
Frontiers in Computer Science 01 frontiersin.org

Detecting intrusions in
cloud-based ensembles:
evaluating voting and stacking
methods with machine learning
classifiers
Khawla Ali Maodah 1*, Sharaf Alhomdy 1 and Fursan Thabit 2

1 Department of Information Technology, Faculty of Computer and Information Technology, Sana’a
University, Sana’a, Yemen, 2 Department of Computer Engineering, Faculty of Engineering, Ege
University, Bornova, Türkiye

Introduction: Cloud computing has revolutionized how organizations manage
their infrastructure by providing scalable, on-demand services. However, the
dispersed and open nature of cloud systems exposes them to a wide spectrum
of cyberattacks. Machine learning provides dynamic options for detecting known
and unknown assaults, whereas typical intrusion detection systems that depend
on signature or rule-based techniques find it difficult to adjust to complex cyber
threats.

Methods: This study compares the efficacy of an ensemble approach (Voting
Hard and Stacking) for intrusion detection in cloud environments with individual
machine learning classifiers, such as Random Forest, Decision Tree, Gradient
Boosting, XGBoost, Naive Bayes, Support Vector Machine, and Logistic
Regression. The study uses the NSL-KDD dataset.

Results: The results show show that while standalone models perform well, the
ensemble technique offers better accuracy (almost 100%) and resilience across
precision, recall, and F1-score measures. Furthermore, it is shown via feature
selection methods (Random Forest, Gain Information, and Manual Selection)
that the ensemble model performs consistently even when feature sets are
smaller.

Discussion: These findings highlight how both individual and group Machine
learning approaches may be used to improve Intrusion detection systems for
cloud infrastructures, providing implementation flexibility according to threat
landscapes and computing limitations.

KEYWORDS

cloud computing, machine learning, voting, stacking, intrusion detection system, NSL-KDD
dataset

1 Introduction

Cloud computing (CC) is a contemporary strategy that gives users access to pre-configured,
task-specific, and externally managed internet-based resources. Most businesses increasingly
rely on these externally maintained services to fulfill particular goals like operating apps,
handling certain data activities, or enhancing existing systems, rather than having complete
infrastructure management. In contrast to conventional configurations, cloud services limit
direct management but provide remote use of certain tools provided by cloud service providers
(CSPs), contingent on network access and availability (Dattangire et al., 2024). Whereas before

OPEN ACCESS

EDITED BY

Nicholas Kolokotronis,
University of Peloponnese, Greece

REVIEWED BY

Santosh I. Gore,
Sai Info Solution, India
Fadi Wedyan,
Lewis University, United States

*CORRESPONDENCE

Khawla Ali Maodah
 khawlaa800@gmail.com

RECEIVED 05 May 2025
ACCEPTED 08 July 2025
PUBLISHED 20 August 2025

CITATION

Maodah KA, Alhomdy S and Thabit F (2025)
Detecting intrusions in cloud-based
ensembles: evaluating voting and stacking
methods with machine learning classifiers.
Front. Comput. Sci. 7:1623375.
doi: 10.3389/fcomp.2025.1623375

COPYRIGHT

© 2025 Maodah, Alhomdy and Thabit. This is
an open-access article distributed under the
terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or reproduction
is permitted which does not comply with
these terms.

TYPE  Original Research
PUBLISHED  20 August 2025
DOI  10.3389/fcomp.2025.1623375

https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fcomp.2025.1623375&domain=pdf&date_stamp=2025-08-20
https://www.frontiersin.org/articles/10.3389/fcomp.2025.1623375/full
https://www.frontiersin.org/articles/10.3389/fcomp.2025.1623375/full
https://www.frontiersin.org/articles/10.3389/fcomp.2025.1623375/full
https://www.frontiersin.org/articles/10.3389/fcomp.2025.1623375/full
https://www.frontiersin.org/articles/10.3389/fcomp.2025.1623375/full
mailto:khawlaa800@gmail.com
https://doi.org/10.3389/fcomp.2025.1623375
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/computer-science#editorial-board
https://www.frontiersin.org/journals/computer-science#editorial-board
https://doi.org/10.3389/fcomp.2025.1623375

Maodah et al.� 10.3389/fcomp.2025.1623375

Frontiers in Computer Science 02 frontiersin.org

it would just be present as a convenience or access-by-speed device,
cloud computing is now an operational and resource management
strategy because of the increasing reliance on centralized digital
infrastructure. Consumer-accessible services that offer consumers
limited access to necessary resources are normally run internally or by
trusted partners.

However, cloud infrastructures’ interconnection and complexity
inadvertently lay open vulnerabilities, hence the possibility of security
vulnerability exploitation. As a countermeasure to these challenges
(Al-Sharif and Bushnag, 2024). Whereas intrusion detection systems
(IDSs) are usually used to stay up to date with regard to network
activity, they tend to be more event-focused on logging instead of
proactive intrusion prevention. When confronted with new attack
patterns, traditional IDSs, which generally make use of preconfigured
rules or signatures, would overfit known threats and tend to produce
a high false alarm rate. Furthermore, the inability of their responses
to keep up with changing threat environments is due to the static
nature of traditional IDSs (Al-Sharif and Bushnag, 2024).

ML-based systems are less reliant on human maintenance and are
more resilient to as-yet unknown threats because they adapt to
evolving habits over time rather than relying merely on pre-determined
signatures (Adhikari and Bal, 2023). ML has been utilized mostly as
an auxiliary method to cloud infrastructure security management for
the last few years. Even if they do not necessarily surpass conventional
methods in terms of precision, ML algorithms employ training on
actual real-world data samples in order to aid in the identification of
patterns of cloud-based threats rather than completely automating
threat identification (Dattangire et al., 2024).

Despite CC being on-demand and dynamic in service, its
widespread and expansive nature can make it cumbersome to ensure
sustained security. Traditional IDS based on predefined rules or
signatures can be lacking.

in the case of changing and cunning attack styles, opening
vulnerabilities. Sophisticated and context-aware security solutions are
required to counter this. ML methods can be used to identify threats
by examining traffic patterns in the network, but their deployment in
cloud-based IDS systems is limited and needs to be improved.

In order to improve threat awareness in cloud computing, this
study focuses on putting forth a cooperative approach in which IDS
facilitates ML-based analysis. When managing different kinds of
network risks, the goal is to minimize mistakes, cut down on detection
delays, and preserve performance. The experimentation in this study
is based on the NSL-KDD dataset.

1.1 Problem statement

Whereas cloud computing is becoming a growing trend due to its
remote availability and simple services, control and data management
concerns are invited by its reliance on outside providers. Despite their
best effort to provide accessibility and efficiency, cloud systems may
inadvertently expose themselves to threats due to their complexity and
large distribution. Traditional IDSs are skewed toward familiar attack
patterns, which limits their capacity to identify unexpected behavior.
IDSs are often employed to audit activity rather than to prevent attacks
actively. Although ML is commonly proposed as a means of improving
threat detection, it might not always yield stable performance in
various situations or real-time reliability. Furthermore, the extent to

which ML and IDS can be integrated is still limited, and thus the issues
involved in converging automation and adaptive security mechanisms
are far from being completely addressed.

1.2 Objective

The objective of this work is to develop an ensemble-driven
intrusion detection model that integrates ML techniques into
traditional IDS for enhancing cloud computing environment security.
It increases the detection accuracy of known and unknown attacks,
reduces false alarms, and supports timely and adaptive reactions to
novel attack patterns.

1.3 Contributions

1.3.1 Proposed ensemble model
The ensemble strategy proposed in this study greatly improves

cyber threat detection and mitigation for cloud environments by
integrating ML methods effectively with IDS. With the use of
ensemble ML techniques with Voting hard and Stacking techniques,
which outperform single classifiers in terms of accuracy, precision,
recall, and F1-score metrics, the model will enhance IDS’ capability to
detect known and new attacks in real time.

1.3.2 Comprehensive classifier evaluation
Moreover, the analysis of the effectiveness of several ML classifiers,

such as RF, XGBoost, SVM, DT, GB, LR, and NB, in identifying
security threats related to cloud computing. The NSL-KDD dataset
was used to assess the classifiers using measures including accuracy,
precision, recall, and F1-score.

1.3.3 Practical insights for cloud security
Providing practical insights into how integration of ML and IDS

may improve cloud computing security. The results emphasize the
potential of the ensemble method in creating more resilient and flexible
security systems capable of identifying and countering emerging threats.

1.4 The structure of the paper

The remainder of this paper is structured as follows: section 2
contains background, which presents an introduction to cloud
computing, IDSs, and ML. Section 3 discusses related work. Section
4 offers an overview of the proposed model, including the NSL-KDD
dataset, feature selection methods, classifiers employed, performance
metrics for assessment, and experimental framework. Section 5
contains the results and analysis. Finally, section 6 concludes
conclusion and future work.

2 Background

2.1 Cloud computing

Cloud computing is the delivery of information technology services
such as servers, storage, databases, software, network management, and

https://doi.org/10.3389/fcomp.2025.1623375
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Maodah et al.� 10.3389/fcomp.2025.1623375

Frontiers in Computer Science 03 frontiersin.org

artificial intelligence (AI) via the Internet. It allows for speedier, more
flexible, and cost-effective solutions than traditional techniques,
resulting in improved productivity and efficiency. There are several
sorts of cloud infrastructures, each with its design and development.
Various models, varieties, and services have evolved to meet distinct
demands. Cloud services may be delivered in three ways: public,
private, and ensemble (Megouache et al., 2024; Zulifqar et al., 2021).

The public cloud is an example of a computer platform that
restricts customization and is run by companies that supply
standardized services to a large customer base. This group of
services, which rely on shared infrastructure, includes Microsoft
Azure, Google App Engine, and Amazon EC2. On the other hand,
the private cloud is designed for internal usage only, sometimes at
the expense of more stringent data isolation. It is appropriate for
businesses with certain operating needs. Microsoft ECI data centers,
Ubuntu Enterprise Cloud, and Amazon Virtual Private Cloud are a
few examples. Organizations with similar operational objectives
employ the community cloud, which divides duties among several
users and might result in less consistent administration (Saran et al.,
2022). New complexity brought forth by cloud technology’s ongoing
development put both individuals’ and enterprises’ current security
standards to the test. ML is being investigated as a supplemental
technique to help conventional security measures rather than
providing a comprehensive answer. Though their function is
typically reactive rather than entirely preventive, ML techniques are
frequently used in cloud systems to help identify trends and
abnormalities (Nassif et al., 2021).

2.2 Intrusion detection system

An IDS is a part of the system that watches data flow and system
activities passively without taking any active action to prevent
problems. It detects abnormalities that can indicate technical
problems or unusual use rather than explicitly recognizing
malicious activities or breaches. Instead of sending out instant
notifications, it creates records when it notices specific trends. By
providing insights rather than immediately addressing threats, an
IDS indirectly enhances network security in contrast to proactive
technologies like firewalls, antivirus software, or access control
systems (Umar et al., 2024; Saranya et al., 2020). Instead of active
defensive techniques like honeypots, IDSs are frequently coupled
with monitoring tools. Network intrusion detection systems (NIDS)
and host-based intrusion detection systems (HIDS) are the two
broad categories of IDS development that are often recognized.
With host-level modifications, HIDS mainly examines internal
operations and file integrity on a single system. However, NIDS may
miss host-specific events when monitoring network traffic. NIDS
detection usually uses statistical deviations or pre-established
procedures to identify anomalies (Useni et al., 2023). IDS may
be broadly divided into two categories: pattern-matching and
behavior-based. Although it may not always employ ML or DL
algorithms, behavior-based IDSs rely on departures from predicted
activities. However, instead of employing dynamic analysis, pattern-
matching IDSs use a database of recognized behaviors to identify
matches. Some IDS systems function in intervals rather than
continuously, alerting users only when certain thresholds or
circumstances are reached.

IDS systems are divided into two types based on their
response mechanism:

	-	 Active IDS detects threats but also takes preventative steps such
as blocking suspicious traffic to avoid prospective assaults.

	-	 Passive IDS: This kind just monitors and analyzes traffic, alerting
the administrator to discovered threats and potential
vulnerabilities but without taking active action against them
(Useni et al., 2023; Hidayat et al., 2023).

2.3 Machine learning

ML is a subset of AI that allows systems to learn and develop
automatically based on experience rather than explicit programming.
In IDSs, ML algorithms identify intrusions in huge datasets more
quickly. ML algorithms are often classified into three categories.
Supervised, Unsupervised, Semi-supervised (Saranya et al., 2020).
Supervised ML approaches use labeled datasets to train algorithms to
spot patterns of normal and aberrant behavior. Common intrusion
detection algorithms include LR, Gaussian NB, RF, MLP Classifier,
KNN, DT, AdaBoost, XGBoost, and LightGBM. Unsupervised ML
approaches use unlabeled data and focus on detecting deviations from
usual behavior. Clustering comparable data points and detecting
abnormalities is accomplished using algorithms such as K-means and
Gaussian Mixture Model (GMM). Semi-supervised ML algorithms
use labeled and unlabeled data to increase detection accuracy. They
can detect anomalies that are similar to tagged cases, even if they do
not completely match. These strategies attempt to improve the
performance of anomaly-based IDSs, hence leading to greater
computer network security (Adhikari and Bal, 2023; Nassif et al., 2021;
Parameswarappa et al., 2023).

3 Related work

The related papers listed below examine a range of IDS techniques
and methodologies, including IDS types and ML algorithms, with a
focus on cloud environments.

Mghames and Ibrahim (2023) developed an IDS based on ML to
identify Distributed Denial of Service (DDoS) attacks. They performed
training and testing in the CIC-IDS-2018 dataset using five machine-
learning methods: DT, RF, LR, SVM, and multi-layer neural network.
They applied PCA to diminish dimensions to improve performance.
The multi-layer neural network showed better performance than any
other model, achieving a classification accuracy of 99.9992% to
identify DDoS attacks.

Eluri et al. (2024) addressed the issue of detecting disruptions in
organizational networks by the definition of network activity as
normal or abnormal and striving to rectify misclassification. Two
strong algorithms of data mining, SVM, DT, and K-Means, were
utilized by them to optimize the organization of the data. This method
was developed and tested with the assistance of the KDDCUP99
dataset. The findings revealed that the new approach was more
accurate and faster in comparison to previous methods, which
suggests that it is particularly effective in new attack detection.

Vibhute et al. (2024) highlighted cloud data security by designing
an IDS from the popular NSL-KDD dataset. The ensemble

https://doi.org/10.3389/fcomp.2025.1623375
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Maodah et al.� 10.3389/fcomp.2025.1623375

Frontiers in Computer Science 04 frontiersin.org

learning-based RF model was designed to identify the most important
features. The system categorized and identified network intrusions
with three ML models: SVM, LR, and KNN, and validation accuracies
of 87.58, 88.86, and 98.24%, respectively. The suggested method has
proved to be effective in identifying cyberattacks in real time.

John et al. (2024) proposed an IDS that detects illegal access and
initiates pre-defined actions to enable secure data transfer using
networks. They recognized several problems for IDS models like low
detection accuracy and excessive false alarms, which are usually
caused by excessive feature dimensionality and class imbalances in
network traffic datasets. To address these issues, the study used
Principal Component Analysis (PCA) and ensemble ML techniques.
AdaBoost was used to overcome the disadvantages of PCA, such as
feature selection; LogitBoost was used for multiclass categorization
and logistic loss reduction; and RandomForest was used for curvy
overfitting reduction. The performance, as well as the WSN-DS,
NSL-KDD, and UNSW-N15 datasets, indicated that PCA integrated
with RandomForest achieved 100% accuracy on all datasets. PCA with
AdaBoost scored 92.3, 89.0, and 67.9% on WSN-DS, NSL-KDD, and
UNSW-N15, respectively, and PCA with LogitBoost scored 98.9, 100,
and 88.7% on the said datasets.

Vibhute et al. (2024) experimented with cloud data protection
through a network IDS with the commonly used NSL-KDD dataset.
They proposed an RF method where ensemble learning was employed
to identify the most important features. The system detected and
identified network intrusions using three ML models: SVM, LR, and
K-nearest neighbors (KNN) with validation accuracy of 87.58, 88.86,
and 98.24%, respectively. The presented method has been promising
for real-time detection of cyberattacks.

John et al. (2024) presented an IDS that is capable of detecting
unauthorized access and initiating pre-defined actions to support
secure data sharing across networks. They realized there were many
challenges for IDS models, including low detection rates and high
false positives, due to frequent occurrences of high feature
dimensionality and class imbalances in network traffic datasets. To
tackle these challenges, the research work utilized Principal
Component Analysis (PCA) and ensemble ML techniques. AdaBoost
was utilized to remedy PCA’s limitation in feature selection; LogitBoost
was utilized for multiclassing and for reducing logistic loss; and
RandomForest was utilized for overfitting reduction. Comparison
against the WSN-DS, NSL-KDD, and UNSW-N15 datasets through
evaluation showed that PCA integrated with RandomForest
outperformed all the datasets with 100% accuracy. PCA with
AdaBoost was able to get 92.3, 89.0, and 67.9% accuracy on WSN-DS,
NSL-KDD, and UNSW-N15, respectively. PCA with LogitBoost was
able to get 98.9, 100, and 88.7% accuracy on the same datasets.

Attou et al. (2023) suggested a cloud-based IDS that monitors
resources, services, and networks for suspicious activities. They
combined an RF classifier with feature engineering methods to
improve the detection model’s accuracy. The model was tested on the
Bot-IoT and NSL-KDD datasets, and it achieved 98.3 and 99.99%
accuracy, respectively. The findings confirmed the model’s exceptional
performance in terms of accuracy, precision, and recall, outperforming
prior studies in the field.

Al-Sharif and Bushnag (2024) established an IDS framework for
handling security challenges in cloud settings, where standard IDS
solutions frequently fail owing to increased complexity and numerous
attack vectors. Instead of using a single powerful classifier, they suggested

a collective learning approach that combines numerous weaker models
to create a more reliable detection system. Their strategy used bagging
with Random Forest as the principal model and compared its efficacy to
three boosting variants: Ensemble AdaBoost, Ensemble LPBoost, and
Ensemble RUSBoost. Evaluations were conducted utilizing several
divisions of the CICID2017 dataset. Among the investigated models,
Ensemble RUSBoost had the greatest average accuracy at 99.821%, while
the bagging approach performed particularly well on the DS2 subgroup,
with an accuracy of 99.997%. To further test their technique, the
researchers compared their model to an existing solution, emphasizing
its comparative benefits and enhanced detection capacity.

Mehmood et al. (2023) proposed an ML-based method for
detecting insider actions in cloud settings, with a focus on recognizing
privilege misuse instances. They used a mixed-learning framework to
improve detection reliability, including many models such as Random
Forest, AdaBoost, XGBoost, and LightGBM. Testing was done on a
customized version of the CERT dataset, and LightGBM surpassed the
others with a peak accuracy of 97%. XGBoost and AdaBoost followed
closely, with 88.27 and 88% accuracy, respectively, while Random
Forest achieved 86%. Their findings showed that using several models
in tandem improves the system’s capacity to detect various insider
threat behaviors.

Akinbolaji (2023) studied the use of sophisticated AI and ML
technologies to improve real-time monitoring systems in cloud
settings. Their study analyzed current detection frameworks using
both statistical and descriptive research tools, as well as newer AI
approaches such as deep learning and reinforcement learning, to
improve detection efficiency and precision. The results showed that
the suggested ensemble model outperformed traditional techniques,
with at least a 30% improvement in detecting abnormalities and
threats. This study emphasizes the importance of AI in enhancing
digital security mechanisms, ensuring data integrity, and assisting
compliance efforts, while also laying the way for future advances in
cloud-based threat prevention systems.

The study in Devi and Jain (2024) examines the issues of protecting
privacy and safeguarding data in cloud computing settings, which are
particularly vulnerable owing to their dispersed nature. Instead of
traditional procedures, the authors advocated using deep learning to
improve intrusion detection technologies. They looked at a variety of
IDS frameworks and emphasized the need for high-quality datasets in
optimizing the training and assessment stages of these models. The
goal was to improve the efficacy of IDS systems that operate in both
real-time and batch modes by using sophisticated deep-learning
algorithms. The findings demonstrated how challenging it may be to
identify anomalous behavior when training data does not exhibit these
patterns. In detecting anomalous activity across many categorization
groups, the study showed that algorithms such as Soft-Max Regression
(SMR) and STL-based feature learning outperformed 98% accuracy,
indicating encouraging developments in cloud defensive mechanisms.

Sundaramoorthy et al. (2024) discussed an ensemble IDS
system with an emphasis on improved security in cloud-based
infrastructure and wireless sensor networks. The system includes
various techniques, including ISSIR for optimal feature selection,
OSVM for classification error reduction, ELSTM for pattern
anomaly detection, and MLPNN for threat response. The resulting
ensemble technique recorded a staggering 99.9% accuracy rate,
outperforming earlier systems. This unification further improves
the IDS performance, corrects serious weaknesses in cloud and

https://doi.org/10.3389/fcomp.2025.1623375
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Maodah et al.� 10.3389/fcomp.2025.1623375

Frontiers in Computer Science 05 frontiersin.org

WSN networks, and contributes substantially to cybersecurity
technique advancements.

Megouache et al. (2024) proposed a strong approach to identifying
attacks on cloud data with emphasis on special challenges due to
dispersed nature, scalability problems, and restricted resources
available in cloud systems. Unlike traditional models, their approach
used unclassified data instead of pre-labeled inputs. They applied
k-means clustering to label the raw data, which was further applied to
train an Extreme Learning Machine (ELM) classifier for threat
identification. Using the KDD99 benchmark dataset, they were
successful in showing that their approach provided high accuracy as
well as reduced processing time significantly. The method proved to
be a good alternative for complementing cloud protection systems,
with uniform detection results.

In contrast to other studies, the study uses the NSL-KDD dataset
to provide a comprehensive evaluation of many individual classifiers

as well as a hard voting ensemble approach designed for cloud-based
systems. While the majority of current methods focus on a single
model or dataset, the technique combines feature selection with
ensemble learning to increase accuracy and outcomes in F1 score,
precision, and recall. Whereas previous efforts focus solely on insider
threats or DDoS assaults, the approach can detect both known and
unknown attack types. In addition, we demonstrate that the ensemble
approach overcomes computational efficiency issues in real-time
cloud IDSs by maintaining good detection performance even with
smaller feature dimensions.

4 Proposed model

This section describes an integrated ML method -IDS model (as
shown in Figure 1) that uses the NSL-KDD dataset to detect abnormal

FIGURE 1

ML-based IDS flowchart for NSL-KDD.

https://doi.org/10.3389/fcomp.2025.1623375
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Maodah et al.� 10.3389/fcomp.2025.1623375

Frontiers in Computer Science 06 frontiersin.org

network traffic in cloud settings. The approach involves data
pretreatment (normalization and encoding), RandomOverSampler to
solve class imbalances, and feature selection techniques (complete
feature set, Information Gain, Mutual Information, and RF-based
significance). The dataset is then divided into training and test sets. To
increase detection accuracy, several classifiers (RF, DT, SVM, XGBoost,
LR, GB, and Naïve Bayes) are trained and merged using ensemble
approaches such as voting hard and Stacking. To categorize traffic as
normal or abnormal, models are assessed using standard metrics such
as accuracy, precision, recall, F1-score, and false positives/negatives,
hence enhancing threat detection in cloud environments.

4.1 NSL-KDD dataset

The KDDcup99 dataset was generated for the Third
International Knowledge Discovery and Data Mining Tools
Competition, which took place in 1999 in connection with
KDD-99, the Fifth International Conference on Knowledge
Discovery and Data Mining. This dataset contains over 5 million
training samples and over 2 million testing samples. It also has a
high number of duplicate entries and unbalanced class
distributions (Umar et al., 2024). The NSL-KDD dataset is based
on the KDD Cup ‘99 dataset and solves flaws identified in the
original, such as duplicated entries in the training set and
duplicate records in the test set (Protić and Stanković, 2023). The
NSL-KDD dataset has 41 attributes: three are categorical, four are
binary, and the remaining 34 are continuous. The training set
includes 23 traffic types, whereas the testing set has 30. The
assaults in this dataset are divided into four categories: DOS,
probing, U2R, and R2L. The features are divided into three
categories: (1) fundamental features, (2) content-based features,
and (3) traffic-related features (Alkadi et al., 2023).

4.2 Data preprocessing

Data preparation is critical in converting raw information into a
format that enhances the performance of ML models. Raw data
frequently contains missing, null, or inconsistent values, as well as
unused or duplicated fields that provide no useful information. To
solve this, the process starts by identifying and eliminating
inconsistencies in the data to ensure it is clean. The following stages
describe how the dataset was prepared for ML applications:

	•	 The preparation begins with the load _data function, which
imports the text file and converts it into a pandas DataFrame with
easy-to-understand column names.

	•	 Clean up categorical columns such as protocol_type, service, and
flag by removing unnecessary spaces and newline characters
using the clean_column_values function.

	•	 Following cleaning, one-hot encoding via Pandas is used to
convert these category characteristics into a numerical
representation. Get-dummies (), which qualifies them for use in
ML models.

	•	 The normalize_data function uses StandardScaler to standardize
the dataset, bringing its mean down to zero and its standard
deviation up to one, in order to further improve speed.

	•	 The dataset is then balanced by using RandomOverSampler from
the learning module, which helps to lessen prediction bias by
producing extra samples for the underrepresented class.

	•	 The data is optimized for ML through the processes of cleaning,
encoding, scaling, and balancing, which raises the precision and
dependability of model predictions.

4.3 Feature selection

Choosing the pertinent attributes comes next after data analysis.
By determining the most important variables, feature selection
improves the accuracy of ML models, which is why it is so important
in intrusion detection (Vibhute et al., 2024). The process of feature
subset selection aims to improve classification performance by
selecting a smaller set of features from a larger pool. While some
researchers describe feature subset selection (FSS) as a technique for
decreasing the size of the feature set, others view it as a means of
improving classifier accuracy. FSS is thought to be a method for
finding the best feature subsets that, by removing unnecessary and
duplicated features, preserve the most important information in a
dataset (Alhayali et al., 2021). The most significant characteristics are
found using feature selection approaches, which also remove
redundant or superfluous data and increase the dataset’s overall
effectiveness (Vibhute et al., 2024). In the beginning, the study
employed all of the features without using any feature selection
techniques. Following that, two filter-based feature selection
strategies were presented: Mutual Information and Gain Information.
These methods rank the features according to their scores, which
assess each feature’s importance and pertinence to the class label. The
characteristics with the highest ranking are then used to create the
IDS. Filter approaches have the advantage of being computationally
efficient because they do not need IDS training (Alalhareth and
Hong, 2023). Filters are employed in the popular feature selection
method known as Gain Information. It reduces the impact of
irrelevant data by ranking characteristics according to their
significance. By doing so, it discovers the characteristics that give the
most information to a certain class, improving the model’s overall
performance (Kurniabudi et al., 2020). In Gain Information (GI), the
quantity of information is primarily assessed using the entropy and
conditional entropy concepts. Firstly, a discrete random variable’s
entropy, “𝑋, is defined as follows in Equation 1”:

	
() () ()()H log

i

i i
x X

X p x p x
∈

= − ∑
	

(1)

Here, a specific outcome of the random variable 𝑋 is indicated by
𝑥𝑖, and the probability that 𝑥𝑖 will occur among the potential values
of 𝑋 is shown by P(𝑥𝑖). According to another discrete random variable
𝑌, the conditional entropy of “𝑋 is defined as follows in Equation 2”:

	
() () () ()()

∈ ∈
= − ∑ ∑/ / log /

i i

i i i i i
y Y x X

H X Y p y P x y P x y
	

(2)

The chance of seeing 𝑦𝑗 from 𝑌 is represented by 𝑃(𝑦𝑗) in this
instance, but the conditional probability of seeing 𝑥𝑖 from 𝑋 provided

https://doi.org/10.3389/fcomp.2025.1623375
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Maodah et al.� 10.3389/fcomp.2025.1623375

Frontiers in Computer Science 07 frontiersin.org

that 𝑦𝑗 from 𝑌 has happened is shown by 𝑃(𝑥𝑖|𝑦𝑗). The Gain
Information (GI) between 𝑋 and 𝑌 quantifies the amount of
information communicated between both variables as follows in
Equation 3:

	

() () () ()

()
() ()

, / ,

,
log

i i

i i
x X y Y

i i

i i

IG X Y H X H X Y P x y

P x y
P x p y

∈ ∈
= − =

 
  
 

∑ ∑

	
(3)

(𝑥𝑖, 𝑦𝑗) refers to the joint probability of 𝑥𝑖 and 𝑦𝑗 occurring together
(Zhang et al., 2024). Mutual Information (MI)-based feature selection
is an approach for dimensionality reduction that works independently
of classifiers. It seeks to address the difficulty of picking a meaningful
collection of characteristics (Liu and Motani, 2022). Mutual information
feature selection is a popular strategy for improving the effectiveness of
IDSs. It assesses the link between each characteristic and the class label,
deciding which features have the highest mutual information values
(Alalhareth and Hong, 2023). The study used an RF classifier, which is
an ensemble-based ML technique that integrates numerous DTs. To
limit the danger of overfitting and improve the model’s generalizability,
each DT in the forest is built separately from a randomly selected subset
of the training data and features. The RF algorithm’s ultimate output is
selected by a majority vote among all DTs. Each tree in the forest votes
for the class of the input data point and the class that receives the most
votes is chosen as the prediction (Ali et al., 2023). As shown in Table 1,
multiple feature selection approaches discover critical properties for the
IDS. The whole feature set has 41 characteristics, however, approaches
like manual information acquisition and RF selection emphasize
essential aspects like “src_bytes,” “dst_host_serror_rate,” and “count.”
These features serve to improve the IDS model’s performance in
identifying unusual network traffic.

4.4 Classification model

Support Vector Machine (SVM): is commonly regarded as one of
the most successful algorithms for binary classification, notably in
IDSs (IDS), where transactions are classified as normal or invasive
(Aldallal and Alisa, 2021). The primary goal of SVM is to identify a
hyperplane within an n-dimensional feature space that maximizes the

separation margin between classes. One of the key advantages of SVM
is its ability to work effectively with smaller training datasets, as it only
relies on a few support vectors to define the hyperplane. However,
SVM performance can be negatively impacted by noise near the
hyperplane (Alotaibi and Rassam, 2023).

Gradient boosting (GB): is an ensemble learning method that
combines many decision trees to increase prediction accuracy. This
method builds decision trees progressively, with each node making
a binary choice. The model’s performance is progressively improved
as each tree fixes the mistakes of the one before it. GB is an effective
technique for challenging jobs because of its iterative approach,
which produces forecasts that are more accurate (Boldini
et al., 2023).

XGBoost: To improve efficiency and performance, XGBoost is a
sophisticated and optimized variant of gradient boosting. It enhances
the approach and system design of conventional GB models. Parallel
processing, distributed computing, out-of-core execution, and cache
optimization are some of the characteristics that XGBoost integrates
to provide quicker processing and more accurate convergence to the
global minimum. Its speed and accuracy are increased by these
enhancements, which enable it to handle massive amounts of data
across several devices (Thapa et al., 2020).

Logistic regression (LR): A classification method for categorical
outcome prediction, logistic regression may be applied to both binary
and multi-class classification applications. It uses the logistic function
to determine the likelihood of an event happening, with values ranging
from 0 to 1. Usually, a threshold of 0.5 is used to differentiate between
two classes: values below 0.5 are categorized as class 0, whereas those
over 0.5 are classified as class 1. F(x) = 1/(1 + e^-x) is the logistic
sigmoid function, which is used to convert the input into a number
between 0 and 1 that indicates the likelihood of a specific result. The
wider application of the logistic sigmoid function in multi-class
classification situations is not the same as this method (Somogyi, 2021).

Naïve Bayes (NB): is a variation of Bayes’ Theorem in which the
qualities are assumed to be extremely independent of one another. It
is a classification approach based on Bayes’ probability theory, with the
assumption that the presence of one characteristic does not affect the
chance of another (Devidas and Adesh, 2021). The Naïve Bayes
method uses conditional probability and the premise that
characteristics are independent. The classifier assigns the sample to the
class with the highest probability after calculating the conditional
probabilities for each class for each input (Useni et al., 2023).

TABLE 1  Feature selection for IDS using different methods.

Methods of features
selection

Features

Full features

“duration,” “protocol_type,” “service,” “flag,” “src_bytes,” “dst_bytes,” “land,” “wrong_fragment,” “urgent,” “hot,” “num_failed_logins,”

“logged_in,” “num_compromised,” “root_shell,” “su_attempted,” “num_root,” “num_file_creations,” “num_shells,” “num_access_files,”

“num_outbound_cmds,” “is_host_login,” “is_guest_login,” “count,” “srv_count,” “serror_rate,” “srv_serror_rate,” “rerror_rate,” “srv_

rerror_rate,” “same_srv_rate,” “diff_srv_rate,” “srv_diff_host_rate,” “dst_host_count,” “dst_host_srv_count,” “dst_host_same_srv_rate,”

“dst_host_diff_srv_rate,” “dst_host_same_src_port_rate,” “dst_host_srv_diff_host_rate,” “dst_host_serror_rate,” “dst_host_srv_

serror_rate,” “dst_host_rerror_rate,” “dst_host_srv_rerror_rate,” “labels”

Selected features by manual

information and gain information

“src_bytes,” “flag_SH,” “service_auth,” “dst_host_diff_srv_rate,” “dst_host_same_src_port_rate,” “dst_host_srv_diff_host_rate,” “dst_

host_serror_rate,” “dst_host_srv_serror_rate,” “dst_host_rerror_rate,” and “dst_host_srv_rerror_rate”

Selected features by RF
“src_bytes,” “data_transfer,” “same_srv_rate,” “count,” “dst_bytes,” “dst_host_serror_rate,” “dst_host_diff_srv_rate,” “dst_host_srv_

serror_rate,” “srv_serror_rate,” “error_rate,” and “attack”

https://doi.org/10.3389/fcomp.2025.1623375
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Maodah et al.� 10.3389/fcomp.2025.1623375

Frontiers in Computer Science 08 frontiersin.org

Decision Tree (DT): For classification problems, the DT method is
frequently utilized. It organizes data in a tree structure, with
classifications determined by decisions made at every level. The branches
show the results of those tests, the leaf nodes show the final classification,
and each non-terminal node denotes a test or decision point.

Random Forest (RF): For both classification and regression tasks,
RF, an ensemble learning technique, is employed. During training, it
creates numerous DTs and forecasts the class using the majority vote
from each tree. This strategy seeks to decrease overfitting and
underfitting by averaging predictions to strike a balance between bias
and variance (Devidas and Adesh, 2021).

Ensemble Model: This ensemble model guarantees thorough and
accurate threat detection by combining the various strengths of the
individual classifiers to improve classification accuracy through the
use of Voting Hard and Stacking with DT, RF, and GB.

4.5 Performance evaluation metrics

A number of essential criteria will be used to assess threat
detection algorithms’ performance. These measurements will provide
quantitative insights into how well the models recognize and respond
to threats in real-time settings (Akinbolaji, 2023).

4.6 The performance evaluation metrics
can be expressed as accuracy, precision,
recall, and F1-score

Accuracy: is the percentage of correctly categorized cases, which
include both normal and pathological data points. as follows in
Equation 4:

	
+

=
+ + +

TP TNAccuracy
TP TN FP FN 	

(4)

Precision: refers to the fraction of forecasted threats that are valid.
It is the proportion of accurately recognized anomalies to total
presented anomalies. as follows in Equation 5:

	
=

+
TPPrecision

TP FP 	
(5)

Recall: The proportion of genuine positive records (e.g., true
anomalies) that are accurately identified. It calculates the ratio of
detected attacks to total attacks. as follows in Equation 6:

	
=

+
TPRecall

TP FN 	
(6)

The F1 Score: is the harmonic mean of accuracy and recall,
providing a single statistic for evaluating the model’s overall efficacy.
as follows in Equation 7:

	
∗

− =
+

1 Recall PrecisionF Sccore
Recall Precision 	

(7)

True Negative (TN) represents accurately anticipated normal cases.

False Negative (FN) indicates incidents that were mistakenly
anticipated as normal.

True Positive (TP) represents successfully anticipated
abnormal incidences.

False Positive (FP) indicates incidents that were wrongly
anticipated as abnormal (John et al., 2024; Vibhute et al., 2024;
Megouache et al., 2024).

4.7 Experimental environment

All of the study’s experiments were carried out on a top-tier
workstation running Windows 10 Pro and equipped with an AMD
Ryzen 95,950X CPU (3.7 GHz) and 64 GB of RAM. This setup was
intended to guarantee that repeated tests with various feature sets and
numerous ensemble classifiers would go well. This configuration is not
representative of situations with restricted resources, such as low-cost
systems or edge devices. Future research will evaluate the effectiveness
of the IDS on these platforms and investigate real-time optimization
techniques including pruning, quantization, and compression.

5 Results and discussion

This section presents the results obtained from the ensemble
model, which was evaluated using the NSL-KDD dataset’s features and
yields a total of 41 attributes as shown in Table 1 to assess the
effectiveness of the integrated approach. It begins by analyzing the
performance of various individual classifiers RF, DT, GB, XGBoost,
NB, SVM, and LR, and the ensemble model using standard evaluation
metrics, including accuracy, precision, recall, F1-score, and false
positive/negative rates in three case that are full features, selection
methods such as Information Gain, Mutual Information. These
findings emphasize the need to use the whole feature set to improve
the IDS’s capacity to detect unexpected network traffic. The subsection
discussion is as follows:

5.1 Individual classifiers using full features

Ensemble models outperform individual classifiers in measures
like accuracy, precision, recall, and F1-score when using all available
features as shown in Table 1.

	 a	 Random Forest

The RF model achieved an outstanding 99.99% accuracy, with
perfect precision and recall (1.00), correctly identifying all
positive cases. Its F1-score of 1.00 reflects a balanced and
excellent performance in both accuracy and recall, as illustrated
in Table 2 and Figure 2.

	 b	 Decision Trees

The DT model demonstrated exceptional performance with an
accuracy of 99.98%, perfect precision and recall of 1.00, and an
F1-score of 1.00, indicating flawless prediction and detection
of positive cases, as shown in Table 2 and Figure 3.

https://doi.org/10.3389/fcomp.2025.1623375
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Maodah et al.� 10.3389/fcomp.2025.1623375

Frontiers in Computer Science 09 frontiersin.org

	 c	 Logistic Regression

The LR model achieved 97% accuracy, with a precision of 0.98
and a recall of 0.97, accurately detecting 97% of true positive
events. Its F1-score of 0.97 reflects strong overall performance,
as shown in Table 2 and Figure 4.

	 d	 XGBossting

XGBoost achieved an impressive accuracy of 99.99%, with
perfect precision and recall of 1.00, correctly predicting all
positive events. Its F1-score of 1.00 highlights its excellent
balance of precision and recall, making it the
top performer, as shown in Table 2 and
Figure 5.

	 e	 Naïve Bayes

The NB model had a lower accuracy of 78%, correctly
predicting 81% of positive cases. Its recall was 78%, and the
F1-score of 0.76 indicates an imbalanced model with room for
improvement in both precision and recall, as shown in Table 2.

	 f	 Gradient boosting

The GB model achieved an impressive accuracy of 99.82%,
with perfect accuracy and recall (1.00), correctly predicting
all positive cases and detecting all actual positives. Its
F1-score of 1.00 reflects excellent balance and performance
across all parameters, as shown in Table 2.

	 g	 Support Vector Machine

The SVM model achieved 99.26% accuracy, with excellent
precision (0.99) and recall (0.99), demonstrating strong

TABLE 2  Individual classifiers using full features.

Metric Value

Random Forest

Accuracy 1.00 Precision Recall F1-score
Support

309,778

Macro Avg 1.00 1.00 1.00 309,778

Weighted Avg 1.00 1.00 1.00 309,778

Decision Tree

Accuracy 1.00 Precision Recall F1-score
Support

309,778

Macro Avg 1.00 1.00 1.00 309,778

Weighted Avg 1.00 1.00 1.00 309,778

Logistic Regression

Accuracy 0.97 Precision Recall F1-score
Support

6,196

Macro Avg 0.98 0.97 0.97 6,196

Weighted Avg 0.98 0.97 0.97 6,196

XGBossting

Accuracy 1.00 precision recall f1-score
support

309,778

Macro Avg 1.00 1.00 1.00 309,778

Weighted Avg 1.00 1.00 1.00 309,778

Naïve-Bayes

Accuracy 0.78 Precision Recall F1-score
Support

123,912

Macro Avg 0.81 0.78 0.76 123,912

Weighted Avg 0.81 0.78 0.76 123,912

Gradient boosting

Accuracy 1.00 Precision Recall F1-score
Support

6,196

Macro Avg 1.00 1.00 1.00 6,196

Weighted Avg 1.00 1.00 1.00 6,196

https://doi.org/10.3389/fcomp.2025.1623375
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Maodah et al.� 10.3389/fcomp.2025.1623375

Frontiers in Computer Science 10 frontiersin.org

performance in predicting and identifying positive cases. Its
F1-score of 0.99 indicates a well-balanced model, as shown in
Table 3.

Table 4 compares the performance of several classifiers using
accuracy, precision, recall, and F1-score. RF, DT, and XGBoost all
produced near-perfect results, with 99.99% accuracy and perfect

FIGURE 2

Random Forest.

FIGURE 3

Decision Tree.

https://doi.org/10.3389/fcomp.2025.1623375
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Maodah et al.� 10.3389/fcomp.2025.1623375

Frontiers in Computer Science 11 frontiersin.org

FIGURE 4

Logistic Regression.

FIGURE 5

XGBossting.

TABLE 3  Support Vector Machine using full features.

Precision Recall F1-score Support

Accuracy 0.9925753760733420 0.9925753760733420 0.9925753760733420 0.9925753760733420

Macro avg 0.9926361652890440 0.9925724355169420 0.992555391610573 15489.0

Weighted avg 0.9926457833302430 0.9925753760733420 0.992562131963623 15489.0

https://doi.org/10.3389/fcomp.2025.1623375
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Maodah et al.� 10.3389/fcomp.2025.1623375

Frontiers in Computer Science 12 frontiersin.org

precision, recall, and F1-score values of 1.00. NB has a much lower
accuracy (78%), as well as worse precision, recall, and F1-score. SVM
and LR both performed well, with accuracy rates of 99.26 and 97%,
respectively, while retaining good precision, recall, and F1 scores. GB
likewise produced outstanding results, with 99.82% accuracy and
flawless precision, recall, and F1-score.

5.2 Ensemble model using full features

	 a-	 (DT+ RF+ GB) Voting hard

The ensemble model, which combines Decision Tree, Random
Forest, and Gradient Boosting with hard voting, produced
flawless classification results. It achieved an accuracy of 1.00,
with precision, recall, and F1-score all at 1.00. This
demonstrates strong predictive potential for the test results. As
shown in Table 5 and Figure 6.

	b-	 (DT+ RF+ GB) Stacking

The stacking ensemble model, which combines Decision Tree,
Random Forest, and Gradient Boosting, likewise performed
perfectly. It scored 1.00 for accuracy, precision, recall, and
F1-score. This implies that stacking effectively harnessed the
strengths of each base model. as shown in Table 5 and
Figure 7.

Table 6 shows the performance of an ensemble model that
combines DT, RF, and GB with the Voting Hard and stacking
methods. The ensemble models performed flawlessly across all
criteria, with accuracy, precision, recall, and an F1 score of 1.00.

5.3 Individual classifiers using gain
information and manual information

The performance of Individual Classifiers by Gain Information
and Manual Information, as shown in Table 1 is evaluated based
on accuracy, precision, recall, and F1-score, the evaluation of
different classifiers and ensemble models reveals the advantages
and disadvantages of each model for certain classification tasks.
In order to improve overall performance, this section covers both
single classifiers and ensemble models, which integrate
many classifiers.

	 a	 XGBoosting

The XGBoost model achieved impressive results with an
accuracy of 99.97%, along with perfect precision, recall, and
F1-score of 1.00, indicating flawless predictions and accurate
detection of positive cases. This outstanding performance
highlights XGBoost as a highly effective model, as shown in
Table 7 and Figure 8.

	 b	 Decision Trees

The DT model achieved an accuracy of 99.97%, with perfect
precision, recall, and F1-score values of 1.00, indicating flawless
categorization of both positive and negative cases. It performed
excellently in precision and recall, as shown in Table 7.

	 c	 Random forest

The RF model achieved an accuracy of 99.97%, with perfect
precision, recall, and F1-score values of 1.00, indicating flawless
performance in predicting and detecting positive cases. This
makes it highly effective for the task, as shown in Table 7.

	 d	 Support Vector Machine

The SVM model achieved an accuracy of 88.09%, with
precision and recall scores of 0.90 and 0.88, respectively.

TABLE 4  Performance evaluation of classifiers using accuracy, precision, recall, and F1-score using full features.

Classifiers Accuracy Precision Recall F1-score Execution TIME

Random Forest 99.99% 1.00 1.00 1.00 332.34395813941956 s

Decision Tree 99.98% 1.00 1.00 1.00 95.22518181800842 s

XGBoost 99.99% 1.00 1.00 1.00 120.07075381278992 s

Naive Bayes 78% 0.81 0.78 0.76 13.097240209579468 s

Support Vector Machine 99.26% 0.99 0.99 0.99 128.66907286643982 s

Logistic Regression 97% 0.98 0.97 0.97 131.4768099784851 s

Gradient Boosting 99.82% 1.00 1.00 1.00 161.10451579093933 s

TABLE 5  Ensemble model using full features.

Metric Value

DT, RF, GB (voting hard)

Accuracy 1.00 Precision Recall F1-score
Support

15,489

Macro Avg 1.00 1.00 1.00 15,489

Weighted Avg 1.00 1.00 1.00 15,489

DT, RF, GB (stacking)

Accuracy 1.00 Precision Recall F1-score
Support

15,489

Macro Avg 1.00 1.00 1.00 15,489

Weighted Avg 1.00 1.00 1.00 15,489

https://doi.org/10.3389/fcomp.2025.1623375
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Maodah et al.� 10.3389/fcomp.2025.1623375

Frontiers in Computer Science 13 frontiersin.org

FIGURE 6

DT, RF, GB (voting hard).

FIGURE 7

DT, RF, GB (stacking).

TABLE 6  Performance evaluation of ensemble model using accuracy, precision, recall, and F1-score using full features.

Classifier
(ensemble model)

Accuracy Precision Recall F1-score Execution Time

DT + RF + GB (voting hard) 1.00 1.00 1.00 1.00 139.073 s

DT + RF + GB (stacking) 1.00 1.00 1.00 1.00 3571.27 s

https://doi.org/10.3389/fcomp.2025.1623375
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Maodah et al.� 10.3389/fcomp.2025.1623375

Frontiers in Computer Science 14 frontiersin.org

While it demonstrated balanced performance with an
F1-score of 0.88, its performance was notably lower
compared to top models like RF and XGBoost, as shown in
Table 7 and Figure 9.

	 e	 Naïve-Bayes

The NB model performed poorly, achieving an accuracy of 0.63.
With a precision of 0.71 and recall of 0.63, it only correctly
identified 63% of actual positive events. The F1-score of 0.60
indicates an imbalanced performance, highlighting the model’s
struggles in this classification task, as shown in Table 7 and
Figure 10.

	 f	 Gradient Boosting

The GB model performed excellently with an accuracy of
99.89%. It achieved perfect values of 1.00 for accuracy, recall,
and F1-score, indicating flawless classification of both positive

and negative cases. This model outperformed all other
classifiers, as shown in Table 7.

	 g	 Logistic Regression

The LR model has an accuracy of 72.0%, which means it accurately
predicted 72% of the occurrences. Its accuracy of 0.74 and recall
of 0.72 indicate that it made some mistakes in both forecasting
positive events and detecting true positives. The F1-score of 0.71
indicates that the model’s performance is not as great as that of
some of the others, showing that there is still potential for
development in terms of accuracy and recall, as shown in Table 8.

The performance of each classifier is displayed in Table 9, with
particular attention paid to accuracy, precision, recall, and F1-score.
Table 9 compares the performance of multiple classifiers, revealing
that RF, DT, XGBoost, and GB all obtained near-perfect results, with
99.97% or 99.89% accuracy and flawless precision, recall, and F1
scores. In contrast, NB had an extremely low accuracy of 0.63%, as
well as poor precision, recall, and F1 scores. SVM and LR performed
moderately, with accuracy rates of 88.09 and 72.0%, respectively.

5.4 Ensemble model using gain information
and manual information

	 a-	 (DT+ RF+ GB) Voting hard

The ensemble model, which integrates different classifiers,
performed exceptionally well across the board. It achieved
perfect scores of 1.00 in all metrics. This combination leverages
the interpretability of DTs, the robustness of RFs, and the
precision of GB, resulting in enhanced overall performance, as
shown in Table 10 and Figure 11.

	b-	 (DT+ RF+ GB) Stacking

The ensemble model incorporating Decision Tree, Random
Forest, and Gradient Boosting with stacking likewise performed
flawlessly, with accuracy, precision, recall, and F1-score all equal
to 1.00. This demonstrates strong predictive potential for the
test results. As shown in Table 10 and Figure 12.

In order to attain flawless detection performance across all
measures, ensemble models incorporate multiple classifiers, as shown
in Table 11.

Table 11 shows the performance of ensemble models that combine
DT, RF, and GB with the Voting Hard and Stacking approaches. The
ensemble models performed flawlessly across all measures, including
accuracy, precision, recall, and an F1-score of 1.00.

5.5 Individual classifiers using RF-selected
features

The performance of Individual Classifiers by RF-Selected
Features, as shown in Table 1 evaluated based on accuracy,

TABLE 7  Individual classifiers using gain information and manual
information.

Metric Value

XGBoosting

Accuracy 1.00 Precision Recall F1-score
Support

309,778

Macro Avg 1.00 1.00 1.00 309,778

Weighted Avg 1.00 1.00 1.00 309,778

Decision Trees

Accuracy 1.00 Precision Recall F1-score
Support

309,778

Macro Avg 1.00 1.00 1.00 309,778

Weighted Avg 1.00 1.00 1.00 309,778

Randomforest

Accuracy 1.00 Precision Recall F1-score
Support

309,778

Macro Avg 1.00 1.00 1.00 309,778

Weighted Avg 1.00 1.00 1.00 309,778

Support Vector Machine

Accuracy 0.88 Precision Recall F1-score
Support

9,294

Macro Avg 0.90 0.88 0.88 9,294

Weighted Avg 0.90 0.88 0.88 9,294

Naïve-Bayes

Accuracy 0.63 Precision Recall F1-score
Support

15,489

Macro Avg 0.71 0.63 0.60 15,489

Weighted Avg 0.71 0.63 0.60 15,489

Gradient Boosting

Accuracy 1.00 Precision Recall F1-score
Support

6,196

Macro Avg 1.00 1.00 1.00 6,196

Weighted Avg 1.00 1.00 1.00 6,196

https://doi.org/10.3389/fcomp.2025.1623375
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Maodah et al.� 10.3389/fcomp.2025.1623375

Frontiers in Computer Science 15 frontiersin.org

FIGURE 8

XGBoosting.

FIGURE 9

Support Vector Machine.

https://doi.org/10.3389/fcomp.2025.1623375
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Maodah et al.� 10.3389/fcomp.2025.1623375

Frontiers in Computer Science 16 frontiersin.org

precision, recall, and F1-score of separate classifiers and ensemble
models are compared in this investigation. The objective is to
evaluate the performance of each model separately and the
classification skills of ensemble models, which combine
many classifiers.

	 a	 Decision Tree

The DT model achieved an accuracy of 98.71%, nearly
matching the RF model. However, its precision was 0.69,
meaning only 69% of predicted positives were accurate. The
recall was 0.65, indicating that the model correctly identified
65% of true positive events. The F1-score of 0.65 suggests that
the DT model needs further improvement to balance precision
and recall effectively, as shown in Table 12 and Figure 13.

	 b	 Naive Bayes

NB demonstrated poor performance, with an accuracy of just
33%. Its precision was 0.19, the recall was 0.37, and F1 score
was 0.16. The model’s poor results likely stem from the
assumption of feature independence, which is not suitable for
this dataset. The low accuracy and F1-score emphasize NB’s
limitations for this classification task, as shown in Table 12.

	 c	 Logistic Regression

LR achieved an accuracy of 90.56% but struggled with low
precision (0.24), recall (0.20), and F1-score (0.21). As a linear
model, it faced difficulty handling complex data correlations,
which resulted in poor performance. The model’s limited
flexibility in adapting to the dataset’s structure contributed to
these lower metrics, as shown in Table 12 and Figure 14.

	 d	 Gradient Boosting

GB showed poor performance with an accuracy of 49.35%,
precision of 0.48, recall of 0.29, and F1-score of 0.29. This
underperformance may be due to overfitting or a mismatch
with the dataset’s characteristics, like data imbalance or feature
correlation, as shown in Table 12.

FIGURE 10

Naïve-Bayes.

TABLE 8  Logistic regression classifiers using gain information and
manual information Figure 9: support vector machine.

Metric Value

Accuracy 0.72 Precision Recall F1-score
Support

3,098

Macro Avg 0.74 0.72 0.71 3,098

Weighted Avg 0.74 0.72 0.71 3,098

https://doi.org/10.3389/fcomp.2025.1623375
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Maodah et al.� 10.3389/fcomp.2025.1623375

Frontiers in Computer Science 17 frontiersin.org

TABLE 9  Performance evaluation of classifiers using accuracy, precision, recall, and F1-score using GI and MI.

Classifiers Accuracy Precision Recall F1-score Execution time

Random Forest 99.97% 1.00 1.00 1.00 818.7610149383545 s

Decision Tree 99.97% 1.00 1.00 1.00 34.62117004394531 s

XGBoost 99.97% 1.00 1.00 1.00 91.20186018943787 s

Naive Bayes 0.63% 0.71 0.63 0.60 3.237001895904541 s

Support Vector Machine 88.09% 0.90 0.88 0.88 275.7197570800781 s

Logistic Regression 72.0% 0.74 0.72 0.71 1381.2660410404205 s

Gradient Boosting 99.89% 1.00 1.00 1.00 240.0945920944214 s

TABLE 10  Ensemble model using gain information and manual information.

Metric Value

DT, RF, GB (voting hard)

Accuracy 1.00 Precision Recall F1-score
Support

30,978

Macro Avg 1.00 1.00 1.00 30,978

Weighted Avg 1.00 1.00 1.00 30,978

DT, RF, GB (stacking)

Accuracy 1.00 Precision Recall F1-score
Support

30,978

Macro Avg 1.00 1.00 1.00 30,978

Weighted Avg 1.00 1.00 1.00 30,978

FIGURE 11

DT, RF, GB (voting hard).

https://doi.org/10.3389/fcomp.2025.1623375
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Maodah et al.� 10.3389/fcomp.2025.1623375

Frontiers in Computer Science 18 frontiersin.org

TABLE 11  Performance evaluation of ensemble model using accuracy, precision, recall, and F1-score using GI and MI.

Classifier
(ensemble model)

Accuracy Precision Recall F1-score Execution time

DT + RF + GB (voting

hard)
1.00 1.00 1.00 1.00 178.5962700843811 s

DT + RF + GB (stacking) 1.00 1.00 1.00 1.00 878 s

	 e	 Random Forest

RF achieved an accuracy of 98.83%, with a precision of 0.80, a
recall of 0.75, and an F1-score of 0.76. While the accuracy is
strong, the precision and recall indicate difficulties in managing
false positives and false negatives. Overall, it performs well but
could benefit from further adjustments, particularly to address
class imbalances, as shown in Table 12 and Figure 15.

	 f	 XGBoost

XGBoost achieved 98.79% accuracy, with precision, recall, and
F1-score of 0.76, 0.74, and 0.74, respectively. Although strong,
its performance was slightly lower than RF, possibly due to
hyperparameter settings or the dataset’s structure, as shown in
Table 12.

	 g	 Support Vector Machine

SVM achieved 92.40% accuracy but with poor precision (0.39),
recall (0.27), and F1-score (0.29). Its low performance suggests it

struggles with the dataset’s complexity, possibly due to kernel
selection or insufficient tuning, as shown in Table 12 and Figure 16.

Table 13 summarizes the performance of different classifiers,
emphasizing accuracy, precision, recall, and F1 score.

Table 13 shows the performance evaluations of several classifiers.
RF and DT produced reasonably high accuracy (98.83 and 98.71%,
respectively), but with modest precision, recall, and F1 scores.
XGBoost also fared well, with 98.79% accuracy, although it had lesser
precision and recall than RF and DT. NB performed poorly, with an
accuracy of just 33% and low precision, recall, and F1 scores. SVM and
LR fared rather well, with accuracy values of 92.40 and 90.56%,
respectively, but with low precision and recall. GB had the poorest
result, with an accuracy of 49.35% and similarly low precision, recall,
and F1 score.

5.6 Ensemble model using RF-selected
features

	 a-	 (DT+ RF+ GB) Voting hard

FIGURE 12

DT, RF, GB (stacking).

https://doi.org/10.3389/fcomp.2025.1623375
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Maodah et al.� 10.3389/fcomp.2025.1623375

Frontiers in Computer Science 19 frontiersin.org

The Voting Hard ensemble model, consisting of DT, RF, and
GR, achieved 0.99 accuracy. However, its precision (0.71),
recall (0.68), and F1-score (0.68) were slightly lower than the
stacking model, indicating room for improvement in precision
and recall, as shown in Table 14 and Figure 17.

	b-	 (DT+ RF+ GB) Stacking

The ensemble model, which used stacking to combine Decision
Tree, Random Forest, and Gradient Boosting, obtained an
accuracy of 0.99, a precision of 0.75, a recall of 0.68, and an F1

score of 0.70. This represents higher accuracy and F1-scores
compared to the hard voting, stacking model, indicating room
for improvement in precision and recall, as shown in Table 14
and Figure 18.

Table 15 evaluates the ensemble models, which integrate
several classifiers to attain flawless detection performance across
all criteria.

Table 15 shows the performance of the ensemble model that
combines DT, RF, and GR with the Voting Hard and stacking
approaches. The ensemble model with stacking outperforms hard
voting in terms of precision (0.75 vs. 0.71), F1-score (0.70 vs. 0.68),
and accuracy (0.99) while retaining recall (0.68). This shows that

TABLE 12  Individual classifiers using RF-selected features.

Metric Value

Decision Tree

Accuracy 0.99 Precision Recall F1-score
Support

25,195

Macro Avg 0.69 0.65 0.65 25,195

Weighted Avg 0.99 0.99 0.99 25,195

Naive Bayes

Accuracy 0.33 Precision Recall F1-score
Support

25,195

Macro Avg 0.19 0.37 0.16 25,195

Weighted Avg 0.88 0.33 0.35 25,195

Logistic Regression

Accuracy 0.91 Precision Recall F1-score
Support

25,195

Macro Avg 0.24 0.20 0.21 25,195

Weighted Avg 0.86 0.91 0.88 25,195

Gradient Boosting

Accuracy 0.49 Precision Recall F1-score
Support

25,193

Macro Avg 0.48 0.29 0.29 25,193

Weighted Avg 0.96 0.49 0.57 25,193

Random Forest

Accuracy 0.99 Precision Recall F1-score
Support

25,195

Macro Avg 0.80 0.75 0.76 25,195

Weighted Avg 0.99 0.99 0.99 25,195

XGBoosting

Accuracy 0.99 Precision Recall F1-score
Support

25,195

Macro Avg 0.76 0.74 0.74 25,195

Weighted Avg 0.99 0.99 0.99 25,195

Support Vector Machine

Accuracy 0.92 Precision Recall F1-score
Support

25,195

Macro Avg 0.39 0.27 0.29 25,195

Weighted Avg 0.91 0.92 0.90 25,195

https://doi.org/10.3389/fcomp.2025.1623375
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Maodah et al.� 10.3389/fcomp.2025.1623375

Frontiers in Computer Science 20 frontiersin.org

stacking gives a more balanced and effective mix of classifiers,
increasing the model’s capacity to properly detect positive situations
while maintaining overall accuracy.

5.7 Comparing models and their statistical
importance

	•	 The study used five-fold cross-validation on individual models,
such as Random Forest (RF) and Gradient Boosting (GB), to
evaluate and compare classifier performance. This ensured that
the findings showed strong generalization and did not overfit to
a particular data split (20%test_size, 80%train_size).

	•	 Performance differences were then statistically assessed
using paired t-tests. A t-statistic of 42.7393 with a p < 0.0001
was obtained when comparing RF to GB, indicating a
statistically significant advantage for RF in classification
performance.

Furthermore, a hard Voting Classifier was assessed as compared
to its base learners. While the differences between RF (t = 0.3780,
p = 0.7055) and GB (t = 0.7746, p = 0.4386) were not statistically
significant, the Voting Classifier performed much better than the
Decision Tree (t = 4.0835, p < 0.0001), according to the results of the
t-test. Given that it outperforms the strongest base models while

enhancing overall resilience, this demonstrates the Voting
ensemble’s resilience.

	•	 In addition, t-tests were used to choose features using Mutual
Information and Information Gain in order to verify that the
chosen features improved generalization by reducing
dimensionality and greatly enhancing model performance.

5.8 Analysis of SHAP-driven feature
importance in Random Forest and decision
tree classifiers for intrusion detection

SHAP values for the Random Forest and Decision Tree classifiers
were calculated to interpret model options. In order to visualize the
effects of features on both individual predictions and the overall
relevance of features, SHAP provides both local and global interpretability.

According to the SHAP study, several variables were consistently
more influential in both models, which is consistent with behaviors
associated with documented network intrusions. This consistency
provides information about possible dimensionality reduction
techniques in addition to confirming the models’ validity.

While the Decision Tree model’s simple structure makes it
easier to grasp., the Random Forest model outperformed it while

FIGURE 13

Decision Tree.

https://doi.org/10.3389/fcomp.2025.1623375
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Maodah et al.� 10.3389/fcomp.2025.1623375

Frontiers in Computer Science 21 frontiersin.org

allowing for insight through SHAP. SHAP’s ability to clearly explain
feature contributions reduced the complexity of the ensemble,
proving that accuracy and interpretability do not have to
be mutually incompatible.

Figure 19 demonstrates that while service_auth is of little
significance, network packet sizes (src_bytes, dst_bytes) and
connection flags are the most important features for attack detection
in the model. This illustrates how the model successfully identifies
malicious activity by concentrating on network traffic patterns.

As seen in Figure 20: The graphic shows that while service
authentication data (service_auth) makes very little contribution to
attack detection, network packet metrics (src_bytes, dst_bytes) and
connection flags dominate feature relevance. These outcomes
demonstrate how well the model uses fundamental network traffic
features to identify malicious behavior across all threat categories.

5.9 Comparison of accuracy and feature
selection methods in various studies

Table 16 compares several ML algorithms used to identify
intrusions on the NSL-KDD dataset. Accuracy rates vary greatly based
on the classifier and feature selection strategy employed.

5.9.1 In prior studies

	•	 Attou et al. (2023) shown that utilizing RBFNN with all features
resulted in an accuracy of 90.49%, which increased to 94.1%
when only four features were picked by Random Forest (RF).
This demonstrates that focused feature selection may improve
speed while reducing complexity.

	•	 Ogwara et al. (2022) produced exceptionally high
performance with classic ML models, notably Random
Forest (99.22%), Decision Tree (99.07%), and KNN (98.06%),
utilizing the whole feature set. This implies that with
adequate training, even classical models can perform well
when all important attributes are kept.

	•	 Rawat et al. (2022) investigated ensemble and deep learning
approaches, such as LightGBM, DNN, and PCA + DNN,
and found low accuracies ranging from 76.7 to 79.3%,
indicating a potential mismatch between model complexity
and dataset properties, or a lack of efficient
feature reduction.

	•	 Tauscher et al. (2021) presented results using five classifiers, with
SVM outperforming the others at 80.47%, while Gradient
Boosting (GB) and Decision Tree (DT) fared below 70% on the
whole feature set.

FIGURE 14

Logistic Regression.

https://doi.org/10.3389/fcomp.2025.1623375
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Maodah et al.� 10.3389/fcomp.2025.1623375

Frontiers in Computer Science 22 frontiersin.org

FIGURE 15

Random Forest.

FIGURE 16

Support Vector Machine.

https://doi.org/10.3389/fcomp.2025.1623375
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Maodah et al.� 10.3389/fcomp.2025.1623375

Frontiers in Computer Science 23 frontiersin.org

TABLE 13  Performance evaluation of classifiers using accuracy, precision, recall, and F1-score using RF-selected features.

Classifiers Accuracy Precision Recall F1-score Execution time

Random Forest 98.83% 0.80 0.75 0.76 29.910604000091553 s

Decision Tree 98.71% 0.69 0.65 0.65 17.27623677253723 s

XGBoost 98.79% 0.76 0.74 0.74 29.366595029830933 s

Naive Bayes 33% 0.19 0.37 0.16 5.824549198150635 s

Support Vector Machine 92.40% 0.39 0.27 0.29 221.10965991020203 s

Logistic Regression 90.56% 0.24 0.2 0.2 35.62619614601135 s

Gradient Boosting 49.35% 0.48 0.29 0.29 379.5056371688843 s

TABLE 14  Ensemble model using RF-selected features.

Metric Value

DT, RF, GR (hard voting)

Accuracy 0.99 Precision Recall F1-score
Support

12,597

Macro Avg 0.71 0.68 0.68 12,597

Weighted Avg 0.99 0.99 0.99 12,597

DT, RF, GB (stacking)

Accuracy 0.99 Precision Recall F1-score
Support

12,597

Macro Avg 0.75 0.68 0.70 12,597

Weighted Avg 0.99 0.99 0.99 12,597

FIGURE 17

DT, RF, GR (hard voting).

https://doi.org/10.3389/fcomp.2025.1623375
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Maodah et al.� 10.3389/fcomp.2025.1623375

Frontiers in Computer Science 24 frontiersin.org

TABLE 15  Performance evaluation of ensemble model using accuracy, precision, recall, and F1-score using RF-selected features.

Classifiers Accuracy Precision Recall F1-score Execution time

DT + RF + GB (voting hard) 0.99 0.71 0.68 0.68 409.4272561073303 s

DT + RF + GB (stacking) 0.99 0.75 0.68 0.70 2263.97 s

FIGURE 19

Global feature importance based on SHAP (DT).
FIGURE 20

Global feature importance based on SHAP (RF).

FIGURE 18

DT, RF, GB (stacking).

https://doi.org/10.3389/fcomp.2025.1623375
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Maodah et al.� 10.3389/fcomp.2025.1623375

Frontiers in Computer Science 25 frontiersin.org

TABLE 16  Comparison of accuracy and feature selection methods in various studies and the proposed model on the NSL-KDD dataset.

Research Dataset ML technique Accuracy Feature selection

Attou et al. (2023) NSL-KDD RBFNN classifier

90.49

92.12

94.16

Full dataset

10 Features by RF

4 Features by RF

Ogwara et al. (2022) NSL KDD

DT

RF

AdaBoost

Nıve Bayes

Stochastic dual coordinate ascent

Multilayer perceptron

K-Nearest Neighbors

Linear discriminant analysis

LR

SVM

99.07

99.22

94.05

9.64

16.91

84.79

98.06

89.16

79.69

79.62

Full features

Rawat et al. (2022) NSL-KDD

DT

Extra Tree

Ensemble Extra Tree

Light GBM

Deep Neural Network

PCA + Deep Neural Network

0.778

0.767

0.769

0.776

0.772

0.793

Full features

Tauscher et al. (2021) NSL-KDD

RF

SVM

NB

DT

GB

76.00%

80.47%

76.86%

68.28%

68.12%

Full features

Our proposed approach NSL-KDD

RF

DT

XGBoost

NB

SVM

LR

GB

DT + RF + GR (Voting hard)

DT + RF + GR (Stacking)

99.99%

99.98%

99.99%

78%

99.26%

97%

99.82%

1.00

1.00

Full features

RF

DT

XGBoost

NB

SVM

LR

GB

DT + RF + GR (Voting hard)

DT + RF + GR (Stacking)

99.97%

99.97%

99.97%

0.63%

88.09%

72.0%

99.89%

1.00

1.00

Selected features by manual

information and gain

information

RF

DT

XGBoost

NB

SVM

LR

GB

DT + RF + GR (Voting hard)

DT + RF + GR (Stacking)

98.83%

98.71%

98.79%

32.41%

92.40%

90.56%

49.35%

0.99%

0.99%

Selected features by RF

https://doi.org/10.3389/fcomp.2025.1623375
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Maodah et al.� 10.3389/fcomp.2025.1623375

Frontiers in Computer Science 26 frontiersin.org

5.9.2 In contrast, the approach suggested in the
study demonstrates consistently higher performance

	•	 Voting Hard and Stacking DT, RF, and GB models resulted in a
flawless 1.00 accuracy on both entire and chosen feature sets.

	•	 XGBoost, RF, and GB obtained accuracies close to or greater than
99%, independent of the feature selection technique utilized.

	•	 Models such as Naive Bayes (NB) and Logistic Regression (LR) fared
worse when combined with specific characteristics, particularly
those picked by RF alone (e.g., NB at 32.41%, GB at 49.35%).

5.9.3 Feature selection analysis
Three different feature selection approaches were tested:

	•	 Full Feature Set
Most models performed well with complete data, particularly
ensemble approaches and tree-based classifiers.
Voting and Stacking performed flawlessly (1.00).

	•	 Manual Selection (Information Gain & Domain Knowledge)

This strategy used statistics and expert analysis to maintain
critical qualities.

The bulk of classifiers still scored well, with Voting Hard and
Stacking scoring 1.00 and RF, DT, and XGBoost approaching 99.97%.

NB and LR’s accuracy was reduced, demonstrating their sensitivity
to feature reduction.

	•	 RF-Based Feature Selection

When Random Forest was used alone to choose features,
performance declined marginally.

Ensemble techniques such as Voting and Stacking maintained
excellent accuracy (0.99), while individual classifiers such as NB
(32.41%) and GB (49.35%) had considerable decreases, indicating
that critical features may have been over-reduced or eliminated.

6 Conclusion and future work

	 1)	 Cloud computing’s rapid development has made it easier to use,
but it has also made people more vulnerable to cyberattacks,
necessitating the employment of sophisticated IDSs to combat
sophisticated assaults. By offering an ensemble IDS architecture
driven by ML, tailored for cloud systems, and evaluated on the
NSL-KDD dataset, this paper addresses these problems.

	 2)	 When all features are used, the method achieves perfect scores
(100%) in accuracy, precision, recall, and F1-score, combining
ensemble classifiers Random Forest, Decision Tree, and Gradient
Boosting through voting hard and Stacking strategies, proving
that combining different models improves detection capabilities.
By concentrating on significant characteristics like src_bytes and
dst_host_serror_rate, feature selection strategies like
Information Gain and Mutual Information improved detection.
However, depending only on Random Forest-selected features
occasionally resulted in decreased performance, suggesting the
need for additional context-sensitive selection techniques.

	 3)	 SVM produced mediocre results, but ensemble-based models
routinely outperformed standalone classifiers such as Naive Bayes

and Logistic Regression, which were hampered by class imbalance
and dependence problems. Despite slight decreases in precision
and recall, the ensemble system demonstrated resilience across
several feature sets, retaining almost perfect accuracy (99.97%)
with manually selected features and 99% with Random Forest
features. The superior accuracy and dependability of the suggested
model were validated by comparisons with previous studies.

	 4)	 Application-wise, this study provides helpful recommendations
for deploying scalable and effective IDS in cloud environments,
emphasizing the necessity of striking a balance between resource
requirements and accuracy. In the future, the model should
be expanded with unsupervised approaches to identify zero-day
threats, evaluated in real-time cloud settings, and made more
visible using explainable AI methodologies. Overall, the study
contributes a strong plan to defend contemporary cloud
infrastructure against new cyber threats by bridging the gap
between academic research and real-world application.

	 5)	 The study stresses the growing need for integrating AI-driven
solutions into cloud security infrastructures. It highlights how
combining a number of ML algorithms improves the flexibility
and precision of threat identification, laying the groundwork for
next-generation security systems that are both proactive and
efficient. With cyberattacks becoming more complicated, the
study promotes the development of intelligent, scalable, and
robust cloud defense systems suited for both academic research
and real-world applications.

Data availability statement

The raw data supporting the conclusions of this article will
be made available by the authors, without undue reservation.

Author contributions

KM: Writing – original draft, Methodology, Software,
Visualization, Investigation, Data curation, Conceptualization,
Funding acquisition, Formal analysis, Writing – review & editing. SA:
Project administration, Writing – review & editing, Supervision,
Formal analysis. FT: Validation, Writing – review & editing, Resources.

Funding

The author(s) declare that no financial support was received for
the research and/or publication of this article.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Generative AI statement

The authors declare that no Gen AI was used in the creation of
this manuscript.

https://doi.org/10.3389/fcomp.2025.1623375
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Maodah et al.� 10.3389/fcomp.2025.1623375

Frontiers in Computer Science 27 frontiersin.org

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

References
Adhikari, A., and Bal, B. K., Machine learning technique for intrusion detection in the

field of the intrusion detection system. Conference Paper (2023). Available at: https://
www.researchgate.net/publication/372312413

Akinbolaji, T. J. (2023). Advanced integration of artificial intelligence and machine
learning for real-time threat detection in cloud computing environments. Iconic Research
and Engineering Journals. vol. 6, 980–991. doi: 10.5281/zenodo.13963675

Alalhareth, M., and Hong, S., “An improved mutual information feature selection
technique for intrusion detection systems in the Internet of Medical Things.” Sensors.
(2023) 23:4971. doi: 10.3390/s23104971

Aldallal, A., and Alisa, F. (2021). Effective intrusion detection system to secure data
in the cloud using machine learning. Symmetry 13:2306. doi: 10.3390/sym13122306

Alhayali, R. A. I., Aljanabi, M., Ali, A. H., Mohammed, M. A., and Sutikno, T. (2021).
Optimized machine learning algorithm for intrusion detection. Indon. J. Electr. Eng.
Comput. Sci. 24, 590–599. doi: 10.11591/ijeecs.v24.i1.pp590-599

Ali, T. E., Chong, Y. W., and Manickam, S. (2023). Machine learning techniques to detect
a DDoS Attack in SDN: a systematic review. Appl. Sci. 13:3183. doi: 10.3390/app13053183

Alkadi, S., Al-Ahmadi, S., and Ben Ismail, M. M. (2023). Toward improved machine
learning-based intrusion detection for internet of things traffic. Computers 12. doi:
10.3390/computers12080148

Alotaibi, A., and Rassam, M. A., “Adversarial machine learning attacks against
intrusion detection systems: a survey on strategies and defense,” (2023), MDPI 15:62.
doi: 10.3390/fi15020062

Al-Sharif, M., and Bushnag, A. (2024). Enhancing cloud security: a study on ensemble
learning-based intrusion detection systems. IET Commun. 18, 950–965. doi:
10.1049/cmu2.12801

Attou, H., Mohy-eddine, M., Guezzaz, A., Benkirane, S., Azrour, M., Alabdultif, A.,
et al. (2023). Towards an intelligent intrusion detection system to detect malicious
activities in cloud computing. Appl. Sci. 13, 1–19. doi: 10.3390/app13179588

Boldini, D., Grisoni, F., Kuhn, D., Friedrich, L., and Sieber, S. A. (2023). Practical
guidelines for the use of gradient boosting for molecular property prediction. J.
Cheminform. 15:73. doi: 10.1186/s13321-023-00743-7

Dattangire, R., Burle, R., Biradar, D., and Dewangan, L., “Machine learning-based security
for cloud Proceedings of the 2024 IEEE North Karnataka Subsection Flagship International
Conference (NKCon), computing challenges and implications,” in Proceedings of the 2024
IEEE North Karnataka Subsection Flagship International Conference, (Bagalkote, India:
NKCon) 2024, pp. 1–7. doi: 10.1109/NKCon62728.2024.10774633

Devi, T. A., and Jain, A., “Enhancing cloud security with deep learning-based
intrusion detection in cloud computing environments,” in 2024 2nd International
Conference on Advancement in Computation & Computer Technologies (InCACCT),
(2024), pp. 541–546.

Devidas, V. P., and Adesh, N. D. (2021). Comparative analysis of machine learning
algorithms for intrusion detection. IOP Conf. Ser. Mater. Sci. Eng. 1013:012038, 1–8. doi:
10.1088/1757-899X/1013/1/012038

Eluri, R. K., Valicharla, K., Divya, M., and Anusha, K. B., “A scrutiny of machine
learning methods for the detection and identification of cyber Intrusion,” 2024
International Conference on Advances in Modern Age Technologies for Health and
Engineering Science, Shivamogga, India: AMATHE, 11–14, (2024). doi: 10.1109/
AMATHE61652.2024.10582241

Hidayat, I., Ali, M. Z., and Arshad, A. (2023). Machine learning-based intrusion
detection system: an experimental comparison. J. Comput. Cogn. Eng. 2, 88–97. doi:
10.47852/bonviewJCCE2202270

John, A., Bin Isnin, I. F., Madni, S. H. H., and Muchtar, F. B. (2024). Enhanced
intrusion detection model based on principal component analysis and variable
ensemble machine learning algorithm. Intell. Syst. Appl. 24:200442. doi:
10.1016/j.iswa.2024.200442

Kurniabudi, D. S., Darmawijoyo, M. Y., Idris, B. B., Bamhdi, A. M., and Budiarto, R.
(2020). CICIDS-2017 dataset feature analysis with information gain for anomaly
detection. IEEE Access 8, 132911–132921. doi: 10.1109/ACCESS.2020.3009843

Liu, S., and Motani, M., “Improving mutual information based feature selection by
boosting unique relevance,” 1–13 (2022). Available online at: http://arxiv.org/
abs/2212.06143

Megouache, L., Zitouni, A., Sadouni, S., and Djoudi, M. (2024). Machine Learning for
Cloud Data Classification and Anomaly Intrusion Detection. Ingen. Syst. Inform. 29,
1809–1819. doi: 10.18280/isi.290514

Mehmood, M., Amin, R., Magboul, M., Muslam, A. L. I., Xie, J., and Aldabbas, H.
(2023). Privilege escalation attack detection and mitigation in cloud using machine
learning. IEEE Access 11, 46561–46576. doi: 10.1109/ACCESS.2023.3273895

Mghames, S. A. Z., and Ibrahim, A. A. (2023). Intrusion detection system for detecting
distributed denial of service attacks using machine learning algorithms. Indon. J. Electr.
Eng. Comput. Sci. 32, 304–311. doi: 10.11591/ijeecs.v32.i1.pp304-311

Nassif, A. B., Talib, M. A., Nasir, Q., Albadani, H., and Dakalbab, F. M. (2021).
Machine learning for cloud security: a systematic review: Institute of Electrical and
Electronics Engineers Inc. 9, 20717–20735. doi: 10.1109/ACCESS.2021.3054129

Ogwara, N. O., Petrova, K., and Yang, M. L. (2022). Towards the development of a
cloud computing intrusion detection framework using an ensemble hybrid feature
selection approach. J. Comput. Netw. Commun. 2022, 1–16. doi: 10.1155/2022/5988567

Parameswarappa, P., Shah, T., and Lanke, G. R. (2023). “A machine learning-based
approach for anomaly detection for secure cloud computing environments,” IDCIoT
2023 - International Conference on Intelligent Data Communication Technologies and
Internet of Things, Proceedings, no. IDCIoT, Bengaluru, India: Institute of Electrical and
Electronics Engineers (IEEE). 931–940.

Protić, D., and Stanković, M. (2023). Cybersecurity attacks: Which dataset should
be used to evaluate an intrusion detection system? Vojnotehnički 71, 970–995. doi:
10.5937/vojtehg71-46524

Rawat, S., Srinivasan, A., Ravi, V., and Ghosh, U. (2022). “Intrusion detection systems
using classical machine learning techniques versus integrated unsupervised feature learning
and deep neural network”. Internet Technology Letters. 5:e232. doi: 10.1002/itl2.232

Saran, M., Yadav, R. K., and Tripathi, U. N. (2022). Machine learning based security
for cloud computing: a survey. International Journal of Applied Engineering Research. 17,
338–344. doi: 10.37622/IJAER/17.4.2022.338-344

Saranya, T., Sridevi, S., Deisy, C., Chung, T. D., and Khan, M. K. A. A. (2020).
Performance analysis of machine learning algorithms in intrusion detection system: a
review. Proc. Comput. Sci. 171, 1251–1260. doi: 10.1016/j.procs.2020.04.133

Somogyi, Z. (2021). Performance evaluation of machine learning models. Appl. Artif.
Intell., 87–112. doi: 10.1007/978-3-030-60032-7_3

Sundaramoorthy, K., Purushothaman, K. E., Jeba Sonia, J., and Kanthimathi, N.
(2024). Enhancing cybersecurity in cloud computing and WSNs: a hybrid IDS approach.
Comput. Secur. 147:104081. doi: 10.1016/j.cose.2024.104081

Tauscher, Z., Jiang, Y., Zhang, K., Wang, J., and Song, H., “Learning to detect: a data-
driven approach for network intrusion detection,” Conference Proceedings of the IEEE
International Performance, Computing, and Communications Conference, Institute of
Electrical and Electronics Engineers (IEEE). (2021).

Thapa, N., Liu, Z., Kc, D. B., Gokaraju, B., and Roy, K. (2020). Comparison of machine
learning and deep learning models for network intrusion detection systems. Future
Internet 12, 1–16. doi: 10.3390/fi12100167

Umar, M. A., Chen, Z., Shuaib, K., and Liu, Y. (2024). Effects of feature selection and
normalization on network intrusion detection. Data Sci. Manag. 8, 23–39. doi:
10.1016/j.dsm.2024.08.001

Useni, D. E., Emmanuel, O. C., Job, G. K., and Ahmad, A. (2023). A review of machine
learning-based algorithms for intrusion detection system, International Journal of
Engineering Research & Technology (IJERT), vol. 12, 251–256. Available at: https://www.
i j er t .org/res earch/a-re v ie w-of-machine- learning-bas ed-a lgor ithms-
for-intrusion-detectionsystem-IJERTV12IS010082.pdf

Vibhute, A. D., Patil, C. H., Mane, A. V., and Kale, K. V. (2024). Towards detection
of network anomalies using machine learning algorithms on the NSL-KDD
benchmark datasets. Proc. Comput. Sci. 233, 960–969. doi: 10.1016/j.procs.2024.03.285

Zhang, B., Wang, Z., Li, H., Lei, Z., Cheng, J., and Gao, S. (2024). Information gain-
based multi-objective evolutionary algorithm for feature selection. Inf. Sci. 677:120901.
doi: 10.1016/j.ins.2024.120901

Zulifqar, I., Anayat, S., and Kharal, I. (2021). A Review of data security challenges and
their solutions in cloud computing. Int. J. Inform. Eng. Electro. Bus. 13, 30–38. doi:
10.5815/ijieeb.2021.03.04

https://doi.org/10.3389/fcomp.2025.1623375
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org
https://www.researchgate.net/publication/372312413
https://www.researchgate.net/publication/372312413
https://doi.org/10.5281/zenodo.13963675
https://doi.org/10.3390/s23104971
https://doi.org/10.3390/sym13122306
https://doi.org/10.11591/ijeecs.v24.i1.pp590-599
https://doi.org/10.3390/app13053183
https://doi.org/10.3390/computers12080148
https://doi.org/10.3390/fi15020062
https://doi.org/10.1049/cmu2.12801
https://doi.org/10.3390/app13179588
https://doi.org/10.1186/s13321-023-00743-7
https://doi.org/10.1109/NKCon62728.2024.10774633
https://doi.org/10.1088/1757-899X/1013/1/012038
https://doi.org/10.1109/AMATHE61652.2024.10582241
https://doi.org/10.1109/AMATHE61652.2024.10582241
https://doi.org/10.47852/bonviewJCCE2202270
https://doi.org/10.1016/j.iswa.2024.200442
https://doi.org/10.1109/ACCESS.2020.3009843
http://arxiv.org/abs/2212.06143
http://arxiv.org/abs/2212.06143
https://doi.org/10.18280/isi.290514
https://doi.org/10.1109/ACCESS.2023.3273895
https://doi.org/10.11591/ijeecs.v32.i1.pp304-311
https://doi.org/10.1109/ACCESS.2021.3054129
https://doi.org/10.1155/2022/5988567
https://doi.org/10.5937/vojtehg71-46524
https://doi.org/10.1002/itl2.232
https://doi.org/10.37622/IJAER/17.4.2022.338-344
https://doi.org/10.1016/j.procs.2020.04.133
https://doi.org/10.1007/978-3-030-60032-7_3
https://doi.org/10.1016/j.cose.2024.104081
https://doi.org/10.3390/fi12100167
https://doi.org/10.1016/j.dsm.2024.08.001
https://www.ijert.org/research/a-review-of-machine-learning-based-algorithms-for-intrusion-detectionsystem-IJERTV12IS010082.pdf
https://www.ijert.org/research/a-review-of-machine-learning-based-algorithms-for-intrusion-detectionsystem-IJERTV12IS010082.pdf
https://www.ijert.org/research/a-review-of-machine-learning-based-algorithms-for-intrusion-detectionsystem-IJERTV12IS010082.pdf
https://doi.org/10.1016/j.procs.2024.03.285
https://doi.org/10.1016/j.ins.2024.120901
https://doi.org/10.5815/ijieeb.2021.03.04

	Detecting intrusions in cloud-based ensembles: evaluating voting and stacking methods with machine learning classifiers
	1 Introduction
	1.1 Problem statement
	1.2 Objective
	1.3 Contributions
	1.3.1 Proposed ensemble model
	1.3.2 Comprehensive classifier evaluation
	1.3.3 Practical insights for cloud security
	1.4 The structure of the paper

	2 Background
	2.1 Cloud computing
	2.2 Intrusion detection system
	2.3 Machine learning

	3 Related work
	4 Proposed model
	4.1 NSL-KDD dataset
	4.2 Data preprocessing
	4.3 Feature selection
	4.4 Classification model
	4.5 Performance evaluation metrics
	4.6 The performance evaluation metrics can be expressed as accuracy, precision, recall, and F1-score
	4.7 Experimental environment

	5 Results and discussion
	5.1 Individual classifiers using full features
	5.2 Ensemble model using full features
	5.3 Individual classifiers using gain information and manual information
	5.4 Ensemble model using gain information and manual information
	5.5 Individual classifiers using RF-selected features
	5.6 Ensemble model using RF-selected features
	5.7 Comparing models and their statistical importance
	5.8 Analysis of SHAP-driven feature importance in Random Forest and decision tree classifiers for intrusion detection
	5.9 Comparison of accuracy and feature selection methods in various studies
	5.9.1 In prior studies
	5.9.2 In contrast, the approach suggested in the study demonstrates consistently higher performance
	5.9.3 Feature selection analysis

	6 Conclusion and future work

	References

