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Smart contracts are software that runs in blockchain and expresses the rules
of an agreement between parties. An incorrect smart contract might allow
blockchain users to violate its rules and even jeopardize its expected security.
Smart contracts cannot be easily replaced to patch a bug since the nature
of contracts requires them to be immutable. More problems occur when a
smart contract is written in a general-purpose language, such as Java, whose
executions, in a blockchain, could hang the network, break consensus or violate
data encapsulation. To limit these problems, there exist automatic static analyzers
that find bugs before smart contracts are installed in the blockchain. This
so-called off-chain verification is optional because programmers are not forced
to use it. This paper presents a general framework for the verification of smart
contracts, instead, that is part of the protocol of the nodes and applies when
the code of the smart contracts gets installed. It is a mandatory entry filter
that bans code that does not abide by the verification rules. Consequently,
such rules become part of the consensus rules of the blockchain. Therefore,
an improvement in the verification protocol entails a consensus update of
the network. This paper describes an implementation of a smart contracts
application layer with protocol-based verification for smart contracts written
in the Takamaka subset of Java, that filters only those smart contracts whose
execution in blockchain is not dangerous. This application layer runs on top of
a consensus engine such as Tendermint and its derivatives Ignite and CometBFT
(proof of stake), or Mokamint (proof of space). This paper provides examples
of actual implementations of verification rules that check if the smart contracts
satisfy some constraints required by the Takamaka language. This paper shows
that protocol-based verification works and reports how consensus updates are
implemented. It shows actual experiments as well as limits to its use, mainly
related to the fact that protocol-based verification must be fast and its complexity
must never explode, or otherwise, it would compromise the performance of the
blockchain network.
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1 Introduction

Blockchain is a distributed ledger that replicates data in a
peer-to-peer network of nodes. Transactions are ledger updates
digitally signed by the account requiring their execution. The nodes
of the network collect broadcasted transactions into a growing
cryptographically-linked chain of blocks. A set of consensus rules
specifies constraints on the way the blockchain grows, which
normally amounts to expected security guarantees for the state
of the blockchain: money cannot be spent twice, and, in general,
the evolution of the state must be consistent with the semantics
of the transactions. Once consensus is achieved, it is hard, or
impossible, to withdraw transactions from the blockchain. In this
sense, blockchains are immutable data structures.

Smart contracts specify rules and effects of transactions and
can be either built-in, as a fixed module of the blockchain
software, or given as code dynamically deployed inside the same
blockchain. In the second case, users who deploy the code identify
themselves by signing a code install transaction request. The
typical applications of smart contracts are related to finance and
cryptocurrencies, tokens, coordination of purchases, electronic
elections, and law. The critical nature of such applications and the
fact that smart contracts cannot be replaced after being installed
require a high level of code quality. That is, smart contracts are
expected to be flawless, as much as possible, and to not harm
the network.

Smart contracts can be written in a variety of programming
languages, either specific for them or general-purpose. Most
such languages are Turing-complete, with the notable exception
of Bitcoin’s. Not surprisingly, Turing-completeness for smart
contracts introduces the risk of many kinds of bugs (Atzei et al.,
2017; Popper, 2016). An extensive review for the specific case of
Ethereum is in Antonopoulos and Wood (2018) and includes the
reentrancy issue, arithmetic under/overflows, incorrect use of low-
level calls, weak encapsulation, ineffective randomization, logical
bugs in the code of contracts, fund locking, wrong identification
of the transaction originator. Such vulnerabilities have actually
been exploited in practice. Because of this, there exist many
analyzers that verify smart contracts before they get installed in the
blockchain (Hejazi and Lashkari, 2025; Kushwaha et al., 2022; Ressi
et al., 2024). Furthermore, there are companies that provide code
audit services, using both automatic tools and human investigation
(Certik, 2025; OpenZeppelin, 2025; Consensys Diligence, 2025).
A limit of these tools and procedures is that they are optional
and external to the blockchain (hence off-chain): the latter does
not actively protect itself against the deployment of incorrect or
dangerous code. Moreover, they mostly apply to Solidity rather
than to general-purpose languages used for writing smart contracts.

This paper makes the following contributions:

• It defines protocol-based code verification, where the nodes of
the blockchain verify the code being deployed. That is, the
same network, internally, runs a mandatory code verification
step and rejects code that does not pass it. As a consequence,
protocol-based verification is a defensive, proactive technique
that guarantees that all code executed in the blockchain has
been successfully verified.

• It describes an actual implementation of a blockchain
with protocol-based verification for filtering smart contracts
written in the Takamaka subset of Java (Spoto, 2019). This
implementation is a software layer called Hotmoka, which
runs as an application on top of Tendermint (Kwon, 2014)
(also its derivatives such as Ignite1 and CometBFT2), a third-
party tool for implementing blockchains based on Byzantine
fault tolerance and proof of stake. Hotmoka is a runtime for
smart contracts written in the Takamaka subset of Java that
users can install dynamically, as in Solidity over Ethereum.
Hotmoka also runs on top of Mokamint,3 a similar tool
based on a proof of space consensus. Hotmoka includes
21 verification checks that mostly verify the correct use of
Takamaka’s primitives and code annotations and the use of
a deterministic subset of Java. That is, such checks filter the
smart contracts installed in blockchain to avoid those that
would crash the blockchain peers, hang their execution, make
consensus impossible or violate data encapsulation. Therefore,
they are relevant security checks, although we acknowledge
that they are relatively simple. As shown later (Section 7) the
goal is to have quick checks that do not delay the creation
of the blocks, since the blockchain peers must perform such
checks during the same creation of the new blocks. In general,
our technique is best suited for the safe use of general-
purpose languages (such as Java, in our case) for writing smart
contracts for a permissionless blockchain, instead of using a
new specific language such as Solidity.

• It describes the coordination of an update to the verification
protocol of a blockchain and a lazy re-verification approach
that copes with the evolution of the code verification
rules. Namely, protocol-based verification is run as part of
code installation transactions. Hence, its rules are part of
the network consensus rules, and their evolution requires
a network update. Moreover, code previously successfully
verified with old verification rules might fail to pass the new
verification rules.

This paper is organized as follows.
Section 2 provides the background of this paper. Section 3

presents related work. Section 4 describes the Takamaka subset
of Java for smart contracts and its Hotmoka runtime. Section 5
defines a general architecture for protocol-based code verification.
Section 6 describes our implementation of protocol-based
verification, over Tendermint and Mokamint, and shows two
examples of protocol-based checks. Section 7 reports experiments
with our implementation and describes how readers and reviewers
can validate them. Section 8 shows how the blockchain can cope
with the evolution of code verification rules. Section 9 concludes
the paper and discusses limitations.

This paper is an extended version of Olivieri et al. (2021).
The main differences with that conference paper are: a more
extended related work section; an extended description of

1 https://docs.ignite.com/welcome (Accessed June, 2025).

2 https://docs.cometbft.com/v1.0/ (Accessed June, 2025).

3 https://github.com/Mokamint-chain/mokamint
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Takamaka and Hotmoka; a second example of verification rule
implementation; the description of the implementation of the
verification module update; the implementation over Mokamint,
not just over Tendermint, which gives more relevance to the
results; a simplification of the execution of the experiments; a global
revision and extension of the article.

2 Background

Bitcoin (Nakamoto, 2008; Antonopoulos, 2017) was the first
popular blockchain implementation. It is a peer-to-peer electronic
cash system that stores and transmits value in a currency called
bitcoin, by using a Proof of Work (PoW) consensus algorithm: each
block contains a proof that some heavy work has been performed to
create the block, which makes double-spending attacks expensive.
A Turing-incomplete low-level Script language specifies the effects
of Bitcoin’s transactions. Script can be seen as a limited scripting
language for smart contracts.

Ethereum (Buterin, 2013; Antonopoulos and Wood, 2018) later
introduced a Turing-complete bytecode for executing actual fully-
fledged smart contracts, with the goal of developing decentralized
applications. Ethereum smart contracts can be programmed in
various high-level languages, with Solidity being the most popular
one, but all run on the Ethereum virtual machine. Ethereum used
PoW previously to switch to Proof of Stake (PoS). Solidity embeds
some features specific to the development of smart contracts,
such as a notion of gas, charged for code execution, that allows
to meter the amount of code execution and avoids the risk of
non-termination; and a strict deterministic execution.

PoS is a consensus algorithm with reduced resource
consumption (Sedlmeir et al., 2020). It limits the right to
propose a next block to a small set of nodes called validators.
This set can be static or dynamic, exclusive or delegatable: in
any case, this limitation allows the network to scale better and
avoid the computational cost of PoW. Network participants that
want to become validators freeze a certain amount of stake, which
acts as an economic incentive that dissuades from validating
or creating fraudulent transactions. If the validator does its job
correctly, it will be remunerated for every confirmed transaction.
If, instead, the network detects a fraudulent transaction, the culprit
loses part of its stake and possibly the right to act as a validator.
The Tendermint protocol (Kwon, 2014) provides a generic and
customizable infrastructure for networking and consensus through
PoS, with a pseudo-random election of the validator for the next
block. This protocol tolerates up to 1

3 of misbehaving validators.
The Tendermint’s architecture is shown in Figure 1 and consists of
three software layers:

• Networking: discovers and connects nodes (peers) with each
other, propagates requests for transactions, propagates blocks
to and from the peers.

• Consensus: approves or rejects the blocks received from the
peers, adding them to the blockchain if they are approved.

• Application: specifies which transaction requests are valid,
how their responses are computed and how the application’s
state consequently evolves.

FIGURE 1

High-level architecture of an application running on a generic
blockchain engine and performing protocol-based verification. This
is the architecture of both Tendermint and of Mokamint.

Tendermint is a generic blockchain engine since it is not a
monolithic software application for a specific set of blockchain
transactions (like Bitcoin or Ethereum and most of all other
blockchains), but it leaves the notion of transaction unspecified:
programmers can develop an application layer that runs on top
of Tendermint (Figure 1) and specifies which transactions exist
and which is their semantics. This application layer can be
written in any programming language and can even be an actual
software layer that executes Turing-complete smart contracts, as
it will be in our case, as long as it connects with the blockchain
engine through its Application BlockChain Interface (ABCI). The
blockchain engine replicates the application state on each machine
of the network.

Proof of Stake (PoS) is often criticized for being based on a
restricted club of validators that should be trusted because they
are rich and, by acting as validators, become even richer. But
another problem is that, to start a new network, it is difficult to
convince independent entities to run, maintain and update the
validators node since the cryptocurrency of a new network has
initially no economic value. Therefore, another alternative has
been developed, called proof of space (PoSp) (Ateniese et al., 2014;
Dziembowski et al., 2015; Abusalah et al., 2017), where miners must
dedicate a large amount of disk memory in order to be able to
propose a new block. The idea is that the proposal of a new block
requires to solve a challenge whose solution can be computed easily
in terms of computational power but requires one to allocate a
large amount of disk space. Moreover, the quality of the solution
determines if the block will be preferred to other blocks proposed
concurrently by other miners, and this quality is proportional to
the amount of disk memory committed to the task. The energy
consumption of PoSp is negligeable, and no special hardware helps
for mining; currently, the technology is both cheap and democratic.
Moreover, PoSp allows one to capitalize on unused memory, for
free, while PoW always has an inherent electricity cost. There are
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a few implementations of PoSp networks that can execute Turing-
complete smart contracts, namely, Chia4 and Signum.5 Mokamint
is a generic engine for running applications over the PoSp protocol
of Signum, as formalized in Spoto (2025). Therefore, Mokamint is
the equivalent of Tendermint but for PoSp, and its architecture is
identical to that of Tendermint (see Figure 1): the only difference
is that the Mokamint’s consensus layer is based on PoSp. The same
ABCI of Mokamint is almost identical to that of Tendermint.

3 Related work

Smart contract verification is challenging and most of the
available solutions are for Ethereum-based blockchains, mainly for
economic reasons: Ethereum-based blockchains currently lock the
highest amount of economic value.6 Static analysis techniques can
detect issues without executing the code before the contract gets
deployed and becomes immutable. Specifically, these techniques
examine the syntax, structure, and in some cases also the semantics
of the contract at different stages of development. An intuitive
example of static analysis is the compiler. For instance, in Ethereum
smart contracts, the Solidity compiler (e.g., solc) performs
basic checks on syntax and grammar. It issues alerts during the
compilation process, ensuring that the source code is well-formed
before being translated into EVM bytecode. It applies a static
analysis because the checked code is the high-level source code
(typically, Solidity), and it is static because the executable code (that
is, the EVM bytecode) has not been generated yet. However, since
the compiler focuses primarily on code correctness rather than
on performing security checks, additional tools are necessary for
more comprehensive verification. In the early stages of software
development, linters may help maintain coding standards and
best practices by identifying code smells, minor bugs, and stylistic
inconsistencies. Popular solutions for Ethereum include Ethlint
(formerly Solium) (Dua, 2025) and Solhint (Protofire, 2025).
Beyond linters, also advanced static analysis tools can be applied for
deeper code investigation, to detect complex security vulnerabilities
and logic errors. Compared to linters, they offer more detailed
and precise results by analyzing the semantics of the instructions,
though they may require significant computational resources and
extended processing time. Notable examples are Oyente (Loi et al.,
2016), SmartCheck (Tikhomirov et al., 2018), Slither (Feist et al.,
2019), eThor (Schneidewind et al., 2020), Echidna (Grieco et al.,
2020), EtherSolve (Pasqua et al., 2023), and EVMLiSA (Arceri
et al., 2024). Advanced tools are also delivered as a service,
such as https://mythx.io. Furthermore, there are companies that
provide code audit services by using both automatic tools and
human investigation. However, a limit of these off-chain tools and
procedures is that they are optional: users are not required to
analyze their code before it gets deployed in the blockchain.

To the best of our knowledge, this paper defines and
implements the first protocol-based code verification for smart

4 https://www.chia.net

5 https://wiki.signum.network

6 Total value locked in the blockchains: ∼50% Ethereum (main-net),∼8%

Solana, ∼6% Bitcoin, ∼6% BSC (Ethereum-based), ∼5%Tron (Ethereum-

based), ∼25% others [https://defillama.com/chains, Accessed March, 2025].

contracts that allows the same blockchain to reject the code that
does not pass a set of verification rules. From this point of view,
the technique is related to continuous integration, that builds
and deploys code only if it passes all compilation and testing
requirements. The main difference is that smart contracts cannot
be replaced or debugged once installed in blockchain.

Some blockchains, such as Ethereum, apply a notion of
transparency (Oliva et al., 2020), that lets one store in blockchain
the source code of the smart contracts to guarantee that it actually
compiles into their bytecode. But this is only an optional technique
that ensures that bytecode and source code match and no code
verification is applied.

The specific technique for updating the consensus rules of
a network, after a change in the verification rules (Section 8),
is orthogonal to our work. In Cosmos, the government module
supports such an update, with (dis-)incentives to minimize
misconduct within the participants. Polkadot delegates updates
to periodic referendums among stakeholders. Algorand (Chen
and Micali, 2019) triggers an update if a large majority of block
proposers declare to be ready for that.

4 Takamaka and Hotmoka

This section introduces the Takamaka smart contract language
and its Hotmoka runtime. The goal of this section is to provide
knowledge about the specific language that we analyze, with
examples that clarify the difference with Solidity (use of a general-
purpose language, use of generic types, access to the keys of a map,
checked casts). These examples show correct uses of Takamaka, so
that subsequent static analyses become clear. Moreover, the voting
example in this section is also used to coordinate the update of the
verification module (Section 8).

Solidity is probably the most used programming language for
smart contracts. Despite its success, it has limits that make its use
complex and error-prone. The first problem is that it lacks support
for runtime type introspection and dynamic dispatch: types used in
the code can be violated at runtime since casts cannot be checked.
Objects cannot even be checked at runtime for their actual type
(no instanceof operator exists in Solidity). Lack of runtime
type checks and certain safety features have contributed to bugs
and vulnerabilities in many Solidity smart contracts (Antonopoulos
and Wood, 2018). Moreover, Solidity does not feature modern
programming patterns such as generic types. Smart contracts use
maps extensively but, in Solidity, these are not real data structures
and miss basic functionalities, such as the ability to iterate over their
set of keys and values.

On the contrary, modern programming languages such as Java
provide strong types, generic types and complex data structures
(including actual and flexible maps). However, they miss some
features that are specific to smart contracts: Java does not allow
one to access the caller of a method, nor to sign method calls;
Java does not natively include a gas mechanism to limit resource
consumption, a feature that smart contract platforms typically use
to enforce predictable execution and prevent infinite loops. Finally,
Java is not deterministic, which is a problem in blockchain, whose
consensus requires to reach the same state in all nodes of the
network, impossible in the case of non-determinism.
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For this reason, Java (and other general-purpose languages)
has been used for writing blockchain code, statically installed in
the blockchain at deployment time or only in the context of
permissioned blockchains. But a free dynamic deployment model
in a permissionless blockchain, in the style of Solidity, has never
been possible with Java and other general-purpose languages, since
they allow many dangerous executions in blockchain and contain
a large library that allows programmers to perform actions that, in
blockchain, are both meaningless and dangerous, such as file access,
reflection and non-deterministic object finalization.

The goal of the Takamaka project was exactly to enable the use
of Java as a smart contract language, analogous to how Solidity
is used in Ethereum. The use of a well-known programming
language such as Java leverages expertise and existing mature
development tools. The application layer of Takamaka is a state
machine (the application in Figure 2) that executes transactions
from request to response. Requests can specify the addition of a
jar in the permanent state of the application, or the execution
of a constructor, or of an instance or static method of code
previously installed in the state. Responses include the effects of
the transaction as a set of field updates. Updates can be computed
since the jar of the Java code is instrumented before being installed
in the blockchain, with extra code that keeps track of the affected
fields of objects (Spoto, 2019). Determinism is ensured by a static
analysis that ensures that only a deterministic subset of Java is used,
restricted to a minimal deterministic and non-dangerous API of
the Java library. The state machine (runtime) of Takamaka is called
Hotmoka7 and is implemented itself in Java. It runs on a standard
Java virtual machine. The state is kept in a Merkle-Patricia trie that
implements a map from the hash of requests to their corresponding
response. This trie is kept in the Xodus transactional database by
JetBrains.8

An important difference between Takamaka and Solidity is
that smart contracts are deployed in Solidity, together with their
compiled code: every deployed instance of the contract carries its
own copy of the code. In Takamaka, instead, the standard Java
approach is used: the code of the smart contract is installed in the
database of the blockchain, once and for all; later, smart contracts
are instantiated from that single code instance by calling their
respective constructors. Because of this, this paper refers to the
installation of the code of a smart contract and to the subsequent
instantiation of specific smart contract instances, rather than to the
deployment of a smart contract, which is the usual terminology
in Solidity. This difference is important for the scalability of our
technique, as Section 7 will show later.

Another significant difference is that externally-owned
accounts are just a special case of smart contracts in Takamaka,
while they are different concepts in Solidity. Namely, in Takamaka,
an externally-owned account is a smart contract that embeds
a public key and that has the right to originate a transaction,
as long as that transaction is signed with the matching private
key. Externally-owned accounts, in Takamaka, have an actual
type (a class), that extends Contract and can be redefined and
specialized.9 It follows that externally-owned accounts are objects

7 https://github.com/Hotmoka/hotmoka

8 https://github.com/JetBrains/xodus

in Takamaka (in the sense of object-oriented programming) and
that two distinct objects might even contain the same public key
and therefore be controllable with the same, corresponding private
key. It is even possible to rotate the key of an externally-owned
account, and still keep the identity of that object. None of this is
possible in Solidity. As in Solidity, also in Takamaka both smart
contracts and externally-owned accounts have a balance.

In Takamaka, bytecode instrumentation is also used to add
features that are needed for smart contracts but that are not
available in standard Java: for instance, in Takamaka the caller
of a method can be identified as caller(); cryptocurrency can
be used to pay for code execution; the latter is metered through
gas and stops if gas expires. Instrumentation is run by each node
when smart contracts get installed (Spoto, 2019); the correct use of
caller() and payments are enforced by a set of static analyses
(see Section 6). All such analyses are implemented at the protocol
level, as mandatory steps for the installation of new smart contracts
and could be improved/expanded in the future, as this paper will
show. A specific Takamaka library includes typical data structures
used in smart contracts, such as very flexible maps. Takamaka has
been proven to be able to implement non-trivial smart contracts
for tokens and data snapshots (Crosara et al., 2023) and to support
smart contracts with generic types (Spoto et al., 2023).

Let us see an example of a Takamaka smart contract for the
implementation of a poll. Its interface is given in Figure 2. It is a
generic interface parametric w.r.t. the type Voter of the voters
allowed to vote. A poll is similar to the vote of the shareholders
of a company. Each of them has a power, that is, a maximal number
of votes that it can cast. This information is returned by method
getEligibleVoters(). Note that this method returns a map
from each eligible voter to its power. Maps are real data structures
in Takamaka. Therefore, clients can find the keys and the values
of a map and iterate over them. Shareholders vote by calling one
of the vote() methods: they cannot vote twice, or otherwise,
these methods will throw an exception. The votes cast up to now
are returned by getVotersUpToNow(). Method isOver()
checks if the poll is over (that is, if a majority of the votes have been
cast or all voters have voted). Method close() closes the poll if
it is over and runs an action if a majority has been reached. This
method cannot be called twice.

Figure 2 shows the use of specific Takamaka annotations: these
are a Java mechanism for adding metadata information to source
and compiled code. They are irrelevant for the code executor but
can be used by code analysis and instrumentation tools. Namely,
@FromContract states that a method or constructor can only
be called from the code of a contract, which, as said before,
in Takamaka includes externally-owned accounts as well. Such
annotation allows the programmer to refer to the caller of the
method as caller(). This is important, for instance, for the
vote() methods, which need to be sure of the actual intent of the
caller to cast its vote. This explains why the generic type Voter is
bound to be a Contract: Voter extends Contract. If a
method or constructor is annotated as @FromContract, then it

9 See https://github.com/Hotmoka/io-takamaka-code/blob/

main/io-takamaka-code/src/main/java/io/takamaka/code/lang/

ExternallyOwnedAccount.java.
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FIGURE 2

The interface of a poll smart contract. The complete code is available at: https://github.com/Hotmoka/io-takamaka-code/blob/main/io-takamaka-
code/src/main/java/io/takamaka/code/dao/Poll.java.

can be additionally annotated with @Payable, which states that
the caller can send cryptocurrency when calling the method or
constructor. The fact that @Payable only works together with
@FromContract is to guarantee that the caller is a contract and,
therefore, that it has a balance to pay with. Moreover, @Payable
only works in contracts, to guarantee that the callee has a balance
and can receive cryptocurrency.

The annotation @View states that a method has no side-effect
and, consequently, can be run without modifying the state of the
blockchain. This allows to call @View methods without paying for
their execution since they do not give rise to transactions stored in
blockchain but simply read its persistent state.

A possible concrete implementation of a poll is given in
Figure 3. It is a class that implements the Poll interface and
extends Storage. The latter is a class of Takamaka’s runtime
whose instances can be created, kept and shared in blockchain:
without extends Storage, instances of class Poll could
only be used as temporary objects in methods. A Contract is a
Storagewith a balance. SimplePoll is not a Contract since
it does not need a balance, and indeed none of its methods receive
cryptocurrency at call-time (none is @Payable).

The constructor of SimplePoll receives a map that states
who the voters are and how many votes each of them can cast.
This is not necessarily a modifiable map but just a map view:
it is possible to read its mappings but not necessarily to modify
them. The constructor iterates on the voters to compute the sum
of all votes that can be cast. As said before, this iteration would be
impossible in Solidity. The addition of two Java’s BigIntegers
is not performed through their add() method, which would be
rejected by the static verifier of Takamaka’s code since its complexity
is not constant; hence, its gas consumption is not constant either.
Instead, the support class BigIntegerSupport is used, which
charges a variable amount of gas, depending on the size of the
BigIntegers. The constructor terminates by computing an
immutable snapshot of the (currently empty) map of votes cast
that will be returned to clients by the getVotersUpToNow()
method. The constructor receives a second argument action, that
implements the local class Action and that it stores in the poll.
This action will be used later, to run its run() method if the poll
reaches its goal.

The vote() methods modify the votersUpToNow map.
Since these are @FromContract methods, they are allowed
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FIGURE 3

An implementation of the Poll interface from Figure 2. The complete code is available at: https://github.com/Hotmoka/io-takamaka-code/blob/
main/io-takamaka-code/src/main/java/io/takamaka/code/dao/SimplePoll.java.
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to refer to the caller() contract, the one that signed the
transaction for calling the method. Method vote() delegates to
vote(BigInteger votes) by passing the total amount of
votes that the caller can cast. The latter method checks if the
caller is allowed to cast votes votes. That is, if the caller is
actually a potential voter, if it did not already vote, if votes
is non-negative and if votes is not larger than the maximal
amount of votes that the caller can cast (see the auxiliary method
checkIfCanVote()). Note the use of containsKey()
inside it, which would be impossible in Solidity. Moreover, note that
vote() recreates the snapshotOfVotersUpToNow, since the
votes have changed.

Method close() checks if the poll has been closed already.
Otherwise, it checks if the poll is over (a majority has been reached
or all voters have cast their vote). If a majority has been reached
(goalReached()) the action gets run, that was provided to the
constructor of the poll.

Hotmoka is the runtime that instruments the bytecode
of Takamaka smart contracts, interprets their annotations
and runs their constructors and methods inside database
transactions. Instrumentation is needed since annotations such
as @FromContract and the access to the caller() are
not available in Java, hence they must be provided by code
instrumentation. A full description of Hotmoka is beyond the
scope of this paper, therefore no more details are provided here.
The interested reader can find more information in Spoto (2019).
Here, we just say that the state of all smart contracts installed
in blockchain, and their bytecode, is stored inside a persistent
database. The bytecode instrumentation allows Hotmoka to

infer the set of fields of objects modified by a transaction. This
set is stored in the database, as the result of a transaction. The
database implements a Merkle-Patricia trie, exactly as in Ethereum.
Therefore, it is possible to revert to previous states. This is
important if Hotmoka runs on top of a consensus engine that
requires history changes, such as Mokamint.

5 Protocol-based code verification

This section presents protocol-based code verification in the
context of a generic blockchain engine, such as Tendermint or
Mokamint. This allows one to understand where it runs and which
software architecture can be used to support its execution.

Figure 4 shows a more detailed picture of a generic blockchain
engine and of an application connected through its application
layer interface, such as ABCI. It shows that the engine keeps the
blocks of the blockchain in its own database, that does not need to
be the same used to hold the application’s state. The latter holds, for
instance, the code of the smart contracts installed in blockchain and
the value of their state variables. The engine needs only the hash of
the application state, for consensus, to ensure that all nodes have
reached the same application state.

One can define the application state as a map σ from the hash
of the requests that the blockchain has executed to the responses
that have been computed for them. Therefore, the responses are
contained in the application state; instead, the requests are not
contained in the application state: only their hash is used and
mapped into the corresponding response. Since the state is a

FIGURE 4

A generic blockchain engine and an application, with their respective databases.
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map, it can be implemented as a Merkle-Patricia trie from hashes
of requests to responses. The full requests are contained in the
database of blocks of the engine since they are needed to replay the
transactions in all nodes of the network.

Protocol-based code verification requires a code verification
module (Figure 1). This is part of the application layer since it
contributes to the execution of the application-specific requests to
install code (for instance, smart contracts) in blockchain. Assume
that a request, whose hash is requesth, reaches the blockchain,
requiring to install, in blockchain, the code of some smart contracts,
reported inside request.

Figure 5 shows the sequence diagram for the execution of
request. Namely, the generic blockchain engine routes request
through networking and consensus up to the application, which
uses its verification module to either approve or reject the code.
If approved, the application packs the installed code in a response
and updates its state σ with a new binding: σ (requesth) = response.
The hash requesth is an immutable, machine-independent reference
to this code, used later to instantiate and execute smart contracts.
If the code is rejected, instead, the application state is expanded
with a failure response; this kind of response does not contain any
installed code since failure prevented the installation of any code
in blockchain.

Figure 6 reports an example of application state evolution. It
reports the requests in full for readability, but we stress that only
the hash of the requests is kept in the application state. Figure 6a
shows the application state after the execution of a code installation
request for which verification succeeds. In this example, the code
is Java bytecode because it is the target of the compilation of
Takamaka, packaged into a jar, i.e., a zipped container of Java

bytecode. The response contains the instrumented jar. In terms
of Java, the hash of the request can be used as the classpath of
subsequent code executions. Figure 6b reports, instead, a request
whose code fails to verify. The response does not include any
instrumented code to install in the blockchain. This shows that
the verification rules are part of the consensus rules that determine
which code installation request is valid and which must be rejected
instead (Figures 6a, b). Hence, they must be the same in every node
of the network and must be deterministic.

Protocol-based verification performs code verification
statically, only once, when the code is installed in the blockchain.
For instance, Figure 6c shows a subsequent request that asks to
instantiate a smart contract whose code has been installed by the
request in Figure 6a. The request in Figure 6c uses the hash of the
request in Figure 6a as its classpath and contains the parameters for
calling the constructor of the smart contract. The execution of the
request runs that constructor without code verification: the latter
has already been performed in Figure 6a. The immutable reference
hash of request#0 is used later to refer to the new smart contract:
the index #0 is used in the implementation of Takamaka to refer
to the first object created during the execution of a request. In
general, a request can instantiate many objects, depending on the
code that it executes (for simplicity, this example assumes that only
one has been instantiated). The state of the new smart contract is
reported in the response as a set of updates, that is, instance fields
modified during the execution of the request, including those of
the smart contract instance hash of request#0 that has been created
in blockchain. Finally, Figure 6d shows the execution of a request
asking to call a method on the instance of the smart contract hash
of request#0. This last request refers to both the classpath and the

FIGURE 5

Sequence diagram for code verification and installation in blockchain.
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FIGURE 6

The evolution of the application state during a sequence of requests. (a) Successful verification. (b) Failed verification. (c) Instantiation of a smart
contract. (d) Call a method of a contract instance.

target instance smart contract. Its execution, in general, modifies
some instance fields of some objects in the blockchain that are
reported as updates in its response. This last request does not verify
the code either since it is not a code installation request.

The fact that code verification is run only once, at code
installation time, is important for efficiency since the installation of
new code in the blockchain is a relatively rare event in comparison
to the instantiation of new smart contracts and the execution of
their methods. This is particularly the case for Hotmoka, where the
code of a smart contract is installed once and then recycled for all
instances of the smart contract that get subsequently created. This is
different from Ethereum, where each instance of the smart contract
reinstalls the code, although it is identical to that of the other
instances. Therefore, Hotmoka installs (and verifies) the code of a
smart contract only once, independently from how many instances
of that smart contract will be created later. This is at the basis of the
efficiency results that will be described in Section 7.

The rules of protocol-based verification are part of the
consensus rules of the blockchain, since they determine if the
response of a request to install code in blockchain is successful or
fails. Therefore, they determine the evolution of the state of the
application layer and its hash, which is reported in the blocks of the
underlying blockchain engine and used for consensus. This means

that all nodes must use the same verification rules, or otherwise, the
network nodes will never agree on a common state: nodes that use
different rules will automatically exclude each other.

6 Implementation

We have implemented protocol-based verification inside the
Hotmoka runtime for executing smart contracts written in the
Takamaka subset of Java. Hotmoka is an application with an
interface to the ABCI. Hence, it can therefore run on top
of both Tendermint and Mokamint (Figure 4). Hence, our
protocol-based verification is currently available for both PoS and
PoSp blockchains.

The verification module is implemented as a sequence of checks
performed on methods and classes. Since a request to install new
code in blockchain contains the compiled bytecode only, such
checks run at Java bytecode level, by using the BCEL library for Java
bytecode manipulation.10 The source code is simply not available
in blockchain. Currently, Takamaka’s protocol-based verification
performs 21 checks on every jar that gets installed in blockchain.

10 https://commons.apache.org/proper/commons-bcel

Frontiers in Computer Science 10 frontiersin.org

https://doi.org/10.3389/fcomp.2025.1596804
https://commons.apache.org/proper/commons-bcel
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Olivieri et al. 10.3389/fcomp.2025.1596804

FIGURE 7

Some of the 21 protocol-based verifications currently performed by Hotmoka on Takamaka smart contracts, when they get installed in blockchain.

They must all pass, or otherwise the jar will be rejected. Figure 7
describes some of them.

The checks in Figure 7 filter out smart contracts whose
installation would compromize the security and the functionality
of the blockchain. As already discussed in the introduction, they are
specific of a general-purpose language that must be used for writing
smart contracts. For instance, the correct type for the storage fields
is already enforced by the compiler of Solidity, while a specific
check is needed for Java, that was not devised for smart contracts,
originally. Determinism comes out-of-the-box in Solidity, that was
designed for being deterministic, while that is not true in general-
purpose languages. The rule that enforces a white-listed API is
needed in Java also to avoid library calls to the file system, for
instance, that are not useful for smart contracts and dangerous
in blockchain, while Solidity has almost no library support and
the little that exists is meant for smart contracts. Note that this
same rule forbids calls to Java reflection, that is, to low-level calls
that might bypass most security checks, and correspond to the
dangerous delegatecall() of Solidity.

The rest of this section shows, in detail, the implementation of
the last two checks from Figure 7.

6.1 Correct context for caller()

This check verifies that the method caller() is used in
the right context. That method corresponds to msg.sender in
Solidity: it allows programmers to get a reference to the contract
that called a method or constructor X. Namely, the method

caller() can be used inside the code of X only if X satisfies
two constraints:

1. X is annotated as @FromContract(class), for
some class;

2. the invocation of caller() occurs on this.

The rationale of constraint 1 is that @FromContract(class)
guarantees that X can only be called from a contract (hence, also
from an externally-owned account, in Takamaka) of type class,
or subclass.11 Therefore, the caller actually exists. For instance,
methods vote() in Figure 3 can use caller() since they are
annotated as @FromContract. Instead, the use of caller()
would be illegal in the constructor of SimplePoll, since it is not
annotated as @FromContract: that constructor could be called
from any piece of code, not necessarily from a contract.

As another example, the following contract stores its creator in
field owner. The use of caller() is correct here, since it occurs
inside a @FromContract constructor, and is a typical pattern in
smart contracts, to identify the creator contract of another contract:
public class C1 extends Contract {
private C1 owner;

public @FromContract(C1.class) C1() {
owner = (C1) caller(); // ok

}
}

Instead, it is incorrect to invoke caller() in a method or
constructor not annotated as @FromContract, since its caller is

11 If class is not specified, then Takamaka assumes the default class

Contract for it.
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not necessarily a contract and caller()would be meaningless in
that case:
public class C2 extends Contract {

public void m() {
... = caller(); // error at installation time

}
}

The reason for constraint 2 is that this.caller() allows
a method or constructor to access its caller during its current
execution, which is sensible and useful, while other calls not on
this would let one access the caller of the last invoked method or
constructor of other contracts, with possible logical inconsistencies
and privacy issues. For the same reason, the use of tx.origin
is normally an antipattern in Solidity [see Tx.origin Authentication
in Antonopoulos and Wood (2018)]. Constraint 2 holds in every
use of caller() in Figure 3, as well as in classes C1 and C2 above,
while it is violated for instance below:
public class C3 extends Contract {

private C3 owner;

public @FromContract(C3.class) C3() {
owner = (C3) caller(); // ok

}

public @FromContract void m() {
... owner.caller() ...; // error at deployment-time

}
}

Figure 8 reports our implementation of a check that verifies
if a method satisfies constraints 1 and 2 above. The code has
been simplified for readability. Full understanding of the code in
Figure 8 requires knowledge about Java bytecode and BCEL, which
is outside the scope of this paper. Nevertheless, it is possible to
understand its structure at the pseudocode level: the constructor
of the check scans the Java bytecode instructions of the method,
filters those that call a the method caller() of a Takamaka’s
storage object and checks two conditions for each of them (with
the two nested if’s inside the more external if): the method must
be annotated as FromContract (constraint 1 above), and the
invocation must be immediately preceded by a bytecode instruction
that pushes this on the stack, as the receiver of the call to
caller() (constraint 2 above). If any of the if’s is satisfied, an
issue is generated. The presence of an issue is enough to reject, later,
the installation of the code in blockchain.

6.2 Correct fields in storage classes

As said above, storage objects, in Takamaka, are those that can
be stored in blockchain and therefore get duplicated in each node
that holds a copy of the blockchain. Therefore, they cannot hold
machine-dependent fields, or otherwise consensus would be lost. In
particular, they cannot hold RAM memory addresses, since these
would be different in each node of the blockchain, that runs the
code in its own JVM. Because of this requirement, the classes C
that define storage objects, in Takamaka, are allowed to define fields
only if such fields hold storage objects themselves: since storage
objects are represented by machine-independent hashes, they can
be shared without any risk of losing consensus. But this would
not be flexible enough. Namely, Takamaka allows such classes C to
define also fields of primitive (often called basic) type (the eight Java
types boolean, char, byte, short, int, long, float, and

double). These have a fixed, machine-independent representation
in Java. Hence, they are represented identically in each node of
the blockchain. Furthermore, Takamaka allows C to define fields
whose type is BigInteger, that is a Java way to perform infinite
arithmetic and replaces Solidity’s uint256; or String, that is
paramount in every programming language. Both BigInteger
and String can be represented as machine-independent byte
arrays and stored in blockchain.

Figure 9 reports a simplified code of the implementation of this
protocol-based check. The constructor of the check scans the fields
of the class under verification and checks if their type is allowed in
Takamaka. Otherwise, an issue is generated. As described above, the
pseudocode checks if the type of the field is a storage type itself (that
is, it is not an array and it extends Storage); or a primitive type
of Java; or BigInteger or String. If this check passes, then
the strongly-typed guarantee of Java bytecode allows one to run the
code without checking what is actually written into the fields, since
it can only be one of these types, statically checked once and for all
at code installation time.

For extra flexibility, Takamaka allows fields to have Object
type and to have an interface type (see Figure 9). The reason for
this is that interfaces are largely used in modern programming
languages and they would be strongly missed in Takamaka. For
instance, StorageMapView in Figure 3 is an interface and
field snapshotOfVotersUpToNow has an interface type. If
interfaces would be banned in Takamaka, then the smart contract
in Figure 3 would be rejected by the protocol-based verification
of Takamaka. The reason for allowing Object, instead, is that
generic types, in Java, are compiled by erasure into Java bytecode
(Naftalin and Wadler, 2006), that is, replaced by Object and
checked at run time through casts added by the compiler. If storage
classes would ban fields of type Object then, for instance, it
would become impossible to write generic storage classes such
as StorageMap in Figure 3, since that class uses two generic
type parameters that are compiled in bytecode through fields of
type Object. Therefore, StorageMap (and, by transitivity, the
SimplePoll class itself) would be rejected by the protocol-based
verification of Takamaka.

This justifies why Object and interfaces are allowed in
Figure 9. As a consequence, code instrumentation of Takamaka
smart contracts adds checks to all write operations to fields of type
Object or interface, to verify that, at run time, only values of
storage type or BigIntegers or Strings are stored into such
fields (primitive types are not subtypes of Object or interfaces in
Java, thus there is no need to check for them). That is, only for fields
of type Object or of interface type, the check has been moved
from static to dynamic.

7 Experiments

This section reports experiments with protocol-based
verification. The goal is twofold:

1. to show that its implementation is possible (Section 7.1);
2. to show that its cost can be extremely low, so that it does

not increase the actual execution time of the transactions in
blockchain (Section 7.2).
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FIGURE 8

Pseudocode of the protocol-based check for the correct use of caller() in a given method. The actual full Java code is available at: https://github.
com/Hotmoka/hotmoka/blob/master/io-hotmoka-verification/src/main/java/io/hotmoka/verification/internal/checksOnMethods/
CallerIsUsedOnThisAndInFromContractCheck.java.

FIGURE 9

Pseudocode of the protocol-based check for the correct type of the fields of a given storage class. The actual full Java code is available at: https://
github.com/Hotmoka/hotmoka/blob/master/io-hotmoka-verification/src/main/java/io/hotmoka/verification/internal/checksOnClass/
StorageClassesHaveFieldsOfStorageTypeCheck.java.

The evaluation metric, in the second case, is the extra time required
for the protocol-based verification, in comparison with the same
blockchain without protocol-based verification. This will of course
depend on the complexity of the analyses that one wants to
perform. Therefore, the context of this paper are the 21 analyses
for Takamaka, in part reported in Figure 7.

7.1 Implementation

We have implemented our protocol-based verification for the
Takamaka subset of Java, inside its Hotmoka runtime that works
as a Tendermint and as a Mokamint application. Therefore, it is an
actual blockchain, based on PoS (Tendermint) or PoSp (Mokamint)
consensus, that can be programmed with smart contracts written in
Java. We have created testcases that start a blockchain and request
to install in blockchain the examples from Section 6. We have
also created a test that installs a smart contract that runs many
transactions, to check the scalability of the technique and evaluate
the effect of turning protocol-based verification on and off. Readers
who want to run the experiments and inspect the results need
a Linux machine with Java version 21 or later, and the standard
development tools Git and Maven. In order to run tests against
a Tendermint blockchain, that software (version 0.34.15) must
be downloaded from https://github.com/tendermint/tendermint/
releases/tag/v0.34.15 and added to the command-line path.

The source code of Hotmoka can be downloaded with

git clone https://github.com/Hotmoka/hotmoka.git

That repository also contains the code of the 21 checks of protocol-
based verification (including those in Figures 8, 9). After download,
one can enter the new hotmoka directory:

cd hotmoka

and compile the project with

mvn clean install

After a successful compilation, enter the test subproject:

cd io-hotmoka-tests

The first JUnit testcase that we show starts a blockchain of a
single node, connects to the node and requests a transaction that
installs a jar containing class C1 from Section 6:

mvn test -Dtest=io.hotmoka.tests.SSVMT2025_C1
-Dverbose=true -DnodeType=tendermint

The result is successful, since C1 passes all verification checks:

Test io.hotmoka.tests.SSVMT2025_C1:
the jar has been installed in the node without

exception

It is possible to run the test on a PoSp blockchain as well, by turning
on a Mokamint node instead of a Tendermint node (Mokamint’s
start-up will be slower, since it initializes a big disk file for its proof
of space consensus):

mvn test -Dtest=io.hotmoka.tests.SSVMT2025_C1
-Dverbose=true -DnodeType=mokamint

The result will be the same.
The subsequent experiment tries to install C2 instead:

mvn test -Dtest=io.hotmoka.tests.SSVMT2025_C2
-Dverbose=true -DnodeType=mokamint

This attempt will fail since protocol-based verification fails for C2,
as expected:
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FIGURE 10

Comparison of the execution time (in milliseconds) of the test smart
contract with and without protocol-based verification.

Test io.hotmoka.tests.SSVMT2025_C2:
the installation of the jar threw exception:
io.hotmoka.verification.VerificationException:
io/hotmoka/examples/ssvmt2025/c2/C2.java:10:
caller() can only be used inside a @FromContract

method or constructor

The third experiment tries to install C3 in blockchain, which
does not pass the protocol-based verification, as expected:

mvn test -Dtest=io.hotmoka.tests.SSVMT2025_C3
-Dverbose=true -DnodeType=mokamint

Test io.hotmoka.tests.SSVMT2025_C3:
the installation of the jar threw exception:
io.hotmoka.verification.VerificationException:
io/hotmoka/examples/ssvmt2025/c3/C3.java:16:
caller() can only be called on "this"

7.2 Scalability

In order to evaluate the scalability of our technique, we have
created a JUnit testcase that installs in blockchain a smart contract
that creates and funds 500 externally-owned accounts. The test
subsequently performs 1, 000 random transfers of cryptocurrency
among the accounts and finally determines which, at the end, is the
richest among them (which one has the highest balance). The whole
process is repeated ten times. The testcase can be run with:

mvn test -Dtest=io.hotmoka.tests.SSVMT2025
-Dverbose=true -DnodeType=tendermint

We prefer to use Tendermint above because the execution time
information is stable: Tendermint has a fixed block creation
rate, while the PoSp of Mokamint can have significant random
fluctuations around an average block creation rate. The result of the
execution of the testcase is something like:

1/10, the richest is bf8ed9dd...5efed998b78eb7#2f8
2/10, the richest is f3382128...9f7961f04e9d7e#77a
3/10, the richest is 2d8438af...af6e501216339a#1e08
4/10, the richest is 869b1973...ad04698cff35a9#1da
5/10, the richest is e47bc238...d6a922828428b8#184b
6/10, the richest is 37c4b4c6...008fa79db22096#10c7

7/10, the richest is 233c59e4...007b58930368cc#88a
8/10, the richest is 11334c64...08cf5ca24305bb#10c7
9/10, the richest is 55b2cbbe...d55943a4022f89#c74
10/10, the richest is 7f5740c...9c80096b760743#116c
10000 money transfers, 10011 transactions in 88445 ms

[113 tx/s]

The execution time of this testcase is 88.445 seconds and it does
not change from machine to machine: it is determined by the
block creation rate of Tendermint and by the fact that a limited
number of transactions can fit in a block, since a transaction for an
account must wait for the completion of the previous transaction
for the same account or otherwise the transaction nonce would
be incorrect and the newer transaction would be rejected. This is
a typical limitation of all blockchains, starting from Ethereum. In
total (including code installation and account creation) the test runs
10, 011 transactions, that is, it performs around 113 transactions per
second. Let us turn code verification off now12:

1/10, the richest is bf8ed9dd...5efed998b78eb7#1e87
2/10, the richest is f3382128...9f7961f04e9d7e#92f
3/10, the richest is 2d8438af...af6e501216339a#f65
4/10, the richest is 869b1973...ad04698cff35a9#1bd2
5/10, the richest is e47bc238...d6a922828428b8#2877
6/10, the richest is 37c4b4c6...008fa79db22096#f3
7/10, the richest is 233c59e4...007b58930368cc#ea8
8/10, the richest is 11334c64...08cf5ca24305bb#15fb
9/10, the richest is 55b2cbbe...d55943a4022f89#df1
10/10, the richest is 7f5740c...9c80096b760743#c5f
10000 money transfers, 10011 transactions in 88356 ms

[113 tx/s]

As shown above, by turning protocol-based verification off, the
same testcase runs in almost the same time, with the same number
of transactions per second. That is, there is no evidence that
protocol-based code verification affects the execution time of the
test (Figure 10). This is not surprising:

• protocol-based code verification is performed only once, in
the unique transaction that installs the smart contract’s code
(see Section 4). The other 10, 010 transactions run without
any code verification, since they are not code installation
transactions but rather object creation transactions or method
execution transactions for money transfer.

• The code of the installed smart contract is just a few lines of
code, hence its verification is very quick.

• The 21 code verifications that Takamaka performs are
relatively simple and run quite fast.

This last experiment shows that protocol-based verification, if
limited to simple analyses, does not affect the execution time of
a blockchain application. The latter is, instead, largely dependent
on the block creation rate of the blockchain and on the ability
of the application (in our example, of the testcase) to pack as
many independent transactions as possible into the same block.
Which is completely unrelated with protocol-based verification.
This does not mean that protocol-based verification does not cost

12 This option is available for testing, but a real Hotmoka blockchain would

never be installed without code verification and code verification cannot be

turned off after a blockchain has been started.
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FIGURE 11

The time (in nanoseconds) for the execution of each of the 21 static analyses performed by our tool, on the jar file containing the run-time of
Takamaka.

anything, but only that its cost disappears inside the much larger
amount of time during which a blockchain sits idle, waiting for
the next block to be minted. In particular, we have measured
the cost of each of the 21 static analyses performed by our tool.
We computed this measure twice: once for the installation of the

jar containing the Takamaka run-time library (which occurs only
once at blockchain start-up time) (Figure 11) and once for the
installation of the jar containing our test smart contract used above
(which occurs only once, the first time that that smart contract is
installed in blockchain) (Figure 12). In the former case, the most
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FIGURE 12

The time (in nanoseconds) for the execution of each of the 21 static analyses performed by our tool, on the jar file containing the test smart contract
used in Section 7.2.

expensive analysis requires less than 250 milliseconds. In the latter
case, it requires less than 2.5 milliseconds. Such time disappears
inside the default 4 seconds block rate of Tendermint: the analyses
are performed while the blockchain sits idle waiting to mint the
next block.

As an example of a limitation of our technique, consider the
check for numerical overflows and underflows. The standard
approach is to use some abstract domain for numerical
approximations, such as polyhedra (Bagnara et al., 2008), to
bound the possible values of the numerical variables. This becomes
more complicated when variables are not just local variables
but also fields of objects, whose number is not statically bound.
Experience with such analyses shows that they immediately

become very expensive, in time and memory, and do not allow to
easily and deterministically bound the resources needed for their
execution. The results are currently suboptimal, at least for the
analysis of Java, as our experience with the Julia static analyzer has
shown in the past. Such analyses are currently out of reach for a
protocol-based verification technique.

We conclude by observing that the above 113 transactions
per second is not the maximal throughput of Hotmoka. The
latter can well process thousands of transactions per second, as
long as they are independent, that is, if they do not origin from
the same externally-owned account. Otherwise, the nonces of the
transactions would be inconsistent and some of such transactions
would end up being rejected by the blockchain.
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8 Evolution of code verification

This section shows how to deal with updates to the
verification module of a blockchain that applies protocol-based
code verification. There are many reasons for an update: the
verification module might need to be updated in order to include
new verification rules or to improve the precision of the already
existing rules or even to patch some bugs in the module itself. When
a new version is deployed, it becomes necessary to update all nodes
to that version (or at least all validators), or otherwise consensus
might be lost. A change in the verification rules, if deployed on a
subset of the network only, entails that the updated nodes might
accept a request that the non-updated nodes might reject instead,
or vice versa. Moreover, there must be a way to coordinate the
moment when the update must be considered activated.

8.1 Coordinating an update to the
verification module

In order to decide if and when to update to a newer version
of the verification module, Hotmoka uses a technique purely based
on a set of smart contracts installed in blockchain at deployment
time. Namely:

• A Hotmoka blockchain publishes a non-replaceable smart
contract, called the manifest of the blockchain, that knows
about the current set of validators; these might coincide with
the consensus validators if PoS is used, or might just be a set
of accounts allowed to vote on system updates, according to
some governance agreement of the network.

• The manifest also publishes a non-replaceable Versions
smart contract that keeps track of the current version of the
verification module; this smart contract allows each validator
to start a poll among all validators, whose final action is to
increase the verification version.

The typical scenario for passing from version τ of the verification
module to version τ + 1 of the same module is the following:

1. Version τ + 1 of the verification module is advertized on social
channels, for instance web pages, social networks, or blogs of
the blockchain communities, suggesting all nodes to update the
the latest Hotmoka software that provides version τ + 1 of the
verification module.

2. During the update, the verification version of the blockchain,
contained in the Versions smart contract, remains τ and
therefore the new updated nodes still keep working according
to the rules of version τ .

3. Eventually, a validator account decides that it is time to bump
the verification version to τ + 1 and starts a poll among all
validators, that allows them to vote in favor of the switch to
version τ + 1.

4. The poll is an object of class SimplePoll (Figure 3)
whose Voters are the validators of the blockchain; their
power might be equal among them, or it might coincide
with their stakes (in PoS) or it might be based on another
governance-specific algorithm.

5. If the poll reaches its goal (that is, if enough validators voted in
favor) then some validator can call method close() of the poll
(Figure 3), that will run an action that increases the verification
version in Versions to τ + 1.

6. From that moment, the updated nodes will see version τ + 1
in the Versions smart contract and will use version τ + 1
of their verification module to verify new code to install in
the blockchain.

It is also possible to use a poll with a maximal duration, that
allows validators to vote only inside a given time window. An
implementation of such a poll is available in the library of
Takamaka, but it is not discussed here further.

Figure 13 reports the simplified code of the Versions smart
contract. This smart contract is typically created and installed when
the blockchain starts, together with the creation of the manifest. It is
a class generic w.r.t. the type of the validators of the blockchain. Its
creation requires to specify the manifest of the node and the current
verification version. When a validator wants to propose a poll about
the switch to version τ+1 of the verification module, it calls method
newIncreasePoll, that creates a poll among the validators of
the blockchain, recovered from the manifest of the blockchain. That
poll, if it reaches its goal, will trigger an action that increases the
verification version contained in the Versions object.

Method newIncreasePoll is @Payable, that is, its caller
must pay to call it. There is a minimal ticketForNewPoll that
must be paid, as specified in the manifest, in order to discourage
the creation of too many cheap polls, that would just add noise.
This amount gets distributed to all validators, as a remuneration
for their effort to vote. In any case, only validators are allowed to
start a version update poll.

It is interesting to observe, in Figure 13, that the
newVerificationVersion is computed at the time of
creating the action, that is, at the time of creating the new
poll inside method newIncreasePoll(). Namely, it is not
computed later, when the run() method of the action runs. This
avoids the risk of starting n > 1 polls to increase the current
verification versions to τ + 1, possibly under request of distinct
validators, without waiting for their closure, and end up increasing
the verification version to τ + n instead of τ + 1. With the code in
Figure 13, all such polls would end up increasing the verification
version to the same value τ + 1, repeatedly, which is what is
expected.

8.2 Deadling with code verified with legacy
verification rules

When the verification version in the Versions smart contract
gets updated, the smart contracts existing in blockchain at that
moment will still pass the old (legacy) verification rules, but not
necessarily the new rules implemented by the new verification
module. Hence, there must be a mechanism that enforces that the
execution of some code in blockchain occurs only if that code
passes the current verification rules. Conceptually, this means that
an update of the verification module triggers a re-verification of
all code previously successfully installed in blockchain. In practice,
this cannot be performed, since it would be extremely expensive
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FIGURE 13

The smart contract that keeps track of the current verification version and of its updates. The complete code is available at https://github.com/
Hotmoka/io-takamaka-code/blob/main/io-takamaka-code/src/main/java/io/takamaka/code/governance/Versions.java.

and would hang the nodes for a long time. Hotmoka’s solution, that
we are going to describe, is to lazily re-verify the code on-demand,
when it is asked to run. This amortizes the cost of re-verification.
Moreover, only 0.05% of all contracts installed in Ethereum are
involved in 80% of the transactions. Hence, a lazy approach avoids
the re-verification of code that might actually never run again
(Oliva et al., 2020).

In order to implement this lazy re-verification approach,
Hotmoka expands the information in the response of a successful
code installation request (Figure 6). Namely, together with the
installed code, response is enriched with a numerical tag
τ (response), i.e., the version of the verification module that has been
used to verify the code inside response. The sequence diagram in
Figure 14 shows the workflow for lazy code re-verification. Assume
that a request arrives, that requires to run code referred with the
hash requesth of a previous, successful code installation request (as
in Figures 6c, d). The node finds out that σ (requesth) = response
has a verification tag τ (response) and compares it with the current
version τ of the verification module. There are two possibilities:

1. τ = τ (response): the code was verified with the current version
of the verification module, it does not need re-verification and
can be run immediately;

2. τ > τ (response): the code was verified with an old version of the
verification module; it must be re-verified before being run.

In the second case, the node verifies the code again, using the
current version τ of the verification module. This is possible
since response includes that code (Figure 6a). A new response
response′ will be computed (it could be a successful response,
having τ as verification module version, or a failed response)
and the application state is updated as σ (requesth) = response′.
The use of requesth in future requests will not re-verify the code
anymore, at least not until a yet newer version of the verification
module is installed. Note that the update of the response is possible
since it occurs in the state, not in the blockchain, whose blocks
are immutable.

It is important to note that response′ might state that
reverification failed, because the old code passed the previous
verification rules but not the new ones. In that case, the execution
of the code will fail, since its classpath is not valid anymore. This
means that a smart contract might work today, but might stop
working tomorrow, if updated verification rules reject its code. In
theory, the converse is also possible: the same contract might be
reactivated after tomorrow, if another change in the verification
rules replaces a failed response with a successful response. However,
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FIGURE 14

Sequence diagram for lazy code re-verification.

Hotmoka currently forbids this second scenario, since it might be
surprising to most users.

9 Conclusion

To the best of our knowledge, this paper presents the first
protocol-based verification of blockchain code. The technique is
fully implemented inside the Hotmoka runtime for executing smart
contracts written in the Takamaka subset of Java. Experiments
show that the addition of a code verification layer to the nodes
of a blockchain network does not affect its efficiency (Section 7).
However, this is true also because the static analyses performed
by the verification module of Hotmoka are still quite simple and
largely related to checking the correct use of the annotations
and primitives of the Takamaka language (Figure 7). The cost
of verification might explode, instead, if more complicated static
analyses would be considered in the future, such as those already
existing for Java.

In comparison with off-chain static analysis, the following
considerations are relevant:

• An off-chain static analyzer can afford a large execution
time, while a protocol-based static analysis must be quick or
otherwise it might not terminate in time for the creation of the
next block or it might not work timely on the least powerful
nodes of the network.

• An off-chain static analyzer might even afford to diverge and
never provide an answer, while, at the protocol level, that

would mean that the whole blockchain network would hang, a
disaster that must be avoided.

• An off-chain static analyzer may contain bugs that lead to an
undesirable but not disastrous crash; instead, protocol-based
analysis should not crash or otherwise all (or most) nodes of
the network might stop working.

• An off-chain static analyzer can afford non-deterministic
results, typically due to optimizations such as parallel
executions or time-outs; the same cannot be accepted for
protocol-based static analysis, since non-deterministic results
make it impossible for the network to reach a consensus.

Such considerations imply that protocol-based and off-chain static
analyses could actually coexist since they address different goals:
the former checks the correct use of the language primitives that, if
violated, would introduce security holes in the blockchain network
itself; while the latter verifies more complicated, global properties
of the code, that would not introduce security risks to the network
but might be of paramount importance to the programmer. That
is, protocol-based verification must be understood as a mandatory,
defensive verification technique for the blockchain, rather than
as a replacement of the off-chain verification that is useful for
the programmer.

The issue of reverification of legacy code after an update of
the verification module has not been studied much up to now. In
Section 8.2, it is said that it should trigger the re-verification of code
already in blockchain. But this might not be the best choice, since
it might disable some smart contracts already in blockchain and
lock their funds for ever. Moreover, a large number of users could
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oppose a change of the verification rules that affects some highly
popular contracts. Future work will investigate linguistic primitives
and programming patterns that allow funds to be unlocked or
specify that some contract should not be re-verified after an update
of the verification module.

Protocol-based verification has been developed to support
the safe use of general-purpose languages in a permissionless
blockchain. As such, its applicability is much larger than the
case of Java, and spans all general-purpose languages used so
far for writing smart contracts (Golang, Python, and Rust, for
instance). Its application to Solidity remains limited, since Solidity
was meant for writing smart contracts, from its very inception,
therefore most of our checks are already performed by the Solidity
compiler. Nevertheless, it is possible, in principle, to modify
the Ethereum Virtual Machine and trigger code verification of
every Solidity smart contract deployed in Ethereum. This would
be perfectly possible for simple checks (for instance, for the
use of msg.sender instead of tx.origin or for unexpected
and non-standard uses of delegatecall()) while we remain
skeptical about protocol-based verification of more complicated
security issues, such as overflows, underflows and reentrancy,
whose computational cost is quite higher. For reentrancy, a more
syntactical approach, such as making the default payment method
final, as done in Takamaka, catches most attacks in a much
simpler way than a static analysis.
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