thereby enhancing the overall quality and applicability of KGs.

A collaborative approach, wherein LLMs and KGs mutually

reinforce each other, holds great potential for advancing knowledge

representation and reasoning, combining the advantages of data-

driven learning and structured knowledge. We observed that most

existing surveys focus primarily on the use of KGs to enhance LLMs

(KEL). Therefore, we aim to explore other potential possibilities

of integrating the two, including how LLMs can contribute to

KG-related tasks and their collaboration.

Our main contributions are summarized as follows:

1. Categorization and review. We present a detailed categorization

and novel taxonomies of research on unifying LLMs and KGs. In

each category, we review the research from the perspectives of

different integration strategies and tasks, which provides more

insights into each framework.

2. Coverage of emerging advancements. We cover the advanced

techniques in both LLMs and KGs.

3. Summary of challenges and future directions: We highlight the

challenges in existing research and present several promising

future research directions.

The rest of this article is organized as follows. Section II first

explains the background of LLMs and KGs. Section III presents the

categorization and challenges of LLM-enhanced KGs. Section IV

presents the categorization and challenges of KGs-enhanced LLM

approaches. Section V presents the categorization of collaborative

LLMs and KGs. Section VII discusses several applications. Finally,

Section VIII concludes this paper.

2 Background

2.1 Large Language Models

Large Language Models (LLMs) represent a significant leap

in the field of Natural Language Processing (NLP), primarily

due to deep learning techniques. These models are trained in

vast amounts of textual data, enabling them to understand,

generate, and manipulate human language across various tasks.

LLMs use architectures like transformers (Vaswani, 2017), which

handle context and capture long-range dependencies, facilitating

the generation of human-like text. The development of LLMs

has evolved from traditional rule-based and statistical models

such as n-grams (Brown et al., 1992) and Hidden Markov

Models (HMMs) (Rabiner and Juang, 1986), progressing through

Recurrent Neural Networks (RNNs) and Long Short-Term

Memory (LSTM) networks (Sherstinsky, 2020). While RNNs

and LSTMs helped handle sequential data, their limitations in

managing long-range dependencies led to the creation of the

transformer architecture, which now forms the basis of most

modern LLMs.

2.1.1 Encoder-only models
Encoder-only models focus primarily on understanding the

input using bidirectional attention, making them ideal for tasks that

require deep comprehension of text, such as classification, entity

recognition, and reading comprehension. For instance, models

like BERT, RoBERTa, and ALBERT, relying on masked language

modeling and next sentence prediction, are widely used for a variety

of NLP tasks, including question answering, sentiment analysis,

and named entity recognition.

2.1.2 Decoder-only models
Decoder-only models excel in generating sequences, such

as sentences or paragraphs, by using unidirectional attention.

These models are often auto-regressive, predicting the next

token in a sequence based on previously generated tokens.

Transformer models like GPT, OPT, and LLaMA employ decoder-

only architectures to achieve high performance in text generation

tasks such as chatbots, text summarization, and code generation.

2.1.3 Encoder-decoder models
Encoder-decoder models (also called sequence-to-sequence

models) are designed to transform one sequence into another,

making them particularly effective for tasks like translation,

summarization, and paraphrasing. These models use an encoder

to process the input sequence and a decoder to generate the

output sequence, often employing cross-attention to connect the

two. Encoder-decoder models, like T5 and BART, are widely used

in tasks like machine translation, text summarization, question

answering, and dialoguesystems.

2.2 Knowledge graphs

A Knowledge Graph (KG) is a structured representation of

knowledge that organizes information to highlight relationships

between entities. This structure makes it easier for machines

to understand and leverage the connections between data.

KGs are pivotal in enabling better semantic search, data

integration, and AI applications like question answering and

recommendation systems.
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2.2.1 Classification of knowledge graphs
KGs can be categorized into different types based on their

content patterns, including encyclopedic, commonsense, domain-

specific, and multi-modal KGs.

Encyclopedic knowledge graphs capture general knowledge

across multiple domains, similar to encyclopedias.

Commonsense knowledge graphs capture everyday

knowledge and reasoning, essential for enhancing AI’s

understanding of human-like reasoning.

Domain-specific knowledge graphs focus on specialized

knowledge from specific domains like medicine, finance, or law.

Multi-modal knowledge graphs incorporate diverse data types

such as text, images, and videos, provide a holistic understanding

of knowledge across multiple forms of media.

2.2.2 Mechanism of knowledge graphs
Key Concepts in Knowledge Graphs:

1. Entities (Nodes): Primary objects or concepts, such as people,

places, organizations, or events, represented as nodes.

2. Relationships (Edges): Connections between entities,

specifying interactions.

3. Attributes: Properties or characteristics of entities, providing

additional information.

4. Triples: Facts within a KG, represented as subject-predicate-

object triples (e.g., “Barack Obama was born in Hawaii”).

5. Ontology: The schema or structure of the KG, organizing

entities, relationships, and attributes to ensure consistency.

2.3 The pros and cons of large language
models and knowledge graphs

Large Language Models (LLMs): Pros:

• Versatile across tasks (e.g., text generation, summarization,

question-answering).

• Strong contextual understanding for coherent and nuanced

language generation.

• Scalable and capable of handling diverse inputs.

• Zero-shot and few-shot learning capabilities.

Cons:

• Lack of explicit knowledge structure, leading to hallucinations

and factual inaccuracies.

• High data and computational intensity, making them

expensive and environmentally taxing.

• Limited interpretability, often considered “black boxes.”

• Struggles with complex reasoning tasks that require multi-step

logic.

• Potential for bias and ethical concerns in generated content.

Knowledge Graphs (KGs): Pros:

• Structured and explicit knowledge representation for machine

understanding.

• Enhanced reasoning and querying, supporting multi-hop

queries and logical inferences.

• Domain-specific precision with high accuracy in specialized

fields.

• Consistency and reusability across applications.

• High explainability, making them ideal for transparent

decision-making.

Cons:

• Labor-intensive construction, requiring manual curation and

domain expertise.

• Scalability challenges as KGs grow.

• Difficulty integrating with unstructured data sources.

• Limited coverage of knowledge.

2.4 How LLM helps reduce KG limitations

1. Increase knowledge coverage: Large models uses semantic

understanding, generation and other capabilities to extract

knowledge and improve the accuracy and coverage of knowledge

extraction.

2. Reduce construction costs: Large models extracts implicit,

complex, and multimodal knowledge with a better

understanding of text and basic knowledge, which can

reduce the cost of graph construction.

3. Improve output quality and type: Large models help improve

the output of KGs and generate more reasonable, coherent, and

innovative content.

4. Promote understanding: Large models help the output

of KGs to better integrate and classify unstructured data

and information.

2.5 How knowledge graph-based
retrofitting corrects LLM limitations

1. Reducing Hallucinations: KGR incorporates KGs to verify

and retrofit LLM-generated responses. Cross-referencing LLM

output with KG data ensures the alignment of response with

verified knowledge.

2. Improved Reasoning: KGR extracts claims from initial LLM

drafts and performs a chain of verification, enabling the LLM

to validate its reasoning processes using structured knowledge.

3. Real-Time Knowledge Integration: KGR autonomously

integrates real-time knowledge from KGs, enabling LLMs to

access up-to-date factual information, improving the reliability

and relevance of responses.

4. Enhanced Coherence and Accuracy: KGR ensures contextually

relevant facts in generating responses through structured

verification processes, improving the overall coherence and

accuracy of output.

5. Objective Factual Verification: KGR relies on KGs to provide

a more objective source of factual information, helping to

counterbalance biases in the training data of LLMs.
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FIGURE 1

The complementary relationship of LLMs and KGs.

The complementary relationship of LLMs andKGs is illustrated

in Figure 1, which highlights how their integration can enhance

AI systems.

2.6 The roadmap of the fusion of KGs and
LLMs

The technical approach outlined in Figure 2 demonstrates

the integration of KGs with LLMs, which enhances the overall

system by combining structured information with the reasoning

and language generation capabilities of LLMs. This integration

results in improved accuracy, context-awareness, and reasoning

efficiency across various tasks. As the system evolves, it can handle

complex, multimodal applications more effectively by continuously

improving through the synergy of KGs and LLMs.

To take this integration further, there are three possible fusion

strategies: LLM-Enhanced KGs (LEK), KG-Enhanced LLMs (KEL),

and Collaborative LLMs and KGs (LKC).

3 LLM-enhanced KGs

KGs link entities and relationships in a structured format,

supporting applications like question answering, recommendation

systems, and web search. However, traditional KGs face challenges

such as incompleteness and under-utilization of textual data.

Recent research integrates LLMs to address these issues by

incorporating text data and improving KG performance across

various tasks shown in the Figure 3.

Building upon these task-specific advancements, the literature

surveyed in this section reflects the rapid evolution of LLM-

enhanced KG techniques since 2019, with particular emphasis

on breakthroughs from 2023–2025. We prioritize studies that

address fundamental challenges in KG construction, embedding,

and reasoning through innovative integration of LLMs, evaluating

papers based on their methodological novelty, such as the

introduction of hybrid architectures or prompt-based techniques,

and their demonstrated impact through benchmarks on standard

datasets. Open-source availability further informed our selection to

facilitate future research. Figure 4 provides a structured overview of

key studies with different tasks, organized by their publication year.

3.1 LLMs for KGs construction

Knowledge Graph Construction refers to the process of

extracting entities, relations, and events from structured or

unstructured data to form a structured knowledge network.

Figure 5 illustrates the role of LLMs in KGs construction,

which involves the extraction and generation of entities, relations,

and events, as well as tasks like entity linking and coreference

resolution. In the extraction and generation processes, LLMs

act as both prompts and generators, aiding in the creation

of structured knowledge. For entity linking, LLMs serve as

prompts and categorizers, linking entities to external knowledge

sources. In coreference resolution, LLMs function as selectors

and summarizers, resolving references to the same entity across

different contexts. This integration enhances the accuracy and

efficiency of KG construction, allowing for the development of

comprehensive, interconnected KGs.

3.1.1 Named entity recognition
Named Entity Recognition (NER) identifies and classifies

entities in unstructured data. LLMs improve NER by utilizing their

deep understanding of language and context, enhancing entity

recognition and classification in challenging scenarios. GPT-NER

(Wang S. et al., 2023) bridges the gap between LLMs and NER

by converting the sequence labeling task into a text generation

task, using special markers to identify entities. TOPT (Zhang

et al., 2024a) is a task-oriented pre-training model that uses LLMs

to generate task-specific knowledge corpora, enhancing domain

adaptability and NER sensitivity. Graphusion (Yang et al., 2024d)

combines entity merging, conflict resolution, and novel triple

discovery to provide a global perspective for entity extraction,

addressing the challenge of using free text inputs. SF-GPT (Sun

et al., 2025) uses three modules for knowledge triple extraction:

Entity Extraction Filter to filter results, Entity Alignment Generator

to enhance semantic richness, and Self-Fusion Subgraph strategy to

reduce noise.

3.1.2 Relation extraction and generation
Relation extraction is the process of identifying and classifying

semantic relationships between entities in text. Many studies

have already used LLMs to enhance this process. BertNet

(Hao et al., 2022) built a search and re-scoring mechanism

that effectively searches a wide entity pair space with minimal

relationship definitions, improving both efficiency and accuracy.

CDLM (Caciularu et al., 2021) employs a dynamic global attention

mechanism to improve long-range transformers, enabling them to

access the entire input for predicting masked tokens. DREEAM

(Ma et al., 2023) introduces a memory-efficient approach that uses

evidence information as a supervisory signal to guide the attention

module in assigning high weights to evidence.
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FIGURE 2

The roadmap of the fusion of KGs and LLMs.

FIGURE 3

The roadmap of LLM-enhanced KGs (LEK).

3.1.3 Event extraction and generation
Event extraction involves automatically identifying events and

related information from text, including triggers, entities, and key

details like time and location. This forms the basis for constructing

event KGs, such as EventKG (Gottschalk and Demidova, 2018).

EvIT (Tao et al., 2024) trains LLMs through event-oriented

instruction tuning and uses a heuristic unsupervised method to

mine event quadruples from large-scale corpora. Chen R. et al.

(2024) uses LLMs as expert annotators to extract event information

from sentences and generate augmented datasets aligned with

baseline distributions. STAR (MaM. D. et al., 2024) proposes a data

generation method that uses LLMs to synthesize data with minimal

seed examples. It generates target structures (Y) and paragraphs (X)

through detailed instructions, followed by error identification and

iterative improvements to enhance data quality.

3.1.4 Entity linking
Entity Linking (EL) matches text mentions to specific

entities in a knowledge base to enhance text understanding and

information retrieval. ReFinED (Ayoola et al., 2022) uses fine-

grained entity types and entity descriptions to construct an

efficient end-to-end entity linking model, which can be generalized

to other large-scale knowledge bases. ChatEL (Ding Y. et al.,

2024) proposes a three-step framework that leverages LLMs for

efficient entity linking by generating candidate entities, enhancing

contextual information, and incorporating a multiple-choice

format. UniMEL (Liu Q. et al., 2024) proposes a multimodal entity

linking framework using LLMs. It integrates textual and visual

information to enhance mention and entity representations, and

improves linking performance through embedding-based retrieval

and candidate re-ranking.

3.1.5 Coreference resolution
Coreference resolution is a NLP task that aims to identify

and link different expressions in a text that refer to the same

entity. Zheng L. et al. (2024) proposes an adaptive multimodal

data augmentation framework to tackle data scarcity and under-

utilization in multimodal coreference resolution (MCR). Min et al.

(2024) presents a collaborative approach for Cross-Document

Event Co-reference Resolution(CDECR), combining a general-

purpose LLM to summarizes events and a task-specific small

language model to further improves its event representation

learning. Nath et al. (2024) propose a principle-based method for

event clustering and knowledge refinement, utilizing Free Text

Reasoning (FTR) generated by modern auto-regressive LLMs to

improve event co-reference resolution.

3.2 LLMs for KGs embedding

KGs embedding (KGE) involves learning low-dimensional

representations of entities and relations within KGs. The process
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FIGURE 4

Summary of key studies in LEK by task and publication year.

FIGURE 5

How LLMs enhance KGs construction.

begins with entity and relation representation, followed by scoring

function definition, and culminates in representation learning.

There are two main approaches for embedding: structure-based

and description-based. Below is the Figure 6 showing how LLMs

enhance KGs embedding process.

Pretrain-KGE (Zhang Z. et al., 2020) is a training framework

applicable to any KGEmodel, which incorporates world knowledge

from the pre-trained model into entity and relation embeddings

to enhance the performance of the KGE model. LMKE (Wang

X. et al., 2022) and zrLLM (Ding Z. et al., 2024) uses a language

model to derive knowledge embeddings, enriching long-tail entity

representation and addressing issues in description-basedmethods.

kNN-KGE (Wang P. et al., 2023), with a pre-trained language

model, uses k nearest neighbors for linear interpolation of entity

distributions, calculated based on the distance between entity

embeddings and knowledge storage.

3.3 LLMs for KGs alignment

Entity alignment refers to the process of matching and

aligning nodes representing the same entities across different KGs.

AutoAlign (Zhang R. et al., 2023) constructs a predicate proximity

graph to capture the similarity of predicates between KGs and

uses TransE (Bordes et al., 2013) to compute entity embeddings,

aligning entities from different graphs into the same vector space.

LLM-Align (Chen X. et al., 2024) selects important entity attributes

and relations through heuristic methods, inputs entity triples into

the LLM to infer alignment results, and employs a multi-round

voting mechanism to mitigate hallucinations and positional bias.

Additionally, the LLMEA (Yang et al., 2024b) method further

identifies candidate alignments by combining entity embedding

similarity and edit distance, optimizing alignment results through

the reasoning capabilities of LLMs.

3.4 LLMs for KGs completion

3.4.1 Prompt engineering
Prompt engineering for KGs completion involves designing

input prompts to guide LLMs in inferring and filling missing
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FIGURE 6

How LLMs enhance KGs embedding.

parts of KGs. This approach enhances multi-hop link prediction

and explores the potential of LLMs to handle unseen cues in

zero-sample scenarios (e.g., Shu et al., 2024). On this basis,

ProLINK (Wang K. et al., 2024) proposes a novel pre-training

and hinting framework designed for low-resource inductive

reasoning in arbitrary knowledge graph without additional

training. At the same time, TAGREAL (Jiang P. et al., 2023)

is able to automatically generate high-quality query hints and

retrieve supporting information from large text corpora to detect

knowledge in pre-trained language models (PLMs). PPT-based

TKGC model (Xu et al., 2023) uses Prompt-based Pre-trained

Language Models. This model is trained with a masking strategy,

turning the TKGC task into masked token prediction to utilize

semantic information from the pre-trained model.

3.4.2 Masking method
The Masked Language Model (MLM) is a pre-training task

where some words in a text sequence are replaced with [MASK].

The model then predicts the most likely word to fill the [MASK]

based on the context. MEM-KGC (Choi et al., 2021) adopts this

process by masking the tail entity and using the head entity

and relation as context to predict the missing tail entity. This is

similar to MLM, where the model predicts the masked tokens

based on the given context. Building on this, Choi and Ko

(2023) predict the appropriate entity or relation for the masked

positions. Additionally, to address the issue of new entities in

open-world KGC, Choi and Ko (2023) propose a unified learning

method that generates embeddings to replace token embeddings for

new entities.

3.4.3 Multi-task learning
Multi-task learning is an effective method for improving link

prediction performance and there are substantial studies have

already built relevant models. Choi and Ko (2023) proposed

a multi-task learning network (MT-DNN) architecture that

combines Entity Description Prediction (EDP) and Entity Type

Prediction (ITP) tasks, sharing the same pre-trained language

model and network layers for joint training. Similarly, the LP-BERT

(Li et al., 2023) model employs a multi-task learning approach

with three tasks: Masked Language Model (MLM), Masked Entity

Model (MEM), and Masked Relation Model (MRM), sharing the

same input format to simultaneously learn contextual and semantic

information. Kim et al. (2020) integrate relation prediction and

relevance ranking tasks with link prediction, enabling the model

to better learn relational attributes in KGs.

3.4.4 Integration of text representation and graph
embedding

In recent years, combining text encoding with graph

embedding has emerged as a promising approach for knowledge

graph completion. KG-BERT (Yao et al., 2019) treats knowledge

graph triples as textual sequences, encoding them using BERT-style

architectures. Similarly, SimKGC (Wang L. et al., 2022) employs

contrastive learning with in-batch, pre-batch, and self-negatives

to enhance entity representations. Shen et al. (2022) optimize

semantic representations from language models and structural

knowledge through a probabilistic loss. Another line of work

integrates attention mechanisms, such as MADLINK (Biswas et al.,

2024), which uses an attention-based encoder-decoder to combine

KG structure with textual entity descriptions. Wang B. et al. (2021)

employ Siamese networks to learn structured representations while

avoiding combinatorial explosion.

3.4.5 Sequence-to-sequence methods
In recent advancements in KG completion tasks, leveraging

sequence-to-sequence models has also shown great promise.

Saxena et al. (2022) propose transforming KG link prediction

into a sequence-to-sequence task and replacing the traditional

triple scoring method with auto-regressive decoding. Similarly,

GenKGC (Xie et al., 2022) leverages pre-trained language models

to convert the KGs completion task into a sequence-to-sequence

generation task.

3.4.6 Path learning
The core idea of path learning is to treat the connection

paths between entities as the basis, thereby capturing both explicit
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information and implicit relationships in structured KGs. BERTRL

(Zha et al., 2022) leverages pre-trained language models and fine-

tunes them with relation instances and reasoning paths as training

samples. KRST (Su et al., 2023) encodes reliable paths in the

KG, enabling accurate path clustering and providing multifaceted

explanations for predicting inductive relations.

3.5 LLMs for KGs error validation

KGs error validation refers to the process of checking and

confirming the data within KGs to ensure its accuracy and

consistency. One common method is to use LLMs for validation

against external knowledge bases. Zhang M. et al. (2024) proposed

an LLM-enhanced embedding framework, which first uses the

graph structure information to determine whether the triplet

relations hold and selects suspicious ones, and finally combines the

language model for validation. KGValidator (Boylan et al., 2024) is

a consistency and validation framework for validating KGs using

generative models, supporting any external knowledge source.

Some studies validate and correct errors by adjusting the model

itself. KC-GenRe (Wang Y. et al., 2024) transforms the KGC

re-ranking task into a candidate ranking problem solved by a

generative LLM. It also tackles missing issues with a knowledge-

enhanced constraint reasoning method. Mou et al. (2024) proposed

a self-reflective model where GPT-4 reflects on the errors it makes

in a given example and generates linguistic feedback to guide the

model in avoiding similar mistakes during KGC.

3.6 LLMs for KGs reasoning

KGs reasoning leverages graph structures and logical rules to

infer new information or relationships from existing knowledge.

ReLMKG (Cao and Liu, 2023) uses the language model to encode

complex questions and guides the graph neural network in message

propagation and aggregation through outputs from different layers.

KG-Agent (Jiang J. et al., 2024) utilizes programming languages

to design multi-hop reasoning processes on KGs and synthesizes

code-based instruction datasets for fine-tuning base LLMs. KG-

CoT (Zhao et al., 2024), utilizes a small-scale incremental graph

reasoning model for inference on KGs. It employs a method for

generating inference paths to create high-confidence knowledge

chains for large-scale LLMs.

3.7 LLMs for KGs to text

KG-to-text is a method that generates natural language text

from structured KGs by leveraging models to map graph data into

coherent, informative sentences. GAP (Colas et al., 2022) utilizes

a masking structure to capture neighborhood information and

introduces a novel type encoder that biases graph attention weights

based on connection types. KGPT (Chen et al., 2020) comprises

a generative model for producing knowledge-enriched text and a

pre-training paradigm on a large corpus of knowledge text crawled

from the web to realizing tasks. Li et al. (2021) made significant

contributions in introducing a BFS strategy with a relationship bias

for KG linearization, and employing multi-task learning with KG

reconstruction. BDMG (Du et al., 2024) utilizes a bi-directional

multi-granularity generation framework to construct sentence-

level generation multiple times based on the corresponding ternary

components, and ultimately generates graph-level text.

3.8 LLMs for KGs question answering

Knowledge graph question answering (KGQA) systems

leverage NLP techniques to transform natural language queries

into structured graph queries. Pre-trained transformer-based

methods like Lukovnikov et al. (2019)’s model and ReLMKG

(Cao and Liu, 2023) use language models to bridge semantic gaps

between questions and KG structures, with ReLMKG (Cao and

Liu, 2023) additionally employing GNNs for explicit knowledge

propagation. Generation-retrieval frameworks such as ChatKBQA

(Luo H. et al., 2023) and GoG (Xu et al., 2024) adopt a two-stage

approach, first generating logical forms or new triples before

retrieving relevant KG elements. Dynamic reasoning systems like

DRLK (Zhang M. et al., 2022) extract hierarchical QA context

features, while QA-GNN (Yasunaga et al., 2021) performs joint

reasoning by scoring KG relevance and updating representations

through GNNs. For dataset construction, ConvKGYarn (Pradeep

et al., 2024) provides a scalable method to generate configurable

conversational KGQA datasets using LLMs.

4 Challenges in enhancing KGs with
LLMs

Despite the increasing research on enhancing KGs with LLMs

in recent years, several challenges remain. Figure 7 summarizes

these challenges and points the way for future research.

4.1 Challenges in knowledge graph
construction

1. Difficulty in information fusion: LLM-KG fusion encounters

fundamental representational conflicts between the implicit

statistical patterns of LLMs and the explicit symbolic

structures of KGs. This mismatch systematically disrupts

entity linking consistency. Current hybrid approaches suffer

three core limitations: introduce semantic noise during context

augmentation (Ayoola et al., 2022; Xin et al., 2024), remain

constrained by LLM training biases in candidate generation

(Ding Y. et al., 2024), and create new modality-specific

dependencies in multimodal fusion (Liu Q. et al., 2024). This

stems from treating LLMs as peripheral tools rather than

re-engineering the core symbolic-neural interface. Future

solutions must move beyond augmentation paradigms to enable

dynamic, runtime knowledge translation between paradigms.

2. Data quality dependency: The effectiveness of LLM-based

knowledge graph construction critically depends on input data

quality. Through our analysis, we identify three universal
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FIGURE 7

Challenges in enhancing KGs with LLMs.

limitations of LLMs in this context–inherent training data

biases that propagate through knowledge extraction pipelines,

fundamental domain adaptation challenges with specialized

knowledge (Zhang et al., 2024a), and systematic coverage

gaps for long-tail relationships, particularly in cross-document

scenarios (Caciularu et al., 2021; Min et al., 2024). These issues

collectively undermine the reliability of constructed knowledge

graphs, especially in professional domains where precision

is paramount. Current mitigation strategies, such as manual

verification or domain-specific knowledge bases, often create

scalability bottlenecks that limit practical implementation (Fan

et al., 2007).

4.2 Challenges in knowledge graph
completion

1. Difficulty in distinguishing memory from reasoning: LLMs

intrinsically blend memorized knowledge with inferred

predictions during KG completion. This creates evaluation

challenges when benchmark datasets overlap with pre-

training corpora, because LLMs generate predictions without

distinguishing among: factual recall, statistical inference, or

hallucination. While prompt-based methods like ProLINK

(Wang K. et al., 2024) and TAGREAL (Jiang P. et al., 2023)

attempt to guide LLM reasoning, they cannot fully address

the fundamental ambiguity between factual recall and genuine

inference—a limitation particularly problematic in healthcare

applications where provenance matters (Waldock et al., 2024).

This challenge persists across all LLM-based completion

paradigms (prompting, masking, seq2seq) despite their

semantic richness.

2. Computational cost in knowledge graph completion: LLM-

based completion [e.g., sequence-to-sequence GenKGC (Xie

et al., 2022), text-graph hybrid MADLINK (Biswas et al., 2024)]

requires exhaustive text processing and candidate scoring,

which can be computationally expensive in large KGs (Wang

B. et al., 2021; Ren et al., 2024). While multi-task learning

approaches [MT-DNN (Choi and Ko, 2023), LP-BERT (Li

et al., 2023)] attempt to share computational overhead across

tasks, the fundamental scalability gap persists—especially in

large-scale KGs where latency grows polynomially with graph

density (Heim et al., 2025). This creates an unresolved tension

between LLMs’ semantic richness and traditional methods’

operational efficiency.

3. Challenges in prompt engineering: Current prompt

engineering approaches [ProLINK (Wang K. et al., 2024),

TAGREAL (Jiang P. et al., 2023)] for knowledge graph

completion exhibit several key limitations. When representing

complex entity names, prompt methods must split long names

into subword fragments, leading to information loss, whereas

masking techniques like MEM-KGC (Choi et al., 2021) preserve

full entity integrity using [MASK] tokens. For relationship

understanding, prompt methods rely on manually crafted

templates that yield inconsistent results, while path-based

approaches such as BERTRL (Zha et al., 2022) automatically

analyze inter-entity pathways for more reliable predictions.

These constraints force prompt methods to require excessive

manual maintenance when adapting to new domains or

knowledge updates, severely limiting their scalability (Choi and

Ko, 2023; Li H. et al., 2024).
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4.3 Challenges in knowledge graph
alignment and error verification

1. LLM-KG representation gap: The mismatch in tokenization

between LLM and KG embeddings can lead to information loss

during alignment. Although mixed methods such as LLM-Align

(Chen X. et al., 2024) compensate for this shortcoming through

multiple rounds of voting, they still have certain limitations

in some complex contexts and also result in high costs. This

fragmentation directly reduces the reliability of human-machine

interfaces (HMIs) because it leads to inconsistent interpretations

and causes ambiguity and confusion. Future research could

consider more about the development of a unified, novel

tokenization scheme that balances preserving semantic meaning

(suitable for LLMs) with maintaining structural integrity

(suitable for KGs).

2. Multimodal alignment: Effective knowledge graph alignment

requires integrating structural and semantic features. Methods

such as AutoAlign (Zhang R. et al., 2023) show that

cross-knowledge graph alignment benefits from multi-feature

fusion, but the computational overhead increases exponentially

with graph size. This poses a challenge in the multimodal

domain, as multimodal integration can improve accuracy

but also consumes a significant amount of resources. Future

work could explore dynamic feature selection strategies

that prioritize high-value fusion operations while skipping

redundant computations.

3. Limitations of semantic evaluation: Existing evaluation

metrics for knowledge graph completion often prioritize

surface-level correctness over logical consistency. For example,

a generated triple like (Einstein, won, Nobel Prize in Chemistry)

may achieve high confidence scores from embedding-based

metrics, despite contradicting factual knowledge. Rule-

based systems like AMIE (Galárraga et al., 2013) can catch

such errors through predefined constraints, but struggle

with open-domain scenarios where rules are incomplete. A

more promising direction may be hierarchical evaluation

frameworks, such as applying strict symbolic verification only

to high-risk predictions.

4.4 Challenges in knowledge graph
reasoning

1. Difficulty in rule-based reasoning: The core challenge in

LLM-based KG reasoning stems from the inherent conflict

between probabilistic inference and deterministic symbolic

rules. Current methods aim to enhance LLM performance

in logical tasks through various strategies, but each has

core limitations: ReLMKG (Cao and Liu, 2023) struggles

with dynamic multi-hop reasoning and lacks interpretability;

KG-Agent (Jiang J. et al., 2024) relies on predefined rules,

resulting in limited generalization and high maintenance

costs; KG-CoT (Zhao et al., 2024) is constrained by the

completeness of knowledge graphs, and local correctness cannot

guarantee global logical consistency. All three face issues

of static knowledge dependency and error propagation, and

lack the modular processing capabilities of symbolic systems

for complex logic. Future work should prioritize hybrid

architectures that dynamically switch between neural flexibility

and symbolic rigor.

2. Challenges of opacity and explainability: The probabilistic

nature of LLMs creates fundamental explainability barriers in

KG reasoning tasks. Unlike symbolic systems that maintain

explicit inference graphs, LLMs cannot reliably reconstruct the

logical chain connecting input premises to final predictions–

a critical shortfall for HMI applications requiring auditability

(e.g., clinical decision support where physicians must verify

diagnostic pathways). This opacity persists even in advanced

CoT frameworks like KG-CoT (Zhao et al., 2024), as their

generated rationales often conflate genuine reasoning with post-

hoc justifications. Future solutions may require “white-box”

intermediate representations that simultaneously support neural

computation and human-interpretable stepwise verification.

4.5 Challenges in KG-to-text

1. Subjectivity of evaluation: Current evaluation metrics such as

BLEU (Papineni et al., 2002) and ROUGE (Lin, 2004) mainly

measure surface text similarity and cannot effectively capture the

semantic consistency between generated text and KG content.

Recent studies (Luo et al., 2024; Honovich et al., 2022) have

begun to explore fact consistency evaluation based on LLM, but

the computational cost has increased significantly.

2. Dependency on existing patterns: Generated text descriptions

may overly rely on existing templates or syntactic structures,

lacking innovation in language expression. This dependency

makes it difficult for generated text to offer novel perspectives or

unique linguistic styles, thus limiting its creativity in expressing

knowledge graph contents.

4.6 Challenges in knowledge graph
question answering

1. Semantic fidelity in query translation: A critical challenge

in LLM-powered KGQA systems is semantic drift during

natural language-to-KG-query conversion (Li H. et al.,

2024). Current LLM-driven retrieval-enhanced methods

[such as ChatKBQA (Luo H. et al., 2023)] face semantic

fidelity issues when dealing with complex queries. When

handling queries with implicit constraints, LLM-generated

queries often lose critical elements such as temporal ranges

or comparative logic. While GoG (Xu et al., 2024) partially

mitigates this issue through a generate-retrieve framework,

semantic deviations in the generation phase directly lead

to retrieval results deviating from user intent. Future work

requires end-to-end context-aware architectures capable

of simultaneously processing language parsing and graph

structure constraints.

2. Dynamic context in conversational QA: Current KGQA

systems often mishandle contextual continuity in multi-

turn dialogues, either dropping key constraints (e.g.,
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FIGURE 8

The roadmap of KG-enhanced LLMs(KEL).

temporal filters) or misapplying them. While frameworks

like ConvKGYarn (Pradeep et al., 2024) generate coherent

standalone queries, they lack cross-turn KG validation,

producing contradictory answers. This directly impacts

HMI by generating unexplained contradictions that erode

user trust. Future solutions require integrated context

tracking that simultaneously monitors dialogue history and

KG constraints.

5 KG-enhanced LLMs

In the realm of NLP, LLMs have emerged as powerful tools for

understanding and generating text. However, they often struggle

with tasks that require deep knowledge and complex reasoning due

to the limitations of their internal knowledge base. KGs, with their

structured knowledge, can bridge this gap. By integrating KGs into

LLMs, we can significantly enhance their performance on a variety

of NLP tasks, particularly those involving intricate knowledge and

reasoning. This section explores innovative methods that leverage

KGs to boost LLMs’ capabilities, from pre-training objectives to

inference techniques, highlighting the potential of this integration

to empower LLMs to tackle more sophisticated tasks. The Figure 8

illustrates the workflow of large LLMs and shows how KGs enhance

different steps of LLMs.

In surveying these advancements, we focus particularly

on studies from 2019-2025 that demonstrate measurable

improvements in LLM capabilities through KG integration.

We can categorize this process based on the effects of KG

enhancement into three types: pre-training, reasoning methods,

including supervised fine-tuning, alignment fine-tuning, and

model interpretability. Our evaluation prioritized works that

not only introduced innovative methodologies within these

categories but also demonstrated consistent performance gains

across knowledge-intensive tasks. Special consideration was given

to techniques maintaining compatibility with mainstream LLM

architectures while showing robust validation in multiple domains.

These methodological developments are summarized by year and

method type in Figure 9.

5.1 KG-embedded LLM pre-training
methods

5.1.1 Training objective integration
Integrating KGs into large LLMs is a crucial challenge for

enhancing model performance in NLP tasks. Somemodels use KGs

to make the pre-trained data more structured in order to enhance

the performance of LLMs.

KEPLER (Wang X. et al., 2021) study generates entity

embeddings by encoding text descriptions and simultaneously

optimizes knowledge embedding and masked language model

objectives. which performswell in knowledge graph link prediction.

WKLM (Xiong et al., 2019) employs a weakly supervised pre-

training objective by replacing entity mentions in documents and

training the model to distinguish between true and false knowledge

expressions. ERNIE (Zhang et al., 2019) enhances NLP with

knowledge graphs; E-BERT (Zhang D. et al., 2020) optimizes e-

commerce tasks via hybrid masking; KEPLER (Wang X. et al.,
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FIGURE 9

Summary of key studies in LEK by task and publication year.

2021) unifies knowledge embedding and language modeling for

SOTA results; Multi-task QA Model (Su et al., 2019) improves

generalization using XLNet; KALA (Kang et al., 2022) boosts

domain adaptation with entity-aware tuning; Knowledge-enhanced

Pre-training (Xiong et al., 2019) strengthens factual understanding

via weak supervision. All the models leverage specialized

knowledge or training strategies to outperform general models.

5.1.2 Input representation enhancement
When exploring how to enhance the input representations

of LLMs through KGs, several key studies demonstrate various

methods to improve the understanding and generation capabilities

of the models.

CoLAKE (Sun et al., 2020) proposes a unified pre-training

framework that jointly learns contextualized representations of

language and knowledge by integrating them into a shared

structure called the word-knowledge graph. ERNIE 3.0 (Sun et al.,

2021b) achieves SOTA on 54 Chinese NLP tasks through hybrid

architecture. DKPLM (Zhang T. et al., 2022) improves efficiency in

long-tail entity processing via decomposable knowledge injection.

JAKET (Yu et al., 2022) enables bidirectional enhancement between

knowledge graphs and language. KG-T5 (Moiseev et al., 2022)

directly pre-trains on KG triples for 3× performance gain. SAC-

KG (Chen S. et al., 2024) leverages LLMs to construct million-scale

high-precision knowledge graphs. GNP (Tian et al., 2024) bridges

LLMs and KGs through graph neural prompting. K-BERT (Liu

et al., 2020) enables efficient domain knowledge injectionwith noise

control. Together, these models advance knowledge-enhanced

language models through approaches ranging from joint training

to modular methods.

5.1.3 Multimodal learning
In exploring how to enhance the capabilities of language

models through multimodal KGs, propose innovative methods

and frameworks aimed at improving the performance of models

when handling multimodal data. MRMKG (Lee et al., 2024) uses

RGAT to encode MMKG and designs a cross-modal module

for image-text alignment. It is pre- trained on a dataset from

matching VQA instances with MMKGs. The KGEMT (Zheng

J. et al., 2024) framework combines coarse and fine-grained

learning to build a global semantic graph for multimodal

alignment. It uses bidirectional fine-grained matching to filter

image-text elements, boosting image-text retrieval performance.

KG-Retrieval NLU (Huang et al., 2022) is a parameter-efficient

framework leveraging multimodal KG (VisualSem) retrieval to

enhance NLU.

5.2 KG-guided LLM inference methods

5.2.1 Prompt engineering
In knowledge graph-guided LLMs reasoning methods, prompt

engineering plays a crucial role. The following is a summary of the

applications of prompt engineering in this field. Several methods

focus on enhancing LLMs’ reasoning abilities by explicitly injecting

structured cues from knowledge graphs (KGs) into the prompt

space. LPAQA (Jiang et al., 2020) introduces label-aware prompting
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by aligning KG entities with carefully designed templates, thereby

guiding the model to generate accurate answers to factual questions

[1]. Similarly, approaches like Mindmap (Wen et al., 2023),

ChatRule (Luo et al., 2023a), and COK (Wang et al., 2023a) aim

to externalize structured knowledge or human-defined rules into

prompt representations, enabling LLMs to reason over complex

graph-based scenarios with improved contextual grounding and

reduced hallucinations. These methods exemplify how prompt

design can serve as a lightweight yet powerful interface between

KGs and LLMs.

5.2.2 Dynamic knowledge retrieval
In the era where LLMs strive to conquer complex tasks,

dynamic knowledge recovery from KGs has emerged as a

powerful solution, enabling LLMs to access and integrate

relevant real-time knowledge for enhanced performance. This

category targets real-time, query-specific information injection

into LLMs through retrieval-enhanced architectures. REALM

(Lewis et al., 2020) and RAG (Guu et al., 2020) pioneered

the integration of neural retrievers with generative transformers,

retrieving relevant documents or knowledge passages from large

corpora or knowledge bases to support downstream predictions.

KGLM (Youn and Tagkopoulos, 2022) extends this concept

by embedding knowledge entities directly into the generation

process, allowing the model to dynamically refer to entity-

specific information during decoding. Further, EMAT (Mirkhani

et al., 2004) improves retrieval alignment by introducing entity-

matching-aware attention mechanisms [8]. Building on these

foundations, newer methods such as GraphRAG (Edge et al., 2024),

KG-RAG (Sanmartin, 2024), ToG (Sun et al., 2023), ToG2.0 (Ma

S. et al., 2024), and FMEA-RAG (Razouk et al., 2023) incorporate

structured graph reasoning and multi-hop retrieval into the

RAG framework, allowing LLMs to reason over graph-structured

evidence, which is particularly beneficial for technical tasks like

industrial fault diagnosis, knowledge-based summarization, and

domain-specific decision making.

5.2.3 Contextual enhancement
In the realm of NLP, Contextual Enhancement, empowered

by KGs, has become an essential strategy to break through the

knowledge bottlenecks of LLMs and enable them to handle intricate

tasks more effectively.

QA-GNN (Yasunaga et al., 2021) combines GNN reasoning

with LM-powered KG scoring to achieve state-of-the-art

performance on commonsense/medical QA with interpretable

reasoning. KoPA (Zhang Y. et al., 2023) enhances LLMs for KG

tasks by projecting structural embeddings into virtual knowledge

tokens. KGL-LLM (Guo et al., 2025) introduces a dedicated

Knowledge Graph Language for precise LLM-KG integration,

reducing completion errors through real-time context retrieval.

KP-PLM (Wang J. et al., 2022) advances knowledge prompting

with dynamic subgraph conversion and dual self-supervised tasks,

excelling in both full and low-resource NLU. SPINACH (Liu

S. et al., 2024) contributes an expert-annotated KBQA dataset

with in-context learning, significantly outperforming GPT-4 on

complex queries. Together, these models demonstrate diverse

approaches to integrating structured knowledge with language

models, spanning from graph-based reasoning (QA-GNN)

to prompt engineering (KP-PLM) and specialized language

interfaces (KGL-LLM).

5.2.4 Knowledge-driven fine-tuning
With the extensive application of LLMs in the field of NLP,

enhancing their performance on specific tasks has become a

research focus. KGs offer external knowledge to LLMs, facilitating

their understanding, reasoning, and generation.

Knowledge-Driven Fine-Tuning encompasses approaches that

incorporate structured knowledge during model adaptation,

leading to better generalization and knowledge-awareness. KP-

LLM (Wang J. et al., 2022) and OntoPrompt (Ye et al., 2022)

fine-tune LLMs with ontological paths and schema constraints,

aligning model outputs with structured knowledge rules. KG-

FIT (Jiang P. et al., 2024) and GraphEval (Sansford et al., 2024)

provide generalizable and modular frameworks that inject KG-

derived signals during fine-tuning or evaluation, enabling models

to become more robust, verifiable, and explainable in knowledge-

intensive tasks. Meanwhile, ChatKBQA (Luo H. et al., 2023) and

RoG (Luo et al., 2023b) integrate knowledge graph reasoning

into conversational QA systems, enhancing both factual accuracy

and discourse coherence. GenTKG (Liao et al., 2023) and DIFT

(Liu Y. et al., 2024) extend this direction into generative KG

completion and domain transfer settings, allowing models to adapt

and perform under sparse supervision or evolving ontologies.

5.3 KG-assisted LLM interpretability
methods

5.3.1 Knowledge tracing
As LLMs strive to maintain high-quality performance across

various scenarios, Knowledge Tracing empowered by KGs enables

them to precisely track knowledge evolution, filling in knowledge

gaps and improving the accuracy of responses. KELP (Liu H. et al.,

2024) enhances the factual accuracy of LLMs outputs through a

three-stage process. This process extracts and selects knowledge

graph paths semantically relevant to the input text. LAMA (Petroni

et al., 2019) converts knowledge into cloze-style questions to

evaluate the relational knowledge and recall ability of pre-trained

models. Knowledge-neurons (Dai et al., 2021) identify and activate

neurons corresponding to specific facts, exploring the storage of

factual knowledge in pre-trained Transformers and the editing

and updating of internal knowledge. MedLAMA (Meng et al.,

2021) creates a benchmark based on UML and introduces the

Contrastive-Probe, a self-supervised contrastive probing method.

It can adjust the representation space of the underlying pre-

trained models without any task-specific data. GenTKGQA (Gao

et al., 2024) presents a two-phase temporal QA framework that

first retrieves relevant subgraphs using LLM-derived constraints,

then generates answers through joint representation of graph and

textual information.
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FIGURE 10

Challenges in enhancing LLMs with KGs.

5.3.2 Entity association analysis
As LLMs strive to handle complex knowledge-based tasks,

Entity Association Analysis with the aid of KGs provides a powerful

means to identify and utilize entity associations, filling knowledge

gaps and promoting more accurate and intelligent responses.

KGFlex (Anelli et al., 2021) integrates KGs with a sparse

factorization approach to analyze the dimensions of user decision-

making and model user-item interactions. KagNet (Lin et al.,

2019) constructs pattern graphs using a knowledge-aware graph

network, and resorts to graph convolutional networks, LSTM, and

a hierarchical path attention mechanism to solve the common-

sense reasoning problems. AUTOPROMPT (Shin et al., 2020)

automatically generates prompts through gradient-guided search

to assist pre-trained models in performing tasks. BioLAMA

(Sung et al., 2021) introduces a biomedical knowledge probing

benchmark, assessing whether LMs can serve as domain-specific

KBs using structured fact triples. LLM-facteval (Luo et al., 2023c)

proposes a KG-based framework to systematically evaluate LLMs

by generating questions from KG facts across generic and domain-

specific contexts. LLM4EA (Chen S. et al., 2024) aligns KGs using

LLM-generated annotations, employing active learning to reduce

annotation space and a label refiner to correct noisy labels.

6 Challenges in enhancing LLMs with
KGs

Although significant progress has been made in augmenting

LLM with KGs, key challenges persist. Figure 10 outlines these

challenges and indicates potential pathways for further exploration.

6.1 Limitations in knowledge acquisition

1. Insufficient knowledge coverage and sparsity: Although large-

scale KGs have achieved broad coverage of general knowledge,

they often exhibit limited representation in specialized domains

such as medicine and law. In these fields, many entities and

relations are either missing or weakly connected. This coverage

gap and structural sparsity limit the usefulness of KGs in tasks

that require nuanced domain-specific reasoning. Consequently,

KG-enhanced LLMs lack access to comprehensive structured

support when dealing with emerging diseases, rare events, or

complex procedures. Although domain-specific KGs partially

address this issue, their integration with LLMs remains

challenging due to heterogeneity and scale limitations (Pan et al.,

2024).

2. High cost and scalability issues in KG construction:

Constructing and maintaining high-quality KGs typically

involves significant human effort, including data cleaning,

entity alignment, relation labeling, and expert validation.

These processes are particularly labor-intensive in domains

that require expert knowledge. Although automated or semi-

automated KG construction methods, distant supervision,

or neural triple extraction have made progress, they often

introduce noisy or redundant triples and suffer from low

precision in complex contexts. These issues not only degrade

the reliability of the KG itself but also reduce the effectiveness of

downstream KG-enhanced LLMs, which may propagate errors

during inference (Yang et al., 2024a).

3. Insufficient multimodal knowledge integration:Most existing

KGs are predominantly constructed from textual data and

encode information using structured triples. However, real-

world knowledge often exists in multimodal formats such

as images, audio, and videos, especially in domains like

healthcare, autonomous driving, and robotics. The lack of

integrated multimodal knowledge hinders KG-enhanced LLMs

in performing tasks that require cross-modal understanding.

Although early attempts at constructing multimodal knowledge

graphs have shown promise, they are still in their infancy and

face challenges in modality alignment, semantic consistency,

and large-scale deployment (Chen et al., 2023).
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6.2 Limitations in knowledge
understanding

1. Misalignment with natural language semantics: The

structured format of KGs often fails to capture the richness and

flexibility of natural language. KG-enhanced LLMs frequently

struggle to ground unstructured language into these rigid graph

structures. This semantic gap leads to poor retrieval of relevant

knowledge and ineffective reasoning over the KG. Although

recent methods such as joint graph-text embeddings, prompt-

based schema alignment, and co-training frameworks have been

proposed to bridge this gap, they often require extensive tuning

and are task-specific, lacking robust generalization (Peng et al.,

2024).

2. Knowledge conflict and redundancy: KGs derived from

multiple sources often contain conflicting or redundant facts.

For instance, in the biomedical domain, different datasets

may offer contradictory treatments for the same disease or

disagree on causality between symptoms and conditions. This

inconsistency poses a significant challenge for LLMs enhanced

with such knowledge, as it is difficult to determine which facts to

trust or prioritize. Although techniques such as triple confidence

scoring, contradiction detection, and trust-aware graph filtering

have been proposed, current methods remain heuristic-based

and fail to generalize across domains and tasks (Wang et al.,

2023).

3. Difficulty in temporal and dynamic knowledge modeling:

Knowledge in the real world is not static and it evolves over

time as new information becomes available. Traditional KGs

are static snapshots and lack mechanisms to represent temporal

dependencies or model dynamic updates. As a result, KG-

enhanced LLMs struggle to reason over sequences of events,

causal relationships, or time-sensitive information. Although

temporal KGs attempt to incorporate time into graph structures,

they are rarely combined with large language models due to

scalability concerns and complexmodeling requirements (Wang

et al., 2023b).

6.3 Limitations in knowledge application

1. Limited task adaptability: Most KG-enhanced LLM

architectures are designed with a specific task in mind.

When applied to different tasks, especially those requiring

distinct reasoning paths or domain-specific logic, they often

underperform. This is because the integration mechanism is

typically static and not tuned to adapt across tasks. While some

research has explored multi-task graph encoders and task-

specific adapters, there is a lack of a unified and generalizable

framework for flexible knowledge integration across diverse

LLM tasks (Ibrahim et al., 2024).

2. Low real-time inference efficiency: KG-enhanced LLMs often

incur high computational overhead due to the need for graph

traversal, entity linking, and dynamic retrieval during inference.

These processes introduce latency that hinders the deployment

of such systems in real-time applications such as dialogue

systems, autonomous agents, and online recommendation.

While optimization methods such as graph pruning, caching,

and approximate retrieval have been introduced, they either

compromise accuracy or do not scale well with large graphs and

multi-user environments (Guo et al., 2022).

6.4 Limitations in knowledge explainability

1. Opaque reasoning chains and decision logic: Although KGs

are inherently interpretable due to their structured nature,

the integration with LLMs often obscures the reasoning path.

The fusion of symbolic logic with deep neural networks

creates hybrid models where decisions emerge from entangled

attention weights and vector operations, making them difficult

to trace. Existing explainability techniques have been applied,

but they often offer only shallow insight and lack user-centered

interpretability (Yinxin et al., 2024).

2. Unclear knowledge provenance: In KG-enhanced LLM

systems, it is often unclear which knowledge source or KG triple

contributes to a particular prediction or generated output. This

undermines trust and hinders use in high-stakes domains such

as healthcare, law, and finance, where verifiability and source

traceability are crucial. Despite recent efforts to tag outputs with

provenance metadata or graph node identifiers, these features

are rarely integrated into the model architecture in a scalable or

user-accessible manner (Pan et al., 2023).

7 Collaborative LLMs and KGs(LKC)

LLMs and KGs have individually demonstrated strengths

in various domains. While LLMs excel in reasoning and

inference, KGs provide robust frameworks for knowledge

representation due to their structured nature. A collaborative

approach between LLMs and KGs aims to combine the advantages

of both, providing a unified model that can perform well in

both knowledge representation and reasoning. Figures 11, 12

illustrate the collaborative mechanisms between LLMs and KGs,

with the first figure showing how they interact and the second

presenting a framework for collaborative knowledge representation

and reasoning.

In this section, we examine the state-of-the-art collaborative

models in knowledge representation and reasoning, focusing on

studies from 2019–2025 that demonstrate significant advances in

bidirectional LLM-KG collaboration.

Our selection prioritizes approaches that establish novel

mechanisms for knowledge exchange between neural and symbolic

systems, requiring measurable performance improvements

over standalone systems on standardized benchmarks. We

further emphasize methods offering practical implementations

that support real-world deployment. Representative methods

meeting these criteria and their key technical contributions are

systematically compared in Figure 13, which organizes the selected

works by their publication year and innovation type.

7.1 Collaborative knowledge
representation

Both text corpora and KGs hold valuable information, but they

each have limitations. Text corpora may lack structure and factual

Frontiers inComputer Science 15 frontiersin.org

https://doi.org/10.3389/fcomp.2025.1590632
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Cai et al. 10.3389/fcomp.2025.1590632

FIGURE 11

How LLMs and KGs collaborate.

FIGURE 12

Framework of collaborative knowledge representation and reasoning.

consistency, making it challenging to perform precise knowledge

extraction and reasoning. KGs, while structured and factual, often

require natural language capabilities for more flexible interaction

and knowledge understanding. Collaborative approaches between

LLMs and KGs aim to combine the strengths of both to

form more robust knowledge representations. Such collaborative

representations are increasingly demanded in interactive settings

like conversational decision support, where users expect both

accurate facts and transparent reasoning traces (Amershi et al.,

2019).

7.1.1 Integrating KG into LLM
This method enhances LLMs by incorporating knowledge from

KGs directly into the model, allowing the LLM to benefit from

the structured information of KGs during language understanding

tasks. ERNIE (Zhang et al., 2019) integrates KG entities and their

relationships into the LLM pre-training process, where entities in

the text are masked, and the model is trained to predict them by

leveraging the corresponding structured information from KGs.

Unlike KG-enhanced pretraining, the following adopt dynamic

integration mechanisms. K-BERT (Liu et al., 2020) is a knowledge-

based model, in which triples are injected into the sentences as

domain knowledge. Also, to overcome knowledge noise(KN), K-

BERT introduces softposition and visible matrix to limit the impact

of knowledge. BERT-MK (He et al., 2019) uses a dual-encoder

system, embedding both entities and their neighboring context

fromKGs.While these approaches improve factual consistency and

entity disambiguation, they face limitations like potential latency

and conflicts.
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FIGURE 13

Summary of key studies in LKC by task and publication year.

7.1.2 Joint training or optimization
Joint training or optimization approaches train LLMs and

KGs together to align them into a unified representation space,

where both language and structured knowledge can mutually

reinforce each other. JointGT (Ke et al., 2021) proposes a

graph-text joint representation learning framework, aiming to

align the representations of graph-based and text-based data.

By optimizing across tasks like graph-text alignment, node-

text matching, and graph-based language modeling, JointGT (Ke

et al., 2021) achieves deeper fusion of knowledge and language

capabilities. KEPLER (Wang X. et al., 2021) unifies knowledge

embedding with language modeling by encoding textual entity

descriptions through an LLM, while simultaneously optimizing

both the knowledge embedding and language modeling objectives.

To compare, JointGT adopts a multi-task training scheme to bridge

structural and textual semantics while KEPLER relies on textualized

knowledge, jointly optimizing a masked language modeling and

knowledge embedding objective. JoinGT offers fine-grained control

over graph-language alignment, while KEPLER provides a scalable,

text-centric solution.

7.1.3 Other methods
We list two other strategies here. CokeBERT (Su et al., 2021)

dynamically selects and integrates knowledge that are the most

relevant KG sub-graphs based on the textual context via a learned

relevance scorer, addressing the issue of redundant or irrelevant

knowledge from KGs. HKLM (Zhu et al., 2023) introduces

a multi-format knowledge representation approach, where the

model handles unstructured, semi-structured, and structured

text simultaneously. This multi-format strategy enhances the

model’s flexibility in dealing with diverse forms of knowledge

representation. These alternative strategies shift the focus from

injection to adaptation and format generalization, offering new

pathways toward scalable, user-aligned knowledge reasoning.

However, they also expose gaps in controllability and transparency,

especially when deployed in interactive settings.

7.2 Collaborative reasoning

Collaborative reasoning aims to design collaborative models

that can effectively conduct reasoning using both LLMs and KGs.

These models leverage the structured, factual nature of KGs along

with the deep contextual understanding of LLMs to achieve more

robust reasoning capabilities.

7.2.1 KG-based joint reasoning
KG-based joint reasoning centers around leveraging the

structured relational logic of knowledge graphs explicitly, the

typical paradigms include GNN-enhanced models and cross-

attention mechanisms. For example, QA-GNN (Yasunaga et al.,
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FIGURE 14

Challenges in collaborative LLMs and KGs.

2021) utilizes GNNs to reason over KGs while incorporating

LLM-based semantic reasoning. The key technology is relevance

scoring, where the model estimates the importance of KG nodes

concerning a given question, and then applies GNN reasoning to

integrate those nodes into the LLM’s answer generation. GreaseLM

(Zhang X. et al., 2022) employs a layer-wise modality interaction

mechanism that tightly integrates a language model (LM) with

a GNN, enabling bidirectional reasoning between textual and

structured knowledge. JointLK (Sun et al., 2021a) uses a dense

bidirectional attention module that connects question tokens with

KG nodes, enabling simultaneous interaction between the two.

KG nodes attend to question tokens and vice versa, enabling

joint reasoning across both LLM-generated representations and

KG structures. LKPNR (Runfeng et al., 2023) combines multi-

hop reasoning across KGs with LLM context understanding.

Think-on-Graph (Sun et al., 2023) treats the LLM as an agent

that iteratively executes beam search on a KG, discovering and

evaluating reasoning paths. This agent-based framing reflects

a move toward interpretable, step-wise reasoning akin to

human problem-solving.

7.2.2 Acting as both agent and KG
This paradigm breaks the traditional separation between

reasoning controller and external knowledge source., The LLM

acts as both roles, using its pre-trained knowledge to generate new

facts while querying KGs for additional information. Typically,

Generate-on-Graph (Xu et al., 2024) treats the LLM in such a

paradigm. The LLM explores an incomplete KG and dynamically

generates new factual triples conditioned on local graph context.

These generated triples are incorporated into the reasoning path,

allowing the model to “grow the graph” as it infers–mimicking a

constructive reasoning agent. This approach improves robustness

in sparse-KG settings. KD-CoT (Wang K. et al., 2023) integrates

Chain-of-Thought (CoT) reasoning with knowledge-directed

verification. The LLM produces a reasoning trace step-by-step, and

after each step, relevant KG facts are retrieved to validate or revise

the intermediate conclusions.

7.2.3 Dynamic interaction with KG
It mainly focuses on allowing LLMs to dynamically interact

with KGs in real-time, retrieving and updating knowledge during

reasoning. KSL (Feng et al., 2023) empowers LLMs to search

for essential knowledge from external KGs, transforming retrieval

into a multi-hop decision-making process. Constructing APIs for

structured data is another method. StructGPT (Jiang J. et al., 2023)

creates APIs for structured data access, allowing LLMs to directly

interact with structured databases during reasoning.

7.2.4 Agent-enhanced
Enhancing LLMs with agent-based capabilities is becoming a

hot trend. AgentTuning (Zeng et al., 2023) focuses on enhancing

LLMs’ agent-like capabilities. By fine-tuning LLMs with structured

demonstrations and interaction trajectories, it allows the model

to perform more sophisticated reasoning tasks. AgentTuning

enables LLMs to interact with knowledge graphs not just as

memory sources, but as active environments. As demonstrated

in KG retrieval tasks, models trained via AgentTuning can

identify the task-relevant knowledge structure, plan multi-step

actions, and dynamically query KG APIs, which showcase

fine-grained collaboration.

8 Challenges in collaborative LLMs
and KGs

Significant challenges remain in the collaborative integration

of LLMs and KGs, despite promising progress. Figure 14

identifies these challenges and suggests potential solutions for

further development.
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8.1 Unified representation of knowledge

1. Complexity of fusing heterogeneous data: The knowledge

sources and structures of KG and LLM have significant

differences. KG’s knowledge typically comes from structured

data, expressed explicitly in the form of entities, relationships,

and attributes, relying on manually designed patterns and rules.

The knowledge of LLM mainly comes from large-scale text

corpora, which capture implicit semantic relationships through

unsupervised learning and present them as high-dimensional

continuous vector spaces. Hence KGs and LLMs are difficult to

align in terms of knowledge granularity, form, and semantics.

For example, KG deviates from continuous space and is difficult

to embed into the vectorized representation of LLM. The

knowledge of LLM is difficult to map to the discrete structure

of KG. One of the most critical subproblems under the case

is to ensure entity linking pipeline (Shen et al., 2021). This

process is non-trivial due to lexical ambiguity, long-tail entities,

and incomplete context, especially in open-domain or multi-

turn interactive settings. Failures in alignment can reduce

explainability. This uncertainty negatively impacts user trust.

2. Consistency issue in semantic representation: The

relationships in KG are discrete and explicitly defined, while

the semantic relationships in LLM are implicit and distributed.

KG may have fuzzy or incomplete knowledge (as an entity

may have multiple inconsistent attributes). The knowledge

captured by LLM is context sensitive and may be ambiguous

due to differences in training corpus and model architecture.

For example, KG may record “apples are a type of fruit,” while

LLMmay infer “apples may also refer to technology companies,”

which increases the difficulty of unified representation due

to semantic differences. In multi-hop reasoning, where a

system must decide whether to rely on linked KG facts or on

LLM-internal inference chains. Contradictions or divergence

in knowledge may lead to unstable behavior in reasoning

paths or QA answers (Zhang X. et al., 2022). If a user receives

two subtly different answers depending on which component

was consulted, the perceived coherence of the system breaks

down. This is particularly critical in sensitive applications like

healthcare and finance.

8.2 Real-time issue

1. Delay in KGs: KG usually exists in the form of structured

data which is static, and its updates and extensions rely on

manual design and rule-driven processes, with a long update

cycle. KG’s knowledge updates are often completed offline in

batches, which results in new knowledge not being included in

the model in a timely manner, especially in rapidly changing

fields such as finance, news, and epidemics, where static KG

cannot meet the needs of real-time decision-making. Also it

faces scale limitation. As data size and complexity increase, real-

time updating of KG may require significant computing and

storage resources, further limiting its dynamic capabilities.

2. Delay in LLMs: The real-time performance of LLM also has

significant shortcomings. One example is offline training. Most

LLMs are frozen after completing pre training and cannot

dynamically learn new knowledge at runtime. (Gao P. et al.,

2023) The other is that reasoning relies on historical knowledge.

LLM’s reasoning is based on the corpus knowledge captured

by the model during training, lacking sensitivity to real-time

dynamic information.

3. Difficulty of real-time data fusion: The knowledge sources

and fusion mechanisms of KG and LLM further exacerbate the

challenge of insufficient real-time performance.

Asynchronous update: The update mechanisms of KG

and LLM are difficult to coordinate. For example, real-time

data streams (such as sensor data, social media data) can

be generated instantly, but how to synchronize updates and

maintain consistency in KG and LLM is a complex task.

Real time inference bottleneck: Injecting real-time data

dynamically into the fusion system of KG and LLM often

requires complex preprocessing, relationship extraction, and

context modeling operations, which significantly increases

inference time.

4. Consumptions and constraints: The update cost of KG is

high: Real-time updating of entities and relationships in KG

may require recalculating embeddings and connections, which

can introduce significant computational burden in large-scale

graphs (Liu J. et al., 2024).

The inference cost of LLMs is high: Although generative

language models support input dynamic context, the

computational cost of generating long texts or complex

answers in real-time scenarios is still high, making it difficult to

achieve true real-time response.

From the perspective of a user in fast-moving domains,

perceiving answers as out-of-date or unsafe would rapidly erode

trust in decision-support systems. On the other hand, pursuing

real-time performance leads to latency spikes, which reduces

conversational fluidity. As a result, users may abandon interactions.

8.3 Overhead and time complexity

1. Bidirectional flow issues: A primary challenges in collaborative

KGs and LLMs is the overhead and time complexity ofmanaging

bidirectional information flow between KGs and LLMs,

typically in dynamic interaction. The process of dynamically

retrieving knowledge from KGs to inform the LLM’s reasoning

while simultaneously enriching the KG with new insights

or relations generated by the LLM is highly complex. This

bidirectional interaction increases the computational overhead

and complexity, especially when LLMs need to frequently query

large KGs during reasoning.

8.4 Conflicts resolution and error
propagation

1. Resolving conflicting knowledge: When there is a conflict

between the knowledge provided by KG and LLM, a conflict

resolution mechanism needs to be established. This may

involve knowledge priority rules or confidence calculations.

Frontiers inComputer Science 19 frontiersin.org

https://doi.org/10.3389/fcomp.2025.1590632
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Cai et al. 10.3389/fcomp.2025.1590632

Such mechanisms often rely on hybrid scoring strategies.

However, these scores may not always be directly comparable

across modalities or sources. Version control is a typical

instance. In dynamic interaction, KG and LLM may be

updated simultaneously, requiring an effective version control

mechanism to track knowledge changes and ensure consistent

results in bidirectional interaction.

2. Managing error propagation:

Bidirectional interaction may lead to circular dependencies:

If KG updates the information injected into LLM, and LLM

then generates knowledge based on this and updates it back to

KG, without proper verification and restriction mechanisms, a

feedback loop can emerge, which may lead to error propagation.

Assume that a knowledge error introduced by either the KG or

LLM is not properly filtered, it can be repeatedly propagated,

leading to knowledge drift and factual inaccuracies. Such error

propagation becomes particularly problematic when generated

knowledge is later retrieved as if it were grounded truth,

influencing further generations (Saparov and He, 2022). This

highlights the need for causal filtering or knowledge provenance

tracing, potentially using reinforcement learning to suppress

self-reinforcing loops.

8.5 Human-centered evaluation

Evaluating collaborative KG and LLM systems is crucial for

ensuring their impact on user experience. Effective evaluation

not only validates the technical performance (i.e., accuracy or

efficiency) of these systems but also ensures they meet user

expectations in dynamic, human-facing scenarios, capturing their

usability and effectiveness in real scenarios. Unlike traditional

tasks, these systems often operate in interactive environments

where explainability, trustworthiness, cognitive alignment, and

traceability are of great significance. For example, users may

require transparency on whether a generated fact was retrieved

from the KG or hallucinated by the LLM, or expect the system

to adapt its reasoning based on evolving dialogue context. These

expectations necessitate evaluation protocols that go beyond

static benchmarks, incorporating user-centric metrics such as

task success rate, interaction satisfaction, and latency under

real-time constraints. However, such human-centered evaluation

remains underdeveloped, with limited standardized frameworks

for measuring collaborative reasoning quality in real-world,

interactive settings. (Kaur et al., 2022)

One typical challenge that illustrates the need is bias

propagation. When a biased or incorrect piece of information is

introduced by either the KG or the LLM and is subsequently

reinforced through iterative reasoning, the system may amplify

misleading content without awareness (Bender et al., 2021). This

not only compromises factual correctness but also undermines

user trust, especially in domains such as healthcare, education, or

law. Imagine a knowledge graph encodes historical associations

such as “CEO—typically male.” After integrating historical data

based patterns into LLM, LLM may output content such

as “He is a natural leader and would excel as a CEO.”

It may lead to the cyclic spread of gender role bias, and

even exacerbate the structural solidification of “occupational

gender stereotypes” within the model, which makes users to

doubt the justice of the system. Therefore, evaluation protocols

must incorporate fairness and bias-tracking dimensions to

assess the long-term human-facing implications of collaborative

reasoning systems.

9 Overarching discussion across
integration paradigms

Building upon the detailed analysis of challenges in LLM-

enhanced KG (Section 4), KG-enhanced LLM (Section 6), and

KG-LLM synergy (Section 8), we identify several significant

challenges that persist across all paradigms. The persistent

representation gap between neural and symbolic knowledge

systems manifests in distinct yet equally problematic ways:

creating information fusion barriers in KG construction,

causing semantic misalignment in LLM enhancement, and

posing integration difficulties in collaborative systems. A second

universal challenge involves dynamic knowledge maintenance,

which encompasses both the timeliness of KG updates and the

limitations of temporal reasoning in LLMs, compounded by

real-time processing constraints. Furthermore, we observe an

inherent tension between system performance and interpretability

that consistently produces explainability-trust dilemmas. These

manifest most visibly in opaque reasoning processes, ambiguous

knowledge provenance, and growing demands for human-centered

evaluation frameworks.

These common issues suggest that future progress will

require comprehensive solutions capable of addressing shared

architectural constraints while accommodating each paradigm’s

specific requirements. By identifying these fundamental challenges,

we establish a foundation for developing integrated research

directions that could advance all three approaches to KG-LLM

integration simultaneously.

10 Future directions

10.1 Knowledge reflection and dynamic
update

Knowledge Reflection and Dynamic Update are key directions

in dynamic knowledge graph research, aiming to ensure timeliness,

accuracy, and adaptability of knowledge. Knowledge reflection

identifies and corrects outdated, conflicting, or incomplete

information, continuously refining existing knowledge. Dynamic

updates focus on extracting and integrating new knowledge from

multi-source data in real time, promoting the continuous evolution

of KGs. Future research can leverage the contextual learning

capabilities of LLMs to establish a feedback loop of reflection

and updating, optimizing the reasoning and updating processes.

Existing studies, such as Mou et al. (2024), demonstrate that

reflection mechanisms enhance the dynamism and accuracy of

knowledge graph construction, offering new insights for the

development of adaptive KGs.
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FIGURE 15

Applications of the fusion of LLMs and KGs.

10.2 Integration of multimodal knowledge
graphs and language models

The integration ofmultimodal KGs and languagemodels (LMs)

is a significant frontier in the field of artificial intelligence, aiming

to build intelligent systems capable of understanding and reasoning

across various modalities, including text, images, audio, and sensor

data. Future research will focus on achieving unified representation

learning, enabling language models to fully leverage structured and

diverse data within multimodal KGs. Additionally, constructing

dynamic multimodal KGs will be a key direction, requiring systems

to continuously extract, update, and integrate new knowledge from

different data streams.

10.3 Temporal reasoning

Temporal Reasoning is a significant challenge in AI reasoning,

involving the understanding and prediction of temporal logic,

causal relationships, and dynamic knowledge. In recent years,

with the development of LLMs, new approaches have emerged.

Current research primarily addresses the gap between temporal

knowledge graphs (TKGs) and LLMs through retrieval-augmented

generation frameworks [e.g., GenTKG (Liao et al., 2024)] and

reduces computational costs by integrating few-shot learning and

instruction tuning. Additionally, models like TG-LLM (Xiong et al.,

2024) and chain-of-thought (CoT) reasoning enhance LLMs’ ability

to comprehend complex temporal logic. Furthermore, generative

temporal question-answering frameworks (GenTKGQA) (Gao

et al., 2024) achieve efficient reasoning by combining subgraph

retrieval with virtual knowledge integration. Future research will

focus on optimizing temporal data representation, improving

cross-domain generalization, and deeply modeling temporal logic

and causal relationships to advance the intelligence and efficiency

of temporal reasoning in AI.

11 Applications

As shown in Figure 15, the integration of knowledge graphs

(KGs) and large language models (LLMs) has been successfully

applied in five key fields: (1) medical, (2) industrial, (3) education,

(4) financial, and (5) legal.

11.1 Medical field

In the medical domain, the integration of KGs and LLMs

has shown immense potential for improving various healthcare

applications. One prominent application is the use of KG-enhanced

LLMs for medical question answering (QA) (Yang et al., 2024c;

Cabello et al., 2024). By combining the structured medical

knowledge contained in KGs with LLMs, systems can provide

more accurate and contextually relevant answers to complex

medical queries. For instance, MEG (Cabello et al., 2024) and

LLM-KGMQA (Wang F. et al., 2024) separately integrate graph

embeddings from a pre-trained KG encoder into the LLM, and

leverage the reasoning capabilities of LLMs to enhance knowledge

graph-based QA by refining query interpretations. In addition,

KG-enhanced LLMs improve conversational agents by providing

them with structured medical knowledge, allowing more informed

responses during patient interactions (Varshney et al., 2023).

In biomedical area, projects like CancerKG (Gubanov et al.,

2024) leverage large-scale KGs that aggregate cancer-related data

from multiple sources. Furthermore, the combination of LLM and

KG like DALK (Dynamic Co-Augmentation of LLM and KG) (Li

D. et al., 2024) assists researchers by answering complex queries

related to the disease, thus accelerating the discovery process.

11.2 Industrial field

In the industrial domain, the integration of KGs and LLMs has

advanced intelligent systems for tasks such as quality testing and

maintenance (Zhou et al., 2024; Su et al., 2024), fault diagnosis

(Peifeng et al., 2024; Meng et al., 2022), and process optimization.

For example, BERT–BiLSTM–CRF (Meng et al., 2022) integrates

BERT, BiLSTM, and CRF modules to identify power equipment

entities from Chinese technical documents and extract semantic

relationships between entities. Su et al. (2024) combined LLM-

based chain-of-thought (CoT) reasoning with a KG to generate

highly feasible and coherent test scenarios, supporting exploratory

testing and addressing issues such as inconsistent error report

quality and infeasible test scenarios.

11.3 Education field

In the field of education, KGs help organize and visualize

complex learning content, enabling students to better understand

and master knowledge. Combined with the natural language

capabilities of LLMs, intelligent systems can provide precise

learning guidance and personalized recommendations. Jhajj et al.

(2024) used GPT-4 to assist in constructing educational knowledge

graphs (EduKG), integrating learning objectives and curriculum

structures to validate the graphs. Abu-Rasheed et al. (2024)

proposed using KGs as factual background prompts for LLMs,

designing text templates filled by LLMs to provide accurate and

easily understandable learning suggestions.
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11.4 Financial field

In the financial field, the combination of KGs and LLMs

provides robust technological support for financial risk control,

fraud detection, and intelligent investment advisory services. By

constructing financial KGs, systems can link entities such as

enterprises, individuals, and transactions to identify potential risk

factors. Additionally, LLMs help to extract information from

vast financial reports, news, and transaction records, providing

insights for risk assessment and decision-making, as exemplified

by FinDKG (Li, 2023). Furthermore, LLM-enhanced KG Q&A

systems can deliver financial consulting, helping individuals and

enterprises make informed investment decisions.

11.5 Legal field

In the legal field, the integration of KGs and LLMs promotes

applications such as legal intelligent Q&A (Shi et al., 2024),

case prediction (Liu, 2024; Gao S. et al., 2023), and legal

document generation. By constructing legal KGs, systems can

organize statutes, cases, and precedents, providing structured legal

knowledge support for judges, lawyers, and general users. LLMs,

with their powerful language generation and reasoning capabilities,

utilize these KGs to offer legal consultation, case prediction, and

automated legal text generation services.

12 Conclusion

This study systematically analyzes three approaches for

integrating KGs and LLMs: KEL (KG-enhanced LLMs), LEK

(LLM-enhanced KGs), and LKC (collaborative LLMs and

KGs). Through a comprehensive review of existing research,

we find that such integration can effectively combine the

respective strengths of structured knowledge and language

models, demonstrating practical value in specific tasks such as

question answering systems and decision support. However, due

to inherent differences in their knowledge representation and

processing methodologies, the actual integration process still faces

several key challenges like efficiency issues in real-time knowledge

updating and representational consistency in cross-modal learning.

By systematically examining these technical challenges, this study

provides directional references for future research.
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