
Frontiers in Computer Science 01 frontiersin.org

Cloud security and authentication
vulnerabilities in SOAP protocol:
addressing XML-based attacks
Mozamel M. Saeed *

Department of Computer Sciences, College of Computer Engineering & Sciences, Prince Sattam Bin
Abdulaziz University, Al-Kharj, Saudi Arabia

Introduction: This research addresses the security weaknesses in SOAP-based
web services, with a particular focus on authentication vulnerabilities resulting
from XML-based attacks, such as Signature Wrapping or Replay Attacks. With an
emphasis on the fact that an increasing number of cloud services are utilizing
SOAP, this study aims to develop a formally verified model that can more
effectively identify and address these vulnerabilities.
Method: We propose and execute a TulaFale-based verification framework that
formally models SOAP authentication scenarios by introducing the standard
constructs, UsernameToken, Timestamp, and X.509 digital certificates. These
scripts are transformed into the applied pi-calculus and verified using the ProVerif
verification tool to check for properties such as authentication, confidentiality,
and message integrity.
Results: By examining XML web services security problems and consulting with
security professionals, a number of key risks were identified and discussed. The
research contributes to developing a comprehensive language design for cloud
security and vulnerabilities using Blanchet’s ProVerif. A controlled experimental
testbed was set up to emulate client–server SOAP communication streams
and to evaluate the model’s effectiveness in identifying an XML-based attack
performed on the web services security framework. The framework was
experimentally examined for verification time and scalability for concurrency,
and for accuracy of identification. The results confirmed our success in
identifying attack patterns and confirming secure message exchanges built to
the standards set by WS-Security.
Discussion: The proposed approach addresses and allows for the addition of
automated, formal verification to realistic SOAP deployments. By modeling
and verifying a security protocol before the deployment, developers can
be confident that their implementation is resilient against protocol-level
vulnerabilities, improving the trust in the security of web services deployed
within cloud applications.

KEYWORDS

authentication, access control, pseudonymity, anonymity, privacy-preserving
protocols, digital rights management

1 Introduction

The popular use of cloud computing has greatly increased data access and scalability, but
it has also brought with it essential authentication-related security issues. Proper authentication
mechanisms must be in place to avoid unauthorized access and protect against possible data
breaches. Alquwayzani et al. (2024) emphasize that security weaknesses in cloud computing,

OPEN ACCESS

EDITED BY

Xiaoguang Wang,
University of Illinois Chicago, United States

REVIEWED BY

Rakesh K. Kadu,
Shri Ramdeobaba College of Engineering and
Management, India
Tarun Kumar Vashishth,
IIMT University, India

*CORRESPONDENCE

Mozamel M. Saeed
 m.musa@psau.edu.sa;
 mozamel8888@gmail.com

RECEIVED 18 March 2025
ACCEPTED 15 August 2025
PUBLISHED 01 September 2025

CITATION

Saeed MM (2025) Cloud security and
authentication vulnerabilities in SOAP
protocol: addressing XML-based attacks.
Front. Comput. Sci. 7:1595624.
doi: 10.3389/fcomp.2025.1595624

COPYRIGHT

© 2025 Saeed. This is an open-access article
distributed under the terms of the Creative
Commons Attribution License (CC BY). The
use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE  Original Research
PUBLISHED  01 September 2025
DOI  10.3389/fcomp.2025.1595624

https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fcomp.2025.1595624&domain=pdf&date_stamp=2025-09-01
https://www.frontiersin.org/articles/10.3389/fcomp.2025.1595624/full
https://www.frontiersin.org/articles/10.3389/fcomp.2025.1595624/full
https://www.frontiersin.org/articles/10.3389/fcomp.2025.1595624/full
mailto:m.musa@psau.edu.sa
mailto:mozamel8888@gmail.com
https://doi.org/10.3389/fcomp.2025.1595624
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/computer-science#editorial-board
https://www.frontiersin.org/journals/computer-science#editorial-board
https://doi.org/10.3389/fcomp.2025.1595624

Saeed� 10.3389/fcomp.2025.1595624

Frontiers in Computer Science 02 frontiersin.org

especially in web services, expose sensitive information to
cyberattacks. Among the different communication protocols utilized
by cloud-based applications, the Simple Object Access Protocol
(SOAP) is still popularly used owing to its robust security and
reliability features. Its use of XML-based messaging, however, presents
performance overhead and heightened vulnerability to advanced
cyberattacks (Sakshi, 2023). Cloud misconfigurations can also cause
catastrophic data breaches, hence the need for robust authentication
protocols. In medicine, the migration of Electronic Health Records
(EHRs) to the cloud has raised issues about patient privacy, yet again
justifying the implementation of robust authentication controls
(Alquwayzani et al., 2024).

The reliance of SOAPs on XML makes it vulnerable to different
XML-based attacks, including attacks such as XML External Entity
(XXE), XML Injection, and XML Signature Wrapping (XSW) that
exploit the message framework to avoid controls of authentication
(Modak et al., 2021). These susceptibilities can lead to data violations,
unauthorized access, and disturbances in service. Several studies have
emphasized that vulnerabilities in XML injection permit attackers to
mediate with application logic, access sensitive data, or perform
unauthorized actions. Available mechanisms in security, such as
WS-Security, give digital signatures and encryption to protect SOAP
messages. These, however, may not be sufficient to counter
XML-specific threats on their own. For example, XSW attacks
maintain digital signatures but alter the message structure to provide
unauthorized access (Modak et al., 2021). Similarly, XML-based
Distributed Denial-of-Service (DDoS) attacks take advantage of
SOAP’s XML parsing mechanisms, causing service interruption
(Krishnamoorthy and Umarani, 2021a). A recent study discovered
that XSW vulnerabilities in Germany’s Personal Health Record system
could be used to circumvent authentication, which proves the actual-
world relevance of these threats (Saxena et al., 2021). Current research
highlights the threats of XXE attacks, where XML parsers resolving
external entities may inadvertently leak sensitive information or run
malicious code. An attacker may create XML payloads that reference
external files, causing unauthorized data exposure or service
disruptions. A study in the International Journal of Innovative
Technology and Research verifies that blocking external entity
resolution is the best mitigation technique (Saxena et al., 2021). One
of the recent studies on the shortcomings of WS-Security in
countering Denial-of-Service (DoS) and injection-based attacks
presents an overview of current security patterns and pinpoints
shortcomings in current countermeasures, such as the inadequacy of
WS-Security in countering certain threats like DoS and injection
attacks. The authors strongly promote stronger and stronger security
patterns capable of fending off such flaws (Washizaki et al., 2021).

While numerous improvements are being made to the security of
web services, several issues are still open for discussion. Firstly,
WS-Security is a web service security standard that provides basic
authentication and encryption features, but does not address
XML-specific security issues like XML Injection, XXE, or XSW
attacks. Even systems that claim to use WS-Security standards are not
secure due to the known attacks. On the other hand, however, ProVerif
is one of the formal verification tools that has been successfully
employed to look into general security protocols, but it is still lacking
when it comes to SOAP-based authentication models. The gap in the
research that attempts to merge formal verification methods with
SOAP security techniques prevents a meaningful approach to proving

the authentication system’s integrity and security before it is put into
use. Some studies have been done to incorporate AI technologies in
an attempt to secure against cyberattacks through SOAP, but the
results so far are inadequate to claim the use of AI to secure APIs, but
not for SOAP proposals. However, with the increasing number of
attacks made using AI, there is an urgent necessity for intelligent
security frameworks designed for SOAP cloud environments
(Krishnamoorthy and Umarani, 2021b; Saxena et al., 2021).

Finally, the trade-off between security and performance in SOAP-
based web services is another overlooked area. Most existing security
models focus on improving authentication and encryption without
considering the computational overhead introduced by these
mechanisms. Research is needed to develop authentication
frameworks that enhance security while maintaining optimal
performance in cloud-based applications. This study aims to address
these research gaps by analyzing the security vulnerabilities associated
with SOAP-based web services and proposing an enhanced
authentication framework to mitigate XML-based threats. With the
increasing adoption of cloud computing and web service integration,
ensuring robust security measures is essential to prevent unauthorized
access, data breaches, and service disruptions. The research specifically
focuses on identifying and addressing security challenges posed by
XML-based attack vectors, such as XML Injection, XML External
Entity (XXE) attacks, XML Signature Wrapping (XSW), and
XML-based Distributed Denial-of-Service (DDoS) attacks. These
attacks exploit weaknesses in SOAP over HTTP, posing significant
threats to data integrity, confidentiality, and availability.

To address these vulnerabilities, the research designs a secure
authentication framework for SOAP-based web services. The model
uses TulaFale, a proprietary security protocol specification language
integrated with ProVerif, to formally verify the security policies and
the authentication mechanisms. In addition, the framework employs
WS-Security Enhancements (WSE) to improve the confidentiality and
integrity of messages while reducing XML-specific security risks. The
objective of this study is to discover and model formally the structural
authentication vulnerabilities in the web services that work on the
Simple Object Access Protocol (SOAP); these include those
vulnerabilities caused by XML-based attacks such as Signature
Wrapping attacks and Replay attacks. To construct a secure
authentication framework, uses WS-Security components such as
Username Token, Timestamp, and X.509 certificates, and operates
within a simulated SOAP environment, thus being able to justify the
name claimed. To subject the framework for proposed verification
using formal weapons such as TulaFale and ProVerif, on the reasonable
assurance that properties of authentication, confidentiality, and
integrity of the message are retained. To further assess its efficacy in
identifying protocol-level vulnerability from empirical test scenarios
and formal security analysis. To recommend a design that will
integrate WS-Security Enhancements (WSE) into SOAP services; this
will lay the groundwork for future deployment and observe its
performance empirically.

2 Literature review

In the world of ever-developing web services, two major
paradigms have emerged: SOAP and REST. SOAP is a protocol-based
means of transferring data using XML messaging, with very strict

https://doi.org/10.3389/fcomp.2025.1595624
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Saeed� 10.3389/fcomp.2025.1595624

Frontiers in Computer Science 03 frontiersin.org

standards like WSDL. SOAP emphasizes security and reliability, hence
its suitability for applications requiring very strong transactional
support from the server. On the other hand, REST is an architecture
that makes use of standard web query protocols and data formats,
such as JSON, for stateless communication. REST has become popular
in such cases where lightweight and rapid interaction is demanded
owing to its simplicity, scalability, and efficiency. Testing the
performance characteristics of these two approaches is important for
optimizing system design and ensuring seamless communication over
diverse platforms, especially in mobile environments and multimedia
conferencing applications (Alquwayzani et al., 2024).

As web service technology develops, the need for integration and
security becomes a critical challenge. These challenges have been
tackled lately in various ways. For example, in a recent study, a system
was proposed that integrates wireless sensor networks (WSNs) with
web services through the NATO System Enabled Capability (NSEC)
framework, which improves energy consumption and network
lifetime. Also, another study discussed security principles for
implementing RESTful APIs in Python frameworks and noted the
need for strong security applications to safeguard the application. All
these studies bring the issue of harsh network capabilities and security
severe to modern web services (Tabasum et al., 2023; Kornienko et al.,
2021). On the other hand, SOAP-based communication is still highly
used for web services, but their servers are constantly under security
threats. This calls for effective user authentication. The use of SOAP
as a Social Authentication Protocol pointed out the need for strong
authentication verification to guard against unauthorized access
(Linker and Basin, 2024). A previous study investigated the use of
Kerberos authentication in SOAP messaging and proved its usefulness
in securely verifying users and reducing identity spoofing. Still,
authentication alone is not enough because SOAP is among the most
vulnerable protocols to XML attacks (Ajvazi and Halili, 2022).

Conventional SOAP authentication mechanisms, like username-
password and token-based authentication mechanisms, are generally
ineffective against advanced XML-based attacks. To enhance SOAP
security, the WS-Security standard has been adopted, offering
features such as message integrity and confidentiality (Garg and
Garg, 2024). Vulnerability remains, especially regarding XML
rewriting attacks. Several studies proposed a SOAP model in the
WS-Security framework for the detection and prevention of such
attacks. A token-based biometric-enhanced key derivation scheme
for wireless network authentication highlighted the requirement of
strong authentication mechanisms in cloud computing. These studies
show the need for ongoing innovation in authentication approaches
to address evolving threats in SOAP-based services and provide long-
term security resilience (Mohana, 2018; Cui et al., 2023; Parast et al.,
2022). Attacks in the XML language parser system can potentially
result in the exposure of sensitive information and unauthorized
access to systems. XXE attacks are often overlooked but are equally
as damaging as traditional cyberattacks. Data is vulnerable if an XML
interface is vulnerable, as it can be compromised in numerous ways.
A security concern put advanced consideration into the study of the
prevention mechanisms of the XXE attack and concentrated on the
safe configuration of XML parsers (Hulloowan and Bekaroo, 2024;
Gupta et al., 2023). In the same way, a study pointed out the need to
properly set up parsers to protect against these weaknesses (Shahid
et al., 2022) and also defended that a secure XML parsing design
pattern should be implemented for XML content not to be malicious.

Since guessing XML tags is practically unrestricted, these studies
reinforce the claim that safe XML parsing should be implemented all
the time. Furthermore, the other part of the security aspects, which
includes vulnerability methods in web services, particularly SOAP
and WSDL protocols, was explained. The authors also noted that
common XML services are prone to normal attacks, such as XML
injection, XPath injection, and SQL injection, because ordinary XML
is in a free text file, making it easy to exploit. To address these issues,
the authors defend the implementation of XML Signature and XML
Encryption as basic protection methods. Also, the noticed shift to
using JavaScript Object Notation (JSON) instead of XML is
indisputable as far as not assisting in the protection. The research
delves into the use of internet brake systems and presents a report on
the need to concentrate more on protecting details and public web
services from sabotage alongside thorough control for advanced
attacks (Jagruti et al., 2018).

A recent study proposed a hybrid method for enhancing the
protection of SOAP messages that combined RSA with 4,096-bit AES
encryption and XOR operation for greater computational efficiency
(Chaudhary et al., 2024). A combination of applied pi-calculus and
formal TulaFale, a scripting language for SOAP, increases the security
of SOAP messages by enabling the specification and validation of
security attributes associated with them. This extension to the Pi
language supports XML syntax design and cryptographic functions,
which allow for accurate SOAP messages and WS-Security header
validation in the context of automated tooling. This allows for the
accurate identification of certain types of exploits, such as XML
rewriting attacks, thus increasing the dependability of the protocols
used for web services security. The use of these techniques can greatly
improve the level of security trust for critical system applications
(Bhargavan et al., 2004).

Applied pi-calculus further secures authentication protocols
with a strict methodology for checking security properties. It has
been used to verify protocols such as TLS 1.3, remote attestation,
and compositional reasoning about the security of protocols (Wu
et al., 2023; Reaz and Wunder, 2024; Blanchet, 2022). At the same
time, TulaFale, when integrated with the Tamarin Prover, has been
applied to prove authentication, confidentiality, and integrity in
security protocols, proving its utility in real-world applications like
the Permission Voucher Protocol and other vital authentication
mechanisms (Lanckriet et al., 2023) verification tools such as
TulaFale have greatly enhanced protocol security, their success relies
on correct implementation and ongoing evolution to counter new
threats. Subsequent research needs to improve these methodologies
to meet emerging security issues in web services. TulaFale, along
with the Tamarin Prover, has been crucial in ensuring security
protocols by authenticating, keeping information confidential, and
ensuring integrity. Research emphasizes its power, including the
examination of the Permission Voucher Protocol, which remained
robust against tampering with messages and impersonation
(Lanckriet et al., 2023). Further, the I/O specifications framework
for compiling Tamarin models has enabled verifications of real-
world systems such as WireGuard’s key exchange protocol and
various cryptographic authentication schemes (Horne et al., 2023).
Resolution-based protocol verification applies explicit approaches to
assure the accuracy and security of cryptographic applications and
network connections. By utilizing resolution theorem proving, it
computerizes verifications, and addresses challenges such as

https://doi.org/10.3389/fcomp.2025.1595624
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Saeed� 10.3389/fcomp.2025.1595624

Frontiers in Computer Science 04 frontiersin.org

boundless state areas and difficult interaction with protocols. A
primary application is Address Resolution Protocol (ARP)
verification, which authenticates address mapping before using it,
helps to prevent misuse of the network, and improves security
(Arquint et al., 2023). Validating distributed protocols can take
advantage of decidable modeling, allowing automatic checks of
inductive invariants. Tools like Ivy improve effective verification
even in complex distributed systems by simplifying invariant
analysis (Vijayvargiya et al., 2020), strengthening the reliability and
security of network protocols.

Resolution-based verification, as used by tools such as ProVerif,
is superior to fuzzing and combinatorial testing in detecting
vulnerabilities in SOAP-based communication in several ways.
Through the application of Horn clauses and resolution algorithms,
ProVerif securely and systematically verifies security properties and
identifies possible attacks more thoroughly than heuristic-based
methods (Padon, 2022). Unlike fuzzing approaches that could
potentially ignore some edge cases, resolution-based approaches
analyze all protocol states, thereby providing a thorough security
assessment (Le and Pham, 2024). Although fuzzing tools such as
SOAPFuzzer can identify zero-day vulnerabilities via traffic analysis,
they do not possess the richness of formal verification (Ding and Xu,
2025). Similarly, combinatorial testing, although beneficial in
identifying vulnerabilities via mutation-based testing, is very much
dependent on test case quality and might not be able to cover the
protocol completely (Chen et al., 2014).

This work extends previous research by formally verifying
weaknesses in SOAP authentication using formal verification
techniques. Although previous work has examined authentication
protocols, their verifications were typically not rigorous or automated
against dynamically changing threats. The contribution of this work
is to apply TulaFale, a dedicated tool for verifying the security
properties of web services, to formally examine and verify SOAP
authentication protocols. With TulaFale incorporated, the present
study extends reliability in authentication by reducing risk levels of
security threats and misconfigurations. The model extends SOAP
security with an effective verification model that offers an enhanced
approach to ensuring resilient authentication against anticipated
future cyberattacks. Additionally, the study offers an efficient and
scalable technique for responding to web service security issues in
the future.

3 Proposed model

Addressing authentication issues related to SOAP protocols is
crucial due to the increasing reliance on web services and the need for
secure communication. Weak or flawed authentication mechanisms
in SOAP can lead to unauthorized access, data breaches, and
compromised system integrity. By addressing these issues,
organizations can protect data confidentiality, promote trust in web
services, and comply with regulatory requirements. The research in
this area aims to enhance security, privacy, and trustworthiness,
ensuring the integrity of data exchanged and protecting
sensitive information.

To address the authentication issues related to SOAP protocol
based on XML attacks, the TulaFale script can be adapted for modeling
such distinctions in the protocol. The tool instantly and automatically
identifies the errors and the revenue explanations of the messages
delivered throughout the attacks. Such faults are distinctive errors in
cryptographic procedures in web services code. The practical effect of
such flaws is complicated, as flaws were detected in the preliminary
code before installation. Nonetheless, it is practical to eliminate such
impairments as well as tools for systematically ruling them out. In this
regard, the traditional top-level begins to establish and explore
messages 1 and 2 of the example procedure based on the established
definitions reflecting the WS-Security and SOAP specifications.

In the standard top-level specification, Messages 1 and 2 of the
authentication protocol using the WS-Security and SOAP definitions
were constructed. Figure 1 demonstrates how the client assembled
Message 1 (msg1) using the mkMsg1 predicate. This message includes
a username token, which was encrypted and digitally signed for
confidentiality and authenticity. Figure 2 illustrates the message’s
authorization on the server-side, using the server’s signature principles
to validate the generated signature, and extract2 the root session
identifiers (i.e., S, id1), timestamp (t1), and bindings (b1) of the
message, and acknowledge that it is both valid (i.e., an authorized
session) and fresh (i.e., from previous interaction). Figure 3 illustrates
how the client validates consensus upon receipt of Message 2 (msg2):
it validates that the response is fresh and unpredictable (based on the
previous exchange), thereby reducing replay attacks. Figure 4
illustrates how the server assembles msg2 based on the validated
inputs, where the authentication sequence’s response message is

FIGURE 1

Client-side construction of Message 1 (msg1) using the mkMsg1
predicate. This step includes the encryption of the username token
and generation of a digital signature in accordance with WS-Security.

FIGURE 2

Server-side validation of msg1. Using its certificate, the server parses
and verifies the received parameters, extracting session identifiers (S,
id1), timestamp (t1), and security bindings (b1) from the message.

https://doi.org/10.3389/fcomp.2025.1595624
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Saeed� 10.3389/fcomp.2025.1595624

Frontiers in Computer Science 05 frontiersin.org

securely assembled from the user’s bindings, as referenced in valid
session contexts.

3.1 Simplified authentication flow

	 1	 Client sends msg1
	 2	 Server verifies and replies with msg2
	 3	 Client checks msg2
	 4	 Authentication completes

The practical implications of flaws detected in the preliminary
code of SOAP-based web services can have significant ramifications
for security. These flaws may include vulnerabilities in authentication
mechanisms, cryptographic protocols, or error handling, which can
be exploited by attackers to have unauthorized access, launch denial-
of-service attacks, or manipulate data. Such vulnerabilities can result
in data breaches, financial losses, reputational damage, compromised
user credentials, and legal obligations for organizations. Addressing
these flaws is crucial for enhancing the security of SOAP-based web
services. By identifying and rectifying these vulnerabilities,
organizations can strengthen the authentication process, ensuring that
only authorized users can access the services. This helps mitigate the
risk of unauthorized access to sensitive information and protects
against identity theft or impersonation attacks.

Furthermore, addressing these flaws improves the robustness of
cryptographic protocols used in SOAP. This includes ensuring secure
encryption, digital signatures, and key management practices, which
are fundamental for protecting data confidentiality, integrity, and
authenticity. By addressing vulnerabilities in these protocols,
organizations can prevent cryptographic attacks, such as tampering,
replay attacks, or disclosure of sensitive information. Additionally,
addressing flaws in error-handling mechanisms helps in preventing
information leakage or unintended exposure of system details that
could be exploited by attackers. By implementing proper error
handling practices, organizations can minimize the risk of exposing
sensitive information, such as system configurations, error messages,
or stack traces, which can be utilized by malicious actors to gain
insights into the system architecture and exploit weaknesses.

3.2 Processes and assertions

3.2.1 Understanding the verification framework
Formal verification in this paper is based on the applied

pi-calculus, which is a mathematical language used to model secure
communication protocols. TulaFale extends this framework by
offering a readable syntax that parallels the form of the XML used for
web services. To reach a larger audience within cybersecurity, the key
terms and relationships specific to SOAP authentication have been
summarized. For example, predicates are a type of logical statement
describing the structure or attributes of a Message, assertions confirm
the existence of a security property, and Channels model the
communication of messages between two distinct entities, and the
entity can be a client or a server. The goal of this section is to clarify
and explain the mechanics involved in securely constructing,
exchanging, and reassuring mutual authentication of SOAP messages
within this formal system.

3.2.2 Translation from TulaFale to applied
pi-Calculus

TulaFale scripts are translated into the applied pi-calculus as part
of the verification process. The applied pi-calculus is a formal language
used to model and analyze concurrent systems, including
cryptographic protocols. It provides a mathematical framework for
reasoning about the interactions and behavior of various processes
within a system.

During the translation process, TulaFale scripts are converted
into the syntax and semantics of the applied pi-calculus. This
involves mapping TulaFale constructs, such as processes, channels,
declarations, and assertions, into their corresponding representations
in the pi-calculus. The translated pi-calculus representation captures
the behavior and communication patterns specified in the original
TulaFale script. Once the TulaFale script is translated into the
pi-calculus, a resolution-based protocol verifier is applied to analyze
the protocol’s security properties. The resolution-based protocol
verifier is a formal verification tool that employs logical inference
rules to reason about the correctness and security of cryptographic
protocols. The verifier performs an analysis of the translated
pi-calculus representation to verify specific security properties
embedded by compliant principles. This includes checking for

FIGURE 3

Client-side validation of msg2 to ensure session freshness and
prevent replay attacks. The figure illustrates how the client verifies
the nonce and timestamp to confirm mutual agreement and
authentication continuity.

FIGURE 4

Server-side construction of msg2. The server uses the session ID and
client-provided parameters to generate a secure reply that finalizes
the authentication exchange.

https://doi.org/10.3389/fcomp.2025.1595624
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Saeed� 10.3389/fcomp.2025.1595624

Frontiers in Computer Science 06 frontiersin.org

properties like authentication, data integrity, confidentiality, or
secure session establishment. The verifier uses a resolution-based
approach, which involves applying deduction rules to derive logical
conclusions and establish the desired security properties. The
resolution-based protocol verifier operates by systematically
exploring the potential execution paths and interactions between
processes in the pi-calculus representation. The process of verifying
security properties within protocols involves checking for
vulnerabilities, potential attacks, or breaches of specified security
standards. The aim is to either confirm the protocol’s adherence to
desired security properties or uncover and address potential
weaknesses. Using a resolution-based protocol verifier on the
translated pi-calculus representation, the TulaFale tool automates
the authentication property verification and other security aspects
in SOAP protocols. This systematic approach ensures the
identification and rectification of vulnerabilities, thereby ensuring a
secure design and implementation of SOAP-based web services.

3.2.3 Formalization of system processes and
threats

In TulaFale scripting, a system is defined as a collection of
concurrent processes that internally evaluate using predicates and
relations and communicate by exchanging terms through predefined
channels. Such a script reflects the behavior of entities within the
system, such as servers and clients. An attacker is modeled as a
separate process interacting with the system via public channels. The
cryptographic standards are represented explicitly within the system
through a defined process, while the attacker’s behavior is implicitly
based on arbitrary processes in the pi-calculus. TulaFale’s syntax
involves several non-terminals or metavariables, representing
algebraic terms, sorts, and logical formulas. These assertions
embedded within the pi-calculus in the process language serve to
specify particular security properties adhered to by
compliant principles.

An announcement channel ide (sort1,…, sortn) presents ide that
has been assigned a name, for switching n-tuples of terms with sorts
sort1,…, sortn. In the asynchronous pi-calculus, channels are named,
unordered queues of messages. Each channel is public, by default, so
that the attacker may input or output messages on the channel. The
declarations may be directed by the private keyword to restrain the
attacker from retrieving the channel.

An announcement correspondence ide (sort1,…, sortn) presents
a label, ide, for events denoted by n-tuples such that sort1,…, sortn.
Either an event is a begin-event or an end-event. A begin-event is
responsible for recording the initiation of a session, while an end-event
records the completion of the session. We use correspondences to
formalize the properties. We named this property Robust Safety.
Strong safety implies that two acquiescent processes have reached an
agreement based on the data, which comprises the contents of a
sequence typically of one or more messages. Next, the various kinds
of TulaFale processes:

	•	 A process in ide (ide1,…, iden); proc. blocks pending a tuple
(tm1,…, tmn) on the ide channel; if one reaches, the process
performs as a proc., with its parameters ide1,…, iden bound to
tm1,…, tmn, respectively.

	•	 A process out ide (tm1,…, tmn); proc. sends the tuple (tm1,…,
tmn) on the ide channel, and then it runs the proc.

	•	 A process proc1 |proc2 is an equivalent configuration of
sub-procedures proc1 and proc2; they run in equivalence and
may interconnect on common channels.

	•	 Process new ide: bytes; proc. limits the variable ide to a new byte
array, to a typical cryptographic key or nonce generation, for
instance, then runs proc. Similarly, a process new ide: string;
proc. binds the variable ide to a fresh string, to model password
generation, for instance, then it runs the proc.

	•	 A process let ide = tm; proc. fixes the term tm to the variable ide,
then it runs the proc.—A process filter form → ide1,…, iden;
proc. binds terms tm1,…, tmn to the variables ide1,…, iden in
such a way that the formula holds, then it runs the proc. (The
terms tm1,…, tmn are figured by pattern-matching.

	•	 A process! Proc is an equivalent configuration of a limitless array
of imitations of the process Proc. Process 0 is not responsible
for anything.

	•	 A process end ide(tm1,…, tmn); proc. logs an end-event labeled
with ide and tuple (tm1,…, tmn), then it runs the proc.

	•	 A process ide (tm1,…, tmn), ide resembles a declaration process
ide (ide1:sort1,…, iden:sortn) = proc. limits the terms tm1,…,
tmn to the variables ide1,…, iden, then it runs the proc.—A
process initiates ide (tm1,…, tmn); proc. logs an initial event
labeled with ide, and the tuple (tm1,…, tmn), now runs proc.

	•	 Lastly, the process logs a complete event (Checking for the
reachability of the final event, which is assured to be done.
Consequently, an elementary check of the functionality of the
procedure, which can run to completion, is taken).

3.2.4 Proposed verification pipeline and
customization

While the proposed framework builds upon established tools
like TulaFale and ProVerif, our contribution lies in the customized
adaptation of these tools to model dynamic, enterprise-level SOAP
authentication flows under WS-Security. In contrast to previous
research, which presented standalone protocol checks known to
be immediately usable together, the work adopts a structured
verification pipeline that includes modularizing protocols via
predicates, mapping real-world message schema, and providing
stage gates for verification (i.e., separating confidentiality, freshness,
and authentication). The proposed model offers a structural
layering of TulaFale scripts, with the layers representing modular
security enforcement by WS-Security plans, including
UsernameToken, Timestamp, and Digital Signature, and can offer
independent verification and even reuse by separating security
objectives in the verification pipeline. In addition, a lesser weight
threat modeling approach derived from attacker interaction
channels established in the pi-calculus, permitting a view of
developer requirements with visibility of interaction and how
threats (like XML Signature Wrapping, Replay Attacks) could
be caught by formal predicates.

4 Experimental evaluation and results

To assess the practical viability of the proposed TulaFale-based
verification model for SOAP-based authentication, a controlled
experimental methodology was established to formally assess the
model strengths and weaknesses back to formal verification.

https://doi.org/10.3389/fcomp.2025.1595624
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Saeed� 10.3389/fcomp.2025.1595624

Frontiers in Computer Science 07 frontiersin.org

4.1 Implementation environment

Modeling of the typical SOAP authentication scenarios using
TulaFale scripts was undertaken, which incorporated the use of
UsernameToken, Timestamp, and X.509 digital certificates. These
scripts were transcribed into applied pi-calculus to enable formal
analysis using the ProVerif tool. The experimental environment was a
Windows 10 (64-bit) operating system running on a machine with an
Intel Core i7 processor (3.4 GHz) with 16 GB of RAM. The tools that
were used were TulaFale version 1.1 and ProVerif version 2.02. The
verification of scenarios included both valid authentication flows and
adversarial flows such as XML Signature Wrapping, Replay Attacks,
and XML Injection of the model.

4.2 Testbed configuration

A simulated communication framework, having a combination of
client–server SOAP architecture, was created to simulate secure message
exchange. In this environment, a client application was built to create
msg1 using the mkMsg1 predicate, as illustrated in Figure 1. The server
received msg1, validated msg1, and then also extracted the three primary
elements of msg1: timestamps, bindings, and session identifiers,
highlighted in Figure 2. After receiving msg2 from the server, the client
application verifies that msg2 was fresh and only produced once it first
received msg1, omitting any replay attacks (see Figure 3). Lastly, the
server generates msg2 to complete the authentication exchange as
depicted in Figure 4. Throughout this dialogue, predicates and assurances
Throughout this process, predicates and assertions were embedded in
the TulaFale scripts to enforce and verify properties related to
authentication integrity, message freshness, and secure communication.

4.3 Evaluation metrics

The model was assessed based on several dimensions of interest:
verification time; how scalable the model is; how often attacks are
detected; and how often the model produces false positives or false
negatives. Verification time was measured by examining how long
ProVerif took to verify the authentication and secrecy properties.
Scalability was tested by increasing the number of concurrent SOAP
message exchanges, and noting if ProVerif was still able to verify
under higher workloads. The ability to detect attacks was examined by
injecting malformed or malicious SOAP messages and determining
whether the model would report them as insecure. In addition, the
number of false positives and false negatives was noted, counting the
number of legitimate messages that were incorrectly flagged, and the
number of attacks that went undetected.

4.4 Results and observations

The model indicated the identified security failings in SOAP-
based web services by showing the authentication and cryptographic
failings and message integrity limits. With the use of TulaFale and
ProVerif, the solution indicates no security failings, verifying security
automatically, it guarantees WS-Security compliance and prevents
unauthorized access (Figure 1). The model improves authentication

by means of encryption and the use of X.509 certificates and digital
signatures to safeguard the SOAP messages against various attacks like
replay attacks, and artefacts of signature verification (Figure 2).
Moreover, time-stamp verification adds to the deterrence of replay
attacks so that only legitimate users may communicate with other
legitimate users. In addition, timestamp verification improves replay
attack prevention to ensure only legitimate users can communicate
with the web service (Figure 3). The formal verification process
validates the confidentiality, integrity, and authenticity of SOAP-based
communications, demonstrating the model’s potential to secure
interactions with the web services in advance of a production release
(Figure 4).

Though TulaFale and its encoding into the applied pi-calculus
facilitate a useful means for validating authentication properties of the
SOAP protocol, there are limitations and challenges. One of these
limitations is TulaFale’s reliance on existing rules or patterns used in
its automated verification processes. Deviating from these patterns in
a protocol can be an impediment for the tool to accurately represent
and examine the behavior. Further, TulaFale can require a substantial
amount of user guidance to properly verify behavior in complex or
non-standard initial versions of the protocol. As SOAP protocols
become more intricate, with additional processes, channels, and
interactions, the computational complexity during verification
becomes challenging for scalability. It is important to address these
scalability challenges for the tool to be applicable in the real world.

4.5 Scalability considerations

Handling large-scale enterprise environments through SOAP,
offering the ability to accommodate thousands of concurrent user
sessions, or deeply nested XML structures, can present severe
scalability challenges for formal verification tools such as TulaFale and
ProVerif. In this research study, we successfully modeled SOAP
authentication protocols, enabling us to verify the specifications using
TulaFale. However, we acknowledge that the application of our
approach in large-scale environments (>100 concurrent user sessions)
risks performance bottlenecks in formal verification due mainly to the
exponential growth in the state space and message complexity. To ease
the burden of scalability in future extensions of our framework,
we could pursue some approaches and adapt other existing methods.
Using a modular verification approach divides our verification tasks
into smaller components that can be verified independently. A
modular verification approach promotes the scaling of the verification
process while maintaining the modular architecture. Similarly,
protocol abstraction, in which patterns of repetitive authentication or
messaging are abstractly represented, will greatly reduce the overhead
of a verification step. If we could apply an existing, more scalable
formal verification tool, like Tamarin Prover or SmartVerif, we could
potentially apply more efficient proof strategies or allow guided
exploration to help perform verification methods in larger SOAP
scenarios. Lastly, caching intermediate verification results, particularly
for stable or reused SOAP components, would help to decrease the
existing redundancy and overall execution time of the verification
efforts during an iterative environment. Utilizing these ideas would
help us extend our model to be more widely applicable for real-world,
enterprise-scale usage, therefore improving both robustness
and practicality.

https://doi.org/10.3389/fcomp.2025.1595624
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Saeed� 10.3389/fcomp.2025.1595624

Frontiers in Computer Science 08 frontiersin.org

The effectiveness of the resolution-based protocol verifier hinges
on the accuracy of the underlying logical inference rules and the
completeness of the analysis. Ongoing research challenges include
developing and refining these rules to encompass a wide range of
security properties and potential attack scenarios. The present study
contributes to the existing literature by comprehensively addressing
SOP vulnerabilities, cloud security, attack types, and countermeasures.
In particular, it identifies authentication weaknesses in SOAP
protocols due to XML attacks and develops a model from Blanchet’s
ProVerif. The model supports organizations in integrating automated
verification into their existing scripts, speeding up efficient and
trustworthy verification of the correctness of TulaFale scripts.

4.6 Empirical validation and benchmarking
considerations

The scope of this study is primarily focused on the formal
modeling and verification of SOAP-based authentication
mechanisms using the TulaFale language and ProVerif tool.
We recognize that this absence of empirical benchmarking with a
comparative performance study limits our practical evaluation for
real-world use. Future work will place an empirical testing angle on
our proposed framework within simulated SOAP service
environments and production-like SOAP service environments, in
order to observe runtime efficiency, detection latency, and resource
consumption. Benchmarking will be used to compare our approach
to existing SOAP security frameworks and intrusion detection
systems (e.g., implementations of XML firewalls and rule-based
XML anomaly detectors) with respect to accuracy, scalability, and
false positive generation. Thus, empirical investigations will provide
valuable insights into our approach, in terms of what operational
parameters came into play when the model was subjected to realistic
messages, how it interacted with a WS-Security policy in systems
where they were deployed, and the accuracy of detections with
regard to other existing approaches. Moreover, we will be able to
quantitatively measure mitigation success by testing the model’s
resilience under simulated attack scenarios, such as XML Injection,
XXE, and Signature Wrapping.

For further context as to the applicability and originality of our
model, Table 1 compares XML threat mitigation methods in the
recent literature for SOAP-based web services by tool, threat coverage,
deployment complexity, and formal guarantees. This comparison
situates our model in the present context of SOAP security solutions,
while demonstrating our model’s formal verification, modularity, and
adherence to WS-Security capabilities.

5 Practical implications

To show how a developer might deploy the TulaFale verifications
model into a “real” SOAP application, imagine a health information
system that exchanges patient data between hospitals and insurance
companies, and a developer developing a secure SOAP-based
interface to authenticate insurance claim submissions. The
developer must ensure that only hospital systems authorized to
submit claims can do so, and any messages sent must

be tamper-proof and confidential. The developer first creates an
authentication workflow that includes UsernameToken and
Timestamp, which must have a digital signature, conforming to
WS-Security. Then the developer creates TulaFale models of the
creation of the SOAP message and validation of receipt of the SOAP
message, with predicates such as mkMsg1 and checkMsg2, and real
codes of the hospital system’s message schemas (see Figures 1–4).
The developer will turn the scripts into the applied pi-calculus
format and run verification on their model in ProVerif, validating
authentication properties and resistance to replay. Following
successful verification, the model will be incorporated into the web
services application stack (which is commonly developed either in
Java or NET) so that pre-established assumptions on security are
enforced with X.509 digital certificates. It is only at that point that
we test the solution in. We monitor the system logs to ensure that
the model is successfully blocking invalid messages along secure,
traceable authentication flows. This situation serves as an example
of how formal verification has been applied within real-world SOAP
implementations to improve security and confidence
during development.

6 Limitations and future directions

Future research projects could include exploring how TulaFale
may be integrated into other formal verification tools and
methodologies. Integrating TulaFale with model checking, theorem
proving, or other formal analysis techniques might provide more
effective verification of SOAP protocol security attributes. Extending
the verification outside of authentication, including data
confidentiality, integrity, and access control, justifies new patterns,
assertions, and verification methods to be developed. This
comprehensive method can be used to provide end-to-end assurance
of SOAP-based web services. In addition, given the dynamic nature
of web services, future research can target how to extend TulaFale to
check the security properties of new emerging SOAP-related
protocols or identify how it can be used in other web service models,
e.g., RESTful services. The novelty of the proposed model is in its
automated method of checking SOAP protocol authentication
properties to assist in unrolling and examining web service security
aspects. Future analyses will examine more complex SOAP
conventions for WS-Secure Conversation to strengthen client–
server encounters.

7 Conclusion

The proposed model was implemented in a simulated SOAP
environment and verified using TulaFale and ProVerif. The evaluation
confirmed that the framework could detect XML-based attacks,
enforce WS-Security properties, and maintain integrity and
confidentiality in authentication workflows. These implementation
results support the model’s viability for integration into real-world
SOAP systems. The rapid growth of cloud computing offers users
access to a wide range of on-demand services. However, ensuring
privacy and security remains a critical concern. Cloud environments
are susceptible to vulnerabilities, which malicious actors exploit to

https://doi.org/10.3389/fcomp.2025.1595624
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Saeed� 10.3389/fcomp.2025.1595624

Frontiers in Computer Science 09 frontiersin.org

their advantage. To provide better services to cloud clients, it is
essential to identify and address security vulnerabilities. One crucial
aspect of SOAP security is the adoption of Web Standard Security
(WS-Security), which standardizes SOAP messages through
authentication and confidentiality processes. XML encryption plays
a vital role in preventing unauthorized access to data. This paper has
explored flaws at the core of SOAP security, examining the abuse of
cloud storage services, data breaches, and attacks on cloud protection.
By leveraging TulaFale, a high-level language built on XML with
symbolic cryptography correspondence assertions and pi-calculus
procedures, this research has presented a valuable approach to
modeling WS security. TulaFale’s conversion into the applied
pi-calculus enables the analysis of single-message conventions and
the development of accuracy proofs. The choice of the pi-calculus for
modeling WS-security was driven by its threat model’s
generalizability and its suitability for security applications. The
economic benefits of cloud computing make it an advantageous
solution for non-profit organizations and developing countries. By
embracing cloud infrastructure, these regions can enhance their
e-governance efforts, establish information centers, and promote
rural development. This transformative technology opens doors for
increased connectivity, knowledge sharing, and economic efficiency.
It is crucial to address security concerns and leverage the potential
of cloud computing to create a safer and more inclusive digital
landscape for all.

Data availability statement

The raw data supporting the conclusions of this article will
be made available by the authors, without undue reservation.

Author contributions

MM: Conceptualization, Data curation, Investigation,
Methodology, Project administration, Resources, Writing – original
draft, Writing – review & editing.

Funding

The author(s) declare that financial support was received for the
research and/or publication of this article. This study is supported by
funding from Prince Sattam bin Abdulaziz University project number
(PSAU/2025/R/1446).

Acknowledgments

The author is very thankful to all the associated personnel who
contributed/to this research.

TABLE 1  Comparative table of XML threat mitigation approaches in SOAP-based systems.

Study Approach Target
threats

Detection/
verification
method

Performance
overhead

Limitations Current study
contribution

Höller et al. (2021) Schema-based

SignedParts

enforcement and

XPath/XSpRES

context validation

XML Signature

Wrapping (XSW)

Policy

enforcement + XPath

context validation

Low–Moderate Relies on canonical

schemas; limited

scope to signature

validation only

Our model uses

formal ProVerif-based

analysis across

multiple WS-Security

layers

Hamouda (2025) SOAP ontology

filters and structure

validation

XML Injection,

SOAP DoS

Ontology

policies + XML schema

filters

Low No formal

guarantees; relies on

manual ontology

mapping

Formal predicate-

based checks for

dynamic attacker

behavior simulation

Krishnamoorthy

and Umarani

(2021a,b)

Application-layer

security with

timestamp/nonce

Replay and Timing

Attacks

Manual timestamp logic Variable Informal approach,

error-prone under

high concurrency

Replay and freshness

validated through

symbolic logic in

ProVerif

Raimondo et al.

(2022)

Auto-translated

UML → Tamarin/

AnBx

Generic protocol

flaws

UML-based auto-

code + formal

verification

Tool-dependent No direct SOAP or

WS-Security

support

Our method is SOAP-

specific and

modularized using

real message schemas

May et al. (2020) End-to-end secure

SOAP messaging

using plugins

Confidentiality,

On-Demand

Attachments

TulaFale + ProVerif on

custom messaging

protocol

~0.25 s latency per

transaction

Architecture-

focused; lacks XML

threat-specific

modeling

Our focus is SOAP

threat-specific (XSW,

Replay, Injection) and

protocol-agnostic

This Study Layered predicate-

based modeling with

threat simulation

XML Signature

Wrapping, Replay,

Injection, Integrity,

Confidentiality

Formal logic assertions;

staged verification of

properties

Scalable under

concurrent message

flows

Requires symbolic

modeling expertise

Unified, formally

proven, WS-Security-

aligned verification

model tailored to

SOAP

https://doi.org/10.3389/fcomp.2025.1595624
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Saeed� 10.3389/fcomp.2025.1595624

Frontiers in Computer Science 10 frontiersin.org

Conflict of interest

The author declares that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Generative AI statement

The author(s) declare that no Gen AI was used in the creation of
this manuscript.

Any alternative text (alt text) provided alongside figures in this
article has been generated by Frontiers with the support of artificial

intelligence and reasonable efforts have been made to ensure accuracy,
including review by the authors wherever possible. If you identify any
issues, please contact us.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or claim
that may be made by its manufacturer, is not guaranteed or endorsed
by the publisher.

References
Ajvazi, G., and Halili, F. (2022). “SOAP messaging to provide quality of protection

through Kerberos authentication,” in 2022 29th Int. Conf. Syst. Signals Image Process.
IWSSIP. pp. 1–4.

Alquwayzani, A., Aldossri, R., and Frikha, M. (2024). Prominent security
vulnerabilities in cloud computing. Int. J. Adv. Comput. Sci. Appl. 15, 803–813. doi:
10.14569/ijacsa.2024.0150281

Arquint, L., Wolf, F.A., Lallemand, J., Sasse, R., Sprenger, C., Wiesner, S.N., et al.
(2023).” Sound verification of security protocols: from design to interoperable
implementations,” in 2023 IEEE Symp. Secur. Priv. (SP). pp. 1077–1093.

Bhargavan, K., Fournet, C., Gordon, A.D., and Pucella, R. (2004). TulaFale: A security
tool for web services, form. methods components objects 2, 197–222.

Blanchet, B. (2022). The security protocol verifier ProVerif and its horn clause
resolution algorithm. arXiv [preprint]. Available online at: https://arxiv.org/
abs/2211.12227 (Accessed March 14, 2025).

Chaudhary, S., Singh, V., Malik, N., Sidhu, K.S., Kirola, M., and Joshi, K. (2024).
“Digital signature security enhancement: using X-OR operation on RSA and AES with
4096 bits key length,” in 2024 Int. Conf. Comput. Sci. Commun. (ICCSC). pp. 1–6.

Chen, J., Li, Q., Mao, C., Towey, D., Zhan, Y., and Wang, H. (2014). A web services
vulnerability testing approach based on combinatorial mutation and SOAP message
mutation. Serv. Orient. Comput. Appl. 8, 1–13. doi: 10.1007/s11761-013-0139-1

Cui, H., Yang, X., Yang, W., Qin, B., and Yi, X. (2023). Token-based biometric
enhanced key derivation for authentication over wireless networks. IEEE Trans. Netw.
Sci. Eng. 10, 2347–2357. doi: 10.1109/TNSE.2023.3246439

Ding, S., and Xu, X. (2025). Vulnerability mining method of SOAP based on black-box
fuzzing. Internet Technol. Lett. 8:e553. doi: 10.1002/itl2.553

Garg, G., and Garg, A. (2024). Advancements in authentication methods: A
comprehensive review of techniques, challenges, and future directions.

Gupta, C., Singh, R. K., and Mohapatra, A. K. (2023). Secure XML parsing pattern for
prevention of XML attacks, Inf. Commun. Technol. Compet. Strateg. ICTCS 2022. Intell.
Strateg. ICT 2023, 759–770.

Hamouda, M.. (2025). An Ontology-Based Approach for Detecting SOAP Message
Attacks. Zenodo, 15024575.

Höller, P., Krumeich, A., and Lo Iacono, L.. (2021). Xml signature wrapping still
considered harmful: A case study on the personal health record in Germany. In IFIP
international conference on ICT systems security and privacy protection. Springer Int.
Publ. 625, 3–18.

Horne, R., Mauw, S., and Yurkov, S. (2023). When privacy fails, a formula describes
an attack: a complete and compositional verification method for the applied π-calculus.
Theor. Comput. Sci. 959:113842. doi: 10.1016/j.tcs.2023.113842

Hulloowan, B., and Bekaroo, G.. (2024).” Defending against XML external entity
(XXE) attacks: A review and comparative analysis of prevention mechanisms,” in 2024
Int. Conf. Next Gen. Comput. Appl. NextComp. pp. 1–6.

Jagruti, B., Nidhi, P., and Pandya, D. (2018). “A survey on web service security
techniques”, 2018 4th Int. Conf. Comput. Commun. Autom. ICCCA. pp. 1–5.

Kornienko, D. V., Mishina, S. V., Shcherbatykh, S. V., and Melnikov, M. O. (2021).
Principles of securing RESTful API web services developed with Python frameworks. J.
Phys. Conf. Ser. 2094:032016.

Krishnamoorthy, N., and Umarani, S. (2021a). An experimental study on cloud
computing security issues and a framework for XML DDoS attack prevention. J. Phys.
1:012058.

Krishnamoorthy, E., and Umarani, R. (2021b). AI-assisted SOAP-based secure
communication model for preventing XML attacks. Int. J. Comput. Appl. 183.

Lanckriet, E., Busi, M., and Devriese, D.. (2023). “πRA: A π-calculus for verifying
protocols that use remote attestation,” in 2023 IEEE 36th Comput. Secur. Found. Symp.
(CSF). pp. 537–551.

Le, X. T., and Pham, V. T. (2024). Advancing security protocol verification: a
comparative study of Scyther, Tamarin. J. Tech. Educ. Sci. 19, 43–53e. doi:
10.54644/jte.2024.1523

Linker, F., and Basin, D.. (2024). “SOAP: A social authentication protocol,” in 33rd
USENIX Secur. Symp. (USENIX Secur. 24). pp. 3223–3240.

May, M. J., Lux, K. D., and Gunter, C. A. (2020). WSEmail: an architecture and system
for secure internet messaging based on web services. Serv. Orient. Comput. Appl. 14,
5–17. doi: 10.1007/s11761-019-00283-9

Modak, S., Majumder, K., and De, D. (2021). “Vulnerability of cloud: analysis of XML
signature wrapping attack and countermeasures.” in Proc. Int. Conf. Front. Comput. Syst.:
COMSYS 2020.755–765

Mohana, R. (2018). A proposed SOAP model in WS-security to avoid rewriting
attacks and ensuring secure conversation. Int. J. Inf. Secur. Priv. 12, 74–88. doi:
10.4018/IJISP.2018010107

Padon, O.. (2022). Verification of distributed protocols: decidable modeling and
invariant inference, 2022 form. Methods Comput.-Aided Des. (FMCAD). 4–4.

Parast, F. K., Sindhav, C., Nikam, S., Yekta, H. I., Kent, K. B., and Hakak, S. (2022).
Cloud computing security: a survey of service-based models. Comput. Secur. 114:102580.
doi: 10.1016/j.cose.2021.102580

Raimondo, M., Ciatto, G., and Omicini, A. (2022). Model-driven engineering for
formal verification and security testing of authentication protocols. arXiv preprint
arXiv:2206.11206.

Reaz, K., and Wunder, G. (2024). Formal verification of permission voucher. arXiv
[preprint]. Available online at: https://arxiv.org/abs/2412.16224 (Accessed March
14, 2025).

Sakshi, S. (2023). Assessment of web services based on SOAP and REST principles
using different metrics for mobile environment and multimedia conference. IJAREEIE
12, 1701–1709.

Saxena, S., Bansal, S., and Kumar, R. (2021). Xml external entity attacks and mitigation
in XML parsers. J. Emerg. Technol. Innov. 8, 563–568.

Shahid, R., Marwat, S.N.K., Al-Fuqaha, A., and Brahim, G.B. (2022). “A study of XXE
attacks prevention using XML parser configuration,” in 2022 14th Int. Conf. Comput.
Intell. Commun. Netw. CICN. pp. 830–835

Tabasum, H., Samuvel, S.G., Shilpa, A.N., Niranjan, L., Sridhar, N., and Shwetha, N..
(2023). A novel based NSEC system for integrating network capability with wireless
sensor network using web services. (ICSSES). pp. 1–6.

Vijayvargiya, S., Shinde, S., Ogale, N., and Dhanasekar, V. K.. (2020). Anticancer
compounds. U.S. patent no. 10,855,644. Washington, DC: U.S. Patent And
Trademark Office.

Washizaki, H., Xia, T., Kamata, N., Fukazawa, Y., Kanuka, H., Kato, T., et al. (2021).
Systematic literature review of security pattern research. Information 12:36. doi:
10.3390/info12010036

Wu, F., Liu, J., Li, Y., and Ni, M. (2023). LpiCT: a logic security analysis framework for
protocols. arXiv [preprint]. Available online at: https://arxiv.org/abs/2312.02171
(Accessed March 14, 2025).

https://doi.org/10.3389/fcomp.2025.1595624
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org
https://doi.org/10.14569/ijacsa.2024.0150281
https://arxiv.org/abs/2211.12227
https://arxiv.org/abs/2211.12227
https://doi.org/10.1007/s11761-013-0139-1
https://doi.org/10.1109/TNSE.2023.3246439
https://doi.org/10.1002/itl2.553
https://doi.org/10.1016/j.tcs.2023.113842
https://doi.org/10.54644/jte.2024.1523
https://doi.org/10.1007/s11761-019-00283-9
https://doi.org/10.4018/IJISP.2018010107
https://doi.org/10.1016/j.cose.2021.102580
https://arxiv.org/abs/2412.16224
https://doi.org/10.3390/info12010036
https://arxiv.org/abs/2312.02171

	Cloud security and authentication vulnerabilities in SOAP protocol: addressing XML-based attacks
	1 Introduction
	2 Literature review
	3 Proposed model
	3.1 Simplified authentication flow
	3.2 Processes and assertions
	3.2.1 Understanding the verification framework
	3.2.2 Translation from TulaFale to applied pi-Calculus
	3.2.3 Formalization of system processes and threats
	3.2.4 Proposed verification pipeline and customization

	4 Experimental evaluation and results
	4.1 Implementation environment
	4.2 Testbed configuration
	4.3 Evaluation metrics
	4.4 Results and observations
	4.5 Scalability considerations
	4.6 Empirical validation and benchmarking considerations

	5 Practical implications
	6 Limitations and future directions
	7 Conclusion

	References

