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Evaluation of generative models
for emotional 3D animation
generation in VR

Kiran Chhatre ® *, Renan Guarese ®, Andrii Matviienko ® and
Christopher Peters

School of Electronic Engineering and Computer Science (EECS), KTH Royal Institute of Technology,
Stockholm, Sweden

Introduction: Social interactions incorporate various nonverbal signals to convey
emotions alongside speech, including facial expressions and body gestures.
Generative models have demonstrated promising results in creating full-body
nonverbal animations synchronized with speech; however, evaluations using
statistical metrics in 2D settings fail to fully capture user-perceived emotions,
limiting our understanding of the effectiveness of these models.

Methods: To address this, we evaluate emotional 3D animation generative
models within an immersive Virtual Reality (VR) environment, emphasizing user—
centric metrics-emotional arousal realism, naturalness, enjoyment, diversity, and
interaction quality—in a real-time human-agent interaction scenario. Through a
user study (N = 48), we systematically examine perceived emotional quality for
three state-of-the-art speech-driven 3D animation methods across two specific
emotions: happiness (high arousal) and neutral (mid arousal). Additionally, we
compare these generative models against real human expressions obtained via a
reconstruction-based method to assess both their strengths and limitations and
how closely they replicate real human facial and body expressions.

Results: Our results demonstrate that methods explicitly modeling emotions
lead to higher recognition accuracy compared to those focusing solely on
speech-driven synchrony. Users rated the realism and naturalness of happy
animations significantly higher than those of neutral animations, highlighting the
limitations of current generative models in handling subtle emotional states.

Discussion: Generative models underperformed compared to reconstruction-
based methods in facial expression quality, and all methods received relatively
low ratings for animation enjoyment and interaction quality, emphasizing the
importance of incorporating user-centric evaluations into generative model
development. Finally, participants positively recognized animation diversity
across all generative models.

KEYWORDS

generative models, 3D emotional animation, user-centric evaluation, virtual reality,
nonverbal communication

1 Introduction

Conversational interactions between users and virtual characters are crucial for
immersive social experiences in VR, requiring the generation of behaviors such as speech
(Vasiliu et al., 2025), gestures (Ghorbani et al., 2023), and facial expressions (Kruzic et al.,
2020). However, accurately replicating verbal and non-verbal cues remains challenging.
Social interactions incorporate multiple non-verbal modalities—such as gesture arousal,
facial expressions, eye contact, and body posture-that are vital for conveying emotions,
often taking precedence over verbal language (De Stefani and De Marco, 2019; Sharkov
et al., 2022). Moreover, non-verbal expressions guide human behavior by providing
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key signals on how to respond to others (Stewart et al., 2024) and
shape perceptions of personality traits (Tracy et al, 2015). Yet,
misconceptions persist about how these non-verbal cues function
in real conversations, making it difficult to confirm whether
the generated animation in virtual characters truly conveys the
intended emotional behavior. These challenges highlight the need
for comprehensive deep learning models that account for the
interplay among multiple modalities (Patterson et al., 2023).

In virtual environments, verbal and non-verbal expressions
are essential for delivering immersive social experiences,
contributing significantly to users’ social presence and emotional
engagement (Smith and Neff, 2018). The intricate interplay
of verbal and non-verbal cues complicates both the modeling
and evaluation of character behavior. Early research employed
hand-crafted animation and rule-based models (Cassell et al,
2001; Poggi et al., 2005), but these methods cannot capture
the full range of possible cues, limiting the fidelity of social
interactions. More recent work has leveraged motion capture to
create high-fidelity behavior for teleoperated (or Wizard of Oz;
WOZ) avatars (Fraser et al., 2022; Zhang et al., 2023), which excel
at conveying emotional, full-body expressions by relying on human
performers. Yet, this approach is costly and less scalable due to
expensive motion capture technology. With the rapid development
and widespread use in generating speech and motion content,
generative models offer new possibilities for creating human-like
social agents. Tools such as text-to-speech (TTS) systems (Kim
et al,, 2021; Casanova et al., 2021; Vasiliu et al., 2025) and speech-
to-animation models (Yi et al., 2023) have opened new avenues
for building the virtual characters. By leveraging these models,
one can automate their creation: TTS produces natural-sounding
speech for dialogue scripts, while speech-to-animation models
synchronize gestures and facial expressions with spoken words,
adding emotional depth to interactions (Chhatre et al., 2024;
Danécek et al., 2023a). Although recent studies demonstrate high
performance in animation realism, expressiveness, and diversity in
monologue scenarios (Fan et al., 2022; Chhatre et al., 2024; Danécek
et al., 2023a), the effectiveness of these models in VR dialogue
settings—where human interactions with virtual characters come
into play-remains uncertain.

Existing generative models can produce full-body animations
from speech (Chhatre et al, 2024; Danécek et al, 2023b;
Ginosar et al., 2019; Alexanderson et al., 2023; Yang et al,
2023a,b) and provide holistic co-speech, full-body datasets (Mughal
et al, 2024; Liu et al, 2024). However, gesture generation
has largely relied on objective metrics—for instance, Frechet
Gesture Distance (Maiorca et al, 2022; Yoon et al, 2020)
(comparing latent features between generated and ground-
truth motion), beat alignment (Li et al, 2021; Valle-Pérez
et al., 2021) (assessing motion-speech correlation via kinematic
and audio beats), semantic-relevance gesture recall (Liu et al,
2022b), and gesture diversity (Li et al, 2023; Liu et al,
2022a) (covering beat, deictic, iconic, and metaphoric gestures).
While these metrics are useful, they often fail to capture how
humans truly perceive gestures. User-centered metrics—including
perceived emotional realism, naturalness, and diversity-remain
underexplored, even though they are crucial for evaluating
virtual characters in a social context (Chhatre et al, 2025).
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The effectiveness of these models depends on how well users
perceive expressed emotions and interactional effects during
social exchanges.

Although some studies have evaluated virtual faces and
gesture generation—for example, investigating the uncanny valley
effect (Di Natale et al., 2023), the GENEA Challenge (Kucherenko
et al, 2023) on speech-driven gesture generation in monadic
and dyadic contexts, research on the relationship between
empathy and facial-based emotion simulation in VR (Della
Greca et al,, 2024), and AV-Flow (Chatziagapi et al.,, 2025) for
dyadic speech and talking-head generation-these typically focus
on either gestures or virtual faces, rather than a holistic 3D
perceptual experience combining both face and body. Chhatre
et al. (2025) examine how integrating facial expressions with
body gestures influences animation congruency and synchronize
the generated motion with the driving speech; however, they do
not address diverse or emotionally rich conversational contexts.
Closer to our work, Deichler et al. (2024) evaluated animations
generated by such models from a third-person viewpoint in
monologue or dialogue, emphasizing the impact of an immersive
VR environment relative to a 2D setting. However, their study
did not address real-time human-virtual character interaction or
emotional conversation contexts, leaving the effects of integrating
face and body unclear. Consequently, subjective qualities remain
insufficiently studied for a human-virtual character in dyadic
emotional interaction.

In this work, we address this gap by evaluating generative
models for animation in VR, focusing on immersive human-virtual
human interactions within emotionally contextual dialogues. Our
user study employs two arousal conditions-Happy (high arousal)
and Neutral (mid arousal)-based on the circumplex model
of affect (Russell, 1980). Focusing on these two states allows
us to examine five key perceptual factors-realism, naturalness,
enjoyment, diversity, and interaction quality (see Section 4)—
without introducing excessive complexity into the study design.
We additionally compare participant ratings with outputs from
a pretrained deep-learning classifier trained on Ekmans eight
basic emotions (Ekman, 1993), collapsing its predictions into
the same two categories (happy vs. neutral) for consistency.
Limiting the scope to happy and neutral makes the experiment
tractable while establishing a foundation for future studies
that may explore a broader range of affective states, including
complex emotions such as guilt and embarrassment, as well
as negative emotions such as anger and disgust. Our specific
goal is to assess the perceptual impact of these two emotional
conditions and, based on the findings, iteratively improve the
study to better capture the perceived effects of more diverse
affective states. Building on previous work (Heesen et al., 2024;
Liu, 2024; Tan and Nareyek, 2009; Conley et al, 2018; Zhu
et al., 2023), we concentrate on critical perceived emotional
animation attributes. We assess these qualities through a VR-
based user study (N = 48), designed to explore immersion
and social presence during interaction with virtual characters,
in contrast to 2D videos (Mal et al., 2024). Advances in
interactive media now support qualitatively richer experiences;
immersive VR, in particular, can influence users’ physiology,
psychology, behavior, and social responses (Lombard et al,
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2009). To investigate how high-quality, computer-generated
speech-driven animations of virtual characters affect factors
such as enjoyment, persuasion, and social relationship, we
therefore conduct our study in a VR setting. The same
methodology could later be adapted to mixed or augmented
reality environments. This study highlights the importance
of perceptual evaluation, as objective metrics alone cannot
fully capture the validity of generated gestures. Moreover,
integrating multiple generative models for real-time interaction-
combining speech and 3D animation-offers a promising direction
for computational interaction systems. Rather than exclusively
training or refining new models, our approach emphasizes a
holistic perceptual assessment of current models to guide future
model development.

While numerous speech-driven face-expression and body-
gesture generative models exist, we specifically chose three
representative methods based on their state-of-the-art performance
on objective metrics such as realism, diversity, Frechet Gesture
Distance, and beat alignment, as reported by their original authors.
In our implementation, we use the SMPL-X (Pavlakos et al., 2019)
parametric model for representing virtual humans in 3D. The
three chosen models—EMAGE (Liu et al., 2024), TalkSHOW (Vi
et al., 2023), and AMUSE (Chhatre et al., 2024)-exhibited top
performance, with AMUSE uniquely focusing on emotional 3D
body gestures. To incorporate face animation with AMUSE, we
employed FaceFormer (Fan et al., 2021), a SMPL-X-compatible,
speech-driven face-expression model. Additionally, we compared
these generative models to real human expressions by capturing
a human performers 3D face and body via the PIXIE (Feng et al.,
2021a) frame-level reconstruction method. The core of our study is
a user-based evaluation that reveals the strengths and weaknesses
of these generative approaches, as well as how they shape user
perception in VR. By also comparing the generative outputs to
reconstruction-based real expressions, we shed light on how closely
current generative methods can replicate real human body and
facial expressions. This evaluation informs the selection of models
best suited for specific applications, depending on which attributes—
such as realism, naturalness, enjoyment, diversity, or interaction
quality—are most critical. Our main contributions are as follows:

e To the best of our knowledge, we present the first perceptual
evaluation of generative models for emotional 3D animation
in real-time human-virtual character interactions within an
immersive VR environment.

e We conduct a VR-based user study (N
three representative generative methods with demonstrated

48), evaluating
capabilities in emotional animation generation.

e We evaluate the realism, naturalness, enjoyment, diversity,
and interaction quality of the generated animations and
investigate their impact on user perception.

In Section 2, we review related work, and in Section 3, we
cover key concepts and provide an overview of our implementation
details. Section 4 details our user study, while Section 5 presents the
results. Section6 discusses the findings and practical implications,
followed by Section 7, which addresses limitations and future work.
Finally, Section 8 concludes the paper.

Frontiersin Computer Science

03

10.3389/fcomp.2025.1598099

2 Related work

2.1 Social interaction

Social interaction is a complex interplay of language, gestures,
and other nonverbal behaviors. The theory of embodied cognition
suggests that spoken language evolved from motor actions, with
empirical studies showing motor system involvement in both
language and gesture production and comprehension (Gentilucci
et al., 20065 Rizzolatti and Arbib, 1998). Research indicates that
gestures and spoken language function in sync during face-to-
face communication, with symbolic gestures sometimes replacing
verbal components (Andric et al., 2013). This synchronization
reflects the interaction between the sensory-motor and language
processing systems (Bernardis and Gentilucci, 2006; McNeill,
1992). Nonverbal behaviors—facial expressions, gestures, posture,
and gaze-are essential for conveying intentions, often enhancing
or replacing verbal communication to produce a more accurate
display of emotions than any single channel alone (Gunter and
Bach, 2004; Zhao et al., 2018). Gestures, in particular, are tightly
integrated with speech (Ozyiirek, 2014; He et al., 2018). However,
the intricate ways these modalities interact remain not fully
understood, even in human studies, making it challenging to
develop virtual agents that accurately replicate such interactions.

2.1.1 Emotions in social interaction

Emotion has been a central theme in social-interaction research
for decades. De Stefani and De Marco (2019) argue that the human
Mirror Mechanism associates language in shared sensorimotor
representations, tightly coupling gestures, speech and affect; Huang
and Lajoie (2023) show that co-regulation of such social-
emotional exchanges is critical for effective collaborative learning;
and Marinetti et al. (2011) treat emotions as dynamic, context-
dependent processes, comparing the competence of humans with
that of emotionally aware artificial agents.

Emotions encountered in these interactions can be cast either
as discrete categories (Figure 1-left) or as points in a continuous
affective space (Figure 1-right). Ekmans taxonomy lists six basic
classes—anger, disgust, fear, happiness, sadness and surprise-
assumed to be biologically hard-wired (Ekman, 1993). Dimensional
models assign emotions in low-dimensional manifolds: Schlosberg
(1954) organized facial expressions along pleasant-unpleasant and
attention-rejection axes with activation as a third dimension, while
the widely used circumplex model maps emotions onto arousal and
valence axes whose origin denotes neutrality (Russell, 1980). Later
work in the Vector model confirms the emotions are structured in
terms of arousal and valence such that a positive valence represents
appetitive motivation and negative valence represents defensive
motivation (Bradley et al., 1992). The stability of positive versus
negative affect in two separate systems is analyzed into the positive
activation - negative activation model (Watson and Tellegen, 1985).
Finally, Plutchik (2001) integrates categorical and dimensional
views within a 3D framework where it arranges emotions in
concentric circles, where inner circles are more basic and the outer
circles are also formed by blending the inner circle emotions. Our
study adopts the circumplex model, distinguishing mid- (neutral)
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FIGURE 1

Emotion classification. Left: Ekmans discrete-emotion theory identifies six basic categories—anger, disgust, fear, happiness, sadness, and
surprise—treating each as a distinct class rather than points on a continuum (Ekman, 1993). Right: The circumplex model (Russell, 1980) places
emotions in a two-dimensional space spanned by arousal and valence; the center represents neutral arousal and neutral valence.
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and high-arousal (happy) conditions, and augments participant
judgements with an automatic emotion recognition deep learning
model trained on an extended Ekman-style eight-class taxonomy,
including contempt and neutral as additional categories.

2.2 VR-based interaction

In VR, interactions with virtual characters must be highly
realistic to feel lifelike, a requirement with broad applications in
entertainment and psychological research (Zhang et al, 2023).
Approaches to creating these interactions typically fall into two
categories. First, rule-based models rely on predefined rules or
human interaction knowledge (Kopp et al., 2006; Cassell et al., 2001;
Poggi et al,, 2005), often using pre-recorded animations triggered
by algorithms or manual intervention (Thiébaux et al, 2008;
Marsella et al., 2013; Pan and Hamilton, 2018). These methods
are constrained by limited motion variety, leading to repetitive
behaviors (Zhang et al., 2023). Second, teleoperation (WOZ avatar
approach) assigns human actors to drive virtual characters’ voice
and body movements (Fraser et al., 2022; Brandstitter and Steed,
2023; Zhang et al., 2023). Though highly realistic, this approach
depends on expensive motion capture devices and restricts the
number of actors who can simultaneously participate in a single VR
experience. Some studies have explored using one human to control
multiple virtual characters (Osimo et al., 2015; Yin et al., 2022;
Brandstitter and Steed, 2023; Yin et al., 2024), but this reduces the
variety of generated behaviors (Yin et al., 2022), limiting scalability
for group interactions in VR.

Recently, industry applications have emerged for generating
narrated avatar videos (Hedra, 2025; Synthesia, 2025; Microsoft
Mesh, 2025; Soul Machines, 2025), 3D interactive non-player
characters (Inworld, 2025; Convai, 2025; NVIDIA ACE, 2025), and
user-interactable virtual characters (Replika, 2025). However, many
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of these platforms lack flexibility and seamless integration with
tools like Blender or Unity (Ton Roosendaal, 2025; Tim Sweeney,
2025; Unity Technologies, 2025), hindering direct comparison with
rule-based or teleoperated methods.

Despite these challenges, numerous studies have examined
conversational virtual characters in VR (Smith and Neff, 2018;
Thomas et al., 2022; Herrera et al., 2018), focusing on aspects like
rendering realism (Kokkinara and Mcdonnell, 2015; Zibrek et al.,
2018; Patotskaya et al., 2023), animation realism (Guadagno et al.,
2007; Rosenthal-von der Piitten et al., 2010), facial expressions
and eye gaze (Roth et al., 2018a,b), body gestures (Huesser et al.,
2021), subtle social cues (Reeves and Nass, 1996), and emotion
disclosure (Barreda-Angeles and Hartmann, 2021; Hancock et al.,
2007). Yet most rely on rule-based or teleoperated animations,
limiting both variety and quality of generated behaviors.

2.3 Generative models for virtual character
interaction

Generative probabilistic models are widely used to produce
speech and human motion. Recent advances in conditional
constraints enable virtual social interactions with specific styles
or emotions, offering low-cost, automated generation and diverse
behaviors due to their probabilistic nature (Ma et al., 2025).

Recent methods employ deep neural networks to create motion
animations, emphasizing convincing non-verbal behaviors. They
generate 3D talking heads from speech (Pham et al, 2017a,b;
Karras et al., 2017; Taylor et al., 2017; Zhou et al., 2018; Cudeiro
et al., 2019; Richard et al, 2021; Fan et al., 2022; Xing et al,
2023) and synthesize 3D body gestures (Ginosar et al, 2019;
Qi et al, 2023; Yoon et al., 2020; Habibie et al, 2022; Yang
et al.,, 2023b). Some jointly produce body and facial animations
via SMPL-X (Pavlakos et al, 2019; Yi et al., 2023), enabling
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TABLE 1 Comparison of methods for 3D animation generation.

10.3389/fcomp.2025.1598099

Method Generative model type Audio model type Text
EMAGE VQ-VAE Content, rhythm-aware TCN N
TalkSHOW Transformer (face), VQ-VAE (body) Wav2Vec X
AMUSE+FaceFormer Transformer (face), diffusion (body) Content, emotion, style-aware ViT X

This table compares three generative models for gesture animation in VR. The models differ in their primary generative architecture for facial expressions and body gestures, as well as their

approach to processing audio input. Additionally, one model accepts textual transcripts as supplementary input. All methods output body pose (9) and facial expression () parameters.

more expressive behaviors. While speech-driven animation control
remains underexplored, recent studies introduce motion style
control (Yin et al., 2023; Alexanderson et al., 2023) and include style
and emotion constraints (Fan et al., 2022; Chhatre et al., 2024).

For speech generation, text-to-speech (TTS) systems allow
emotional variation in tone, pitch, and rhythm (Kim et al,
2021; Casanova et al,, 2021), thereby enhancing user engagement
in virtual interactions. Although individual models for speech
and animation show promise, they are often developed and
evaluated in isolation. In contrast, our approach integrates TTS
and generative animation into a unified VR system, enabling
a more comprehensive evaluation. We specifically examine how
effectively they convey user perception of 3D full-body emotional
responses and how these factors impact interaction quality in
immersive environments.

3 Implementation details

3.1 Preliminaries: geometry, appearance,
and rendering

We adopt the SMPL-X model (Pavlakos et al, 2019) to
represent 3D body geometry, defined by M(B,0, ). This model
generates a mesh M from the identity shape g € R3%, pose
6 e RI3, and facial expression ¥ € R!%°, where J represents
the number of body joints. For its appearance, we use SMPL-
X UV coordinates, and the shaded textures are obtained by
sampling albedo «, surface normals, and lighting. The Embodied
Conversational Agent (Cassell, 2000) SMPL-X meshes-referred to
as the “agent” hereafter-are animated in Blender using outputs
from the generative models summarized in Table 1 and detailed in
Section 3.2.

3.2 Generative models

As shown in Figure 2, we fully synthesize a virtual characters
motion and speech. We select three state-of-the-art models based
on their performance in generating synthetic animations driven
solely by audio input. These audio-based models generate 3D
motion from speech and transcripts, and each has demonstrated
strong speech-driven animation capabilities. In our pipeline, the
driving speech-or video for the reconstruction baseline—is first fed
to the selected model to predict full-body animation parameters.
The resulting motion is then retargeted to a textured SMPL-X agent
and placed in an outdoor Blender scene with appropriate lighting
and camera placement. Finally, the animated scene is streamed
to participants in real-time conversation through an HTC Vive
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Pro 2 headset. We conduct quantitative evaluations comparing
all models. Each method is applied to predefined scenarios with
unique topics; transcripts and speech are generated via TTS, which
then drive the 3D motion. The system is modular, allowing any
component to be replaced as needed.

We utilize three state-of-the-art audio-driven generation
models compatible with the SMPL-X mesh: EMAGE (Liu et al,
2024), TalkSHOW (Yi et al, 2023), and a combination of
AMUSE (Chhatre et al., 2024) (for body) and FaceFormer (Fan
et al, 2022) (for face). In Table 1, we summarize the specifics
of each model. All models take raw audio as input and
produce 3D animations. EMAGE and TalkSHOW output both
Y and 6 parameters, whereas AMUSE outputs 6 parameters
and FaceFormer outputs i parameters; both parameter sets
are integrated at the frame level after inference. Specifically,
FaceFormer outputs meshes with the FLAME topology (Li
et al., 2017). We convert these meshes into FLAME expression
parameters by fitting the registered 3D mesh to the FLAME
model using the FLAME fitting framework (Bolkart, 2013) and
the Broyden-Fletcher-Goldfarb-Shanno optimizer. Once we obtain
the ¥ parameters, we combine them with the 6 parameters—
aligning jaw rotations framewise-to create a single motion file.
Throughout this process, the identity parameters (8) from the
original AMUSE output are preserved. Next, EMAGE accepts text
transcripts as an additional input. All geometric parameters are
passed to the SMPL-X Blender add-on, which imports the meshes
into the Blender scene. Each imported SMPL-X mesh includes a
shape-specific rig and blend shapes for shape, expression, and pose
parameters. We use consistent sampled B parameters and an «
texture across all models. All evaluated models—-EMAGE (Liu et al.,
2024), TalkSHOW (Yi et al., 2023), AMUSE (Chhatre et al., 2024),
and FaceFormer (Fan et al., 2021)-were made publicly available
by their respective authors. An introduction to each method is
provided in the Supplementary Section 2.

The models process audio features differently. TalkSHOW
uses a pre-trained Wav2Vec (Baevski et al., 2020) model to
extract speech features, while EMAGE and AMUSE employ
specialized models for this purpose. EMAGE uses a content-
and rhythm-aware Temporal Convolutional Network (TCN) (Lea
et al, 2017) that distinguishes gestures related to semantic
content versus rhythm for each frame. FaceFormer also uses
Wav2Vec to extract speech features, whereas AMUSE uses a
Vision Transformer (ViT)-based model (Dosovitskiy, 2020). The
AMUSE model additionally disentangles content-, emotion-, and
style-aware features from the driving speech, explicitly modeling
the impact of emotions on generated gestures. The backbone
architectures used for gesture and expression generation vary
among the models. EMAGE utilizes multiple Vector Quantized
Variational AutoEncoders (VQ-VAE) (Van Den Oord et al., 2017)
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Evaluation of generative Models for emotional 3D animation in VR. In this evaluation, participants interact with a virtual character using a VR headset.
The setup is modular and supports integration of various text-to-speech (TTS) models and speech-driven 3D animation generation methods. On the
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installed in the study room, and they use a tablet to record input during the session. The animation generation method utilizes speech segments
generated by a TTS system to produce corresponding 3D facial expressions and body animations. These predicted animation data are mapped onto
a 3D character, textures are applied via UV mapping, and the final content is rendered and streamed in real-time for VR interaction using Blender
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to generate both facial and body animations. TalkSHOW
employs a VQ-VAE for body animation, while a standard
encoder-decoder network predicts facial expressions. FaceFormer
uses an autoregressive transformer (Vaswani, 2017) for facial
expressions, and AMUSE employs a conditional latent diffusion
model (Rombach et al., 2022). In summary, while EMAGE and
TalkSHOW both use VQ-VAE, EMAGE leverages dual training
paths (masked gesture recognition and audio-conditioned gesture
generation with a switchable cross-attention layer) to effectively
merge body hints and audio features and disentangle gesture
decoding. In contrast, TalkSHOW trains face and body components
separately, autoregressively predicting body and hand motion while
incorporating facial expressions from the face decoder. Meanwhile,
AMUSE is specially trained for emotional motion generation;
since it focuses solely on emotional gesticulation without facial
animation, we complement it with FaceFormer for full-body
animation sequences.

For dialogue, we generate template responses to scenario-
based questions. The text is then fed into a TTS model, which
generates speech with appropriate intonation. These intonations
drive the emotional arousal-related gestures produced by all
models, ensuring alignment between speech and gestures. We
use PlayHT TTS (PlayHT, 2025) to generate emotional speech
given text inputs. For a given script, speech is generated with
a storytelling narrative style for an adult male, featuring neutral
tempo and loudness. Once the models have produced their outputs,
GPU acceleration is used to render the meshes in Blender. We
incorporate the body shape f parameter and import the .npz data
into Blender through the SMPL-X addon (Pavlakos et al., 2019),
which applies a sample albedo texture upon import, as shown
in Figure 3-top.

3.2.1 Real human animation reconstruction
We also employ a video-based regression model to reconstruct
animations from real actor gestures and expressions, allowing us
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to compare the performance of synthetic animation against real
human motion capture. The model processes a driving video of
a real actor and outputs per-frame mesh objects. Specifically, we
use PIXIE (Feng et al, 2021la) to estimate 0, ¥, and gender-
specific shape B and «, while DECA (Feng et al., 2021b) extracts
high-fidelity 3D facial displacements. For the reconstruction-
based animation, we record an actor responding to scenario-based
questions while another individual poses the questions. Video
frames are extracted and processed by PIXIE and DECA to obtain
geometry, «, and lighting information. The audio from the original
video is used to synchronize lip movements with the spoken words.
Detailed shaded textures, including 3D displacements, are applied
by mapping UV textures onto the 3D body mesh on a per-frame
basis. Each frame is then exported as a Wavefront OB] file with
shaded textures via PyTorch3D (Ravi et al., 2020). Finally, using
Blender’s Geometry Nodes editor, we generate instances of objects
from a collection and place them on points derived from the mesh,
animating the mesh sequences with the geometry node modifier, as
shown in Figure 3-bottom. All animations share the same outdoor
environment background. For inference, we use the default model
hyperparameters provided by the original implementations of
all methods: EMAGE, TalkSHOW, AMUSE, FaceFormer, PIXIE,
and DECA. All input audio was sampled at 16 kHz. We used
Blender 3.4 along with the built-in VR Scene Inspection add-
on for VR streaming. The SMPL-X Blender add-on (v1.1) was
used, along with the SMPL-X mesh, textures, and UV map (v1.1,
NPZ+PKL format).

4 User study

4.1 Research questions

We address the following research questions for animations
representing two emotional arousal categories:
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Speech-driven 3D Animation Synthesis

EMAGE

_

Driving Video

FIGURE 3

TITY

TalkSHOW
Real Human Animation Reconstruction

Pose prediction

Reconstruction Process

Qualitative evaluation. Top: Specific frames from the generated animation sequences using EMAGE (Liu et al., 2024), TalkSHOW (Yi et al., 2023), and a
combination of AMUSE (body animation) (Chhatre et al., 2024) and FaceFormer (facial expressions) (Fan et al., 2021). Bottom: The workflow for
generating reconstruction-based animations from real human facial expressions and body gestures using driving video input, which serves as our
baseline. The reconstruction method PIXIE (Feng et al., 2021a) + DECA (Feng et al.,, 2021b) predicts pose parameters, normal maps, and textures,
which are combined and rendered. Specific frames from the resulting video-based reconstruction animations are shown in the bottom right.

AMUSE (body) + FaceFormer (face)

FhA

PIXIE (body) + DECA (displacement)

Normals prediction

R
-

Texture prediction

e RQIl (Perceived Animation Realism): “Which generative
method demonstrates the highest perceived realism during a
social interaction?”

e RQ2 (Perceived Animation Naturalness): “Which generative
method demonstrates the highest naturalness in terms of facial
expressions and bodily gestures?”

e RQ3 (Perceived Animation Enjoyment): “Do the methods
influence the perceived level of enjoyment?”

e RQ4 (Perceived Interaction Quality): “Do the methods show
differences in the quality of experienced interaction?”

e RQ5 (Perceived Animation Diversity): “Can participants
perceive motion diversity between two virtual character
animations of the same speech utterance with neutral emotion,
presented side by side?”

e RQ6 (Perceived Animation Emotion): “Can participants
correctly identify the arousal level in the generated animation
that the model was given as input?”

4.2 Participants

We recruited 48 participants (28 males, 20 females) aged 19-
48 (0 = 26.71,SD =
University. When asked about their recent experiences with virtual

5.30) via internal channels at the local

environments, 70.8% reported playing videogames in the past 12
months, and their previous enjoyment with VR experiences varied
as follows: “below average” (6.25%), “average” (33.3%), “good”
(37.5%), and “very good” (22.9%). All participants were recruited
through an internal email system and received a gift card as
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compensation. The study conformed to the Declaration of Helsinki
and was approved by the local ethical committee.

4.3 Experiment conditions

We conducted a within-subject experiment with two
independent  variables: method (EMAGE, TalkSHOW,
PIXIE4+DECA, and AMUSE+FaceFormer) and scenario [Happy
Emotion Animation (HEA), Neutral Emotion Animation (NEA),
and Animation Diversity (DV)]. The HEA and NEA scenarios
involve interactions with an agent displaying happiness and neutral
animations, respectively. The DV scenario employs two different
PyTorch noise seeds to generate distinct animations of two agents
performing the same speech utterance with neutral emotion. In
PyTorch, setting a fixed random seed helps control sources of
randomness—allowing repeated executions on the same platform
and device to produce identical outputs—, which lets us opt into
deterministic implementations for certain operations. In the HEA
and NEA scenarios, participants engage in one short conversation,
whereas in the DV scenario they participate in two conversations.
To systematically test method effects, we combined the four
animation sources—three generative models and one based on a
real human performance—with the three scenarios, yielding twelve
experimental conditions. This design enables us to compare the
effectiveness of the generative models in expressing emotionally
expressive animation both between themselves and against the
baseline (PIXIE4+DECA) by measuring user perceptions during
interaction with the virtual character. The ordering of conditions
per participant was counterbalanced using a Latin Square design.
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The scenario design follows principles from Fraser et al. (2022).
Specific frames from all scenarios are shown in Figure 3.

4.3.1 Happy Emotion Animation (HEA)

Participants engage in a short conversation where the agent
expresses happiness. The prompt is “Past accomplishment”, and
the agent responds with “I engineered an Al-driven healthcare
diagnostic tool, enhancing medical professionals’ capabilities for rapid
and accurate disease identification and treatment”, accompanied
by consistent gestures and facial expressions generated by each
method. This pre-generated response and motion are produced by
the system described in Section 3.2 and configured to convey high
arousal (happiness).

4.3.2 Neutral Emotion Animation (NEA)

This scenario mirrors the HEA condition, but conveying mid
arousal instead (neutral emotion). The prompt is “Way to relax”,
and the response is “I escape to a secluded garden, where the rustle
of leaves and blooming flowers ease my mind”.

4.3.3 Animation Diversity (DV)

In this scenario, participants encounter two agents under
the prompt “Christmas plans”. Both agents respond with “This
Christmas, I'm eager to create handmade decorations and share
the festive spirit with those around me”, each displaying motion-
diverse body gestures and facial expressions generated from neutral
emotion input, and presented side by side.

4.4 Survey

We used a 2l-item questionnaire to gauge how each
experimental condition influenced perception, social presence,
and interaction quality. Three items collected demographics and
prior VR exposure, while twelve items—split evenly between
Happy and Neutral arousal blocks-assessed perceived realism
[from the Networked Minds Social Presence Inventory (Biocca
et al., 2003)], facial- and body-naturalness [adapted from Fraser
et al. (2022)], interaction quality (Rogers et al., 2021), emotional
arousal level (Biocca et al., 2003), and animation diversity (Conley
et al., 2018; Cooperrider, 2020). Six additional post-study items,
also adapted from Fraser et al. (2022), captured overall realism,
interaction quality, face- and body-naturalness, diversity, and
open-ended feedback. All conditions used five-point Likert items,
except for perceived emotional arousal, which had three levels
(high, medium, low), and the diversity item, which was a binary
choice. Some prompts were slightly reworded to match the scope
of our study. In Table 2 we provide a complete list of all questions,
their primary sources, the subjective metrics they assess, and their
intended applicability.

4.5 Apparatus

We used an HTC VIVE Pro 2 Head-Mounted Display (90
FPS, 120° FOV, 2448x2448 resolution per eye) with integrated

Frontiersin Computer Science

10.3389/fcomp.2025.1598099

headphones. Two SteamVR 2.0 base stations tracked participants’
positions. The virtual environment was created in Blender 3.4
with OpenXR-based SteamVR integration. The 30 FPS animation
was played at 90 Hz in the VR headset using frame duplication,
running on a desktop computer with an Intel i9-13900K CPU,
64GB RAM, and an NVIDIA RTX A6000 GPU. To ensure
synchronized facial expressions and gestures despite method
latency (section 6.4), speech and animations were pre-generated
before the experiment and then streamed and rendered in real-time
during user interaction.

4.6 Procedure

Participants received an introduction to the study and
provided written consent. Once sat down and wearing the
headset, they were greeted by a virtual character positioned
1.5m away, allowing them to position themselves comfortably
for eye contact. We kept the interpersonal distance and outdoor
scene constant, in an effort to eliminate confounding effects
of proxemics and place illusion. They then removed the
headset to complete a pre-experiment survey. Next, participants
experienced the twelve conditions (four methods x three
scenarios) in a counterbalanced order, one trial at a time. Before
each trial, they were shown a paper with the conversation
prompt and then wore the headset to interact with the virtual
character. After each trial, they removed the headset to complete
a condition-specific survey, before moving on to the next
trial. Upon finishing all scenarios, participants completed a
post-experiment survey.

4.7 Data analysis

Because the collected data did not satisfy the assumption of
normality, we employed the aligned rank transform (ART), a
non-parametric method suitable for factorial analyses (Wobbrock
et al, 2011). Specifically, we used an ART ANOVA for
all statistical tests and applied Bonferroni corrections for
pairwise comparisons.

5 Results

5.1 Perceived animation realism

We found that the methods did not significantly influence
realism: EMAGE (Md = 2, IQR = 2), TalkSHOW (Md = 3, IQR =
2), PIXIE4+DECA (Md = 3,IQR = 2), and AMUSE+FaceFormer
(Md =
significant main effect for methods [F(3,141) =

3,IQR = 2). This result was confirmed by a non-
15p =
0.2,7> = 0.03]. However, we discovered that the happy emotion
condition (Md = 3,IQR = 2) yielded higher realism ratings
than the neutral emotion condition (Md = 2.5,IQR = 2), as
supported by a statistically significant main effect for emotion
[F(1,47) = 11.5,p < 0.001,712 = 0.2]. Finally, no statistically
significant interaction effect was observed for methods x emotion
[F(3,141) = 1.6,p = 0.17,> = 0.03].
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TABLE 2 Questions used in the perceptual study across VR conditions.

10.3389/fcomp.2025.1598099

Questions Primary Measures  Intended
reference assessed applicability
Pre Did you play any video game in the past 12 months? Fraser et al., 2022 Exposure Cross media
How was your experience with virtual environments? Fraser et al., 2022
Write positive and negative experiences for these interactions. Fraser et al., 2022
HEA I felt like T was interacting with a real person. Biocca et al., 2003 APR/ SP XR
Their facial expressions looked natural. Fraser et al., 2022 ANF Cross media
Their body movements looked natural. Fraser et al., 2022 ANB Cross media
Rate your enjoyment during the interaction. Rogers et al., 2021 AE Cross media
Was the interaction warm and comfortable? Rogers et al., 2021 1Q Cross media
What was your perceived emotion of the avatar’s animation? Biocca et al., 2003 EAR Emotional interactions
NEA I felt like I was interacting with a real person. Biocca et al., 2003 APR/ SP XR
Their facial expressions looked natural. Fraser et al., 2022 ANF Cross media
Their body movements looked natural. Fraser et al., 2022 ANB Cross media
Rate your enjoyment during the interaction. Rogers et al., 2021 AE Cross media
Was the interaction warm and comfortable? Rogers et al., 2021 1Q Cross media
What was your perceived emotion of the avatar’s animation? Biocca et al., 2003 EAR Emotional interactions
DV Do you perceive diversity in the two animations presented? Conley et al., 2018; AD Cross media
Cooperrider, 2020
Post Did you feel the strongest sense of closeness to your conversational partner? Biocca et al., 2003 Sp XR
Did the interaction with the avatar feel mostly like a real person? Biocca et al., 2003 SP XR
The avatar’s facial expressions looked the most natural/realistic. Fraser et al., 2022 ANF Cross media
The avatar’s body movements looked the most natural/realistic. Fraser et al., 2022 ANB Cross media
Provide qualitative feedback about your overall VR interaction experience. Fraser et al., 2022 Feedback Cross media

The table lists each condition (Cond.), the corresponding survey questions, the primary source of the item, and the construct it measures. Abbreviations for the measures: APR, Animation-
Perceived Realism; ANE, Animation-Naturalness of Facial Expressions; ANB, Animation-Naturalness of Body Gestures; AE, Animation Enjoyment; IQ, Interaction Quality; EAR, Animation
Emotional Arousal Recognition; AD, Perceived Animation Diversity; SP, Social Presence; OF, Open-ended Feedback; XR, Extended Reality (VR/AR/MR). Cross media represents any media

platform-video, XR, or other formats.

5.2 Perceived animation naturalness of
facial expressions

PIXIE4+DECA (Md = 3,IQR = 2) resulted in higher ratings
for the naturalness of facial expressions compared to EMAGE
(Md = 2,IQR = 1), TalkSHOW (Md = 3,IQR = 2),
and FaceFormer (Md = 2,IQR = 1). This was confirmed by
a statistically significant main effect for methods [F(3,141) =
3.3,p = 0.02, 7> = 0.07]. Pairwise comparisons showed significant
differences between EMAGE and PIXIE4+DECA (p = 0.01),
but not among the other pairs (p > 0.05). No significant
differences were found between the happy emotion (Md =
3,IQR = 1) and neutral emotion (Md = 2,IQR = 1)
conditions [F(1,47) = 1.49,p = 0.22, r;z = 0.03]. However, a
statistically significant interaction effect for methods x emotion
was observed [F(3,141) = 4.1,p = 0.007,7*> = 0.08]. Pairwise
comparisons revealed significant differences between the neutral
emotion condition in EMAGE and PIXIE4+DECA (p = 0.01),
and between TalkSHOW happy emotion and EMAGE neutral
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emotion (p = 0.0238); the remaining comparisons were not
significant (p > 0.05).

5.3 Perceived animation naturalness of
body gestures

We found that methods did not significantly affect the
naturalness of bodily movements: EMAGE (Md = 3,IQR = 2),
TalkSHOW (Md = 3,IQR = 2), PIXIE (Md = 3,IQR = 2),
and AMUSE (Md = 3,IQR = 2). This was confirmed by a
non-significant main effect for methods [F(3,141) = 13,p =
0.26,7> = 0.03]. However, the happy emotion condition (Md =
3,IQR = 2) resulted in higher naturalness ratings than the neutral
emotion condition (Md = 3,IQR = 2), a difference supported
by a statistically significant main effect for emotion [F(1,47) =
64,p = 0.01,772 = 0.12]. No significant interaction effect
was observed for methods x emotion [F(1,141) = 1.57,p =
0.19,7> = 0.03].
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FIGURE 4
Summary of likert scale results. Summary of Likert scale ratings for Animation Realism (avatar felt like a real person), Animation Naturalness (facial
expressions; body movements), Animation Enjoyment, and Interaction Quality (interaction warmth). For brevity, we denote EMAGE, TalkSHOW,
PIXIE+DECA, and AMUSE+FaceFormer as M1, M2, M3, and M4, respectively, and use "High” and "Low" to represent happy and neutral emotions.

5.4 Perceived animation enjoyment

We found that the methods did not significantly influence
enjoyment levels: EMAGE (Md = 3,IQR = 2), TalkSHOW
(Md = 3,IQR = 2), PIXIE+DECA (Md = 3,IQR = 1.25),
and AMUSE+FaceFormer (Md = 3,IQR = 2). Similarly, there
was no significant difference between the happy emotion (Md =
3,IQR = 2) and neutral emotion (Md = 3,IQR = 2) conditions.
These findings were supported by non-significant main effects for
methods [F(3,141) = 2.4,p = 0.06,n> = 0.05] and emotion
[F(1,47) = 2.6,p = 0.11,n*> = 0.05]. Additionally, no statistically
significant interaction effect was found for methods x emotion
[F(3,141) = 1.05,p = 0.36, n*> = 0.022].

5.5 Perceived interaction quality

TalkSHOW (Md = 3,IQR = 1.25) resulted in higher ratings
for interaction quality compared to EMAGE (Md = 2,IQR = 1),
PIXIE+DECA (Md = 3,IQR = 1), and AMUSE+FaceFormer
(Md = 3,IQR = 2). This difference was supported by a statistically
significant main effect for methods [F(3,141) = 4.2,p <
0.01,7> = 0.08]. Pairwise comparisons indicated significant
differences between TalkSHOW and AMUSE+FaceFormer (p =
0.027), while the other comparisons were not significant (p >
0.05). No significant differences were observed between the happy
(Md = 3,IQR = 2) and neutral (Md = 3,IQR = 2)
emotion conditions [F(1,47) = 4,p = 0.05L,n> = 0.07].
Furthermore, no significant interaction effect was found for
methods x emotion [F(3,141) = 1.57,p = 0.2,n> = 0.03]. A
summary of the Likert scale results for realism, facial expressions,
bodily movements, enjoyment, and interaction quality is shown
in Figure 4.

5.6 Animation emotional arousal
recognition

As the last question in the six-item survey, participants rated the
animations arousal for both HEA and NEA conditions. After being

Frontiersin Computer Science

TABLE 3 Arousal recognition rates by method and sequence.

Mid

Low ‘

TalkSHOW

PIXIE+DECA

AMUSE+FaceFormer

For each animation method and sequence (H = high-arousal for happiness, N = mid-arousal
for neutral), participants’ percent correct identification in the three response categories.

told to judge the perceived emotional arousal of each clip, they
chose one of three options: high, medium, or low arousal. Overall,
participants correctly identified high-arousal clips 60.94% of the
time and mid-arousal clips 78.65% of the time. By method, EMAGE
had a recognition percentage of 55.5% on high and 72.2% on mid,
TalkSHOW 56.0% and 78.4%, PIXIE + DECA 61.5% and 89.58%,
and AMUSE + FaceFormer 70.83% and 74.4%, respectively. Thus,
AMUSE + FaceFormer led in high-arousal recognition, while
PIXIE + DECA excelled at mid-arousal detection. The detailed
confusion matrix for two stimulus levels (high and mid arousal)
across three response options (high, mid, low) is shown in Table 3.
Correct identifications are highlighted in blue, while any confusions
in which a high- or mid-arousal stimulus was classified as low
arousal are shaded in violet.

To further analyze arousal recognition, we used a deep
learning-based motion extractor (Petrovich et al., 2021; Chhatre
et al., 2024) trained on motion capture data to predict one of eight
emotion classes (an extended Ekman-style eight-class taxonomy:
neutral, happy, angry, sad, contempt, surprise, fear, disgust). We
present the predicted emotion recognition probabilities in Table 4,
where the best-performing methods” happy and neutral sequences
are highlighted in blue and second best in yellow, while the
emotions with which the method is confused are highlighted
in violet.
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TABLE 4 Emotion recognition accuracy for happy and neutral animations.

Method . H

EMAGE

10.3389/fcomp.2025.1598099

TalkSHOW

PIXIE+DECA

AMUSE+FaceFormer

Each row shows the softmax probability distribution (%) over the eight Ekman emotions for a given method and sequence. N, H, A, S, C, Su, E and D represent neutral, happiness, anger,

sadness, contempt, surprise, fear, and disgust, respectively. See Section 6.2 for discussion.

5.7 Animation diversity

Participants were asked to judge whether two side-by-
side virtual-character animations-generated from distinct initial
conditions as described in Section 4.3-appeared diverse. Because
this diversity item was a binary choice, we did not subject
it to statistical analysis. AMUSE+FaceFormer was rated most
effective, with 95.8% of participants perceiving diversity. In
contrast, EMAGE received the lowest ratings, with 70.8% reporting
perceived diversity and 18.8% indicating no diversity. Both
TalkSHOW and PIXIE+DECA received 79.2% of participants
reporting perceived diversity. To complement our statistical
analysis, we computed the Euclidean distance (2-norm) between
joints on the SMPL-X axis angles, yielding diversity scores of
2.5336 for EMAGE, 2.0777 for TalkSHOW, and 2.9360 for
AMUSE+FaceFormer; PIXIE+DECA shows no diversity due to its
deterministic reconstruction approach.

5.8 Post-experiment feedback: perceived
closeness and realism

Participants evaluated their experiences using 5-point Likert
scale responses regarding closeness, perceived realism, and the
naturalness of facial expressions and bodily movements. The post-
study items were collected only once per participant-after all
methods had been experienced-we treat these four measures as
overall user impressions rather than method-specific comparisons.
Accordingly, we report only descriptive statistics and do not
perform factorial tests. Post-study ratings yielded a median sense
of closeness (Md = 2,IQR = 1), agent realism (Md = 3,IQR = 2),
1), and body-
gesture naturalness (Md = 3,IQR = 2), indicating an overall

facial-expression naturalness (Md = 3,IQR =

mildly positive perception of the virtual characters social presence
and animation quality. EMAGE and TalkSHOW received the
lowest ratings, with 28 and 30 participants, respectively, rating
closeness as “A little”. PIXIE4+DECA performed best, with 24
participants reporting “Quite a bit” of closeness and 27 finding
the agent realistic. PIXIE4-DECA also scored highest for natural
facial expressions, with 23 participants rating them as “Quite a
bit”. AMUSE+FaceFormer received more balanced feedback, with
22 participants finding the agent realistic and 23 rating the bodily
movements as natural.
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6 Discussion

6.1 Scenario design

Our scenarios focus on everyday conversations, each associated
with an internal emotional state. For example, a relaxation
topic corresponds to a neutral emotional stance, while a
past achievements topic evokes a happy emotional state. This
setup explores how varying emotional cues affect behavior
and perception. In a “passion” scenario, audio and gestures
convey energetic or happy expressions, whereas in a “relaxation”
scenario, they are more subdued. We then evaluate the extent
to which the methods can generate distinguishable emotional
levels. Regarding animation diversity, we measure how much
gesture variation is acceptable before the virtual characters identity
appears inconsistent for the same speech utterance, as if a
participant was interacting with a different entity within the
same scenario.

6.2 Emotional 3D animation

Our findings show that the emotion category significantly
affects animation realism. Happy emotion animations with
energetic gestures were perceived as more realistic than
neutral emotion animations, indicating that high-arousal,
happy expressions have a stronger social presence during an
interaction across all methods (RQ1). In terms of facial expression
naturalness, PIXIE+DECA outperformed the other methods-
especially in neutral emotion scenarios—demonstrating a superior
ability to capture subtle facial cues. Additionally, emotional
interaction revealed that PIXIE+DECA consistently performed
better (particularly compared to EMAGE in neutral conditions),
primarily due to DECA’s robust capture of 3D facial displacements,
which enhances the base expressions predicted by PIXIE; no
speech-driven face animation method is comparable to the
reconstruction-based real human facial expressions compatible
with SMPL-X meshes (RQ2-face). For body movement naturalness,
emotion again played a key role: happy emotion movements were
rated more natural (RQ2-body), mirroring the results for
animation realism (RQ1). While enjoyment levels were similar
across all methods (RQ3), TalkSHOW outperformed the others

in interaction quality—especially when compared to EMAGE and
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AMUSE+FaceFormer-suggesting that TalkSHOWSs output may
support a stronger interactive connection with users (RQ4).

Survey data shows that 60.94% of participants correctly
identified the happy emotion condition, while 78.65% correctly
recognized the neutral emotion condition, indicating that mid-
arousal gestures were easier to identify (RQ6). PIXIE+DECA
achieved the highest accuracy (89.58%) for neutral emotion,
whereas AMUSE+FaceFormer performed best for happy emotion
(70.83%), demonstrating that AMUSE+FaceFormer animations
are easier to recognize for happy emotion compared to other
methods. EMAGE exhibited balanced accuracy for both conditions,
while TalkSHOW and PIXIE+DECA showed a trend toward more
accurate mid-arousal identification.

The effectiveness of each model in generating distinguishable
emotional levels depends on its architecture and processing
approach (see Table 1). All methods
probabilistic, but differ in their preprocessing approaches; EMAGE

are generative and

and AMUSE include unique processing steps, whereas TalkSHOW
uses standard inputs without specialized preprocessing.

6.2.1 EMAGE and AMUSE

Extract disentangled latent representations for speech content,
emotion, style, and rhythm. These robust representations allow for
better alignment with arousal cues rather than merely producing
varied animations.

6.2.2 PIXIE

Operates purely on video input, reconstructing realistic
animation directly from a human actors performance. Although
this can vyield high-quality results, it relies on the actors
expressiveness and does not create new gestures.

Using this statistical deep learning emotion recognition metric
for motion sequences, we observe that AMUSE+FaceFormer
and PIXIE+DECA demonstrate the highest emotion recognition
scores, with AMUSE+FaceFormer achieving 56% accuracy for
happy emotion and 54.3% for neutral emotion. Specifically,
AMUSE+FaceFormer predictions confused Happy with Surprise
and Neutral with Sad; PIXIE4+DECA confused Happy with Angry
and Neutral with Fear. In contrast, TalkSHOW and EMAGE
demonstrate lower emotion recognition accuracy, with TalkSHOW
confusing Happy with Neutral and Neutral with Fear, and EMAGE
showing high confusion with Sad in both sequences. These
quantitative findings align with our user study data, indicating
that PIXIE4+DECA excels at capturing high-quality animations,
although depending on the actors performance, whereas audio-
based methods can independently generate synthetic animations
with disentangled emotion and content, producing more clearly
distinguishable gesture arousal-with the speech-driven method
AMUSE+FaceFormer showing the highest accuracy.

6.3 Animation diversity
The perceived animation diversity varied significantly across

models, with AMUSE+FaceFormer standing out—95.8% of
participants noticed diverse animations. In contrast, EMAGE
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scored lowest at 70.8%, while 79.2% of participants observed
diversity with the other models. Animation diversity is essential
for crowd animations and extended interactions, where varied
gestures, movements, and contexts create engaging, lifelike
experiences; it also applies to both speech-driven and idle
animations, which are key to maintaining natural behavior
in virtual characters. Additionally, quantitative measurements
of animation diversity—computed as the Euclidean (2-norm)
distance between SMPL-X joint axis angles—show that
AMUSE+FaceFormer has the highest 2-norm, followed by
EMAGE and TalkSHOW. These findings reinforce our statistical
analysis, confirming that greater animation diversity enhances
perceived interaction quality and supports RQ5.

6.4 Inference times

The inference times for producing 10-second animation
sequences were as follows: EMAGE required 0.827s; TalkSHOW,
20.29s; PIXIE+DECA, 412.63s; and AMUSE+FaceFormer totaled
8.561s (2.557s for body animation, plus 5.337s for face animation).
EMAGE is the fastest, making it particularly efficient for real-
time or near real-time applications. AMUSE+FaceFormer strikes
a balance between speed and complexity, being faster than
TalkSHOW but slightly slower than EMAGE, while PIXIE+DECA
is by far the slowest due to the complexity of video-based
animation reconstruction.

6.5 Design recommendations

In our evaluation, we compared state-of-the-art speech-driven
3D emotional animation generation methods to examine their
strengths and weaknesses, as well as how they shape user
perception in VR. By comparing these generative approaches
with the reconstruction of a real actor, we also investigated
how closely current methods can replicate real human body and
facial expressions. We note that marker-based motion capture
yields higher-quality real-actor motion than our reconstructed
animations. Based on our user study results, we note the following
design recommendations.

6.5.1 Emotional modeling

While speech-to-animation methods often focus on lip-sync
and body gestures, explicit emotion modeling is frequently
overlooked. As shown in Table 4, all animation methods (EMAGE,
TalkSHOW, AMUSE, FaceFormer) have considerable scope for
improvement in emotion recognition (RQ6). Although AMUSE,
which is trained on explicit audio emotion and person identity
modeling for gesture generation, shows the best relative accuracy
(56.0% for happiness and 54.3% for neutral), there remains a
gap. Emotions are often confused with other emotional animation
sequences across models. AMUSE achieves emotion modeling by
disentangling driving speech into content, emotion, and style;
however, its approach is limited to a single categorical emotion per
sequence. Exploring multiple concurrent emotions in an animation
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sequence is a promising direction for future research. Finally,
scenario context may affect emotion perception: participants
inferred emotions not only from gestures but also from the spoken
content or from how convincingly the actors performance was
rendered (for the video reconstruction method).

6.5.2 Animation generation for emotional states
with lower arousal

In terms of animation realism (RQ1l) and naturalness
(RQ2 for both body and face), we observed that animations
representing high-arousal, happy emotions consistently received
higher ratings than those for neutral, low-arousal states. The
generative models generally perform better when generating
pronounced expressions compared to subtle, idle movements.
This is likely because the motion datasets used for training
typically include expressive sequences rather than calm, idle ones.
Incorporating mocap datasets focused on calm or idle motions,
such as breathing-based movement, could help models generalize
to less exaggerated animations.

6.5.3 Joint modeling of facial expressions and
body gestures

Among the evaluated methods, EMAGE jointly trains face
and body, whereas TalkSHOW trains them separately within the
same framework, and AMUSE does not address facial expressions.
Even with joint training in EMAGE, no method achieved
high ratings for facial expression naturalness (RQ2-face). This
highlights the challenge of simultaneously learning both expression
parameters and body gestures, largely due to the differences
in data representations (face data uses 100 SMPL-X expression
parameters, while body data is based on joint rotations in the world
coordinate system). More robust data preprocessing and unified
parameterization are needed to effectively train a single model for
both full-body and facial animations.

6.5.4 Dyadic interaction feedback

All generative methods exhibited similarly low performance
in animation enjoyment (RQ3) and interaction quality (RQ4),
although TalkSHOW showed relatively higher interaction quality.
This suggests that current evaluations, which often rely solely on
statistical metrics, do not fully capture the user-centric experience
in immersive interaction settings. Incorporating user-centered
evaluation into the feedback mechanism is crucial, as it ensures that
the generated animations effectively convey the intended emotion
and enhance user enjoyment and interaction.

7 Limitations and future work

Our evaluation represents a useful first step but has several
limitations that suggest valid directions for future research—
namely, addressing latency issues, exploring the full spectrum of
emotion categories, varying VR hardware setups, incorporating
additional behavioral measures, and benchmarking against video-
based reconstruction-all of which are detailed below.
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7.1 Latency and turn-taking

Our evaluation employs a modular approach using several
large deep generative models. For instance, AMUSE—a latent
diffusion model with 440 million parameters—generates temporal
SMPL-X motion parameters but suffers from slow inference due
to extensive denoising steps and high GPU memory requirements
(e.g., RTX A6000 with 48 GB). Similarly, the face generation models
in TalkSHOW and FaceFormer, which are based on Transformer
autoregressive architectures, experience longer inference times
due to their sequential design. As these latencies limit real-time
applications, we pre-generate speech and animations and stream
them in real time for single-turn conversations, as noted in
Section 4.5. Supporting multi-turn conversations, however, would
require a fully real-time setup with no pre-generation, where the
speech responses and corresponding animations must be generated
and streamed simultaneously in VR. As noted in Section 6.4,
EMAGE is currently the most suitable method for real-time
interaction, achieving the lowest latency at 0.827s. To account
for this, we introduce a fixed 5-second idle movement period
between turns, where the agent adopts a neutral, forward-facing
stance. In a fully real-time multi-turn conversation, idle motion and
wait times would need to dynamically adapt to the length of the
participant’s response. To the best of our knowledge, no currently
available system can generate idle body motion and trigger speech
and animation generation in real time upon detecting the end of
a users reply. Achieving this would require integrating speech-
to-speech models with real-time animation generation, followed
by synchronized playback of speech and gestures—an avenue we
identify as future work. Such a system would also require careful
consideration of hardware, as computing demands are expected to
remain high.

7.2 Emotion categories

Emotions can be described as discrete classes or as points
in a continuous affective space (see Section 2.1.1). To keep the
study tractable, we restricted our experiment to two conditions—
Happy (high arousal) and Neutral (mid arousal)-which provided
clear initial insights while avoiding an exponential growth in
the number of possible condition combinations. Extending the
protocol to cover additional emotions across the full arousal-
valence spectrum of the circumplex model is an important goal for
future work.

7.3 VR apparatus

VR streaming and rendering are compute-intensive and
heavily hardware-dependent. As described in Section 4.5,
we mitigated these challenges by splitting the interaction
into two phases: real-time streaming for interaction and
with  other
components generated in advance. Future improvements in

precomputed full-body animation rendering,

VR hardware for rendering and streaming will further alleviate
these limitations.
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7.4 Video-based reconstruction

Although our video-based reconstruction method shows
promising per-frame quality, its temporal coherence is lower.
Frame-by-frame pose estimation, when played back at 30 FPS,
leads to jittery animations (see Supplementary Video). Despite
our initial expectation that video-based reconstruction of the real
animation would yield the best performance across enjoyment
(RQ3) and interaction quality (RQ4), our user study revealed
that reconstruction methods did not excel in these areas, even
though facial animation (RQ2-face) was enhanced by DECA-based
face displacements. Future studies should explore reconstruction
methods that improve temporal coherence and pose estimation for
smoother animations at the desired frame rate.

7.5 Additional behavioral measures

Research on human-like behavior in virtual agents remains
in its early stages. Our study is a useful first step, but a
richer evaluation is needed—particularly on metrics such as
eye-gaze patterns and task-completion time. Concepts central
to believability and presence—including co-presence, plausibility,
place illusion, the uncanny valley for interactive agents, and both
subjective and inter-subjective symmetry—also require analysis. In
addition, more complex social dynamics (e.g., group interaction
and contact behavior such as self-contact, interpersonal contact,
and ground contact) should be examined. Progress will depend on
developing stronger generative models and testing them in more
sophisticated realistic environments.

8 Conclusion

We present an evaluation of generative models for emotional
3D animation within an immersive VR environment, focusing
on user-centric metrics—emotional arousal realism, naturalness,
enjoyment, diversity, and interaction quality-in a real-time
human-virtual character interaction scenario through a user
study (N =
perceived emotional quality across three state-of-the-art speech-

48). In this study, we systematically examined

driven 3D animation methods and compared them to a real
human reconstruction-based animation under two emotional
conditions: happiness (high arousal) and neutral (mid arousal).
Participants recognized emotions more accurately for generative
methods that explicitly modeled animation emotions. User
study data showed that generative models performed well
for high-arousal emotion but struggled with subtle arousal
emotion. Although reconstruction-based animations received
higher ratings for facial expression quality, all generative methods
exhibited lower ratings for animation enjoyment and interaction
quality, highlighting the importance of incorporating user-centric
evaluations into generative animation model development. All
methods demonstrated acceptable animation diversity; however,
differing inference times among generative methods, along
with VR rendering latency, posed limitations. Lastly, while the
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video-based reconstruction method (compatible with SMPL-
X meshes) produced high-quality frame-level animations from
driving videos, it lacked temporal coherence, leading to suboptimal
performance in user ratings of animation enjoyment and
interaction quality. Overall, these findings highlight the importance
of integrating user-centric evaluations into the development
of generative models to produce virtual animated agents that
outperform rule-based and teleoperated techniques. Hence, we
believe that evaluating models solely on technical metrics during
development is insufficient to ensure that the animations convey
the perceptual details we want end users to experience in
conversational scenarios.
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