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Image colorization has become a significant task in computer vision,
addressing the challenge of transforming grayscale images into realistic,
vibrant color outputs. Recent advancements leverage deep learning techniques,
ranging from generative adversarial networks (GANs) to diffusion models,
and integrate semantic understanding, multi-scale features, and user-guided
controls. This review explores state-of-the-art methodologies, highlighting
innovative components such as semantic class distribution learning, bidirectional
temporal fusion, and instance-aware frameworks. Evaluation metrics, including
PSNR, FID, and task-specific measures, ensure a comprehensive assessment
of performance. Despite remarkable progress, challenges like multimodal
uncertainty, computational cost, and generalization remain. This paper provides
a thorough analysis of existing approaches, offering insights into their
contributions, limitations, and future directions in automated image colorization.
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1 Introduction

Image colorization, a significant task in computer vision, involves converting grayscale
images into realistic and semantically consistent color outputs (Welsh et al., 2002).
This technology has broad applications in historical photo restoration, film and content
enhancement, digital art, and interactive media creation (Cheng et al., 2015). Despite
considerable advancements, colorization remains inherently ambiguous—grayscale images
may have multiple plausible colorizations depending on object semantics, scene context,
and user intent (Zhang et al., 2016). Producing visually convincing results requires
models to reason over both local textures and global semantic cues while maintaining
computational efficiency and adaptability.

This review provides a comprehensive analysis of recent developments in deep
learning-based image colorization. A systematic selection of research papers was conducted
across major academic sources including Google Scholar, IEEE Xplore, ACM Digital
Library, arXiv, and SpringerLink. Using search terms such as “image colorization,”
“automatic colorization,” “semantic colorization,” “user-guided colorization,” and “text-
to-image colorization,” we identified 46 relevant publications. After excluding unrelated
works on sketch-based colorization, underwater image enhancement, and extremely low-
resolution inputs (Pramanick et al., 2024; Sangkloy et al., 2017; Liu et al., 2024; Lee et al.,
2020; Isola et al., 2017; Fei et al., 2023; Gao et al., 2023; Saharia et al., 2022; Kumar et al.,
2021; Shafiq et al., 2025; Larsson et al., 2016; Li et al., 2023), 21 influential papers published
between 2015 and 2025 were selected for in-depth review.
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FIGURE 1

Distribution of surveyed image colorization models by architecture
type (2015–2025).

This paper categorizes and evaluates state-of-the-art
methodologies across seven core areas: classification-based
models, adversarial networks, diffusion models, transformer
and dual-decoder architectures, exemplar-based and temporal
colorization, multimodal and text-guided systems, and semantic
fusion-based frameworks. Each method is discussed in terms of
its architectural design, innovation, quantitative performance, and
limitations. In addition, a summary of benchmark datasets and
widely used evaluation metrics—including PSNR, SSIM, LPIPS,
FID, and CLIP Score—is provided.

The remainder of this paper is structured as follows:
Section II reviews existing methods grouped by model type
and design strategy. Section III outlines the key challenges
facing colorization models, including color imbalance, semantic
ambiguity, and computational cost. Section IV discusses evaluation
metrics used to assess fidelity, diversity, and perceptual quality.
Section V highlights emerging trends and future research
directions, including interactive frameworks, hybrid modeling, and
lightweight architectures. Section VI concludes with a summary of
progress and recommendations for future research directions.

2 Existing approaches

Recent advances in image colorization have led to a diverse
array of deep learning-based models that vary significantly in
architectural design, learning objectives, and user controllability.
This section categorizes and reviews state-of-the-art techniques
into key methodological families, each offering distinct advantages
and trade-offs. We organize these approaches into discretized
classification models, adversarial networks, diffusion-based
frameworks, transformer and dual-decoder architectures, exemplar
and temporal methods, text-guided and multimodal systems, and
semantic fusion models.

To enhance accessibility, we also provide a visual summary of
the distribution of surveyed models by architecture type in Figure 1,
highlighting how the field has evolved in terms of complexity,
controllability, and realism over the past decade. This high-level
overview contextualizes the detailed analysis in the subsequent
subsections.

FIGURE 2

Timeline of surveyed model categories from 2015 to 2025.

As illustrated in Figures 1, 2, GAN-based and classification-
based models have historically dominated the field, while diffusion
and text-guided methods have gained significant traction in
recent years due to their controllability and realism. Transformer-
based and multimodal approaches are also emerging, reflecting a
growing emphasis on semantic alignment and user interactivity.
In the following subsections, we explore each category in detail,
analyzing architectural innovations, quantitative results, use cases,
and limitations. A comparative summary of key image colorization
models, their reported metrics, strengths, and limitations is
presented in Table 1.

2.1 Discretized classification models

Regression-based colorization often results in desaturated or
averaged outputs, particularly in regions with multiple plausible
colors. To address this, classification-based models predict a
probability distribution over discretized color classes, enhancing
color diversity and rare color representation while reducing mode
collapse.

Deep Colorization (Cheng et al., 2015) adopts a fully connected
neural network to classify each pixel using low-, mid-, and high-
level features (grayscale patches, DAISY descriptors, and semantic
segmentation). While it delivers strong PSNR (up to 33 dB) and
avoids CNN overhead, the lack of spatial feature reuse limits its
scalability to high-resolution or texture-rich images.

Tassin et al. (2025) introduce Crayon (Tassin et al., 2025), a U-
Net-based model that addresses colorization from a compression
perspective using a discretized color grid. Instead of predicting
full color, it reconstructs chrominance from sparse color patches
retained at fixed intervals (e.g., every nth pixel). This structured
sampling aligns with discretized classification principles, learning
color mappings from partial ground-truth. Crayon performs
competitively in PSNR and CSIM across varying grid sizes (n = 6–
100), with optimal trade-offs at n = 15–20. While lightweight and
compression-efficient, its performance degrades at extreme sparsity
levels due to color loss and grid artifacts.
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TABLE 1 Overview of key image colorization models with reported metrics, strengths, and limitations.

Paper Model type Dataset(s) Metrics reported Strengths Limitations

L-CAD Weng et al., 2023 Diffusion COCO-Stuff, ImageNet PSNR, SSIM Handles fine text
prompts

Prompt-sensitive, slow

SS-CycleGAN Li et al.,
2023

GAN + attention COCO PSNR, SSIM Spatial consistency No FID/LPIPS, heavy

DDColor Kang et al.,
2023

Transformer + CNN ImageNet FID, PSNR Semantic color
separation

Fails on translucent
regions

L-Colns Chang et al.,
2023

Transformer-based,
text-guided

Extended COCO-stuff PSNR, SSIM, LPIPS Instance-aware without
external priors

Struggles with
small-object grounding
in long captions

L-CoDer Chang et al.,
2022

Transformer-based,
text-guided

Extended COCO-stuff PSNR, SSIM, LPIPS Handles color-object
mismatch with
decoupling

High GPU/memory cost
for high-resolution

L-CoDe Weng et al.,
2022b

GAN-based, text-guided COCO-stuff PSNR, SSIM, LPIPS High subjective realism Color bleeding on fine
boundaries

CT2 Weng et al., 2022a Transformer-based,
classification

ImageNet PSNR, SSIM, LPIPS Color tokens enable
semantic consistency

Sensitive to biased
training data

ParaColorizer Kumar
et al., 2024

Dual GANs Oxford flowers FID, SSIM Fast inference Needs more training
data

GAN Colorization
Nazeri et al., 2018

Conditional GAN Various N/A Structured training, vivid
colors

Texture miscoloring

User-Guided Zhang
et al., 2017

CNN + Hints COCO User study Interactive and intuitive Over-optimistic coloring

TextIR Bai et al., 2025 GAN + CLIP CelebA, COCO FID, SSIM, CLIP Text-based edits CLIP mismatch possible

Let There Be Color
Welsh et al., 2002

CNN Classic scenes N/A Simple, no user input
needed

Fails on unseen domains

Palette Saharia et al.,
2022

Diffusion ImageNet FID General purpose,
realistic

Slower than GANs

BiSTNet Yang et al., 2024 Video colorization
(fusion)

DAVIS, Videvo PSNR, CDC Video accuracy,
temporal logic

Heavy modules (SAM,
RAFT)

Deep Colorization
Cheng et al., 2015

DNN + semantic
features

SUN N/A Few artifacts Needs large training set

Instance-Aware Su et al.,
2020

GAN + segmentation Custom FID Good for multiple
objects

Detection accuracy
critical

ChromaGAN Vitoria
et al., 2020

GAN + semantic
estimation

ImageNet PSNR Vivid color, semantic
realism

Needs labeled classes

In summary, classification-based models offer a structured way
to encode color diversity and handle multimodal color spaces.
They are effective for vibrant and data-driven colorization but face
challenges in scalability and generalization to complex scenes due
to discretization and post-processing dependencies.

2.2 Adversarial colorization networks

Generative Adversarial Networks (GANs; Fei et al.,
2023) have become a cornerstone of modern image
colorization, capable of producing vivid and realistic
outputs by learning from natural color distributions. Unlike
regression-based models, GANs use a discriminator to
guide the generator toward perceptually convincing results.
Recent approaches enhance this setup with semantic priors,

instance awareness, and spatial refinement to boost realism
and structure.

ChromaGAN (Vitoria et al., 2020) introduces a dual-branch
generator: one predicts chrominance channels, the other estimates
semantic class distributions, supervised by KL divergence against
VGG-16 predictions. This improves contextual accuracy and
color diversity. However, its reliance on fixed-size inputs (due
to VGG-16 constraints) and pretrained semantic classifiers
limits its adaptability across different domains, resolutions,
and tasks where pretrained priors may not align with target
data distributions.

ParaColorizer (Kumar et al., 2024) tackles foreground-
background confusion using two parallel GANs for foreground
(self-attention ResUNet) and background, fused via a DenseFuse
network. This enhances object separation and color clarity,
achieving top FID and colorfulness scores on COCO and ImageNet.
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Its trade-off is increased complexity and inference time, along with
dependency on instance segmentation.

SS-CycleGAN extends CycleGAN (Li et al., 2023) with
Multi-Scale Cascaded Dilated Convolution (MCDC) and a self-
attention patch discriminator, improving semantic focus and
edge fidelity. It boosts PSNR and SSIM, but the model was
not evaluated on perceptual realism metrics such as FID or
LPIPS, limiting direct comparability with diffusion or multimodal
models. Furthermore, it lacks user guidance features, reducing
controllability in interactive settings.

L-CoDe (Language-based Colorization with Decoupled
Conditions; Weng et al., 2022b) integrates adversarial learning
with semantic decoupling by separating caption tokens into object
(noun) and color (adjective) vectors, addressing color-object
mismatch and coupling. A novel Attention Transfer Module
(ATM) maps object references in the image to corresponding
color tokens, while a Soft-gated Injection Module (SIM) ensures
that only mentioned regions receive injected color guidance. The
model is trained with both perceptual and binary cross-entropy
losses, achieving strong performance in PSNR, SSIM, and LPIPS
on the COCO-Stuff dataset. Although not evaluated on FID,
L-CoDe’s user studies demonstrate strong subjective realism and
controllability, positioning it as a semantically guided adversarial
model that bridges linguistic cues and visual fidelity.

Instance-Aware GANs (Su et al., 2020) colorize detected objects
individually and merge them with global features via a fusion
module, reducing color mixing between objects and backgrounds.
While effective in dense scenes, the approach is highly dependent
on segmentation accuracy and incurs considerable computational
cost due to per-instance forward passes.

In summary, adversarial colorization networks push the
boundary of realism through semantic fusion and structural
refinement. Their key limitations include training complexity,
runtime cost, and sensitivity to external dependencies such as
detection quality and pretrained priors.

2.3 Diffusion-based colorization models

Diffusion-based models have emerged as a powerful solution
for high-fidelity colorization by iteratively denoising noisy
samples conditioned on grayscale input or auxiliary signals.
Compared to GANs, they offer more stable training and generate
diverse, semantically coherent outputs, though they remain
computationally expensive and slower to infer due to their iterative
nature.

Palette (Saharia et al., 2022) is a general-purpose diffusion
model trained on multiple image-to-image tasks, including
colorization. It uses a U-Net with global self-attention and requires
no task-specific tuning. Achieving FID = 15.78 and a 47.8%
human fooling rate on ImageNet, Palette outperforms earlier GAN-
based models like ColTran. However, its universal design slightly
compromises colorization-specific precision, and its multi-step
generation makes it unsuitable for real-time use.

L-CAD (Weng et al., 2023) offers text-conditioned colorization
using Stable Diffusion, integrating LIC, CEC, and ISS modules
for structure preservation, semantic alignment, and object-aware

control. It performs well on COCO-Stuff and ImageNet (PSNR
= 26.3, SSIM = 0.911) and supports prompts of varying detail.
However, its effectiveness relies on the clarity and precision of user
prompts, making it vulnerable to ambiguous or sparse descriptions.

In summary, diffusion models offer high-quality, controllable
colorization across modalities but face challenges in efficiency,
making them ideal for offline or batch processing rather than
real-time tasks. Future work must focus on faster sampling
strategies and task-specific tuning to unlock their full potential in
practical settings.

2.4 Transformer and dual-decoder
architectures

Transformer-based and dual-decoder models have recently
advanced colorization by decoupling spatial detail from
semantic reasoning. This architectural split allows networks
to simultaneously handle texture reconstruction and context-
aware color prediction, improving accuracy in complex scenes.
However, these designs often come with high training costs and
memory demands.

DDColor (Kang et al., 2023) exemplifies this trend with a
ConvNeXt backbone and two decoders: a pixel decoder for spatial
fidelity and a transformer-based color decoder for semantic-aware
color queries. Their fusion via attention mechanisms enables high-
resolution, vibrant outputs. The architectural overview of DDColor
is shown in Figure 3. DDColor achieves strong performance (FID
= 3.92) on ImageNet, COCO-Stuff, and ADE20K, aided by a
colorfulness loss. However, its dual-path design increases latency
and memory usage, limiting real-time usability.

CT2 (Weng et al., 2022a) further expands transformer-
based colorization by introducing color tokens and treating
colorization as a classification problem in quantized color space.
The model features a ViT-based encoder and a transformer-
based decoder, enhanced by two novel modules: (1) a luminance-
selecting module that dynamically restricts valid color candidates
based on luminance levels, and (2) a color attention mechanism
that injects color tokens into grayscale image features. These
innovations address common issues like semantic color errors
and undersaturation, leading to visually rich, plausible outputs
without relying on external priors. CT2 achieves state-of-the-art
performance across multiple benchmarks, including ImageNet,
with superior FID (5.51), PSNR (23.50), SSIM (0.92), and
colorfulness metrics. Despite its strengths, the model depends on
accurate empirical color distributions and may underperform on
highly biased or limited datasets.

Overall, these architectures demonstrate that semantic
disentanglement improves interpretability and realism in
colorization. Their main limitations are computational efficiency
and generalization, which remain key areas for further refinement.

2.5 Exemplar and temporal colorization

Video colorization poses challenges like temporal consistency,
color propagation, and scene coherence, which static models do not
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FIGURE 3

DDColor architecture: a grayscale image is encoded via a ViT encoder. Optional user hints are processed by a separate encoder and fused via an
adaptive mask. A transformer-based diffusion decoder generates the final colorized image.

face. To overcome these, exemplar-based and temporal models use
reference frames, semantic priors, and feature-level alignment to
maintain consistency across sequences.

L-CoDer (Language-Based Colorization with Color-Object
Decoupling Transformer; Chang et al., 2022) introduces a
language-guided approach that unifies grayscale images and
textual captions in a shared token-based representation using
transformers. Unlike temporal or exemplar-based models, L-
CoDer targets the modality alignment problem by decoupling
the caption into noun (object) and adjective (color) tokens and
processing them alongside image patches. The model employs a
decoupling transformer with bidirectional attention, enabling each
modality to refine the other from coarse to fine. A learned Object-
Color Correspondence Matrix (OCCM) ensures correct color-
object associations, addressing issues such as color-object mismatch
and coupling. L-CoDer achieves state-of-the-art performance on
the COCO-Stuff dataset across PSNR, SSIM, and LPIPS metrics.
However, the model’s transformer backbone leads to high memory
demands, posing challenges for scaling to high-resolution or real-
time applications. Nonetheless, it represents a strong advancement
in semantically controllable colorization.

BiSTNet (Yang et al., 2024) colorizes entire video sequences
using only two reference frames, employing a Bidirectional
Temporal Fusion Block (BTFB) to blend forward and backward
predictions based on temporal distance. It further refines output
using a Mixed Expert Block (MEB)—which combines segmentation
and edge features—and a Multi-Scale Refinement Block (MSRB).
It achieved top scores in the NTIRE 2023 Video Colorization
Challenge, with strong PSNR and CDC metrics. However, its
dependency on external modules (e.g., SAM, RAFT) and heavy
computation limits real-time use, and its success hinges on high-
quality references.

DeepExemplar (from ParaColorizer; Kumar et al., 2024) uses
a dual-GAN strategy to colorize foreground and background
separately, extending it to videos through semantic alignment
and temporal fusion. It preserves color consistency in repeating
or structured elements and uses instance-aware segmentation
for identity tracking. Despite improved visual coherence, the
model remains computationally intensive, and performance

degrades when semantic matching fails in dynamic or
complex scenes.

In summary, these models represent a shift toward sequence-
aware colorization, offering robust performance through semantic
fusion and temporal logic. Their major limitations lie in runtime
overhead, reference dependency, and scalability, especially in real-
time or unconstrained settings.

2.6 Text-guided and multimodal
colorization

Modern colorization models increasingly support multimodal
interaction, enabling users to guide outputs via text prompts,
strokes, or exemplars. These systems incorporate semantic
understanding and visual alignment, offering both global scene-
level control and localized refinement. This shift toward human-
in-the-loop generation enhances creativity and personalization, but
also introduces challenges in precision and usability.

TextIR (Bai et al., 2025) uses CLIP-based embeddings and
a StyleConv generator to enable prompt-driven colorization,
inpainting, and super-resolution. A feature fusion module blends
semantic cues with structural details for fine-grained edits (e.g., “a
red umbrella and green boots”). It outperforms prior models like
L-CoDe and L-CoIns on FID, SSIM, and CLIP Score. However,
its sensitivity to prompt quality can cause mismatches in complex
or ambiguous scenarios, and its alignment is less precise than
pixel-based control.

L-CAD (Weng et al., 2023) builds on Stable Diffusion,
introducing modules such as LIC, CEC, and ISS to align text inputs
with grayscale structure and instance features. It performs well on
COCO-Stuff and ImageNet, maintaining high PSNR and SSIM, and
handles both general and detailed prompts. Still, its performance
heavily depends on prompt clarity, especially in multi-object scenes
where ambiguity can degrade results.

Language-based Image Colorization (Li et al., 2025), a distilled
diffusion model for text-guided colorization that achieves 14×
faster inference and high CLIP alignment. They benchmark
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from-scratch and pre-trained models, proposing a hue-invariant
FID (hFID) metric for fairer evaluation. While efficient and
generalizable, Color-Turbo lacks fine-grained control and
may produce hue inconsistencies in complex prompts. Their
curated dataset standardizes evaluation across language-based
colorization models.

Controllable Image Colorization with Instance-aware Texts
and Masks (An et al., 2025) extends text-based control with
segmentation masks for instance-aware colorization. It combines
a transformer-guided diffusion model with a novel GPT-generated
dataset (GPT-Color) to enable fine-grained, object-level control.
This achieves strong performance in user studies and CLIP
alignment, but its reliance on accurate instance masks and multi-
modal inputs increases system complexity and limits scalability for
casual users.

L-CoIns (Chang et al., 2023) introduces a framework that
leverages both language and instance-level cues for object-aware
colorization. The model uses CLIP-based embeddings to encode
text prompts and aligns them with grayscale image regions through
object detection and instance segmentation. By doing so, it enables
controllable, region-specific colorization (e.g., “make the apple
green and the car red”). Experimental results show that L-CoIns
achieves better semantic alignment and diversity compared to
earlier text-based methods. However, the models effectiveness
depends on accurate instance segmentation and is less responsive
in cases where object boundaries are unclear or ambiguous.

In summary, text-guided and multimodal models offer
flexible, user-controllable colorization, blending visual reasoning
with language and manual input. Their limitations stem from
prompt sensitivity, runtime demands, and precision trade-offs, but
they represent a crucial step toward interactive and expressive
colorization.

2.7 Semantic fusion and context-aware
models

Semantic fusion models combine global scene understanding
with local spatial features to guide colorization more effectively,
especially in cluttered or ambiguous scenes. Through classification,
segmentation, or feature alignment, these models bridge low-level
texture and high-level context, resulting in more coherent and
object-aware outputs.

Iizuka et al. introduced a dual-branch network with a scene
classification head and a mid-level feature extractor, fused to guide
per-pixel color prediction. It achieves strong perceptual realism,
but lacks multimodal control and produces less diverse colors in
ambiguous scenes.

ChromaGAN (Vitoria et al., 2020) operates within a GAN
framework, combining color prediction with semantic class
distribution estimation, regularized via KL divergence against
VGG-16 outputs. This enhances realism and alignment, though
the reliance on pretrained classification priors limits adaptability to
unseen domains or tasks.

Instance-Aware Colorization (Su et al., 2020) improves fusion
by separating object-level and global features, using Mask R-
CNN (He et al., 2017) for instance detection and a fusion
module to merge them. This approach excels in multi-object

scenes but depends heavily on detection accuracy and incurs high
computational cost when many instances are present.

BiSTNet (Yang et al., 2024), while designed for video,
incorporates semantic fusion through a Mixed Expert Block (MEB)
that combines segmentation and edge cues to guide color blending
across frames. It achieves top performance (CDC, PSNR) but
suffers from high latency due to reliance on external modules like
RAFT and SAM.

In summary, semantic fusion models boost colorization
accuracy by aligning structural and contextual information. Their
key challenges lie in external dependencies and complexity,
suggesting a need for more lightweight, integrated solutions for
broader applicability.

2.8 Benchmark datasets used in
colorization research

A wide range of datasets have been employed in colorization
research to evaluate model performance across domains such as
natural scenes, objects, faces, and videos. These datasets vary
in scale, diversity, annotation detail, and complexity, enabling
benchmarking on both qualitative and quantitative metrics like
PSNR, SSIM, LPIPS, FID, and perceptual user studies.

ImageNet (ILSVRC2012 / val5k; Deng et al., 2009) is a
large-scale dataset containing over 1.2 million labeled images
across 1,000 categories. It is widely used for both training and
evaluation in automatic colorization due to its semantic richness
and variety of scenes. The val5k subset is a common benchmark for
computing FID, PSNR, and SSIM, particularly in general-purpose
and diffusion-based colorization models.

COCO-Stuff and COCO-2017 (Lin et al., 2014) datasets
provide densely annotated scenes with instance-level and semantic
segmentation, making them suitable for testing models like L-CAD
(Weng et al., 2023)

Places205 and Places365 (Zhou et al., 2017) are scene-centric
datasets with millions of labeled images across a wide range of
indoor and outdoor settings. These datasets are used to support
global semantic understanding, especially in models such as Iizuka
et al., which incorporate scene classification into the colorization
pipeline for improved contextual coherence.

CelebA and CelebA-HQ (Zhang et al., 2020) are high-
quality facial datasets with attribute annotations and aligned
facial landmarks, often used for portrait colorization and identity
preservation. These datasets serve as testbeds for frameworks like
TextIR (Bai et al., 2025) and BiSTNet (Yang et al., 2024) that require
localized control or fine-grained detail in human subjects.

DAVIS and Videvo are video datasets commonly used
to benchmark temporal colorization models such as BiSTNet
(Yang et al., 2024). Their annotated sequences and high
visual fidelity make them ideal for evaluating flicker reduction,
temporal consistency, and long-range coherence in video-based
colorization tasks.

Oxford 102 Flower is frequently used in models like SS-
CycleGAN (Li et al., 2023) and ParaColorizer (Kumar et al., 2024)
to test colorization in fine-grained textures and natural object
structures. The dataset’s high intra-class variance and boundary
complexity help assess a models ability to retain detail.
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Lastly, the SUN dataset, though smaller, is historically
significant for early deep learning colorization models like
Deep Colorization (Cheng et al., 2015) providing a diverse but
manageable benchmark for scene understanding and category-
driven colorization tasks.

3 Challenges

Despite significant progress in deep learning-based image
colorization, several persistent challenges hinder model robustness,
generalization, and deployment efficiency. These limitations often
stem from architectural design decisions, training constraints, and
dataset biases. Understanding the technical causes behind these
issues is essential for improving current models and designing
future systems.

One major challenge is feature imbalance in the color
distribution, where dominant tones—such as grays, browns, and
skin-like hues—are overrepresented in training data. This skews
model predictions toward frequent colors, resulting in desaturated
or uniform outputs, particularly in underrepresented regions.
Classification-based models attempt to mitigate this using class
reweighting and color frequency adjustment, assigning higher loss
weights to rare colors. While effective, these techniques rely heavily
on empirical tuning of hyperparameters, such as balancing weights
and color bin definitions, which can limit generalization across
datasets with different statistical properties.

Generative Adversarial Networks (GANs) present another well-
known challenge: mode collapse, where the generator learns to
produce a narrow set of colorizations regardless of the input
diversity. This often arises from imbalanced adversarial training,
where the discriminator becomes too strong and overfits to a small
set of outputs, preventing the generator from exploring diverse
mappings. Architectural solutions such as Wasserstein loss, spectral
normalization, gradient penalties, and mini-batch discrimination
have been proposed to stabilize training and encourage output
diversity (Arjovsky et al., 2017; Goodfellow et al., 2020). However,
these strategies often come with high computational overhead
and are sensitive to training dynamics and architecture-specific
constraints, making them difficult to generalize across domains or
models without extensive tuning.

Semantic and spatial inconsistencies pose a significant problem,
particularly in cluttered scenes with overlapping objects or
ambiguous visual cues. For example, Conditional CycleGAN
employs cycle-consistency loss to enforce structure preservation,
but its deterministic one-to-one mapping cannot account for multi-
modal color possibilities, such as a shirt that could plausibly
be red or blue. As a result, these models often default to the
most statistically probable color, reducing realism. Models like
SS-CycleGAN improve upon this with Multi-Scale Cascaded
Dilated Convolutions (MCDC) and self-attention, which expand
receptive fields and allow the model to align features across spatial
hierarchies (Li et al., 2023). Still, without a probabilistic mechanism,
these models remain brittle in scenes with semantic ambiguity.
In contrast, VAEs and diffusion models incorporate stochastic
sampling and latent-variable conditioning, making them better
suited for uncertainty modeling and diverse color prediction—but
often at the expense of inference speed and simplicity.

Another widespread issue is structural distortion, including
edge noise, color bleeding, and boundary mismatch. These
problems are especially evident in models without strong instance-
awareness or edge supervision. Recent models like CtrlColor
integrate SAM-based segmentation and edge-aware loss functions
to preserve object boundaries. While these methods improve
sharpness and local consistency, they often rely on external
modules (e.g., SAM or RAFT) and high-resolution computation,
which increase runtime complexity and limit real-time applicability
on low-power devices.

In summary, image colorization remains a multi-dimensional
optimization problem. Models must balance color diversity,
semantic fidelity, spatial structure, and computational efficiency.
Each class of architecture addresses some of these goals but
introduces new trade-offs. The path forward lies in hybrid
designs that combine deterministic structure preservation with
probabilistic color reasoning, along with lightweight, end-to-
end architectures that minimize external dependencies while
supporting interactive and real-time applications. To better
understand how recent colorization models perform in real-world
settings, we provide a comparative analysis in Table 2. This table
summarizes the practical usability of key models based on real-
time capability, inference time, and hardware requirements. Such
comparisons are essential for selecting appropriate models for
deployment on edge devices, real-time systems, or cloud platforms.

4 Evaluation metrics

Evaluation metrics are essential for assessing the performance
and quality of image colorization methods. They provide
quantitative and qualitative insights into how well a model
performs, ensuring comprehensive evaluation from multiple
perspectives. The metrics used in image colorization are broadly
categorized into pixel-wise accuracy, structural and perceptual
similarity, generative quality, and task-specific measures.

4.1 Pixel-wise accuracy

Pixel-level metrics, such as Mean Squared Error (MSE) and
Peak Signal-to-Noise Ratio (PSNR), are commonly employed to
evaluate the fidelity of generated images against the ground truth
(Hore and Ziou, 2010). MSE measures the pixel-wise differences,
ensuring accurate reconstruction at the pixel level. The formula for
MSE is given as:

MSE = 1
HW

H∑
i=1

W∑
j=1

(
Xij − X̂ij

)2

where H and W are the height and width of the image, and Xij and
X̂ij are the ground-truth and generated pixel values, respectively.
PSNR, on the other hand, reflects the reconstruction quality and is
computed as:

PSNR = 20 · log10

(
MAX√

MSE

)
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TABLE 2 Inference performance and real-time capability of key image colorization models.

Model Control mode Inference time Hardware used Real-time

DDColor Kang et al., 2023 None N/A 4 Tesla V100 No

ParaColorizer Kumar et al., 2024 None ∼0.24 ms 2 Tesla V100 Yes

TextIR Bai et al., 2025 Text N/A 2 Tesla V100 No

L-Colns Chang et al., 2023 Text N/A 8 RTX 3090 No

L-CoDer Chang et al., 2022 Text N/A 4 NVIDIA TITAN TRX No

L-CoDe Weng et al., 2022b Text N/A 2 GTX 1080Ti No

CT2 Weng et al., 2022a None N/A 8 RTX 3090 No

Palette Saharia et al., 2022 None ∼0.8 s TPU v3 No

SS-CycleGAN Li et al., 2023 None N/A Tesla T4 No

L-CAD Weng et al., 2023 Text N/A 2 RTX 3090Ti No

Instance-Aware GAN Su et al., 2020 None ∼0.187 s RTX 2080Ti No

ChromaGAN Vitoria et al., 2020 None ∼4.4 ms Quadro P6000 No

GAN Colorization Nazeri et al., 2018 None N/A N/A No

User-Guided Zhang et al., 2017 User Hint N/A N/A Yes

Let There Be Color Welsh et al., 2002 None N/A CPU No

Deep Colorization Cheng et al., 2015 None N/A Tesla K40 No

BiSTNet Yang et al., 2024 Reference frames N/A 4 RTX A6000 No

where MAX is the maximum pixel value in the image. These metrics
are extensively used in methods like L-CAD, and DDColor to
evaluate the accuracy of chrominance predictions (Weng et al.,
2023; Kang et al., 2023). While effective, these metrics may not fully
capture the perceptual quality of colorization outputs, especially in
multimodal tasks.

4.2 Structural and perceptual similarity

Structural and perceptual similarity metrics are crucial for
evaluating the consistency of structural and visual coherence
between the generated and ground-truth images (Wang et al.,
2004). The Structural Similarity Index (SSIM) measures luminance,
contrast, and structural similarity using the following equation:

SSIM(x, y) =
(
2μxμy + C1

) (
2σxy + C2

)
(
μ2

x + μ2
y + C1

) (
σ 2

x + σ 2
y + C2

)

where μx, μy are the means, σ 2
x , σ 2

y are the variances, and σxy is
the covariance of the two images, with C1 and C2 being constants.
Learned Perceptual Image Patch Similarity (LPIPS) evaluates
perceptual similarity by comparing deep feature representations
(Zhang et al., 2018), as follows:

LPIPS(x, y) =
∑

l

1
HlWl

∑
i,j

‖φl(x)ij − φl(y)ij‖2
2

where φl(x) and φl(y) are features from layer l, and Hl, Wl are the
dimensions of the feature map. Metrics such as SSIM and LPIPS

are widely used in methods like SS-CycleGAN, ParaColorizer, and
BiSTNet to ensure structural coherence and perceptual quality
(Wang et al., 2004; Zhang et al., 2018; Li et al., 2023; Kumar et al.,
2024; Yang et al., 2024).

4.3 Generative quality

Generative quality metrics, such as Fréchet Inception Distance
(FID) and Inception Score (IS), measure the realism and diversity
of generated images (Heusel et al., 2017; Barratt and Sharma, 2018).
FID quantifies the similarity between the distributions of real and
generated image features and is given by:

FID = ‖μr − μg‖2 + Tr(�r + �g − 2(�r�g)1/2)

where μr , μg are the means and �r , �g are the covariances of
real and generated image features. Inception Score (IS) evaluates
diversity and quality by analyzing the entropy of predictions
made by a pre-trained classification model. Generative metrics like
FID are commonly employed in methods such as Palette, and
DDColor to ensure that generated outputs are both realistic and
diverse (Saharia et al., 2022; Kang et al., 2023). Additionally, the
Colorfulness Metric assesses the vibrancy and richness of colors in
generated images, reflecting the vividness of the results.
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4.4 Qualitative and perceptual evaluations

In addition to quantitative measures, qualitative evaluations
and user studies play a vital role in assessing the perceptual realism
of colorized images. Perceptual studies, as conducted in methods
like ChromaGAN and Real-Time User-Guided Colorization,
involve measuring fooling rates and user preferences (Vitoria
et al., 2020; Zhang et al., 2017). These evaluations complement
traditional metrics by capturing subjective qualities such as
naturalness and believability, particularly in multimodal and
visually ambiguous scenarios.

5 Emerging trends and future
directions

5.1 Emerging trends in image colorization

5.1.1 Diffusion models as the new backbone
The success of models like Palette (Saharia et al., 2022) has led to

a shift from GANs to diffusion models for high-fidelity, controllable
colorization. Diffusion provides better color diversity and supports
iterative refinements, making it more suitable for creative tasks.
However, high inference latency remains a bottleneck, limiting
real-time use.

5.1.2 Prompt-based and multimodal interaction
Prompt-guided models like L-CAD and TextIR (Weng et al.,

2023; Bai et al., 2025) illustrate how text can guide colorization
flexibly, even at the region level. With increasing adoption of CLIP
and similar models, the future may lean toward foundation model-
guided colorization, allowing zero-shot or few-shot customization
using natural language.

5.1.3 Real-time and lightweight inference
Models like ParaColorizer (Kumar et al., 2024) and User-

Guided Colorization (Zhang et al., 2017) reflect an increasing
demand for real-time colorization, particularly for mobile
and AR/VR applications. Future systems will likely prioritize
architectures that trade off minimal quality for fast, efficient
deployment on edge devices.

5.1.4 Ethics, bias mitigation, and explainability
As image colorization systems move beyond artistic

applications and into sensitive domains—such as historical
restoration, forensic analysis, and medical imaging—the need for
ethical safeguards has become increasingly urgent. A primary
ethical challenge is the risk of color misinterpretation. When
models hallucinate colors without ground truth references, they
may inadvertently introduce misleading or historically inaccurate
information. For example, assigning skin tones or fabric colors
in archival photographs could distort cultural or racial identity,
leading to unintentional misrepresentation of the past.

Another major concern is dataset bias. Popular datasets
such as COCO or ImageNet often reflect implicit social and
cultural biases, which can propagate into generated outputs.

This may result in systematically skewed colorizations—for
instance, consistently rendering certain demographics with
particular tones—thereby reinforcing stereotypes or marginalizing
underrepresented groups.

In high-stakes domains like journalism or forensics,
hallucinated colorizations may be mistaken as factual, particularly
when presented without proper disclaimers. In evidentiary settings,
such misinterpretations could even carry legal implications.
This underscores the importance of embedding uncertainty
visualization, provenance tracking, and clear disclaimers to
differentiate generated content from original data.

Explainability also remains limited. While some recent systems
integrate user hints, segmentation cues, or attention mechanisms
to guide outputs, most colorization pipelines remain opaque to end
users. This lack of transparency hinders trust and accountability,
especially in workflows where factual accuracy is paramount.

To mitigate these concerns, future research should emphasize
transparency mechanisms such as attribution maps, error
bounds, and dataset audits. Additionally, incorporating
controllable generation frameworks with provenance logging
can empower users to better understand and guide the colorization
process—promoting both ethical integrity and user trust.

5.2 Future research directions

Emerging trends in image colorization highlight the
shift toward hybrid transformer-convolutional architectures,
structurally-aware learning, prompt-driven multimodal control,
and real-time interactivity. While current models achieve
photorealism and semantic richness, challenges remain in
scalability, boundary preservation, and global reasoning.

A notable direction is the move from traditional CNN
backbones (e.g., VGG-16 in ChromaGAN) to hybrid architectures
combining ConvNeXt and Transformers (Vitoria et al., 2020;
Kang et al., 2023; Liu et al., 2021). Models like DDColor show
how ConvNeXt can preserve textures while transformers enhance
contextual reasoning (Liu et al., 2022). A hybrid multi-scale
architecture with structured attention fusion could improve local-
global feature integration, addressing issues like over-smoothing
and poor generalization.

Color bleeding remains a challenge in GAN-based models
(Li et al., 2023; Kumar et al., 2024; Nazeri et al., 2018). Recent
solutions propose edge-conditioned discriminators (e.g., using
Canny or HED maps) and boundary-aware generators with edge-
guided attention. A dual-weighted loss that balances perceptual
smoothness with structural sharpness could further improve
fidelity and boundary accuracy.

Multimodal frameworks such as L-CAD and TextIR reflect
another key trend, enabling prompt-guided and user-controllable
colorization via text or exemplars (Weng et al., 2023; Bai et al.,
2025). These systems offer customization and interactivity, paving
the way for integration into creative tools and restoration pipelines.

In summary, the future of colorization lies in developing
interactive, scalable, and semantically aligned systems. Through
architectural innovation and user-focused design, next-generation
models will support applications in digital media, heritage
restoration, and augmented creativity.
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6 Conclusion

Image colorization has advanced significantly, driven by deep
learning, semantic understanding, and generative models. This
review explored innovations such as semantic class distributions,
multimodal fusion, and user-guided controls, addressing challenges
like multimodal uncertainty and object-level consistency. Despite
these advancements, limitations such as high computational costs,
dataset dependencies, and performance on unseen scenarios
remain. Future work should focus on lightweight models, enhanced
generalization, and interactive frameworks to balance automation
with creative flexibility. Transforming grayscale to vibrant color
continues to be an exciting frontier in computer vision.
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