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Introduction: Cloud computing has revolutionized how organizations manage 
their infrastructure by providing scalable, on-demand services. However, the 
dispersed and open nature of cloud systems exposes them to a wide spectrum 
of cyberattacks. Machine learning provides dynamic options for detecting known 
and unknown assaults, whereas typical intrusion detection systems that depend 
on signature or rule-based techniques find it difficult to adjust to complex cyber 
threats.

Methods: This study compares the efficacy of an ensemble approach (Voting 
Hard and Stacking) for intrusion detection in cloud environments with individual 
machine learning classifiers, such as Random Forest, Decision Tree, Gradient 
Boosting, XGBoost, Naive Bayes, Support Vector Machine, and Logistic 
Regression. The study uses the NSL-KDD dataset.

Results: The results show show that while standalone models perform well, the 
ensemble technique offers better accuracy (almost 100%) and resilience across 
precision, recall, and F1-score measures. Furthermore, it is shown via feature 
selection methods (Random Forest, Gain Information, and Manual Selection) 
that the ensemble model performs consistently even when feature sets are 
smaller.

Discussion: These findings highlight how both individual and group Machine 
learning approaches may be used to improve Intrusion detection systems for 
cloud infrastructures, providing implementation flexibility according to threat 
landscapes and computing limitations.
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1 Introduction

Cloud computing (CC) is a contemporary strategy that gives users access to pre-configured, 
task-specific, and externally managed internet-based resources. Most businesses increasingly 
rely on these externally maintained services to fulfill particular goals like operating apps, 
handling certain data activities, or enhancing existing systems, rather than having complete 
infrastructure management. In contrast to conventional configurations, cloud services limit 
direct management but provide remote use of certain tools provided by cloud service providers 
(CSPs), contingent on network access and availability (Dattangire et al., 2024). Whereas before 
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it would just be present as a convenience or access-by-speed device, 
cloud computing is now an operational and resource management 
strategy because of the increasing reliance on centralized digital 
infrastructure. Consumer-accessible services that offer consumers 
limited access to necessary resources are normally run internally or by 
trusted partners.

However, cloud infrastructures’ interconnection and complexity 
inadvertently lay open vulnerabilities, hence the possibility of security 
vulnerability exploitation. As a countermeasure to these challenges 
(Al-Sharif and Bushnag, 2024). Whereas intrusion detection systems 
(IDSs) are usually used to stay up to date with regard to network 
activity, they tend to be more event-focused on logging instead of 
proactive intrusion prevention. When confronted with new attack 
patterns, traditional IDSs, which generally make use of preconfigured 
rules or signatures, would overfit known threats and tend to produce 
a high false alarm rate. Furthermore, the inability of their responses 
to keep up with changing threat environments is due to the static 
nature of traditional IDSs (Al-Sharif and Bushnag, 2024).

ML-based systems are less reliant on human maintenance and are 
more resilient to as-yet unknown threats because they adapt to 
evolving habits over time rather than relying merely on pre-determined 
signatures (Adhikari and Bal, 2023). ML has been utilized mostly as 
an auxiliary method to cloud infrastructure security management for 
the last few years. Even if they do not necessarily surpass conventional 
methods in terms of precision, ML algorithms employ training on 
actual real-world data samples in order to aid in the identification of 
patterns of cloud-based threats rather than completely automating 
threat identification (Dattangire et al., 2024).

Despite CC being on-demand and dynamic in service, its 
widespread and expansive nature can make it cumbersome to ensure 
sustained security. Traditional IDS based on predefined rules or 
signatures can be lacking.

in the case of changing and cunning attack styles, opening 
vulnerabilities. Sophisticated and context-aware security solutions are 
required to counter this. ML methods can be used to identify threats 
by examining traffic patterns in the network, but their deployment in 
cloud-based IDS systems is limited and needs to be improved.

In order to improve threat awareness in cloud computing, this 
study focuses on putting forth a cooperative approach in which IDS 
facilitates ML-based analysis. When managing different kinds of 
network risks, the goal is to minimize mistakes, cut down on detection 
delays, and preserve performance. The experimentation in this study 
is based on the NSL-KDD dataset.

1.1 Problem statement

Whereas cloud computing is becoming a growing trend due to its 
remote availability and simple services, control and data management 
concerns are invited by its reliance on outside providers. Despite their 
best effort to provide accessibility and efficiency, cloud systems may 
inadvertently expose themselves to threats due to their complexity and 
large distribution. Traditional IDSs are skewed toward familiar attack 
patterns, which limits their capacity to identify unexpected behavior. 
IDSs are often employed to audit activity rather than to prevent attacks 
actively. Although ML is commonly proposed as a means of improving 
threat detection, it might not always yield stable performance in 
various situations or real-time reliability. Furthermore, the extent to 

which ML and IDS can be integrated is still limited, and thus the issues 
involved in converging automation and adaptive security mechanisms 
are far from being completely addressed.

1.2 Objective

The objective of this work is to develop an ensemble-driven 
intrusion detection model that integrates ML techniques into 
traditional IDS for enhancing cloud computing environment security. 
It increases the detection accuracy of known and unknown attacks, 
reduces false alarms, and supports timely and adaptive reactions to 
novel attack patterns.

1.3 Contributions

1.3.1 Proposed ensemble model
The ensemble strategy proposed in this study greatly improves 

cyber threat detection and mitigation for cloud environments by 
integrating ML methods effectively with IDS. With the use of 
ensemble ML techniques with Voting hard and Stacking techniques, 
which outperform single classifiers in terms of accuracy, precision, 
recall, and F1-score metrics, the model will enhance IDS’ capability to 
detect known and new attacks in real time.

1.3.2 Comprehensive classifier evaluation
Moreover, the analysis of the effectiveness of several ML classifiers, 

such as RF, XGBoost, SVM, DT, GB, LR, and NB, in identifying 
security threats related to cloud computing. The NSL-KDD dataset 
was used to assess the classifiers using measures including accuracy, 
precision, recall, and F1-score.

1.3.3 Practical insights for cloud security
Providing practical insights into how integration of ML and IDS 

may improve cloud computing security. The results emphasize the 
potential of the ensemble method in creating more resilient and flexible 
security systems capable of identifying and countering emerging threats.

1.4 The structure of the paper

The remainder of this paper is structured as follows: section 2 
contains background, which presents an introduction to cloud 
computing, IDSs, and ML. Section 3 discusses related work. Section 
4 offers an overview of the proposed model, including the NSL-KDD 
dataset, feature selection methods, classifiers employed, performance 
metrics for assessment, and experimental framework. Section 5 
contains the results and analysis. Finally, section 6 concludes 
conclusion and future work.

2 Background

2.1 Cloud computing

Cloud computing is the delivery of information technology services 
such as servers, storage, databases, software, network management, and 
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artificial intelligence (AI) via the Internet. It allows for speedier, more 
flexible, and cost-effective solutions than traditional techniques, 
resulting in improved productivity and efficiency. There are several 
sorts of cloud infrastructures, each with its design and development. 
Various models, varieties, and services have evolved to meet distinct 
demands. Cloud services may be  delivered in three ways: public, 
private, and ensemble (Megouache et al., 2024; Zulifqar et al., 2021).

The public cloud is an example of a computer platform that 
restricts customization and is run by companies that supply 
standardized services to a large customer base. This group of 
services, which rely on shared infrastructure, includes Microsoft 
Azure, Google App Engine, and Amazon EC2. On the other hand, 
the private cloud is designed for internal usage only, sometimes at 
the expense of more stringent data isolation. It is appropriate for 
businesses with certain operating needs. Microsoft ECI data centers, 
Ubuntu Enterprise Cloud, and Amazon Virtual Private Cloud are a 
few examples. Organizations with similar operational objectives 
employ the community cloud, which divides duties among several 
users and might result in less consistent administration (Saran et al., 
2022). New complexity brought forth by cloud technology’s ongoing 
development put both individuals’ and enterprises’ current security 
standards to the test. ML is being investigated as a supplemental 
technique to help conventional security measures rather than 
providing a comprehensive answer. Though their function is 
typically reactive rather than entirely preventive, ML techniques are 
frequently used in cloud systems to help identify trends and 
abnormalities (Nassif et al., 2021).

2.2 Intrusion detection system

An IDS is a part of the system that watches data flow and system 
activities passively without taking any active action to prevent 
problems. It detects abnormalities that can indicate technical 
problems or unusual use rather than explicitly recognizing 
malicious activities or breaches. Instead of sending out instant 
notifications, it creates records when it notices specific trends. By 
providing insights rather than immediately addressing threats, an 
IDS indirectly enhances network security in contrast to proactive 
technologies like firewalls, antivirus software, or access control 
systems (Umar et al., 2024; Saranya et al., 2020). Instead of active 
defensive techniques like honeypots, IDSs are frequently coupled 
with monitoring tools. Network intrusion detection systems (NIDS) 
and host-based intrusion detection systems (HIDS) are the two 
broad categories of IDS development that are often recognized. 
With host-level modifications, HIDS mainly examines internal 
operations and file integrity on a single system. However, NIDS may 
miss host-specific events when monitoring network traffic. NIDS 
detection usually uses statistical deviations or pre-established 
procedures to identify anomalies (Useni et  al., 2023). IDS may 
be  broadly divided into two categories: pattern-matching and 
behavior-based. Although it may not always employ ML or DL 
algorithms, behavior-based IDSs rely on departures from predicted 
activities. However, instead of employing dynamic analysis, pattern-
matching IDSs use a database of recognized behaviors to identify 
matches. Some IDS systems function in intervals rather than 
continuously, alerting users only when certain thresholds or 
circumstances are reached.

IDS systems are divided into two types based on their 
response mechanism:

	-	 Active IDS detects threats but also takes preventative steps such 
as blocking suspicious traffic to avoid prospective assaults.

	-	 Passive IDS: This kind just monitors and analyzes traffic, alerting 
the administrator to discovered threats and potential 
vulnerabilities but without taking active action against them 
(Useni et al., 2023; Hidayat et al., 2023).

2.3 Machine learning

ML is a subset of AI that allows systems to learn and develop 
automatically based on experience rather than explicit programming. 
In IDSs, ML algorithms identify intrusions in huge datasets more 
quickly. ML algorithms are often classified into three categories. 
Supervised, Unsupervised, Semi-supervised (Saranya et al., 2020). 
Supervised ML approaches use labeled datasets to train algorithms to 
spot patterns of normal and aberrant behavior. Common intrusion 
detection algorithms include LR, Gaussian NB, RF, MLP Classifier, 
KNN, DT, AdaBoost, XGBoost, and LightGBM. Unsupervised ML 
approaches use unlabeled data and focus on detecting deviations from 
usual behavior. Clustering comparable data points and detecting 
abnormalities is accomplished using algorithms such as K-means and 
Gaussian Mixture Model (GMM). Semi-supervised ML algorithms 
use labeled and unlabeled data to increase detection accuracy. They 
can detect anomalies that are similar to tagged cases, even if they do 
not completely match. These strategies attempt to improve the 
performance of anomaly-based IDSs, hence leading to greater 
computer network security (Adhikari and Bal, 2023; Nassif et al., 2021; 
Parameswarappa et al., 2023).

3 Related work

The related papers listed below examine a range of IDS techniques 
and methodologies, including IDS types and ML algorithms, with a 
focus on cloud environments.

Mghames and Ibrahim (2023) developed an IDS based on ML to 
identify Distributed Denial of Service (DDoS) attacks. They performed 
training and testing in the CIC-IDS-2018 dataset using five machine-
learning methods: DT, RF, LR, SVM, and multi-layer neural network. 
They applied PCA to diminish dimensions to improve performance. 
The multi-layer neural network showed better performance than any 
other model, achieving a classification accuracy of 99.9992% to 
identify DDoS attacks.

Eluri et al. (2024) addressed the issue of detecting disruptions in 
organizational networks by the definition of network activity as 
normal or abnormal and striving to rectify misclassification. Two 
strong algorithms of data mining, SVM, DT, and K-Means, were 
utilized by them to optimize the organization of the data. This method 
was developed and tested with the assistance of the KDDCUP99 
dataset. The findings revealed that the new approach was more 
accurate and faster in comparison to previous methods, which 
suggests that it is particularly effective in new attack detection.

Vibhute et al. (2024) highlighted cloud data security by designing 
an IDS from the popular NSL-KDD dataset. The ensemble 
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learning-based RF model was designed to identify the most important 
features. The system categorized and identified network intrusions 
with three ML models: SVM, LR, and KNN, and validation accuracies 
of 87.58, 88.86, and 98.24%, respectively. The suggested method has 
proved to be effective in identifying cyberattacks in real time.

John et al. (2024) proposed an IDS that detects illegal access and 
initiates pre-defined actions to enable secure data transfer using 
networks. They recognized several problems for IDS models like low 
detection accuracy and excessive false alarms, which are usually 
caused by excessive feature dimensionality and class imbalances in 
network traffic datasets. To address these issues, the study used 
Principal Component Analysis (PCA) and ensemble ML techniques. 
AdaBoost was used to overcome the disadvantages of PCA, such as 
feature selection; LogitBoost was used for multiclass categorization 
and logistic loss reduction; and RandomForest was used for curvy 
overfitting reduction. The performance, as well as the WSN-DS, 
NSL-KDD, and UNSW-N15 datasets, indicated that PCA integrated 
with RandomForest achieved 100% accuracy on all datasets. PCA with 
AdaBoost scored 92.3, 89.0, and 67.9% on WSN-DS, NSL-KDD, and 
UNSW-N15, respectively, and PCA with LogitBoost scored 98.9, 100, 
and 88.7% on the said datasets.

Vibhute et al. (2024) experimented with cloud data protection 
through a network IDS with the commonly used NSL-KDD dataset. 
They proposed an RF method where ensemble learning was employed 
to identify the most important features. The system detected and 
identified network intrusions using three ML models: SVM, LR, and 
K-nearest neighbors (KNN) with validation accuracy of 87.58, 88.86, 
and 98.24%, respectively. The presented method has been promising 
for real-time detection of cyberattacks.

John et al. (2024) presented an IDS that is capable of detecting 
unauthorized access and initiating pre-defined actions to support 
secure data sharing across networks. They realized there were many 
challenges for IDS models, including low detection rates and high 
false positives, due to frequent occurrences of high feature 
dimensionality and class imbalances in network traffic datasets. To 
tackle these challenges, the research work utilized Principal 
Component Analysis (PCA) and ensemble ML techniques. AdaBoost 
was utilized to remedy PCA’s limitation in feature selection; LogitBoost 
was utilized for multiclassing and for reducing logistic loss; and 
RandomForest was utilized for overfitting reduction. Comparison 
against the WSN-DS, NSL-KDD, and UNSW-N15 datasets through 
evaluation showed that PCA integrated with RandomForest 
outperformed all the datasets with 100% accuracy. PCA with 
AdaBoost was able to get 92.3, 89.0, and 67.9% accuracy on WSN-DS, 
NSL-KDD, and UNSW-N15, respectively. PCA with LogitBoost was 
able to get 98.9, 100, and 88.7% accuracy on the same datasets.

Attou et al. (2023) suggested a cloud-based IDS that monitors 
resources, services, and networks for suspicious activities. They 
combined an RF classifier with feature engineering methods to 
improve the detection model’s accuracy. The model was tested on the 
Bot-IoT and NSL-KDD datasets, and it achieved 98.3 and 99.99% 
accuracy, respectively. The findings confirmed the model’s exceptional 
performance in terms of accuracy, precision, and recall, outperforming 
prior studies in the field.

Al-Sharif and Bushnag (2024) established an IDS framework for 
handling security challenges in cloud settings, where standard IDS 
solutions frequently fail owing to increased complexity and numerous 
attack vectors. Instead of using a single powerful classifier, they suggested 

a collective learning approach that combines numerous weaker models 
to create a more reliable detection system. Their strategy used bagging 
with Random Forest as the principal model and compared its efficacy to 
three boosting variants: Ensemble AdaBoost, Ensemble LPBoost, and 
Ensemble RUSBoost. Evaluations were conducted utilizing several 
divisions of the CICID2017 dataset. Among the investigated models, 
Ensemble RUSBoost had the greatest average accuracy at 99.821%, while 
the bagging approach performed particularly well on the DS2 subgroup, 
with an accuracy of 99.997%. To further test their technique, the 
researchers compared their model to an existing solution, emphasizing 
its comparative benefits and enhanced detection capacity.

Mehmood et  al. (2023) proposed an ML-based method for 
detecting insider actions in cloud settings, with a focus on recognizing 
privilege misuse instances. They used a mixed-learning framework to 
improve detection reliability, including many models such as Random 
Forest, AdaBoost, XGBoost, and LightGBM. Testing was done on a 
customized version of the CERT dataset, and LightGBM surpassed the 
others with a peak accuracy of 97%. XGBoost and AdaBoost followed 
closely, with 88.27 and 88% accuracy, respectively, while Random 
Forest achieved 86%. Their findings showed that using several models 
in tandem improves the system’s capacity to detect various insider 
threat behaviors.

Akinbolaji (2023) studied the use of sophisticated AI and ML 
technologies to improve real-time monitoring systems in cloud 
settings. Their study analyzed current detection frameworks using 
both statistical and descriptive research tools, as well as newer AI 
approaches such as deep learning and reinforcement learning, to 
improve detection efficiency and precision. The results showed that 
the suggested ensemble model outperformed traditional techniques, 
with at least a 30% improvement in detecting abnormalities and 
threats. This study emphasizes the importance of AI in enhancing 
digital security mechanisms, ensuring data integrity, and assisting 
compliance efforts, while also laying the way for future advances in 
cloud-based threat prevention systems.

The study in Devi and Jain (2024) examines the issues of protecting 
privacy and safeguarding data in cloud computing settings, which are 
particularly vulnerable owing to their dispersed nature. Instead of 
traditional procedures, the authors advocated using deep learning to 
improve intrusion detection technologies. They looked at a variety of 
IDS frameworks and emphasized the need for high-quality datasets in 
optimizing the training and assessment stages of these models. The 
goal was to improve the efficacy of IDS systems that operate in both 
real-time and batch modes by using sophisticated deep-learning 
algorithms. The findings demonstrated how challenging it may be to 
identify anomalous behavior when training data does not exhibit these 
patterns. In detecting anomalous activity across many categorization 
groups, the study showed that algorithms such as Soft-Max Regression 
(SMR) and STL-based feature learning outperformed 98% accuracy, 
indicating encouraging developments in cloud defensive mechanisms.

Sundaramoorthy et  al. (2024) discussed an ensemble IDS 
system with an emphasis on improved security in cloud-based 
infrastructure and wireless sensor networks. The system includes 
various techniques, including ISSIR for optimal feature selection, 
OSVM for classification error reduction, ELSTM for pattern 
anomaly detection, and MLPNN for threat response. The resulting 
ensemble technique recorded a staggering 99.9% accuracy rate, 
outperforming earlier systems. This unification further improves 
the IDS performance, corrects serious weaknesses in cloud and 
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WSN networks, and contributes substantially to cybersecurity 
technique advancements.

Megouache et al. (2024) proposed a strong approach to identifying 
attacks on cloud data with emphasis on special challenges due to 
dispersed nature, scalability problems, and restricted resources 
available in cloud systems. Unlike traditional models, their approach 
used unclassified data instead of pre-labeled inputs. They applied 
k-means clustering to label the raw data, which was further applied to 
train an Extreme Learning Machine (ELM) classifier for threat 
identification. Using the KDD99 benchmark dataset, they were 
successful in showing that their approach provided high accuracy as 
well as reduced processing time significantly. The method proved to 
be a good alternative for complementing cloud protection systems, 
with uniform detection results.

In contrast to other studies, the study uses the NSL-KDD dataset 
to provide a comprehensive evaluation of many individual classifiers 

as well as a hard voting ensemble approach designed for cloud-based 
systems. While the majority of current methods focus on a single 
model or dataset, the technique combines feature selection with 
ensemble learning to increase accuracy and outcomes in F1 score, 
precision, and recall. Whereas previous efforts focus solely on insider 
threats or DDoS assaults, the approach can detect both known and 
unknown attack types. In addition, we demonstrate that the ensemble 
approach overcomes computational efficiency issues in real-time 
cloud IDSs by maintaining good detection performance even with 
smaller feature dimensions.

4 Proposed model

This section describes an integrated ML method -IDS model (as 
shown in Figure 1) that uses the NSL-KDD dataset to detect abnormal 

FIGURE 1

ML-based IDS flowchart for NSL-KDD.
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network traffic in cloud settings. The approach involves data 
pretreatment (normalization and encoding), RandomOverSampler to 
solve class imbalances, and feature selection techniques (complete 
feature set, Information Gain, Mutual Information, and RF-based 
significance). The dataset is then divided into training and test sets. To 
increase detection accuracy, several classifiers (RF, DT, SVM, XGBoost, 
LR, GB, and Naïve Bayes) are trained and merged using ensemble 
approaches such as voting hard and Stacking. To categorize traffic as 
normal or abnormal, models are assessed using standard metrics such 
as accuracy, precision, recall, F1-score, and false positives/negatives, 
hence enhancing threat detection in cloud environments.

4.1 NSL-KDD dataset

The KDDcup99 dataset was generated for the Third 
International Knowledge Discovery and Data Mining Tools 
Competition, which took place in 1999  in connection with 
KDD-99, the Fifth International Conference on Knowledge 
Discovery and Data Mining. This dataset contains over 5 million 
training samples and over 2 million testing samples. It also has a 
high number of duplicate entries and unbalanced class 
distributions (Umar et al., 2024). The NSL-KDD dataset is based 
on the KDD Cup ‘99 dataset and solves flaws identified in the 
original, such as duplicated entries in the training set and 
duplicate records in the test set (Protić and Stanković, 2023). The 
NSL-KDD dataset has 41 attributes: three are categorical, four are 
binary, and the remaining 34 are continuous. The training set 
includes 23 traffic types, whereas the testing set has 30. The 
assaults in this dataset are divided into four categories: DOS, 
probing, U2R, and R2L. The features are divided into three 
categories: (1) fundamental features, (2) content-based features, 
and (3) traffic-related features (Alkadi et al., 2023).

4.2 Data preprocessing

Data preparation is critical in converting raw information into a 
format that enhances the performance of ML models. Raw data 
frequently contains missing, null, or inconsistent values, as well as 
unused or duplicated fields that provide no useful information. To 
solve this, the process starts by identifying and eliminating 
inconsistencies in the data to ensure it is clean. The following stages 
describe how the dataset was prepared for ML applications:

	•	 The preparation begins with the load _data function, which 
imports the text file and converts it into a pandas DataFrame with 
easy-to-understand column names.

	•	 Clean up categorical columns such as protocol_type, service, and 
flag by removing unnecessary spaces and newline characters 
using the clean_column_values function.

	•	 Following cleaning, one-hot encoding via Pandas is used to 
convert these category characteristics into a numerical 
representation. Get-dummies (), which qualifies them for use in 
ML models.

	•	 The normalize_data function uses StandardScaler to standardize 
the dataset, bringing its mean down to zero and its standard 
deviation up to one, in order to further improve speed.

	•	 The dataset is then balanced by using RandomOverSampler from 
the learning module, which helps to lessen prediction bias by 
producing extra samples for the underrepresented class.

	•	 The data is optimized for ML through the processes of cleaning, 
encoding, scaling, and balancing, which raises the precision and 
dependability of model predictions.

4.3 Feature selection

Choosing the pertinent attributes comes next after data analysis. 
By determining the most important variables, feature selection 
improves the accuracy of ML models, which is why it is so important 
in intrusion detection (Vibhute et al., 2024). The process of feature 
subset selection aims to improve classification performance by 
selecting a smaller set of features from a larger pool. While some 
researchers describe feature subset selection (FSS) as a technique for 
decreasing the size of the feature set, others view it as a means of 
improving classifier accuracy. FSS is thought to be  a method for 
finding the best feature subsets that, by removing unnecessary and 
duplicated features, preserve the most important information in a 
dataset (Alhayali et al., 2021). The most significant characteristics are 
found using feature selection approaches, which also remove 
redundant or superfluous data and increase the dataset’s overall 
effectiveness (Vibhute et  al., 2024). In the beginning, the study 
employed all of the features without using any feature selection 
techniques. Following that, two filter-based feature selection 
strategies were presented: Mutual Information and Gain Information. 
These methods rank the features according to their scores, which 
assess each feature’s importance and pertinence to the class label. The 
characteristics with the highest ranking are then used to create the 
IDS. Filter approaches have the advantage of being computationally 
efficient because they do not need IDS training (Alalhareth and 
Hong, 2023). Filters are employed in the popular feature selection 
method known as Gain Information. It reduces the impact of 
irrelevant data by ranking characteristics according to their 
significance. By doing so, it discovers the characteristics that give the 
most information to a certain class, improving the model’s overall 
performance (Kurniabudi et al., 2020). In Gain Information (GI), the 
quantity of information is primarily assessed using the entropy and 
conditional entropy concepts. Firstly, a discrete random variable’s 
entropy, “𝑋, is defined as follows in Equation 1”:

	
( ) ( ) ( )( )H log
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i i
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X p x p x
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Here, a specific outcome of the random variable 𝑋 is indicated by 
𝑥𝑖, and the probability that 𝑥𝑖 will occur among the potential values 
of 𝑋 is shown by P(𝑥𝑖). According to another discrete random variable 
𝑌, the conditional entropy of “𝑋 is defined as follows in Equation 2”:
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The chance of seeing 𝑦𝑗 from 𝑌 is represented by 𝑃(𝑦𝑗) in this 
instance, but the conditional probability of seeing 𝑥𝑖 from 𝑋 provided 
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that 𝑦𝑗 from 𝑌 has happened is shown by 𝑃(𝑥𝑖|𝑦𝑗). The Gain 
Information (GI) between 𝑋 and 𝑌 quantifies the amount of 
information communicated between both variables as follows in 
Equation 3:
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(𝑥𝑖, 𝑦𝑗) refers to the joint probability of 𝑥𝑖 and 𝑦𝑗 occurring together 
(Zhang et al., 2024). Mutual Information (MI)-based feature selection 
is an approach for dimensionality reduction that works independently 
of classifiers. It seeks to address the difficulty of picking a meaningful 
collection of characteristics (Liu and Motani, 2022). Mutual information 
feature selection is a popular strategy for improving the effectiveness of 
IDSs. It assesses the link between each characteristic and the class label, 
deciding which features have the highest mutual information values 
(Alalhareth and Hong, 2023). The study used an RF classifier, which is 
an ensemble-based ML technique that integrates numerous DTs. To 
limit the danger of overfitting and improve the model’s generalizability, 
each DT in the forest is built separately from a randomly selected subset 
of the training data and features. The RF algorithm’s ultimate output is 
selected by a majority vote among all DTs. Each tree in the forest votes 
for the class of the input data point and the class that receives the most 
votes is chosen as the prediction (Ali et al., 2023). As shown in Table 1, 
multiple feature selection approaches discover critical properties for the 
IDS. The whole feature set has 41 characteristics, however, approaches 
like manual information acquisition and RF selection emphasize 
essential aspects like “src_bytes,” “dst_host_serror_rate,” and “count.” 
These features serve to improve the IDS model’s performance in 
identifying unusual network traffic.

4.4 Classification model

Support Vector Machine (SVM): is commonly regarded as one of 
the most successful algorithms for binary classification, notably in 
IDSs (IDS), where transactions are classified as normal or invasive 
(Aldallal and Alisa, 2021). The primary goal of SVM is to identify a 
hyperplane within an n-dimensional feature space that maximizes the 

separation margin between classes. One of the key advantages of SVM 
is its ability to work effectively with smaller training datasets, as it only 
relies on a few support vectors to define the hyperplane. However, 
SVM performance can be  negatively impacted by noise near the 
hyperplane (Alotaibi and Rassam, 2023).

Gradient boosting (GB): is an ensemble learning method that 
combines many decision trees to increase prediction accuracy. This 
method builds decision trees progressively, with each node making 
a binary choice. The model’s performance is progressively improved 
as each tree fixes the mistakes of the one before it. GB is an effective 
technique for challenging jobs because of its iterative approach, 
which produces forecasts that are more accurate (Boldini 
et al., 2023).

XGBoost: To improve efficiency and performance, XGBoost is a 
sophisticated and optimized variant of gradient boosting. It enhances 
the approach and system design of conventional GB models. Parallel 
processing, distributed computing, out-of-core execution, and cache 
optimization are some of the characteristics that XGBoost integrates 
to provide quicker processing and more accurate convergence to the 
global minimum. Its speed and accuracy are increased by these 
enhancements, which enable it to handle massive amounts of data 
across several devices (Thapa et al., 2020).

Logistic regression (LR): A classification method for categorical 
outcome prediction, logistic regression may be applied to both binary 
and multi-class classification applications. It uses the logistic function 
to determine the likelihood of an event happening, with values ranging 
from 0 to 1. Usually, a threshold of 0.5 is used to differentiate between 
two classes: values below 0.5 are categorized as class 0, whereas those 
over 0.5 are classified as class 1. F(x) = 1/(1 + e^-x) is the logistic 
sigmoid function, which is used to convert the input into a number 
between 0 and 1 that indicates the likelihood of a specific result. The 
wider application of the logistic sigmoid function in multi-class 
classification situations is not the same as this method (Somogyi, 2021).

Naïve Bayes (NB): is a variation of Bayes’ Theorem in which the 
qualities are assumed to be extremely independent of one another. It 
is a classification approach based on Bayes’ probability theory, with the 
assumption that the presence of one characteristic does not affect the 
chance of another (Devidas and Adesh, 2021). The Naïve Bayes 
method uses conditional probability and the premise that 
characteristics are independent. The classifier assigns the sample to the 
class with the highest probability after calculating the conditional 
probabilities for each class for each input (Useni et al., 2023).

TABLE 1  Feature selection for IDS using different methods.

Methods of features 
selection

Features

Full features

“duration,” “protocol_type,” “service,” “flag,” “src_bytes,” “dst_bytes,” “land,” “wrong_fragment,” “urgent,” “hot,” “num_failed_logins,” 

“logged_in,” “num_compromised,” “root_shell,” “su_attempted,” “num_root,” “num_file_creations,” “num_shells,” “num_access_files,” 

“num_outbound_cmds,” “is_host_login,” “is_guest_login,” “count,” “srv_count,” “serror_rate,” “srv_serror_rate,” “rerror_rate,” “srv_

rerror_rate,” “same_srv_rate,” “diff_srv_rate,” “srv_diff_host_rate,” “dst_host_count,” “dst_host_srv_count,” “dst_host_same_srv_rate,” 

“dst_host_diff_srv_rate,” “dst_host_same_src_port_rate,” “dst_host_srv_diff_host_rate,” “dst_host_serror_rate,” “dst_host_srv_

serror_rate,” “dst_host_rerror_rate,” “dst_host_srv_rerror_rate,” “labels”

Selected features by manual 

information and gain information

“src_bytes,” “flag_SH,” “service_auth,” “dst_host_diff_srv_rate,” “dst_host_same_src_port_rate,” “dst_host_srv_diff_host_rate,” “dst_

host_serror_rate,” “dst_host_srv_serror_rate,” “dst_host_rerror_rate,” and “dst_host_srv_rerror_rate”

Selected features by RF
“src_bytes,” “data_transfer,” “same_srv_rate,” “count,” “dst_bytes,” “dst_host_serror_rate,” “dst_host_diff_srv_rate,” “dst_host_srv_

serror_rate,” “srv_serror_rate,” “error_rate,” and “attack”
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Decision Tree (DT): For classification problems, the DT method is 
frequently utilized. It organizes data in a tree structure, with 
classifications determined by decisions made at every level. The branches 
show the results of those tests, the leaf nodes show the final classification, 
and each non-terminal node denotes a test or decision point.

Random Forest (RF): For both classification and regression tasks, 
RF, an ensemble learning technique, is employed. During training, it 
creates numerous DTs and forecasts the class using the majority vote 
from each tree. This strategy seeks to decrease overfitting and 
underfitting by averaging predictions to strike a balance between bias 
and variance (Devidas and Adesh, 2021).

Ensemble Model: This ensemble model guarantees thorough and 
accurate threat detection by combining the various strengths of the 
individual classifiers to improve classification accuracy through the 
use of Voting Hard and Stacking with DT, RF, and GB.

4.5 Performance evaluation metrics

A number of essential criteria will be  used to assess threat 
detection algorithms’ performance. These measurements will provide 
quantitative insights into how well the models recognize and respond 
to threats in real-time settings (Akinbolaji, 2023).

4.6 The performance evaluation metrics 
can be expressed as accuracy, precision, 
recall, and F1-score

Accuracy: is the percentage of correctly categorized cases, which 
include both normal and pathological data points. as follows in 
Equation 4:

	
+

=
+ + +

TP TNAccuracy
TP TN FP FN 	

(4)

Precision: refers to the fraction of forecasted threats that are valid. 
It is the proportion of accurately recognized anomalies to total 
presented anomalies. as follows in Equation 5:

	
=

+
TPPrecision

TP FP 	
(5)

Recall: The proportion of genuine positive records (e.g., true 
anomalies) that are accurately identified. It calculates the ratio of 
detected attacks to total attacks. as follows in Equation 6:

	
=

+
TPRecall

TP FN 	
(6)

The F1 Score: is the harmonic mean of accuracy and recall, 
providing a single statistic for evaluating the model’s overall efficacy. 
as follows in Equation 7:

	
∗

− =
+

1 Recall PrecisionF Sccore
Recall Precision 	

(7)

True Negative (TN) represents accurately anticipated normal cases.

False Negative (FN) indicates incidents that were mistakenly 
anticipated as normal.

True Positive (TP) represents successfully anticipated 
abnormal incidences.

False Positive (FP) indicates incidents that were wrongly 
anticipated as abnormal (John et  al., 2024; Vibhute et  al., 2024; 
Megouache et al., 2024).

4.7 Experimental environment

All of the study’s experiments were carried out on a top-tier 
workstation running Windows 10 Pro and equipped with an AMD 
Ryzen 95,950X CPU (3.7 GHz) and 64 GB of RAM. This setup was 
intended to guarantee that repeated tests with various feature sets and 
numerous ensemble classifiers would go well. This configuration is not 
representative of situations with restricted resources, such as low-cost 
systems or edge devices. Future research will evaluate the effectiveness 
of the IDS on these platforms and investigate real-time optimization 
techniques including pruning, quantization, and compression.

5 Results and discussion

This section presents the results obtained from the ensemble 
model, which was evaluated using the NSL-KDD dataset’s features and 
yields a total of 41 attributes as shown in Table  1 to assess the 
effectiveness of the integrated approach. It begins by analyzing the 
performance of various individual classifiers RF, DT, GB, XGBoost, 
NB, SVM, and LR, and the ensemble model using standard evaluation 
metrics, including accuracy, precision, recall, F1-score, and false 
positive/negative rates in three case that are full features, selection 
methods such as Information Gain, Mutual Information. These 
findings emphasize the need to use the whole feature set to improve 
the IDS’s capacity to detect unexpected network traffic. The subsection 
discussion is as follows:

5.1 Individual classifiers using full features

Ensemble models outperform individual classifiers in measures 
like accuracy, precision, recall, and F1-score when using all available 
features as shown in Table 1.

	 a	 Random Forest

The RF model achieved an outstanding 99.99% accuracy, with 
perfect precision and recall (1.00), correctly identifying all 
positive cases. Its F1-score of 1.00 reflects a balanced and 
excellent performance in both accuracy and recall, as illustrated 
in Table 2 and Figure 2.

	 b	 Decision Trees

The DT model demonstrated exceptional performance with an 
accuracy of 99.98%, perfect precision and recall of 1.00, and an 
F1-score of 1.00, indicating flawless prediction and detection 
of positive cases, as shown in Table 2 and Figure 3.
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	 c	 Logistic Regression

The LR model achieved 97% accuracy, with a precision of 0.98 
and a recall of 0.97, accurately detecting 97% of true positive 
events. Its F1-score of 0.97 reflects strong overall performance, 
as shown in Table 2 and Figure 4.

	 d	 XGBossting

XGBoost achieved an impressive accuracy of 99.99%, with 
perfect precision and recall of 1.00, correctly predicting all 
positive events. Its F1-score of 1.00 highlights its excellent 
balance of precision and recall, making it the 
top  performer, as shown in Table  2 and  
Figure 5.

	 e	 Naïve Bayes

The NB model had a lower accuracy of 78%, correctly 
predicting 81% of positive cases. Its recall was 78%, and the 
F1-score of 0.76 indicates an imbalanced model with room for 
improvement in both precision and recall, as shown in Table 2.

	 f	 Gradient boosting

The GB model achieved an impressive accuracy of 99.82%, 
with perfect accuracy and recall (1.00), correctly predicting 
all positive cases and detecting all actual positives. Its 
F1-score of 1.00 reflects excellent balance and performance 
across all parameters, as shown in Table 2.

	 g	 Support Vector Machine

The SVM model achieved 99.26% accuracy, with excellent 
precision (0.99) and recall (0.99), demonstrating strong 

TABLE 2  Individual classifiers using full features.

Metric Value

Random Forest

Accuracy 1.00 Precision Recall F1-score
Support

309,778

Macro Avg 1.00 1.00 1.00 309,778

Weighted Avg 1.00 1.00 1.00 309,778

Decision Tree

Accuracy 1.00 Precision Recall F1-score
Support

309,778

Macro Avg 1.00 1.00 1.00 309,778

Weighted Avg 1.00 1.00 1.00 309,778

Logistic Regression

Accuracy 0.97 Precision Recall F1-score
Support

6,196

Macro Avg 0.98 0.97 0.97 6,196

Weighted Avg 0.98 0.97 0.97 6,196

XGBossting

Accuracy 1.00 precision recall f1-score
support

309,778

Macro Avg 1.00 1.00 1.00 309,778

Weighted Avg 1.00 1.00 1.00 309,778

Naïve-Bayes

Accuracy 0.78 Precision Recall F1-score
Support

123,912

Macro Avg 0.81 0.78 0.76 123,912

Weighted Avg 0.81 0.78 0.76 123,912

Gradient boosting

Accuracy 1.00 Precision Recall F1-score
Support

6,196

Macro Avg 1.00 1.00 1.00 6,196

Weighted Avg 1.00 1.00 1.00 6,196
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performance in predicting and identifying positive cases. Its 
F1-score of 0.99 indicates a well-balanced model, as shown in 
Table 3.

Table  4 compares the performance of several classifiers using 
accuracy, precision, recall, and F1-score. RF, DT, and XGBoost all 
produced near-perfect results, with 99.99% accuracy and perfect 

FIGURE 2

Random Forest.

FIGURE 3

Decision Tree.
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FIGURE 4

Logistic Regression.

FIGURE 5

XGBossting.

TABLE 3  Support Vector Machine using full features.

Precision Recall F1-score Support

Accuracy 0.9925753760733420 0.9925753760733420 0.9925753760733420 0.9925753760733420

Macro avg 0.9926361652890440 0.9925724355169420 0.992555391610573 15489.0

Weighted avg 0.9926457833302430 0.9925753760733420 0.992562131963623 15489.0
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precision, recall, and F1-score values of 1.00. NB has a much lower 
accuracy (78%), as well as worse precision, recall, and F1-score. SVM 
and LR both performed well, with accuracy rates of 99.26 and 97%, 
respectively, while retaining good precision, recall, and F1 scores. GB 
likewise produced outstanding results, with 99.82% accuracy and 
flawless precision, recall, and F1-score.

5.2 Ensemble model using full features

	 a-	 (DT+ RF+ GB) Voting hard

The ensemble model, which combines Decision Tree, Random 
Forest, and Gradient Boosting with hard voting, produced 
flawless classification results. It achieved an accuracy of 1.00, 
with precision, recall, and F1-score all at 1.00. This 
demonstrates strong predictive potential for the test results. As 
shown in Table 5 and Figure 6.

	b-	 (DT+ RF+ GB) Stacking

The stacking ensemble model, which combines Decision Tree, 
Random Forest, and Gradient Boosting, likewise performed 
perfectly. It scored 1.00 for accuracy, precision, recall, and 
F1-score. This implies that stacking effectively harnessed the 
strengths of each base model. as shown in Table  5 and 
Figure 7.

Table 6 shows the performance of an ensemble model that 
combines DT, RF, and GB with the Voting Hard and stacking 
methods. The ensemble models performed flawlessly across all 
criteria, with accuracy, precision, recall, and an F1 score of 1.00.

5.3 Individual classifiers using gain 
information and manual information

The performance of Individual Classifiers by Gain Information 
and Manual Information, as shown in Table 1 is evaluated based 
on accuracy, precision, recall, and F1-score, the evaluation of 
different classifiers and ensemble models reveals the advantages 
and disadvantages of each model for certain classification tasks. 
In order to improve overall performance, this section covers both 
single classifiers and ensemble models, which integrate 
many classifiers.

	 a	 XGBoosting

The XGBoost model achieved impressive results with an 
accuracy of 99.97%, along with perfect precision, recall, and 
F1-score of 1.00, indicating flawless predictions and accurate 
detection of positive cases. This outstanding performance 
highlights XGBoost as a highly effective model, as shown in 
Table 7 and Figure 8.

	 b	 Decision Trees

The DT model achieved an accuracy of 99.97%, with perfect 
precision, recall, and F1-score values of 1.00, indicating flawless 
categorization of both positive and negative cases. It performed 
excellently in precision and recall, as shown in Table 7.

	 c	 Random forest

The RF model achieved an accuracy of 99.97%, with perfect 
precision, recall, and F1-score values of 1.00, indicating flawless 
performance in predicting and detecting positive cases. This 
makes it highly effective for the task, as shown in Table 7.

	 d	 Support Vector Machine

The SVM model achieved an accuracy of 88.09%, with 
precision and recall scores of 0.90 and 0.88, respectively. 

TABLE 4  Performance evaluation of classifiers using accuracy, precision, recall, and F1-score using full features.

Classifiers Accuracy Precision Recall F1-score Execution TIME

Random Forest 99.99% 1.00 1.00 1.00 332.34395813941956 s

Decision Tree 99.98% 1.00 1.00 1.00 95.22518181800842 s

XGBoost 99.99% 1.00 1.00 1.00 120.07075381278992 s

Naive Bayes 78% 0.81 0.78 0.76 13.097240209579468 s

Support Vector Machine 99.26% 0.99 0.99 0.99 128.66907286643982 s

Logistic Regression 97% 0.98 0.97 0.97 131.4768099784851 s

Gradient Boosting 99.82% 1.00 1.00 1.00 161.10451579093933 s

TABLE 5  Ensemble model using full features.

Metric Value

DT, RF, GB (voting hard)

Accuracy 1.00 Precision Recall F1-score
Support

15,489

Macro Avg 1.00 1.00 1.00 15,489

Weighted Avg 1.00 1.00 1.00 15,489

DT, RF, GB (stacking)

Accuracy 1.00 Precision Recall F1-score
Support

15,489

Macro Avg 1.00 1.00 1.00 15,489

Weighted Avg 1.00 1.00 1.00 15,489
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FIGURE 6

DT, RF, GB (voting hard).

FIGURE 7

DT, RF, GB (stacking).

TABLE 6  Performance evaluation of ensemble model using accuracy, precision, recall, and F1-score using full features.

Classifier 
(ensemble model)

Accuracy Precision Recall F1-score Execution Time

DT + RF + GB (voting hard) 1.00 1.00 1.00 1.00 139.073 s

DT + RF + GB (stacking) 1.00 1.00 1.00 1.00 3571.27 s
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While it demonstrated balanced performance with an 
F1-score of 0.88, its performance was notably lower 
compared to top models like RF and XGBoost, as shown in 
Table 7 and Figure 9.

	 e	 Naïve-Bayes

The NB model performed poorly, achieving an accuracy of 0.63. 
With a precision of 0.71 and recall of 0.63, it only correctly 
identified 63% of actual positive events. The F1-score of 0.60 
indicates an imbalanced performance, highlighting the model’s 
struggles in this classification task, as shown in Table  7 and 
Figure 10.

	 f	 Gradient Boosting

The GB model performed excellently with an accuracy of 
99.89%. It achieved perfect values of 1.00 for accuracy, recall, 
and F1-score, indicating flawless classification of both positive 

and negative cases. This model outperformed all other 
classifiers, as shown in Table 7.

	 g	 Logistic Regression

The LR model has an accuracy of 72.0%, which means it accurately 
predicted 72% of the occurrences. Its accuracy of 0.74 and recall 
of 0.72 indicate that it made some mistakes in both forecasting 
positive events and detecting true positives. The F1-score of 0.71 
indicates that the model’s performance is not as great as that of 
some of the others, showing that there is still potential for 
development in terms of accuracy and recall, as shown in Table 8.

The performance of each classifier is displayed in Table 9, with 
particular attention paid to accuracy, precision, recall, and F1-score. 
Table 9 compares the performance of multiple classifiers, revealing 
that RF, DT, XGBoost, and GB all obtained near-perfect results, with 
99.97% or 99.89% accuracy and flawless precision, recall, and F1 
scores. In contrast, NB had an extremely low accuracy of 0.63%, as 
well as poor precision, recall, and F1 scores. SVM and LR performed 
moderately, with accuracy rates of 88.09 and 72.0%, respectively.

5.4 Ensemble model using gain information 
and manual information

	 a-	 (DT+ RF+ GB) Voting hard

The ensemble model, which integrates different classifiers, 
performed exceptionally well across the board. It achieved 
perfect scores of 1.00 in all metrics. This combination leverages 
the interpretability of DTs, the robustness of RFs, and the 
precision of GB, resulting in enhanced overall performance, as 
shown in Table 10 and Figure 11.

	b-	 (DT+ RF+ GB) Stacking

The ensemble model incorporating Decision Tree, Random 
Forest, and Gradient Boosting with stacking likewise performed 
flawlessly, with accuracy, precision, recall, and F1-score all equal 
to 1.00. This demonstrates strong predictive potential for the 
test results. As shown in Table 10 and Figure 12.

In order to attain flawless detection performance across all 
measures, ensemble models incorporate multiple classifiers, as shown 
in Table 11.

Table 11 shows the performance of ensemble models that combine 
DT, RF, and GB with the Voting Hard and Stacking approaches. The 
ensemble models performed flawlessly across all measures, including 
accuracy, precision, recall, and an F1-score of 1.00.

5.5 Individual classifiers using RF-selected 
features

The performance of Individual Classifiers by RF-Selected 
Features, as shown in Table  1 evaluated based on accuracy, 

TABLE 7  Individual classifiers using gain information and manual 
information.

Metric Value

XGBoosting

Accuracy 1.00 Precision Recall F1-score
Support

309,778

Macro Avg 1.00 1.00 1.00 309,778

Weighted Avg 1.00 1.00 1.00 309,778

Decision Trees

Accuracy 1.00 Precision Recall F1-score
Support

309,778

Macro Avg 1.00 1.00 1.00 309,778

Weighted Avg 1.00 1.00 1.00 309,778

Randomforest

Accuracy 1.00 Precision Recall F1-score
Support

309,778

Macro Avg 1.00 1.00 1.00 309,778

Weighted Avg 1.00 1.00 1.00 309,778

Support Vector Machine

Accuracy 0.88 Precision Recall F1-score
Support

9,294

Macro Avg 0.90 0.88 0.88 9,294

Weighted Avg 0.90 0.88 0.88 9,294

Naïve-Bayes

Accuracy 0.63 Precision Recall F1-score
Support

15,489

Macro Avg 0.71 0.63 0.60 15,489

Weighted Avg 0.71 0.63 0.60 15,489

Gradient Boosting

Accuracy 1.00 Precision Recall F1-score
Support

6,196

Macro Avg 1.00 1.00 1.00 6,196

Weighted Avg 1.00 1.00 1.00 6,196
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FIGURE 8

XGBoosting.

FIGURE 9

Support Vector Machine.
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precision, recall, and F1-score of separate classifiers and ensemble 
models are compared in this investigation. The objective is to 
evaluate the performance of each model separately and the 
classification skills of ensemble models, which combine 
many classifiers.

	 a	 Decision Tree

The DT model achieved an accuracy of 98.71%, nearly 
matching the RF model. However, its precision was 0.69, 
meaning only 69% of predicted positives were accurate. The 
recall was 0.65, indicating that the model correctly identified 
65% of true positive events. The F1-score of 0.65 suggests that 
the DT model needs further improvement to balance precision 
and recall effectively, as shown in Table 12 and Figure 13.

	 b	 Naive Bayes

NB demonstrated poor performance, with an accuracy of just 
33%. Its precision was 0.19, the recall was 0.37, and F1 score 
was 0.16. The model’s poor results likely stem from the 
assumption of feature independence, which is not suitable for 
this dataset. The low accuracy and F1-score emphasize NB’s 
limitations for this classification task, as shown in Table 12.

	 c	 Logistic Regression

LR achieved an accuracy of 90.56% but struggled with low 
precision (0.24), recall (0.20), and F1-score (0.21). As a linear 
model, it faced difficulty handling complex data correlations, 
which resulted in poor performance. The model’s limited 
flexibility in adapting to the dataset’s structure contributed to 
these lower metrics, as shown in Table 12 and Figure 14.

	 d	 Gradient Boosting

GB showed poor performance with an accuracy of 49.35%, 
precision of 0.48, recall of 0.29, and F1-score of 0.29. This 
underperformance may be due to overfitting or a mismatch 
with the dataset’s characteristics, like data imbalance or feature 
correlation, as shown in Table 12.

FIGURE 10

Naïve-Bayes.

TABLE 8  Logistic regression classifiers using gain information and 
manual information Figure 9: support vector machine.

Metric Value

Accuracy 0.72 Precision Recall F1-score
Support

3,098

Macro Avg 0.74 0.72 0.71 3,098

Weighted Avg 0.74 0.72 0.71 3,098
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TABLE 9  Performance evaluation of classifiers using accuracy, precision, recall, and F1-score using GI and MI.

Classifiers Accuracy Precision Recall F1-score Execution time

Random Forest 99.97% 1.00 1.00 1.00 818.7610149383545 s

Decision Tree 99.97% 1.00 1.00 1.00 34.62117004394531 s

XGBoost 99.97% 1.00 1.00 1.00 91.20186018943787 s

Naive Bayes 0.63% 0.71 0.63 0.60 3.237001895904541 s

Support Vector Machine 88.09% 0.90 0.88 0.88 275.7197570800781 s

Logistic Regression 72.0% 0.74 0.72 0.71 1381.2660410404205 s

Gradient Boosting 99.89% 1.00 1.00 1.00 240.0945920944214 s

TABLE 10  Ensemble model using gain information and manual information.

Metric Value

DT, RF, GB (voting hard)

Accuracy 1.00 Precision Recall F1-score
Support

30,978

Macro Avg 1.00 1.00 1.00 30,978

Weighted Avg 1.00 1.00 1.00 30,978

DT, RF, GB (stacking)

Accuracy 1.00 Precision Recall F1-score
Support

30,978

Macro Avg 1.00 1.00 1.00 30,978

Weighted Avg 1.00 1.00 1.00 30,978

FIGURE 11

DT, RF, GB (voting hard).
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TABLE 11  Performance evaluation of ensemble model using accuracy, precision, recall, and F1-score using GI and MI.

Classifier 
(ensemble model)

Accuracy Precision Recall F1-score Execution time

DT + RF + GB (voting 

hard)
1.00 1.00 1.00 1.00 178.5962700843811 s

DT + RF + GB (stacking) 1.00 1.00 1.00 1.00 878 s

	 e	 Random Forest

RF achieved an accuracy of 98.83%, with a precision of 0.80, a 
recall of 0.75, and an F1-score of 0.76. While the accuracy is 
strong, the precision and recall indicate difficulties in managing 
false positives and false negatives. Overall, it performs well but 
could benefit from further adjustments, particularly to address 
class imbalances, as shown in Table 12 and Figure 15.

	 f	 XGBoost

XGBoost achieved 98.79% accuracy, with precision, recall, and 
F1-score of 0.76, 0.74, and 0.74, respectively. Although strong, 
its performance was slightly lower than RF, possibly due to 
hyperparameter settings or the dataset’s structure, as shown in 
Table 12.

	 g	 Support Vector Machine

SVM achieved 92.40% accuracy but with poor precision (0.39), 
recall (0.27), and F1-score (0.29). Its low performance suggests it 

struggles with the dataset’s complexity, possibly due to kernel 
selection or insufficient tuning, as shown in Table 12 and Figure 16.

Table  13 summarizes the performance of different classifiers, 
emphasizing accuracy, precision, recall, and F1 score.

Table 13 shows the performance evaluations of several classifiers. 
RF and DT produced reasonably high accuracy (98.83 and 98.71%, 
respectively), but with modest precision, recall, and F1 scores. 
XGBoost also fared well, with 98.79% accuracy, although it had lesser 
precision and recall than RF and DT. NB performed poorly, with an 
accuracy of just 33% and low precision, recall, and F1 scores. SVM and 
LR fared rather well, with accuracy values of 92.40 and 90.56%, 
respectively, but with low precision and recall. GB had the poorest 
result, with an accuracy of 49.35% and similarly low precision, recall, 
and F1 score.

5.6 Ensemble model using RF-selected 
features

	 a-	 (DT+ RF+ GB) Voting hard

FIGURE 12

DT, RF, GB (stacking).
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The Voting Hard ensemble model, consisting of DT, RF, and 
GR, achieved 0.99 accuracy. However, its precision (0.71), 
recall (0.68), and F1-score (0.68) were slightly lower than the 
stacking model, indicating room for improvement in precision 
and recall, as shown in Table 14 and Figure 17.

	b-	 (DT+ RF+ GB) Stacking

The ensemble model, which used stacking to combine Decision 
Tree, Random Forest, and Gradient Boosting, obtained an 
accuracy of 0.99, a precision of 0.75, a recall of 0.68, and an F1 

score of 0.70. This represents higher accuracy and F1-scores 
compared to the hard voting, stacking model, indicating room 
for improvement in precision and recall, as shown in Table 14 
and Figure 18.

Table  15 evaluates the ensemble models, which integrate 
several classifiers to attain flawless detection performance across 
all criteria.

Table  15 shows the performance of the ensemble model that 
combines DT, RF, and GR with the Voting Hard and stacking 
approaches. The ensemble model with stacking outperforms hard 
voting in terms of precision (0.75 vs. 0.71), F1-score (0.70 vs. 0.68), 
and accuracy (0.99) while retaining recall (0.68). This shows that 

TABLE 12  Individual classifiers using RF-selected features.

Metric Value

Decision Tree

Accuracy 0.99 Precision Recall F1-score
Support

25,195

Macro Avg 0.69 0.65 0.65 25,195

Weighted Avg 0.99 0.99 0.99 25,195

Naive Bayes

Accuracy 0.33 Precision Recall F1-score
Support

25,195

Macro Avg 0.19 0.37 0.16 25,195

Weighted Avg 0.88 0.33 0.35 25,195

Logistic Regression

Accuracy 0.91 Precision Recall F1-score
Support

25,195

Macro Avg 0.24 0.20 0.21 25,195

Weighted Avg 0.86 0.91 0.88 25,195

Gradient Boosting

Accuracy 0.49 Precision Recall F1-score
Support

25,193

Macro Avg 0.48 0.29 0.29 25,193

Weighted Avg 0.96 0.49 0.57 25,193

Random Forest

Accuracy 0.99 Precision Recall F1-score
Support

25,195

Macro Avg 0.80 0.75 0.76 25,195

Weighted Avg 0.99 0.99 0.99 25,195

XGBoosting

Accuracy 0.99 Precision Recall F1-score
Support

25,195

Macro Avg 0.76 0.74 0.74 25,195

Weighted Avg 0.99 0.99 0.99 25,195

Support Vector Machine

Accuracy 0.92 Precision Recall F1-score
Support

25,195

Macro Avg 0.39 0.27 0.29 25,195

Weighted Avg 0.91 0.92 0.90 25,195
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stacking gives a more balanced and effective mix of classifiers, 
increasing the model’s capacity to properly detect positive situations 
while maintaining overall accuracy.

5.7 Comparing models and their statistical 
importance

	•	 The study used five-fold cross-validation on individual models, 
such as Random Forest (RF) and Gradient Boosting (GB), to 
evaluate and compare classifier performance. This ensured that 
the findings showed strong generalization and did not overfit to 
a particular data split (20%test_size, 80%train_size).

	•	 Performance differences were then statistically assessed 
using paired t-tests. A t-statistic of 42.7393 with a p < 0.0001 
was obtained when comparing RF to GB, indicating a 
statistically significant advantage for RF in classification  
performance.

Furthermore, a hard Voting Classifier was assessed as compared 
to its base learners. While the differences between RF (t = 0.3780, 
p = 0.7055) and GB (t = 0.7746, p = 0.4386) were not statistically 
significant, the Voting Classifier performed much better than the 
Decision Tree (t = 4.0835, p < 0.0001), according to the results of the 
t-test. Given that it outperforms the strongest base models while 

enhancing overall resilience, this demonstrates the Voting 
ensemble’s resilience.

	•	 In addition, t-tests were used to choose features using Mutual 
Information and Information Gain in order to verify that the 
chosen features improved generalization by reducing 
dimensionality and greatly enhancing model performance.

5.8 Analysis of SHAP-driven feature 
importance in Random Forest and decision 
tree classifiers for intrusion detection

SHAP values for the Random Forest and Decision Tree classifiers 
were calculated to interpret model options. In order to visualize the 
effects of features on both individual predictions and the overall 
relevance of features, SHAP provides both local and global interpretability.

According to the SHAP study, several variables were consistently 
more influential in both models, which is consistent with behaviors 
associated with documented network intrusions. This consistency 
provides information about possible dimensionality reduction 
techniques in addition to confirming the models’ validity.

While the Decision Tree model’s simple structure makes it 
easier to grasp., the Random Forest model outperformed it while 

FIGURE 13

Decision Tree.
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allowing for insight through SHAP. SHAP’s ability to clearly explain 
feature contributions reduced the complexity of the ensemble, 
proving that accuracy and interpretability do not have to 
be mutually incompatible.

Figure  19 demonstrates that while service_auth is of little 
significance, network packet sizes (src_bytes, dst_bytes) and 
connection flags are the most important features for attack detection 
in the model. This illustrates how the model successfully identifies 
malicious activity by concentrating on network traffic patterns.

As seen in Figure  20: The graphic shows that while service 
authentication data (service_auth) makes very little contribution to 
attack detection, network packet metrics (src_bytes, dst_bytes) and 
connection flags dominate feature relevance. These outcomes 
demonstrate how well the model uses fundamental network traffic 
features to identify malicious behavior across all threat categories.

5.9 Comparison of accuracy and feature 
selection methods in various studies

Table  16 compares several ML algorithms used to identify 
intrusions on the NSL-KDD dataset. Accuracy rates vary greatly based 
on the classifier and feature selection strategy employed.

5.9.1 In prior studies

	•	 Attou et al. (2023) shown that utilizing RBFNN with all features 
resulted in an accuracy of 90.49%, which increased to 94.1% 
when only four features were picked by Random Forest (RF). 
This demonstrates that focused feature selection may improve 
speed while reducing complexity.

	•	 Ogwara et  al. (2022) produced exceptionally high 
performance with classic ML models, notably Random 
Forest (99.22%), Decision Tree (99.07%), and KNN (98.06%), 
utilizing the whole feature set. This implies that with 
adequate training, even classical models can perform well 
when all important attributes are kept.

	•	 Rawat et al. (2022) investigated ensemble and deep learning 
approaches, such as LightGBM, DNN, and PCA + DNN, 
and found low accuracies ranging from 76.7 to 79.3%, 
indicating a potential mismatch between model complexity 
and dataset properties, or a lack of efficient 
feature reduction.

	•	 Tauscher et al. (2021) presented results using five classifiers, with 
SVM outperforming the others at 80.47%, while Gradient 
Boosting (GB) and Decision Tree (DT) fared below 70% on the 
whole feature set.

FIGURE 14

Logistic Regression.
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FIGURE 15

Random Forest.

FIGURE 16

Support Vector Machine.
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TABLE 13  Performance evaluation of classifiers using accuracy, precision, recall, and F1-score using RF-selected features.

Classifiers Accuracy Precision Recall F1-score Execution time

Random Forest 98.83% 0.80 0.75 0.76 29.910604000091553 s

Decision Tree 98.71% 0.69 0.65 0.65 17.27623677253723 s

XGBoost 98.79% 0.76 0.74 0.74 29.366595029830933 s

Naive Bayes 33% 0.19 0.37 0.16 5.824549198150635 s

Support Vector Machine 92.40% 0.39 0.27 0.29 221.10965991020203 s

Logistic Regression 90.56% 0.24 0.2 0.2 35.62619614601135 s

Gradient Boosting 49.35% 0.48 0.29 0.29 379.5056371688843 s

TABLE 14  Ensemble model using RF-selected features.

Metric Value

DT, RF, GR (hard voting)

Accuracy 0.99 Precision Recall F1-score
Support

12,597

Macro Avg 0.71 0.68 0.68 12,597

Weighted Avg 0.99 0.99 0.99 12,597

DT, RF, GB (stacking)

Accuracy 0.99 Precision Recall F1-score
Support

12,597

Macro Avg 0.75 0.68 0.70 12,597

Weighted Avg 0.99 0.99 0.99 12,597

FIGURE 17

DT, RF, GR (hard voting).
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TABLE 15  Performance evaluation of ensemble model using accuracy, precision, recall, and F1-score using RF-selected features.

Classifiers Accuracy Precision Recall F1-score Execution time

DT + RF + GB (voting hard) 0.99 0.71 0.68 0.68 409.4272561073303 s

DT + RF + GB (stacking) 0.99 0.75 0.68 0.70 2263.97 s

FIGURE 19

Global feature importance based on SHAP (DT).
FIGURE 20

Global feature importance based on SHAP (RF).

FIGURE 18

DT, RF, GB (stacking).
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TABLE 16  Comparison of accuracy and feature selection methods in various studies and the proposed model on the NSL-KDD dataset.

Research Dataset ML technique Accuracy Feature selection

Attou et al. (2023) NSL-KDD RBFNN classifier

90.49

92.12

94.16

Full dataset

10 Features by RF

4 Features by RF

Ogwara et al. (2022) NSL KDD

DT

RF

AdaBoost

Nıve Bayes

Stochastic dual coordinate ascent

Multilayer perceptron

K-Nearest Neighbors

Linear discriminant analysis

LR

SVM

99.07

99.22

94.05

9.64

16.91

84.79

98.06

89.16

79.69

79.62

Full features

Rawat et al. (2022) NSL-KDD

DT

Extra Tree

Ensemble Extra Tree

Light GBM

Deep Neural Network

PCA + Deep Neural Network

0.778

0.767

0.769

0.776

0.772

0.793

Full features

Tauscher et al. (2021) NSL-KDD

RF

SVM

NB

DT

GB

76.00%

80.47%

76.86%

68.28%

68.12%

Full features

Our proposed approach NSL-KDD

RF

DT

XGBoost

NB

SVM

LR

GB

DT + RF + GR (Voting hard)

DT + RF + GR (Stacking)

99.99%

99.98%

99.99%

78%

99.26%

97%

99.82%

1.00

1.00

Full features

RF

DT

XGBoost

NB

SVM

LR

GB

DT + RF + GR (Voting hard)

DT + RF + GR (Stacking)

99.97%

99.97%

99.97%

0.63%

88.09%

72.0%

99.89%

1.00

1.00

Selected features by manual 

information and gain 

information

RF

DT

XGBoost

NB

SVM

LR

GB

DT + RF + GR (Voting hard)

DT + RF + GR (Stacking)

98.83%

98.71%

98.79%

32.41%

92.40%

90.56%

49.35%

0.99%

0.99%

Selected features by RF
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5.9.2 In contrast, the approach suggested in the 
study demonstrates consistently higher performance

	•	 Voting Hard and Stacking DT, RF, and GB models resulted in a 
flawless 1.00 accuracy on both entire and chosen feature sets.

	•	 XGBoost, RF, and GB obtained accuracies close to or greater than 
99%, independent of the feature selection technique utilized.

	•	 Models such as Naive Bayes (NB) and Logistic Regression (LR) fared 
worse when combined with specific characteristics, particularly 
those picked by RF alone (e.g., NB at 32.41%, GB at 49.35%).

5.9.3 Feature selection analysis
Three different feature selection approaches were tested:

	•	 Full Feature Set
Most models performed well with complete data, particularly 
ensemble approaches and tree-based classifiers.
Voting and Stacking performed flawlessly (1.00).

	•	 Manual Selection (Information Gain & Domain Knowledge)

This strategy used statistics and expert analysis to maintain 
critical qualities.

The bulk of classifiers still scored well, with Voting Hard and 
Stacking scoring 1.00 and RF, DT, and XGBoost approaching 99.97%.

NB and LR’s accuracy was reduced, demonstrating their sensitivity 
to feature reduction.

	•	 RF-Based Feature Selection

When Random Forest was used alone to choose features, 
performance declined marginally.

Ensemble techniques such as Voting and Stacking maintained 
excellent accuracy (0.99), while individual classifiers such as NB 
(32.41%) and GB (49.35%) had considerable decreases, indicating 
that critical features may have been over-reduced or eliminated.

6 Conclusion and future work

	 1)	 Cloud computing’s rapid development has made it easier to use, 
but it has also made people more vulnerable to cyberattacks, 
necessitating the employment of sophisticated IDSs to combat 
sophisticated assaults. By offering an ensemble IDS architecture 
driven by ML, tailored for cloud systems, and evaluated on the 
NSL-KDD dataset, this paper addresses these problems.

	 2)	 When all features are used, the method achieves perfect scores 
(100%) in accuracy, precision, recall, and F1-score, combining 
ensemble classifiers Random Forest, Decision Tree, and Gradient 
Boosting through voting hard and Stacking strategies, proving 
that combining different models improves detection capabilities. 
By concentrating on significant characteristics like src_bytes and 
dst_host_serror_rate, feature selection strategies like 
Information Gain and Mutual Information improved detection. 
However, depending only on Random Forest-selected features 
occasionally resulted in decreased performance, suggesting the 
need for additional context-sensitive selection techniques.

	 3)	 SVM produced mediocre results, but ensemble-based models 
routinely outperformed standalone classifiers such as Naive Bayes 

and Logistic Regression, which were hampered by class imbalance 
and dependence problems. Despite slight decreases in precision 
and recall, the ensemble system demonstrated resilience across 
several feature sets, retaining almost perfect accuracy (99.97%) 
with manually selected features and 99% with Random Forest 
features. The superior accuracy and dependability of the suggested 
model were validated by comparisons with previous studies.

	 4)	 Application-wise, this study provides helpful recommendations 
for deploying scalable and effective IDS in cloud environments, 
emphasizing the necessity of striking a balance between resource 
requirements and accuracy. In the future, the model should 
be expanded with unsupervised approaches to identify zero-day 
threats, evaluated in real-time cloud settings, and made more 
visible using explainable AI methodologies. Overall, the study 
contributes a strong plan to defend contemporary cloud 
infrastructure against new cyber threats by bridging the gap 
between academic research and real-world application.

	 5)	 The study stresses the growing need for integrating AI-driven 
solutions into cloud security infrastructures. It highlights how 
combining a number of ML algorithms improves the flexibility 
and precision of threat identification, laying the groundwork for 
next-generation security systems that are both proactive and 
efficient. With cyberattacks becoming more complicated, the 
study promotes the development of intelligent, scalable, and 
robust cloud defense systems suited for both academic research 
and real-world applications.
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