
Frontiers in Computer Science 01 frontiersin.org
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Multimodal large-scale language modeling has become the mainstream approach 
in natural language processing tasks and has been applied to various cross-
modal fields such as image description and visual question answering. However, 
large-scale language modeling has high computational complexity and a large 
operational scale, which presents significant challenges for deployment in many 
resource-constrained scenarios. To address such problems, a lightweight multimodal 
framework, LLaVA-GM, is proposed, based on LLaVA, which can be deployed 
on devices with low resource requirements and has greatly reduced model 
parameters. It can also be  tested on common VQA tasks and achieves good 
performance. The main contributions and work are as follows: First, it is found 
that the backbone of the Vicuna language model in LLaVA is too redundant. 
When fine-tuning downstream tasks, a very small amount of data sets is difficult 
to affect the language model. It is replaced with a new Gemma language model, 
thereby achieving fast task-specific adaptation with fewer parameters and data. 
Second, in response to the problem of information redundancy, the MoE mixed 
expert model is introduced. This model can be used in combination with itself, 
combining the MoE mixed expert model with Gemma to reduce the amount of 
computation while maintaining performance. Directly training the entire model 
will lead to a decline in performance. A multi-stage training strategy is adopted 
to maintain performance. First, the MLP layer is trained for visual adaptation, 
then the entire Gemma model is trained to improve multimodal capabilities, and 
finally only the MoE layer is trained for sparsification to ensure a smooth transition 
from dense models to sparse models. The experiment was tested on multiple 
VQA datasets and achieved good performance, confirming the potential of this 
compact model in downstream multimodal applications.

KEYWORDS

lightweight, LLaVA, Gemma, sparse expert, deep learning

1 Introduction

Large language models have shown excellent performance in various natural languages 
processing tasks, such as text generation (Stiennon et al., 2020), machine translation (Zhao et al., 
2023), and question-answering systems (Kolomiyets and Moens, 2011). With technological 
advancements, their applications have expanded into cross-modal fields, including image 
captioning (Dong et al., 2021) and visual question answering (VQA). To further enhance the 
performance of LLMs, researchers have adopted multiple strategies. On one hand, increasing the 
model’s parameter scale and training data volume can enhance its expressive and generalization 
abilities. On the other hand, leveraging techniques such as image encoders (Alsayed et al., 2023) 
and visual projection layers strengthens the visual perception of language models, enabling more 
effective processing of visual-language fusion tasks. However, large-scale models bring about 
issues such as high computational complexity and resource demands. Training and deploying 
these models require substantial computing resources, resulting in high hardware costs and the 
need for specialized parallel computing equipment and optimization techniques. This poses a 
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significant challenge for applications requiring rapid iteration and 
updates. For specific downstream tasks like specialized Q&A or image 
captioning, a smaller, specialized model may be more suitable. It can 
be optimized for particular tasks through training on relevant data, 
achieving efficient and precise processing. This approach not only 
reduces computational costs but also enhances the model’s relevance and 
practicality, offering more effective solutions for specific domains. 
We chose the LLaVA large model as our research entry point. It consists 
of a pre-trained visual encoder and a large language model, connected 
by a simple linear layer that maps to the language embedding space. This 
modular design reduces architectural and training complexity, making 
the model easy to implement and extend. To optimize LLaVA for VQA 
tasks and achieve a lightweight model for easy deployment in 
downstream tasks, we made the following improvements:

	 1.	 We found that Vicuna, the language model in LLaVA, has a 
large architecture that is not conducive to specialized task 
improvement. Through experiments, we replaced it with the 
smaller Gemma speech model and trained it. We discovered 
that this smaller model responds more quickly to fine-tuning 
for specific tasks.

	 2.	 We gradually replaced FFNN layers with MoE layers in LLaVA 
and combined them with the Gemma language model to 
introduce sparsity, exploring the potential of small models in 
multimodal tasks, especially in resource-constrained scenarios. 
This approach maintains most of the model’s performance 
while improving efficiency.

	 3.	 We used a multi-stage training strategy. First, we trained only 
the MLP layers to adapt to visual inputs. Then, we trained the 
entire Gemma model to build multimodal capabilities. Finally, 
we  trained just the MoE layers to achieve sparsification, 
ensuring a smooth transition from a dense to a sparse model 
and leveraging Gemma’s compactness to boost training 
efficiency. We’ve developed a lightweight LLaVA multimodal 
architecture for VQA tasks.

As shown in Figure 1, the LLaVA-GM-2B model achieves a high 
object hallucination benchmark score with few active parameters, 
indicating better performance with images closer to the top-left corner 
of the coordinate axis.

2 Related work

In recent years, large vision-language models (LVLMs) have made 
significant progress in visual-language tasks by integrating powerful 
language models with visual encoders. Models like OpenAI’s GPT 
series (Roumeliotis and Tselikas, 2023), DeepSeek (Guo et al., 2024) 
from Hugging Face, and Google’s Gemini (Menger and Keiper, 2000) 
series have been widely used in image captioning (Bernardi et al., 
2016), visual question answering (VQA) (Lan et al., 2023), and cross-
modal reasoning (Guan et al., 2023). CLIP (Radford et al., 2021) laid 
the foundation for multimodal tasks through contrastive learning on 

large-scale image-text pairs, but focuses on global feature alignment. 
BLIP (Li et al., 2022) improved this by jointly optimizing image and 
text encoders, enhancing performance in image captioning and 
VQA. BLIP-2 (Li et al., 2023) further reduced computational costs by 
using a pre - trained image encoder [e.g., ViT (Khan et al., 2022)] and 
a few visual mapping layers to inject visual features into large language 
models, while LLaVA (Liu et al., 2024) achieved efficient collaboration 
in visual - language tasks using a pre - trained visual encoder (CLIP-
ViT) (Yang et al., 2024) and a large language model (e.g., LLaMA) 
(Touvron et al., 2023), projecting image features into the language 
model’s embedding space. However, LLaVA-OneVision (Li et  al., 
2024), though demonstrating strong video understanding and cross-
scene capabilities, comes with high costs. The performance 
improvements of these models often depend on expanding model size 
and dataset scale. For example, increasing the parameters of the visual 
encoder or using a larger language model [like GPT-4 (Achiam et al., 
2023)] can achieve higher accuracy in downstream tasks, but also 
increases computational costs. These dense models require full 
forward propagation for each token, leading to high inference costs 
and making deployment difficult in resource-constrained scenarios. 
Moreover, the computational complexity grows exponentially in 
per-pixel tasks. The introduction of MoE sparse matrix models offers 
a solution. MoE’s (Hwang et al., 2023) core idea is to divide the model 
into multiple expert subnetworks and dynamically select active 
experts via a routing mechanism, achieving computational sparsity. 
For instance, the Switch Transformer (Fedus et al., 2022) activates only 
the top  1 expert for each input, successfully scaling the model to 
trillion-parameter levels while maintaining inference efficiency. 
GShard and GLaM further optimized the MoE architecture by 
introducing expert parallelism (Zhou et al., 2022) and load balancing 
strategies, enabling sparse models to perform well in large-scale 
language tasks. LLaVA-Gemma (Hinck et al., 2024) was the first to 
integrate Gemma into the LLaVA multimodal model, reducing the 
model size but not the total parameters. MoE-LLaVA (Lin et al., 2024) 
fine-tuned the LLaVA model with MoE, and Deepseekmoe (Dai et al., 
2024) also adopted this architecture, laying the foundation for model 
lightweight. According to Jin et  al. (2024), various algorithms for 
hardware-efficient multimodal LLM were presented. At the same time, 
the keyword enhancement and self-supervised contrastive learning 
techniques of Chen et al. (2024), Chen and Zhu (2025), and Chen et al. 
(2025) have a certain promoting effect on the research. Based on this, 
we propose the LLaVA-GM model architecture, which retains most of 
the model’s performance while significantly reducing parameters.

3 Methods

3.1 Language models

Our work aims to boost model performance in diverse tasks, 
especially VQA and multimodal benchmarks, through lightweight 
design and sparse computation. To lighten the model, we compared 
major multimodal architectures like FLAVA (Singh et  al., 2022), 
LAMM (Yin et al., 2023), CLIP (Radford et al., 2021), and BLIP (Li 
et al., 2022). CLIP excels in image-text matching but is large. FLAVA 
offers multimodal pre-training advantages, yet it is computationally 
intensive. LAMM integrates image and text info effectively, but 
underperforms in specific tasks. Consequently, we chose LLaVA as 

Abbreviations: LLaVA, Large Language and Vision Assistant; VQA, Visual Question 

Answering; MoE, Mixture of Experts; LVLM, Large Visual Language Model; MHSA, 

Multi-Head Self-Attention; FFNN, Feed-Forward Neural Network.
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the main framework due to its efficient and simple mapping 
mechanism that reduces model complexity while maintaining 
performance. After determining the main model framework, 
we  focus on streamlining the language model to achieve further 
model lightweight while preserving its original architecture as much 
as possible. We  conduct a comprehensive evaluation of several 
candidate models, including Llama (Touvron et al., 2023) and the 
GPT (Achiam et al., 2023) series, and finally select Google’s Gemma 
(Kolomiyets and Moens, 2011), which offers a smaller size and decent 
performance with flexible options of 2b and 7b scales. To assess 
Gemma’s performance across tasks, we design experiments covering 
GQA (Ainslie et  al., 2023), VQAv2.0 (Goyal et  al., 2017), 
ScienceQA-IMG (Lu et al., 2022), MMBench (Liu et al., 2024), and 
MME (Liang et al., 2024). By experimenting with and evaluating 
Gemma-2b and Gemma-7b, we analyze the impact of model size on 
performance. As shown in Figure 2, the new language model Gemma 
is integrated into LLaVA. Image inputs are processed by the CLIP 
ViT-L/336px visual encoder. Text inputs are tokenized, fed into 
Gemma, and mapped to a 2-layer MLP for processing.

3.2 Sparse architecture

In multimodal tasks, we  aim to maintain performance while 
reducing computational costs through sparse activation for efficient 
inference, avoiding the full parameter activation of dense models. 
However, directly replacing the feedforward networks in the 
Transformer with MoE layers can significantly degrade model 
performance. Therefore, based on experimental findings, we gradually 
replace some FFNNs with MoE layers to reduce activated parameters. 
We also use CLIP-ViT-L-14 to process image inputs for tasks like 
VQA. The model’s processing flow starts with the input layer. Given 

an RGB image × ×∈ 3H Wv  , where H and W are the original 
resolutions (usually 336 × 336), the visual encoder processes the input 
image to obtain a sequence of visual tokens

	
×= ∈  1 2, , , P C

PZ z z z  	 (1)

Subsequently, In Equation 1 the visual projection layer “f “maps 
×∈ P CZ   to ×∈ P DV  , where P is the visual token sequence length, 

C is the encoder output dimension, and D is the LLM’s hidden 
dimension. Meanwhile, text inputs (e.g., “What’s in the picture?”) pass 
through the word embedding layer g to obtain projected 
sequence tokens

	
×= ∈  1 2, , , N D

NT t t t  	 (2)

Here, In Equation 2 N denotes the sequence length of text tokens. 
Then, the visual tokens V and text tokens T are combined to form the 
input sequence.

	
( )+ ×∈  ; P N DV T  	 (3)

In Equation 3, We only train the visual projection layer f, while 
keeping the LLM and embedding layer g in their pre-trained states. 
The LLM is composed of stacked multi-head self-attention (MHSA) 
and feedforward network (FFN) blocks, each with layer normalization 
(LN) and residual connections. The formula is:

	 ( ) ( )( ) ( ) ( )( )FFNN or MoELayer x LN MHSA x x LN= + → +…
	 (4)

FIGURE 1

Compare LLaVA-GM with open-source LVLMs on the object hallucination benchmark and active parameter size.
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We replace some FFNNs with MoE layers, each containing a 
router and four experts in Equation 4. The router, implemented 
as a linear layer, calculates expert scores based on the input x. 
Where … denotes omitted additional parameters, including 
visual features, language embeddings, attention masks, and 
model configuration parameters (such as the number of heads 
and hidden layer dimensions). Together, these parameters define 
the multimodal fusion process.

	 ( ) = router ·f x W x 	 (5)

In Equation 5, The router calculates expert scores based on input 
× and uses softmax to obtain probabilities.

	

( )
( )

( )=
∑

i

j

f x

i f x

j

ex
e



	

(6)

In Equation 6, The router selects the top-k experts via softmax. 
Each expert is an FFNN, and the output is a weighted sum

	
( ) ( ) ( )

=
=∑

2

1
· ii

i
MoE x x e x

	
(7)

In Equation 7, A linear transformation maps the output back 
to the vocabulary. Only the top-k experts are activated during 
inference to reduce parameters. The alternate replacement of 
FFNN and MoE balances generality and task specificity. As a 
submodule of LLN, the feedforward neural network (FNN) 
contains two layers of linear transformation and ReLU activation 
to enhance the expressiveness of unimodal features: the MoE 

module is integrated after LLN and dynamically selects the expert 
network to process the output of FNN through the gating 
network. Dynamic routing enables a flexible and efficient model, 
combining high performance with low cost. As shown in Figure 3, 
both image and text tokens are processed by MHSA and 
feedforward networks.

FIGURE 3

MoE mixing treatment stage flow.

FIGURE 2

Overall sketch of the model.
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However, half of the feedforward networks are replaced with 
MoE. After normalization, the gating network selects appropriate 
routes for processing, and finally, the top-k selection determines the 
corresponding expert outputs.

3.3 Training strategies

As mentioned in the previous chapter, we have designed a three-
stage training process for our model to achieve lightweight and high-
accuracy goals, as direct MoE layer replacement or model training 
fails to meet the requirements.

Stage 1: Focus on adapting visual inputs. Only the MLP visual 
mapping layer is trained, with Gemma and the word embedding layer 
frozen. The aim is to align image tokens V with the LLM’s input space, 
treating them as pseudo-text tokens. Training data consists of image 
descriptions, and f is optimized to generate a compatible V.

Stage 2: Train the entire Gemma model to build multimodal 
capabilities. Unfreeze the MLP layer f and the word embedding layer g 
and use multimodal instruction data for training. Outputs are generated 
through a linear layer, transforming Gemma from a language model to a 
multimodal LVLM and establishing visual-language fusion.

Stage 3: Achieve sparsification by only training MoE layers. 
Replace half of the MoE layers, freeze half of the FFNN and MHSA, 
and only train the routers and experts of the MoE layers, with top-2 
expert outputs selected. The remaining experts remain inactive, and 
this sparse path design improves efficiency.

As shown in Figure  4, it contains four stages: visual encoding, 
language encoding, language-visual fusion layer (LLN), and mixture of 
experts (MoE) module. Visual encoding uses pre-trained CLIP-ViT-L-
336px, which has a high number of parameters but does not require 
retraining. The input image is 336X336px, and the language encoding 
is based on Gemma-2B/7B. The amount of calculation increases with 
the size of the model. The fusion module LLN module, fuses multi-
modal features through multi-head attention, and the FNN submodule 
enhances feature expression. The MoE module reduces the amount of 
calculation through sparse activation and optimizes the gated network 
to ensure expert utilization. Make it load balanced. We conduct training 
in three stages. Image information is split and fed into the visual encoder 
in blocks. We simplify the text encoder to directly input tokens into the 
MLP, highlighting the alignment of image tokens and clarifying the 
structure. In the second stage, we unfreeze the MLP and train Gemma 
to build its multimodal capabilities. Finally, we  use sparse expert 
selection to generate outputs.

4 Experiment

4.1 Data set and evaluation index

VQAv2.0 (Goyal et al., 2017) is a classic visual question answering 
dataset based on COCO and abstract scene images, featuring 265,016 
images and over 1.1 million open-ended questions. Each question comes 
with 10 real answers and 3 plausible but potentially wrong options, 

FIGURE 4

Three stages of training.
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testing the model’s understanding of image content, language, and 
common sense.

ScienceQA-IMG (Lu et al., 2022) focuses on multimodal questions 
in scientific fields, containing 21,208 multiple-choice questions across 
26 subjects, including natural, language, and social sciences. Each 
question is accompanied by detailed explanations, making it the first 
large-scale annotated dataset with lectures and explanations. It 
emphasizes scientific knowledge and reasoning.

GQA (Ainslie et al., 2023), based on Visual Genome, offers over 1 
million questions and scene graph annotations with about 260,000 
images. Questions are linked to objects, attributes, and relationships 
in images, with controlled and balanced question generation to reduce 
language ambiguity.

MMBench (Liu et al., 2024) is a newer benchmark with around 
3,000 multiple-choice questions, covering 20 fine-grained ability 
dimensions (e.g., identity and attribute reasoning). Derived from an 
extension of ScienceQA, it innovatively assesses model predictions 
against options using ChatGPT for a more robust evaluation.

MME (Liang et  al., 2024) aims to comprehensively evaluate 
multimodal models with various task types, such as perception and 
reasoning. Despite its small size, it features diverse tasks like “Does the 
object in the picture exist?” and “Answer questions based on charts,” 
emphasizing objectivity and reproducibility.

Together, these datasets provide a comprehensive test of model 
performance, from basic understanding to complex reasoning, supporting 
the development of efficient and high-performing multimodal models.

4.2 Experimental settings and analysis

Training uses 3 V100 vGPUs  - 32GB (96GB total memory) 
running on Ubuntu 22.04, PyTorch 2.1.0, Python 3.10, CUDA 12.1, 
The training power consumption of LLaVA-GM-2B is approximately 
32 kWh, and that of LLaVA-GM-7B is approximately 69 kWh, which 
is a significant advantage over the original 7B and 78 kWh, verifying 
its deployment potential in mobile and embedded systems. During 
training, we used a learning rate of 2e-5, a batch size of 32, an AdamW 
(β1 = 0.9, β2 = 0.999, wd = 0.01) optimizer, and a cross-entropy loss. 
We loaded the Gemma-2B/7B pre-trained weights of Hugging Face 
and the CLIP-ViT-L-336px visual encoder and iterated for 3 epochs. 
Deployment on NVIDIA Orin NX shows that it benefits from its 
modular design and MoE sparse activation mechanism. Our method 
reduces memory access overhead and redundant computation. The 
model latency of LLaVA-GM 2B is further reduced to 0.5–0.6 s, with 
a power consumption of about 5.0 W and a video memory occupancy 
of only 1.9 GB. The 7B model occupies 4.2GB of video memory and 

consumes about 12 W of power. Even after distillation, the model has 
too many visual tokens and high inference latency. LLaVA-MoD (Shu 
et al., 2024) consumes 9.5 W of power and has 4.8GB of video memory. 
Our models have reduced resources to varying degrees. LLaVA-GM 
optimizes hardware efficiency while maintaining high accuracy, 
making it suitable for resource-constrained embedded platforms.

4.3 Experimental results

We found that the original language model, Vicuna in LLaVA is 
too bulky for deployment and fine-tuning in downstream tasks. In 
contrast, Gemma was trained with twice the data volume and 
incorporates knowledge distillation and architectural improvements, 
giving it an edge in handling complex tasks. Since our aim is to serve 
computation-constrained devices, we  experimented as shown in 
Table 1. All our experiments are based on the average of 3 independent 
experiments and have been processed with a standard deviation.

We tested several LLaVA-based models using general datasets and 
GFLOPs as parameters. The visual framework was uniformly set as 
CLIP. As shown in Table  2, larger LLMs generally yield better 
performance. Most datasets show that the LLaVA model with 
Vicuna-13B performs the best. However, our goal is to achieve good 
performance with fewer parameters. Our LLaVA-GM performs 
comparably to the 7B model on various datasets while having less than 
half the GFLOPs, proving its superiority.

In Table 3, we compare expert-based models ranging from 1.6B 
to 7B. All models have 4 experts, activate Top-2, and half of their layers 
are replaced with MoE layers. LLaVA-GM-2B has only 2.2B active 
parameters, outperforming MoE-LLaVA-1.6B with similar sparsity.

Gemma-2b performs well on simple factual questions, showing 
competitiveness in specific scenarios. In the VQAv2 task, model size 
significantly impacts generalization and robustness. Gemma-7B offers 
more stable performance with diverse images and questions, while 
Gemma-2B may have larger errors with rare ones. Gemma-7B generally 
outperforms Gemma-2B, especially in complex reasoning and 
multimodal fusion tasks. For sentiment analysis, Gemma-7B captures 
emotional cues more finely and makes more accurate judgments. 
Considering model size, choose Gemma-7B for fine-grained tasks and 
Gemma-2B for daily tasks. LLaVA-Gemma (Hinck et al., 2024) only 
replaces the language model without introducing sparsity, resulting in 
high computational cost. The MoE of MoE-LLaVA (Lin et al., 2024) has 
low accuracy after sparsification. LLaVA-GM significantly improves the 
accuracy of the architecture and reduces the number of parameters 
required by the model through a more efficient MoE layer design 
(12–16 layers, 2.2B-7.9B activation parameters) and multi-stage 

TABLE 1  Generic model comparison.

Methods LLM Finetune size VQA2.0 GQA SQA-IMG MMbench MME

BLIP-2 (Li et al., 2023) Vicuna-13B – 65.0 41.0 61.0 – 1,293.8

InstructBLIP (Huang et al., 2023) Vicuna-7B 1.2 M - 49.2 60.5 36.0 -

Shikra (Chen et al., 2023) Vicuna-13B 5.5 M 77.4 – – 58.8 –

Qwen-VL (Jiao et al., 2024) LLaMA-7B 1.4B 78.8 59.2 67.1 38.2 –

LLaVA1.5 (Liu et al., 2024) Vicuna-7B 665 K 78.5 62.0 66.8 64.3 1,510.7

LLaVA-GM Gemma-2B 665 K 78.2 61.3 65.3 62.3 1,498.3

The bold parts represent the optimal values under this indicator.
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fine-tuning training. These improvements make LLaVA-GM more 
suitable for application on resource-constrained devices.

The results generated by the model are shown below. Although the 
model size has been compressed to make it suitable for resource-
constrained devices, it can be seen from the figure below that the 
quality of the generated text and the quality of the VQA command 
question and answer are not inferior at all.

As shown in Figure  5, LLaVA-GM can correctly identify the 
specific location, orientation, and color of objects in the image, 

introduce the scene, and reduce the description of non-important 
information and reduce redundancy.

As shown in Figure 6, we input a few simple math problems into 
the model and ask it to answer them. After quick thinking, the model 
answers the questions in sequential order without any 
redundant information.

As shown in Figure 7, this is a virtual driver’s license photo, 
which contains various images of the driver. In the original LLaVA 
paper, it generates answers in JSON format. The two paragraphs on 

TABLE 2  Compare similar models.

Methods LLM VQA2.0 GQA SQA-IMG MMbench MME GFLOPs

LLaVA-1.5 (Liu et al., 2024) Vicuna-7B 78.5 62.0 66.8 64.3 1510.7 8,027

LLaVA-1.5 (Liu et al., 2024) Vicuna-13B 80.5 63.3 71.6 67.7 1531.3 14,927

LLaVA-1.5 (Liu et al., 2024) Phi-2.7B 67.5 – 68.4 58.8 1135.7 –

MoE-LLaVA (Lin et al., 2024) Vicuna-7B 78.6 59.2 67.1 65.3 – 8,027

MoE-LLaVA (Lin et al., 2024) Phi-2.7B 71.4 – 68.4 65.2 1423.5 3,754

TinyLLaVA (Zhou et al., 2024) Phi-2B 72.4 58.4 67.2 66.1 1434.3 –

LLaVA-MoD (Shu et al., 2024) Qwen1.5B 75.8 58.8 69.2 64.4 – –

LLaVA-GM Gemma-2B 76.4 61.3 69.3 62.3 1498.3 3,623

LLaVA-GM Gemma-7B 76.8 62.4 70.1 63.1 1502.5 7,512

The bold parts represent the optimal values under this indicator.

TABLE 3  Effect of MoE parameter settings and adjustments on modeling.

Methods Experts Top-k MoE layers Layers Total param Activated param

MoE-LLaVA-1.6B (Lin et al., 2024) 4 2 16 32 2.9B 2.0B

MoE-LLaVA-1.8B (Lin et al., 2024) 4 2 12 24 3.1B 2.2B

MoE-LLaVA-2.7B (Lin et al., 2024) 4 2 16 32 5.3B 3.6B

MoE-LLaVA-7B (Lin et al., 2024) 4 2 16 32 14.3B 8.5B

LLaVA-GM-2B 4 2 12 24 3.3B 2.2B

LLaVA-GM-7B 4 2 16 32 13.4B 7.9B

FIGURE 5

Example of the model’s ability to perceive the outdoor environment (reproduced from MS COCO datasets, https://cocodataset.org/, licensed under CC BY 4.0).
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FIGURE 7

An example of a virtual driver’s license recognition [reproduced from Yang et al. (2023), (2309.17421) The Dawn of LMMs: Preliminary Explorations with 
GPT-4V(ision), licensed under CC-BY 4.0].

the left of Figure 7 are descriptions of a driver’s license generated by 
LLaVA and LLaVA1.5, while the right side is a description of the 
driver’s license information by LLaVA-GM. It can be  seen that 
LLaVA and LLaVA1.5 have read errors in height, weight, birthday, 
and other information, but our model corrected the errors and gave 
the correct answer. The accuracy rate has increased by nearly 30%, 
which reflects the accuracy and sophistication of the model in 
image and text recognition.

5 Conclusion

5.1 Significance of work

Our work explores the trade-off between computational 
efficiency and multimodal understanding for small models and 
elucidates how model size affects performance on different tasks. 
This provides valuable references and benchmarks for future 

FIGURE 6

The model’s answers to some simple math questions.
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research on small visual language models, contributing to further 
development and innovation in the field. Our research helps 
guide the choice of model size for optimal performance and 
efficiency in different scenarios. Compared to the dense fusion 
of LLaVA-1.5, LLaVA-GM achieves explicit “disentanglement” on 
a small model for the first time through a modular four-stage 
pipeline (visual encoding → language encoding → LLN fusion → 
MoE output). The model decomposes multimodal processing 
into clear stages (visual encoding, language encoding, language-
visual fusion layer, and MoE module), and the functions and 
outputs of each stage can be  analyzed independently, which 
enhances the transparency of model behavior. In the test of the 
dataset, an average of 2 to 3 experts are activated, reducing the 
amount of redundant calculation by about 70% while 
maintaining performance.

5.2 Limitation

	 a)	 Insufficient visual representation: the first stage freezes the 
weights of CLIP-ViT-L and only trains the MLP adapter, 
resulting in the loss of fine-grained visual details. It lags 
behind dynamic segmentation schemes in tasks that 
require high resolution or document understanding, such 
as MME and OCRBench.

	b)	 Generalization bottleneck: the performance is significantly 
degraded on diverse and cross-domain datasets (such as 
DocVQA and Video-VQA), exposing the over-reliance of 
multi-stage training on early visual features.

	 c)	 Extremely low resource latency: although MoE has reduced 
GFLOPs by 70%, routing overhead still introduces additional 
latency on low-end mobile chips, affecting the real-time 
interactive experience.

5.3 Future work

We plan to make improvements in the following three aspects:

	 a)	 Optimize visual encoding - enhance detail perception through 
lightweight fine-tuning or introducing multi-granularity 
encoders such as DINOv2/SigLIP2;

	b)	 Expand training data - use a unified protocol similar to 
LLaVA-MOE to continue fine-tuning on high-resolution, 
document, and video data to improve cross-
domain robustness;

	 c)	 Upgrade gate efficiency - use low-rank routing + quantized 
expert weights to enable MoE to achieve zero latency penalty 
on extremely constrained devices.
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