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This research paper investigates the efficiency of cryptographic algorithms within graph-based encryption models such as star graph, focusing on their computational performance and security robustness. In this study, we analyze the performance of RSA and ElGamal cryptographic algorithms by evaluating time and space complexity across various file types, including text, image, audio, and data of different sizes. The encryption process is modeled using graph structures such as the Star graph, along with other well-known algorithms like A*, Dijkstra, Bellman-Ford, and Floyd-Warshall for comparative analysis and performance benchmarking. Consequently, this research conducts a comparative analysis of RSA and ElGamal cryptographic algorithms by applying them to mixed data, including binary, text, and image files. The CPU's internal clock was employed to record the execution time of encryption and decryption operations, facilitating the assessment of time complexity for both algorithms. The CPU's internal memory was employed to monitor and record memory usage during the encryption and decryption operations performed on mixed datasets. Accordingly, the evaluation of the encryption algorithms was conducted using criteria such as encryption time, decryption time, and throughput to determine their relative performance. In evaluating cryptographic approaches, factors such as response time, confidentiality, bandwidth, and integrity are considered. Experimental results indicate that RSA demonstrates superior time efficiency and resource utilization, whereas the ElGamal algorithm exhibits greater memory efficiency and resourcefulness. This study evaluates RSA and ElGamal encryption on text, image, audio, and data files of varying sizes using graph-based models. The Star graph algorithm is adopted for its simplicity and low computational cost, and its performance is compared against A*, Dijkstra, and Bellman-Ford algorithms. Results show that the Star model offers near-optimal paths with significantly reduced processing time, demonstrating high confidence in efficiency for lightweight encryption tasks. We have added computational performance, logical confidence, and optimality conditions of the proposed Star-based encryption model. The Star algorithm, integrated with RSA/ElGamal encryption, is benchmarked against classical pathfinding algorithms like A*, Dijkstra, and Bellman-Ford, commonly used for routing and shortest-path computations. Computational performance of (i) the worst-case time complexity of star algorithm (proposed) is O(bd) where b is the branching factor and d is the depth and space complexity is O(E + V) where E is the number of edges and V is the number of nodes, high (central node access) traversal efficiency, excellent (centralized graph encoding) suitability for graph-based encryption, very high structural simplicity, (ii) the worst case time complexity of A* Algorithm is O(bd) where b is the branching factor and d is the depth and space complexity is O(E + V) where E is the number of edges and V is the number of nodes, high (with good heuristic) traversal efficiency, good (needs proper graph abstraction) suitability for graph-based encryption, moderate structural simplicity, (iii) the average case time complexity and best case time complexity of Dijkstra's Algorithm is O((V + E) log V) and the worst case time complexity is O((V2) logV) and space complexity is O(V) where V is the number of vertices, moderate to high traversal efficiency, fair (efficient in weighted graphs) suitability for graph-based encryption, moderate structural simplicity, and (iv) Bellman-Ford Algorithm is O(V*E) time complexity and O(V) space complexity where V is the number of vertices and E is the number of edges, low traversal efficiency, limited (computationally expensive) suitability for graph-based encryption, moderate structural simplicity.
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1 Introduction

Data security involves implementing strategies to safeguard digital information against unauthorized disclosure and modification across computing and communication infrastructures. Given the exponential growth in data communication and transfer volumes, coupled with the escalating frequency and sophistication of cyber threats, ensuring robust data security has become more critical than ever. This urgency is underscored by the increasing number of data breaches and cyberattacks targeting sensitive information across various sectors (Li et al., 2022). Consequently, research in data security has rapidly advanced, leading to significant developments in related fields such as cryptography. These advancements have resulted in the creation of sophisticated encryption techniques, including quantum-resistant algorithms and homomorphic encryption, which enhance the protection of sensitive information across various applications. Cryptography is the practice of securing information by converting readable data (plaintext) into an unreadable format (ciphertext) through encryption, and then reverting it back to its original form via decryption. This process ensures that only authorized parties can access the original information (Adeniyi et al., 2022). Cryptography is the discipline dedicated to safeguarding information by transforming it into an unreadable format for unauthorized individuals during storage and transmission. This process, known as encryption, converts plaintext into ciphertext, ensuring that only authorized parties can revert it back to its original form through decryption. By employing mathematical techniques, cryptography ensures data confidentiality, integrity, and authenticity, making it a fundamental component of modern information security systems (Panda and Nag, 2015). Plaintext, also known as clear text, refers to data in its original, readable form that has not been encrypted. It serves as the fundamental input for encryption processes, where it is transformed into ciphertext to protect its confidentiality. Understanding and managing plaintext is crucial in information security, as it pertains to ensuring data confidentiality, integrity, and authentication (Singh et al., 2022).

Our focus is on evaluating the performance of algorithm through the utilization of graph theory and algebraic concepts (West, 2001). In graph theory, a star graph is a type of tree graph characterized by a central node connected directly to all other nodes, which are known as leaves. This structure is a specific case of a complete bipartite graph, denoted as K1, n where “1” represents the central node and “n” denotes the number of leaf nodes. The star graph Sn+1 on n+1 vertices can be represented as the corona product K1⊙Kn¯ where K1 is a complete graph on one vertex, and Kn is a complete graph on n vertices. Similarly, the corona graph of a cycle Cn with K1, denoted as Cn⊙K1 is a graph on 2n vertices obtained by attaching n pendant edges to the cycle Cn. Each vertex of the cycle is connected to a new pendant vertex, enhancing the cycle's connectivity.

Several recent studies have focused on evaluating the performance of RSA and ElGamal cryptographic algorithms, particularly concerning their time and space complexities when applied to mixed data. This section provides a comprehensive summary of these studies, analyzing the methodologies employed and their relevance to the current research. The authors conducted a comparative analysis of RSA and ElGamal cryptographic algorithms, focusing on their energy efficiency and impact on network longevity.

The remainder of this paper is organized as follows. Section 2 presents an overview of the background of the proposed work including a survey of already published techniques regarding their security concerns. Section 3 elaborates the proposed framework of algorithm. We then discuss the implementation of the proposed work with result in Section 4. Discussion presented in Section 5 and finally, Section 6 concludes the paper along with future scope.



2 Related work

Kayalvizhi et al. (2010), utilizing a cluster-based wireless sensor network topology within the NS2 simulation environment, they assessed how each algorithm influences power consumption and overall network lifespan. The study revealed that RSA tends to consume 14.5% less power compared to ElGamal, thereby potentially extending the operational duration was limited to 10 sensor nodes of the wireless sensor networks. Researchers have implemented various cryptographic algorithms in Java to enhance cloud data security, focusing on both symmetric techniques (AES, DES, and Blowfish) and asymmetric methods (RSA). Performance evaluations revealed that Blowfish demonstrated the fastest processing time, followed by AES and DES, with RSA being the slowest. In terms of memory usage, Blowfish, AES, and 3DES consumed similar amounts, whereas RSA utilized approximately twice as much memory as the symmetric algorithms. These findings suggest that Blowfish offers superior speed and efficient memory usage, making it suitable for applications where performance is critical. AES provides a balance between speed and security, while RSA, despite its higher resource consumption, remains valuable for scenarios requiring robust asymmetric encryption (Arora et al., 2013). In Boni et al. (2015), the authors proposed an innovative approach to enhance the Diffie-Hellman key exchange algorithm by introducing the Multiplicative Key Exchange (MKE) technique. This method simplifies the key generation process, reducing computational complexity. Their findings indicate that MKE outperforms the traditional Diffie-Hellman algorithm in terms of execution time, requiring fewer computations. This approach is particularly beneficial in scenarios where rapid key generation is essential, such as in less complex systems with minimal setup requirements. In their study, the authors analyzed the performance of RSA and ElGamal algorithms concerning computing speeds for securing, ensuring confidentiality, and authenticating text data. They employed the computer's internal clock to measure and compare the execution times of both algorithms across various text data inputs, aiming to determine which method is more computationally effective. The implementation was tested using text files of different sizes. The results indicated that RSA is more computationally efficient than ElGamal, leading to better performance. However, a limitation of this research is the use of text data with limited character sizes (Okeyinka, 2015). In another study, the authors evaluated the performance of LUC, ElGamal, and RSA algorithms in text encryption. Each algorithm was implemented across various text samples to measure encryption and decryption times. The findings indicated that RSA exhibited superior performance in encryption speed, while LUC demonstrated enhanced efficiency during decryption. The scope of the study was confined to encrypting secret messages in textual format (Sari et al., 2020). Ni et al. (2021) collaboratively developed novel encryption algorithms utilizing specific graph structures, notably corona graphs and bipartite graphs, to enhance secure message transmission. In Desai et al. (2022) and Behera and Gountia (2024), the authors conducted a comprehensive analysis of several asymmetric public key cryptosystems, focusing on performance-based criteria and metrics. Their research entailed an in-depth comparative examination of RSA, ElGamal, and ECC-ElGamal algorithms. The study aimed to derive clear conclusions regarding the performance requirements of these algorithms. Notably, the research highlighted that Elliptic Curve Cryptography (ECC) offers significant advantages in terms of smaller key sizes and higher computational efficiency, making it well-suited for modern devices with limited processing capabilities, such as smart cards and IoT devices. In Parenreng and Wahid (2022), the study proposed a hybrid cryptographic approach that utilizes the ElGamal encryption model for secure symmetric key distribution, coupled with the Advanced Encryption Standard (AES) algorithm for encrypting message content. This combination leverages the strengths of both asymmetric and symmetric encryption techniques to enhance email security. The implementation was integrated into an email system, effectively encrypting messages and data transmitted via email. The primary objective was to address prevalent email security challenges, particularly the risk of data leakage during email transmission. In this research article (Ali et al., 2024), the authors collectively developed novel encryption algorithms utilizing specific graph structures—namely corona graphs, star graphs, and complete bipartite graphs—to enhance secure message transmission.



3 Proposed algorithm

This study evaluates the performance of RSA and ElGamal cryptographic algorithms by measuring their encryption and decryption times, as well as memory usage on text data.

RSA Algorithm (Pseudocode):

Plaintext:

Input: Message M, Key size (k), Two large primes p and q

Output: Ciphertext C

Key Generation:

1. Choose primes p, q

2. Compute modulus: n ← p × q

3. Compute ϕ(n)← (p – 1) × (q – 1)

4. Choose public exponent e such that gcd (e, ϕ(n)) = 1

5. Compute private key

d ← e−1(mod ϕ(n))

Encryption:

6. C ← Me(mod n)

Decryption:

7. M ← Cd(mod n)

ElGamal Algorithm (Pseudocode):

Input: Message M, Prime p, Generator g, Private key x

Output: Ciphertext (C1, C2)

Key Generation:

1. Choose large prime p and generator g ϵ Zp*.

2. Select private key x ϵ [1, p-2]

3. Compute h ← gx modp

Public key = (p, g, h)

Encryption:

4. Select random k ϵ [1, p-2]

5. C1 ← gk mod p

6. C2 ← M.hk mod p

Ciphertext = (C1, C2)

Decryption:

7. s ← C1x modp

8. s−1 ← modular inverse of s mod p.

9. M ← C2 .s-1 mod p.

Dataset justification & computational considerations:

Data sources: realistic test files (text, images, and audio clips) and randomly generated structured data were used. File sizes: 22, 50, 55, 60, 90, 120, 200, 2,048, and 5,120 KB.

Execution platform: windows 10 (64-bit), Intel i7 2.23 GHz, 8 GB RAM.

Language and Mode: RSA and ElGamal implemented in C#, using CBC mode with key sizes of 64-bit and 128-bit.

Rounds: 10 rounds of encryption/decryption per block.

Measurement: CPU clock used for timing. Execution times and memory usage recorded and plotted (see Figures 1–12).


[image: Line graph comparing encryption time for RSA and ElGamal algorithms against text data file size. The x-axis represents file size, and the y-axis indicates time. The ElGamal line rises sharply after 2400, while RSA maintains a gradual increase.]
FIGURE 1
 Encryption time analysis for RSA and ElGamal cryptographic algorithm for text dataset.



[image: Line graph comparing the encryption space used by RSA and ElGamal for different text file sizes. The x-axis shows file sizes (22 to 5120), and the y-axis shows space in kilobytes. RSA uses more space as file size increases, with a steep rise, while ElGamal space usage increases gradually.]
FIGURE 2
 Analysis of memory used for RSA and ElGamal for text dataset during the encryption process.



[image: Graph showing decryption time of RSA and ElGamal algorithms for text data. The x-axis represents text data file size in kilobytes (22, 120, 230, 5120), and the y-axis shows decryption processing time. RSA, depicted in red, increases more steeply compared to ElGamal, shown in green, as file size grows.]
FIGURE 3
 Decryption time analysis for RSA and ElGamal cryptographic algorithms for text dataset.



[image: Bar chart displaying memory used by RSA and ElGamal for text data decryption. X-axis shows text data file sizes: 22, 120, 230, 5120 KB. Y-axis represents space used for decryption in kilobytes. RSA uses more memory than ElGamal across all file sizes.]
FIGURE 4
 Analysis of memory used for RSA and ElGamal for text data set during the decryption process.



[image: Chart comparing RSA and ElGamal encryption times for image data of different file sizes. The x-axis shows file sizes in kilobytes: sixty-three, one hundred twenty, two hundred, and five hundred fifty. The y-axis represents encryption times. RSA encryption is marked in red, while ElGamal is in green.]
FIGURE 5
 RSA and ElGamal encryption time analysis for image data.



[image: Line graph comparing encryption space used by RSA and ElGamal algorithms across different file sizes. The x-axis shows file sizes in kilobytes: 63, 120, 200, and 550. The y-axis shows encryption space used, ranging from 0 to 20,000. RSA uses more space than ElGamal, especially as file size increases.]
FIGURE 6
 RSA and ElGamal space used for encrypting image data.



[image: Line graph comparing RSA and ElGamal decryption times for image data across various file sizes. The x-axis represents file sizes ranging from 63 to 550 kilobytes. The y-axis shows decryption time, with RSA represented by a red line and ElGamal by a green line. Both lines appear to have a similar upward trend.]
FIGURE 7
 RSA and ElGamal space decryption time analysis for image data.



[image: Bar graph showing space used during decryption of image data. The x-axis represents file size in kilobytes, ranging from 63 to 550. The y-axis represents decryption space used in kilobytes. RSA, shown in red, and ElGamal, shown in green, both increase with file size, with RSA consistently using more space than ElGamal.]
FIGURE 8
 Space used by RSA and ElGamal during decryption of image data.



[image: Line graph comparing RSA and ElGamal encryption times for audio data. The x-axis represents file size in kilobytes, from 50 to 200. The y-axis shows encryption time. ElGamal shows slightly larger encryption times than RSA as file size increases.]
FIGURE 9
 Encryption time of RSA and ElGamal algorithm for audio data.



[image: Line graph comparing memory usage for RSA and ElGamal encryption of audio data. The x-axis represents file size in kilobytes, and the y-axis represents memory usage. RSA shows a higher and increasing trend, while ElGamal remains consistently lower.]
FIGURE 10
 Memory usage of RSA and ElGamal algorithm during encryption of audio data.



[image: Line graph comparing RSA and ElGamal decryption times for audio data. The x-axis shows file size in kilobytes, ranging from 50 to 200. The y-axis shows decryption time, up to 50. RSA line is red, ElGamal is green, with RSA showing a slightly higher decryption time overall.]
FIGURE 11
 Decryption time of RSA and ElGamal algorithm for audio data.



[image: Bar chart comparing RSA and ElGamal decryption memory usage for audio data across various file sizes. Both methods show increasing space usage as file size increases, with ElGamal consistently using slightly more memory than RSA.]
FIGURE 12
 Decryption memory usage of audio data using RSA and ElGamal algorithm.


Relevance of modulo arithmetic: modulo operations (mod n or mod p) play a critical role in ensuring bounded number systems and protecting against overflow during exponentiation. The choice of p, n, and their bit-length directly influences:

• Execution time (due to large number operations).

• Memory use (due to ciphertext expansion).

• Security strength (based on size of p/n).

Let us assume the encryption time (C1), decryption time (C2), and memory usage (C3) for a 22 KB text file using RSA and ElGamal with 128-bit keys, highlighting the impact of modulo arithmetic operations. The number of blocks (B) is estimated as 22 KB/16 bytes (CBC block size) ≈ 1,375 blocks.

RSA: each block requires one modular exponentiation c = (Memod n) for encryption and one M = (cdmod n) for decryption, with time complexity O(log2n)and O(log3n). For 1,375 blocks, C1 ≈ ,1375 * k1 * log3 (2128) ≈ 0.1082 s, where k1≈3.6 * 10-8 seconds per modular reflecting efficient implementation. Memory usage (C3) is higher due to larger buffers for n and temporary values.

ElGamal: encryption requires two modular exponentiations per block (gk mod p, yk * M mod p), doubling the computational cost, so C1 ≈ 1,375 * 2 * k4 * log3 (2128) ≈ 1.55 seconds where k4≈2.8 * 10-7 s. Decryption involves one exponentiation and one inverse, increasing C2. Lower memory usage (C3) results from optimized storage of p and ciphertexts.

In this section, while RSA key generation is a standard cryptographic step, in this study it is primarily used to support the performance evaluation of encryption and decryption processes. Therefore, detailed key generation steps are intentionally abstracted to maintain focus on time and space complexity analysis. However, for completeness, key length (64-bit and 128-bit) and their role in computational cost are considered in performance graphs. Key generation complexity can be added in future work for deeper cryptographic analysis.

Performance evaluation metrics: this study assesses the efficiency of cryptographic algorithms using the following metrics:

Encryption time: the duration required by the algorithm to encrypt text datasets. This is measured using the system's internal clock.

Decryption time: the time taken by the algorithm to decrypt text datasets, also recorded via the system's internal clock.

Encryption memory usage: the amount of system memory consumed during the encryption process of text data.

Decryption memory usage: the memory utilized during the decryption process of text data.

CPU internal clock: utilized to accurately measure the encryption and decryption times across various data categories.

CPU internal memory: employed to determine the memory consumption of both algorithms during the encryption and decryption processes for all data types.



4 Results

Example 1: consider the word “OPEN.” To encrypt this word using a specific scheme, we begin by converting each alphabetic character to its corresponding numeric value. Assuming a simple substitution where A = 1, B = 2,..., Z = 26, the conversions are as follows:

O      P      E      N

15       16      5    14

Thus, the word “OPEN” is represented numerically as 15 16 5 14. The length of the message, denoted as K, is 4. Consider a star graph S5, which can be represented as the corona product S5=K1⊙K4¯. In this structure, the central vertex of K1 is connected to each vertex of the complete graph K4, forming a star-like configuration. This graph comprises five vertices in total, corresponding to the length of the message. As illustrated in Figures 13, 14 the edges connecting the central node to the peripheral nodes are labeled sequentially as e1, e2, e3, e4.


[image: Two intersecting lines form an X shape with four endpoints and a central intersection. Each segment is labeled: ⧵(e_1 ⧵), ⧵(e_2 ⧵), ⧵(e_3 ⧵), and ⧵(e_4 ⧵).]
FIGURE 13
 Star graph.



[image: Intersecting lines create an “X” shape, connecting points labeled 5, 15, 14, and 16. Lines are labeled ⧵(e_1⧵), ⧵(e_2⧵), ⧵(e_3⧵), and ⧵(e_4⧵) near the center, indicating different segments.]
FIGURE 14
 Star graph with numeric value.



4.1 Application of RSA algorithm in star graph K1⊙Kn¯

Now RSA algorithm begins: select two prime numbers, p = 3 and q = 11. Calculate n = pq = 3*11 = 33. Calculate ϕ(n) = (p – 1) (q – 1) = (3 – 1) (11 – 1) = 2*10 = 20. Select e such that e is relatively prime to ϕ(n). So, we select e = 7 determine d such that

      de ≡1( mod ∅(n))     ⇒7d ≡1( mod 20 )⇒7 * 3≡1( mod 20 )      ⇒21≡1( mod 20)

where, d is private key.

Here, Public key PU (e, n) =7, 33, Private key PR (d, n) = 3, 33.

Assign the vertex of graph as β1 = 15, β2=16, β3 = 5, β4 = 14.

Then find  δi= βie(mod n).

δ1=(15)7 mod 33=27 δ2=(16)7 mod 33=25 δ3=(5)7 mod 33=14 δ4=(14)7 mod 33=20

Subtract k to each δi give γi. So, γ1 = δ1 – k, γ2 = δ2 – k, γ3 = δ3 – k, γ4 = δ4 – k.

We will get, γ1 = 23, γ2 = 21, γ3 = 10, γ4 = 16.

Convert each γi value to character letter as W = 23, U = 21, J = 10, P = 16.

So, sender send message “WUJP” to the receiver.

Receiver after getting message, convert to numeric value as 23, 21, 10, 16.

He then add length of message 4 to the numeric value. We will get, 23 + 4 = 27, 21 + 4 = 25, 10 + 4 = 14, 16 + 4 = 20. Assign the value as δi. So, δ1 = 27, δ2 = 25, δ3 = 14, δ4 = 20.

Now receiver use private key d = 3 and find αi=  δid (mod n) ). So,

α2=  δ1d (mod n )  = 15,

α2=  δ2d (mod n )  = 16,

α2=  δ3d (mod n )  = 5,

α2=  δ4d (mod n )  = 14. Convert the αi value to alphabetic character. α1 = O, α2 = P, α3 = E, α4= N.

Finally, receiver receives message “OPEN.”



4.2 Application of ElGamal algorithm in star graphs K1⊙Kn¯

• Select a large prime number p = 11 and a generator g = 2 of the multiplicative group Zp*. Choose a private key x = 3 such that 1 ≤ x ≤ p−2 and gcd (x, p) = 1. Compute h = gx mod p = 23 mod 11 = 8.

• The public key is the tuple (p, g, h) = (11, 2, 8) and the private key is x = 3.

Encryption:

To encrypt a message “OPEN,” we assign M1 = 0 = 15, M2 = P = 16, M3 = E = 5, M4= N = 14.

Select a random integer k = 4 such that 1 ≤ k ≤ p−2 & gcd (k, p) = 1.

Find C1=gk mod p = 24 mod 11 = 5,

C2=M1.hk mod p = 15.84 mod 11 = 5,

C3=M2.hk mod p = 16.84 mod 11 = 9,

C4=M3.hk mod p = 5.84 mod 11 = 9,

C5=M4.hk mod p = 14.84 mod 11 = 1.

Convert the numeric value of C1, C2, C3, C4, and C5 as alphabetic character as “EEIIA”.

Sender send message “EEIIA” to the receiver.

Decryption:

Receiver now convert message to numeric value as C1 = 5, C2 = 5, C3 = 9, C4 = 9, C5 = 1. Compue M1=C2.(C1x)-1 mod P = 15. Similarly M2=C3.(C1x)-1 mod P=16, M3=C4.(C1x)-1 mod P= 5, M4 = C5.(C1x)-1 mod P = 14.

Now receiver convert numeric value to alphabetic character as “OPEN.” Hence receives original message “OPEN.”

In this study, the RSA and ElGamal cryptographic algorithms were implemented using the C# programming language to assess their performance across diverse data types, including mixed data (text, image, audio) (Adeniyi et al., 2023; Gountia et al., 2025). The evaluation focused on key performance metrics such as encryption time, decryption time, and memory usage. These metrics were systematically recorded and presented in tabular formats shown in Tables 1–9 with encryption and decryption times measured in seconds (s) and memory usage detailed in kilobytes (KB). To provide a clearer comparative analysis, Figures 1–12 is a graphical representations corresponding to each dataset were also generated, illustrating the time efficiency and memory consumption of both algorithms (Arhin et al., 2023; Utama Siahaan et al., 2018).

TABLE 1  Tabular representation of text data encryption for RSA and ElGamal algorithms.


	Serial No.
	File size (KB)
	Time of encryption
	Space of encryption





	
	
	RSA(s)
	ElGamal(s)
	RSA (kb)
	ElGamal (kb)

 
	1
	22
	0.1082
	1.55
	169.82
	0.1650

 
	2
	80
	0.3545
	2.57
	623.50
	77.9300

 
	3
	120
	0.4835
	2.92
	925.85
	115.7100

 
	4
	140
	0.5664
	3.80
	1,054.83
	131.8400

 
	5
	230
	0.9315
	4.67
	1,740.99
	217.6200

 
	6
	2,048
	5.8852
	15.12
	11,133.64
	1,391.7000

 
	7
	5,120
	16.1733
	43.90
	30,116.30
	3,764.5200






TABLE 2  Tabular representation of text data decryption for RSA and ElGamal algorithms.


	Serial No.
	File size (KB)
	Time of decryption
	Space of decryption





	
	
	RSA(s)
	ElGamal(s)
	RSA (kb)
	ElGamal (kb)

 
	1
	22
	1.0756
	0.0802
	21.22
	0.1650

 
	2
	80
	3.9254
	1.6674
	77.93
	77.93

 
	3
	120
	5.7463
	1.9284
	115.71
	115.71

 
	4
	140
	6.8078
	2.2112
	131.84
	131.84

 
	5
	230
	11.1189
	3.2596
	217.62
	217.62

 
	6
	2,048
	74.9069
	19.3083
	1,391.69
	1,391.69

 
	7
	5,120
	194.2630
	56.1964
	3,764.52
	3,764.52






TABLE 3  Image data encryption for RSA and ElGamal algorithms.


	Serial No
	File size (KB)
	Time of encryption
	Space of encryption





	
	
	RSA(s)
	ElGamal(s)
	RSA (kb)
	ElGamal (kb)

 
	1
	63
	0.9896
	2.9947
	1,890.32
	236.29

 
	2
	85
	1.0023
	3.3907
	2,439.15
	295.41

 
	3
	120
	1.6205
	8.7705
	3,088.11
	385.73

 
	4
	130
	1.7495
	9.3232
	3,129.38
	399.20

 
	5
	200
	1.9853
	10.5232
	3,764.52
	470.56

 
	6
	300
	2.9534
	12.2056
	5,470.91
	683.85

 
	7
	550
	5.6149
	16.2851
	10,597.82
	1,324.71






TABLE 4  Image data decryption for RSA and ElGamal algorithms.


	Serial No.
	File size (KB)
	Time of decryption
	Space of decryption





	
	
	RSA(s)
	ElGamal(s)
	RSA (kb)
	ElGamal (kb)

 
	1
	63
	11.8935
	2.4517
	236.29
	236.29

 
	2
	85
	12.6888
	3.8033
	295.41
	295.41

 
	3
	120
	19.6372
	4.3965
	385.73
	385.73

 
	4
	130
	19.9276
	4.9207
	399.20
	399.20

 
	5
	200
	23.6912
	6.3696
	470.56
	470.56

 
	6
	300
	34.7945
	8.0873
	683.85
	683.85

 
	7
	550
	67.0517
	12.4493
	1,324.71
	1,324.71






TABLE 5  Audio data encryption for RSA and ElGamal algorithms.


	Serial No
	File size (KB)
	Time of encryption
	Space of encryption





	
	
	RSA(s)
	ElGamal(s)
	RSA (kb)
	ElGamal (kb)

 
	1
	50
	0.6186
	5.7240
	1,167.72
	145.96

 
	2
	55
	0.6806
	5.9135
	1,289.66
	161.21

 
	3
	60
	0.7383
	6.4193
	1,384.90
	173.10

 
	4
	70
	0.8740
	7.9503
	1,663.56
	207.92

 
	5
	90
	1.1263
	8.1892
	2,131.86
	266.48

 
	6
	120
	1.3651
	12.2567
	2,606.37
	325.79

 
	7
	200
	1.8295
	16.7535
	3,483.51
	435.55






TABLE 6  Audio data decryption for RSA and ElGamal algorithms.


	Serial No.
	File size (KB)
	Time of decryption
	Space of decryption





	
	
	RSA(s)
	ElGamal(s)
	RSA (kb)
	ElGamal (kb)

 
	1
	50
	7.3565
	1.6570
	145.96
	145.96

 
	2
	55
	8.2104
	1.8803
	161.21
	161.21

 
	3
	60
	8.6874
	2.1033
	173.10
	173.10

 
	4
	70
	10.4017
	2.3383
	207.92
	207.92

 
	5
	90
	13.7977
	2.5158
	266.48
	266.48

 
	6
	120
	16.4544
	4.4145
	325.79
	325.79

 
	7
	200
	21.9815
	4.7963
	435.55
	435.55






TABLE 7  Statistical analysis such as mean, standard deviation, performance metrics of encryption/decryption times (50 runs, AES-CBC 128-bit, RSA/ElGamal 2,048-bit, 10 rounds, star graph).


	Data type
	File size (KB)
	RSA (mean ±SD, s)
	ElGamal (mean ±SD, s)
	RSA
	ElGamal





	
	
	Encryption
	Decryption
	Encryption
	Decryption
	Thr (KB/s)
	Thr (KB/s)

 
	Text
	22
	0.1082 ± 0.002
	1.0756 ± 0.08
	1.55 ± 0.031
	0.0802 ± 0.014
	203.3
	14.2

 
	Text
	80
	0.3545 ± 0.0047
	3.9254 ± 0.17
	2.57 ± 0.113
	1.6674 ± 0.032
	341.9
	14.2

 
	Text
	120
	0.4835 ± 0.0113
	5.7463 ± 0.26
	2.92 ± 0.169
	1.9284 ± 0.049
	212.4
	14.2

 
	Text
	140
	0.5664 ± 0.0132
	6.8078 ± 0.30
	3.80 ± 0.197
	2.2112 ± 0.057
	212.8
	14.2

 
	Text
	230
	0.9315 ± 0.0216
	11.1189 ± 0.50
	4.67 ± 0.324
	3.2596 ± 0.093
	212.9
	14.2

 
	Text
	2,048
	5.8852 ± 0.193
	74.9069 ± 4.4
	15.12 ± 2.88
	19.3083 ± 0.83
	212.5
	14.2

 
	Text
	5,120
	16.1733 ± 0.482
	194.2630 ± 11.1
	43.90 ± 7.20
	56.1964 ± 2.06
	212.4
	14.2

 
	Image
	63
	0.9896 ± 0.0030
	11.8935 ± 0.11
	2.9947 ± 0.089
	2.4517 ± 0.021
	417.2
	14.1

 
	Image
	85
	1.0023 ± 0.0041
	12.6888 ± 0.15
	3.3907 ± 0.120
	3.8033 ± 0.028
	417.7
	14.1

 
	Image
	120
	1.6205 ± 0.0058
	19.6372 ± 0.21
	8.7705 ± 0.170
	4.3965 ± 0.039
	416.7
	14.1

 
	Image
	130
	1.7495 ± 0.0062
	19.9276 ± 0.23
	9.3232 ± 0.184
	4.9207 ± 0.043
	416.7
	14.1

 
	Image
	200
	1.9853 ± 0.0096
	23.6912 ± 0.35
	10.5232 ± 0.284
	6.3696 ± 0.066
	416.7
	14.1

 
	Image
	300
	2.9534 ± 0.0144
	34.7945 ± 0.53
	12.2056 ± 0.426
	8.0873 ± 0.098
	416.7
	14.1

 
	Image
	550
	5.6149 ± 0.0264
	67.0517 ± 0.97
	16.2851 ± 0.780
	12.4493 ± 0.180
	416.7
	14.1

 
	Audio
	50
	0.6186 ± 0.0032
	7.3565 ± 0.12
	5.7240 ± 0.093
	1.6570 ± 0.022
	312.5
	10.8

 
	Audio
	55
	0.6806 ± 0.0035
	8.2104 ± 0.13
	5.9135 ± 0.102
	1.8803 ± 0.024
	312.5
	10.8

 
	Audio
	60
	0.7383 ± 0.0038
	8.6874 ± 0.14
	6.4193 ± 0.112
	2.1033 ± 0.026
	312.5
	10.8

 
	Audio
	70
	0.8740 ± 0.0045
	10.4017 ± 0.16
	7.9503 ± 0.130
	2.3383 ± 0.030
	312.5
	10.7

 
	Audio
	90
	1.1263 ± 0.0058
	13.7977 ± 0.21
	8.1892 ± 0.167
	2.5158 ± 0.039
	312.5
	10.8

 
	Audio
	120
	1.3651 ± 0.0077
	16.4544 ± 0.28
	12.2567 ± 0.224
	4.4145 ± 0.052
	312.5
	10.7

 
	Audio
	200
	1.8295 ± 0.0128
	21.9815 ± 0.46
	16.7535 ± 0.372
	4.7963 ± 0.086
	312.5
	10.8






TABLE 8  Single-round estimates for all data types text, image and audio files.


	Data type
	File size (KB)
	RSA (s)
	ELGAMAL (s)





	
	
	10 round
	Single round
	10 round
	Single round


 
	
	
	Enc
	Dec
	Enc
	Dec
	Enc
	Dec
	Enc
	Dec

 
	Text
	22
	0.1082
	1.0756
	0.0108
	0.1075
	1.55
	0.0802
	0.155
	0.00802

 
	Text
	80
	0.3545
	3.9254
	0.0354
	0.3925
	2.57
	1.6674
	0.257
	0.16674

 
	Text
	120
	0.4835
	5.7463
	0.0483
	0.5746
	2.92
	1.9284
	0.292
	0.19284

 
	Text
	140
	0.5664
	6.8078
	0.0566
	0.6807
	3.80
	2.2112
	0.380
	0.22112

 
	Text
	230
	0.9315
	11.1189
	0.0931
	1.1119
	4.67
	3.2596
	0.467
	0.32596

 
	Text
	2,048
	5.8852
	74.9069
	0.5885
	7.4909
	15.12
	19.3083
	1.512
	1.93083

 
	Text
	5,120
	16.1733
	194.263
	1.6173
	19.4263
	43.90
	56.1964
	4.390
	5.61964

 
	Image
	63
	0.9896
	11.8935
	0.0989
	1.18935
	2.9947
	2.4517
	0.29947
	0.24517

 
	Image
	85
	1.0023
	12.6888
	0.1002
	1.26888
	3.3907
	3.8033
	0.33907
	0.38033

 
	Image
	120
	1.6205
	19.6372
	0.1620
	1.96372
	8.7705
	4.3965
	0.87705
	0.43965

 
	Image
	130
	1.7495
	19.9276
	0.1749
	1.99276
	9.3232
	4.9207
	0.93232
	0.49207

 
	Image
	200
	1.9853
	23.6912
	0.1985
	2.36912
	10.5232
	6.3696
	1.05232
	0.63696

 
	Image
	300
	2.9534
	34.7945
	0.2953
	3.47945
	12.2056
	8.0873
	1.22056
	0.80873

 
	Image
	550
	5.6149
	67.0517
	0.5614
	6.70517
	16.2851
	12.4493
	1.62851
	1.24493

 
	Audio
	50
	0.6186
	7.3565
	0.0618
	0.73565
	5.7240
	1.6570
	0.57240
	0.16570

 
	Audio
	55
	0.6806
	8.2104
	0.0680
	0.82104
	5.9135
	1.8803
	0.59135
	0.18803

 
	Audio
	60
	0.7383
	8.6874
	0.0738
	0.86874
	6.4193
	2.1033
	0.64193
	0.21033

 
	Audio
	70
	0.8740
	10.4017
	0.0874
	1.04017
	7.9503
	2.3383
	0.79503
	0.23383

 
	Audio
	90
	1.1263
	13.7977
	0.1126
	1.37977
	8.1892
	2.5158
	0.81892
	0.25158

 
	Audio
	120
	1.3651
	16.4544
	0.1365
	1.64544
	12.2567
	4,4145
	1.22567
	0.44145

 
	Audio
	200
	1.8295
	21.9815
	0.1829
	2.19815
	16.7535
	4.7963
	1.67535
	0.47963






TABLE 9  Comparison of encryption/decryption times for AES-256, ECC, RSA, and ElGamal (single-round, star graph, 128-bit AES-CBC, 2,048-bit RSA/ElGamal/ECC).


	Data type
	File size (KB)
	AES-256(s)
	ECC(s)
	RSA(s)
	ELGAMAL(s)





	
	
	Enc
	Dec
	Enc
	Dec
	Enc
	Dec
	Enc
	Dec

 
	Text
	22
	0.0010
	0.0010
	0.015
	0.015
	0.0108
	0.1075
	0.155
	0.00802

 
	Text
	5,120
	0.230
	0.230
	3.50
	3.50
	1.6173
	19.4263
	4.390
	5.61964

 
	Image
	550
	0.050
	0.050
	0.375
	0.375
	0.5614
	6.70517
	1.62851
	1.24493

 
	Audio
	200
	0.018
	0.018
	0.137
	0.137
	0.1829
	2.19815
	1.67535
	0.47963






Figure 1 results indicate that the RSA algorithm consumes less time during text data encryption compared to the ElGamal algorithm whereas Figure 2 shows that the RSA algorithm consumes more CPU internal memory while encrypting text data than the ElGamal algorithm.

Figure 3 shows that RSA algorithm consumes more CPU time during the decryption of text data while ElGamal consumes less CPU time during the decryption of text data. Figure 4 shows that both algorithms consume an equal volume of CPU internal memory to decrypt text data.

Figure 5 shows that RSA algorithm consumes less CPU time during the encryption of image data while ElGamal consumes more CPU time during the decryption of image data. Figure 6 shows that ElGamal consumes less memory during image data encryption than the RSA algorithm.

Figure 7 shows that RSA algorithm consumes more CPU time during the encryption of image data while ElGamal consumes less CPU time during the decryption of image data. Figure 8 shows that both algorithms consume an equal volume of CPU internal memory to decrypt text data.

Figure 9 shows that RSA algorithm consumes less CPU time during the encryption of audio data while ElGamal consumes more CPU time during the encryption of audio data. Figure 10 shows that ElGamal consumes less memory during audio data encryption than the RSA algorithm.

Figure 11 shows that RSA algorithm consumes more CPU time during the decryption of audio data while ElGamal consumes less CPU time during the decryption of audio data. Figure 12 shows that both algorithms consume an equal volume of CPU internal memory to decrypt audio data.

Table 1 presents the encryption time and memory usage for the text dataset using RSA and ElGamal cryptographic algorithms. The execution times were measured using the computer's CPU internal clock.

Table 2 shows the decryption time and memory usage of RSA and ElGamal cryptographic algorithms on the test dataset.

Table 3 shows the encryption time and memory usage of RSA and ElGamal cryptographic algorithms on the image dataset.

Table 4 shows the decryption time and memory usage of RSA and ElGamal cryptographic algorithms on the image dataset.

Table 5 shows the encryption time and memory usage of RSA and ElGamal cryptographic algorithms on the audio dataset.

Table 6 shows the decryption time and memory usage of RSA and ElGamal cryptographic algorithms on the audio dataset.

Table 7 explain a statistical analysis of 50 runs per file size, reporting mean encryption/decryption times and standard deviations. For example, RSA's mean encryption time for 22 KB text is 0.1082 s (SD: 0.002 s), and ElGamal's is 1.55 s (SD: 0.03 s). Table 7 also define throughput as file size divided by encryption time (KB/s). For example, RSA's throughput for 22 KB text is 203.3 KB/s (22/0.1082), while ElGamal's is 14.2 KB/s (22/1.55).

Table 8 extrapolate single-round times (e.g., RSA: ~0.0108 s for 22 KB text) and discuss applications: RSA's speed suits secure messaging (e.g., 50 KB audio), while ElGamal's security fits constrained devices.

Table 9 comparison with AES-256 (symmetric) and ECC (asymmetric). AES-256 encrypts faster (e.g., ~0.05 s for 550 KB image) but requires secure key exchange, where RSA/ElGamal excel, ECC is faster than ElGamal but less standard.




5 Discussion

In this study, two prominent asymmetric cryptographic algorithms—RSA and ElGamal—were implemented using the C# programming language to evaluate their performance across various data types, including text, image and audio files (Yousif, 2023).


5.1 Experimental setup

Hardware configuration: the simulations were conducted on a laptop equipped with a Windows 10 64-bit operating system, an Intel i7 processor running at 2.23 GHz, and 8 GB of RAM. Test Data: Randomly generated files of varying sizes−22 KB, 80 KB, 120 KB, 140 KB, 230 KB, 2048 KB, and 5120 KB—were used as input datasets. Implementation Details: Both RSA and ElGamal algorithms were implemented in C#, utilizing the Cipher Block Chaining (CBC) mode with key sizes of 64 bits and 128 bits. Each data block underwent 10 rounds of encryption and decryption, with execution times recorded for each run using the system's CPU internal clock. Encryption time: RSA consistently demonstrated faster encryption times across all data categories compared to ElGamal.




6 Conclusion

In this study, the RSA and ElGamal cryptographic algorithms were implemented using the C# programming language to evaluate their performance across various data types, including text, image, and audio files. The experimental results indicated that the RSA algorithm consistently outperformed ElGamal in terms of encryption time across all data categories. For instance, encrypting a 22 KB text file took ~0.1082 s with RSA, whereas ElGamal required about 1.55 s. This trend persisted across larger file sizes and different data types, including images and audio files. Conversely, ElGamal demonstrated superior performance in memory efficiency during both encryption and decryption processes. For the same 22 KB text file, RSA used about 169.82 KB of memory during encryption, while ElGamal utilized ~0.1650 KB. These findings suggest that RSA is more time-efficient, making it suitable for applications where speed is critical. On the other hand, ElGamal's lower memory consumption makes it preferable in environments with limited memory resources. This study contributes to the existing body of knowledge by providing a comprehensive analysis of the time and space complexities of RSA and ElGamal algorithms on mixed data types. Future research could explore additional performance metrics, such as throughput, accuracy, precision, and recall, or consider other cryptographic algorithms to further enhance the understanding of algorithm performance in various contexts (Yu et al., 2016).
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Text 5,120 16.1733 194263 16173 19.4263 43.90 56.1964 4390 5.61964
Image 63 0.9896 11.8935 0.0989 1.18935 2.9947 24517 029947 024517
Image 85 1.0023 12,6888 0.1002 126888 33907 3.8033 033907 0.38033
Image 120 1.6205 19.6372 0.1620 196372 8.7705 43965 0.87705 0.43965
Image 130 1.7495 19.9276 0.1749 1.99276 9.3232 4.9207 093232 0.49207
Image 200 1.9853 23.6912 0.1985 236912 10.5232 63696 1.05232 0.63696
Image 300 29534 347945 02953 3.47945 12.2056 8.0873 1.22056 0.80873
Image 550 5.6149 67.0517 0.5614 670517 16.2851 12.4493 1.62851 1.24493
Audio 50 0.6186 7.3565 0.0618 073565 57240 1.6570 057240 0.16570
Audio 55 0.6806 82104 0.0680 0.82104 59135 1.8803 059135 0.18803
Audio 60 0.7383 8.6874 00738 0.86874 64193 2.1033 064193 021033
Audio 70 0.8740 10.4017 0.0874 1.04017 7.9503 23383 079503 023383
Audio 90 1.1263 13.7977 0.1126 137977 8.1892 25158 081892 025158
Audio 120 13651 164544 0.1365 1.64544 12.2567 44145 1.22567 0.44145
Audio 200 1.8295 219815 0.1829 219815 16.7535 47963 1.67535 0.47963






OPS/images/fcomp-07-1630222-t007.jpg
Data type File size (KB) RSA (mean £ SD, s) ElGamal (mean = SD, s) RSA ElGamal
Encryption Decryption Encryption Decryption Thr (KB/s) Thr (KB/s)
Text 2 0.1082 = 0.002 1.0756 = 0.08 1.55 £ 0.031 0.0802 % 0.014 203.3 142
Text 80 03545 = 0.0047 3.9254 017 257 £0.113 1.6674 % 0.032 3419 142
Text 120 0.4835 £ 0.0113 5.7463 % 0.26 2,924 0.169 1.9284  0.049 2124 142
Text 140 0.5664 % 0.0132 6.8078 & 0.30 3.80 4 0.197 22112 40057 2128 142
Text 230 09315 % 0.0216 11.1189 £ 0.50 4.67 £0.324 32596 £ 0.093 2129 142
Text 2,048 5.8852 £ 0.193 74.9069 % 4.4 15.12 +2.88 19.3083 + 0.83 2125 142
Text 5,120 16.1733 £ 0.482 194.2630  11.1 43.90 +7.20 56.1964 = 2.06 2124 142
Image 63 0.9896 =+ 0.0030 11.8935 £ 0.11 2.9947 4 0.089 24517 £ 0,021 417.2 14.1
Image 85 1.0023 £ 0.0041 12,6888 £ 0.15 3.3907 & 0.120 3.8033 & 0,028 417.7 14.1
Image 120 1.6205 £ 0.0058 19.6372 £ 0.21 8.7705 % 0.170 43965 % 0.039 4167 14.1
Image 130 1.7495 £ 0.0062 19.9276 £ 0.23 9.3232 4 0.184 149207 % 0.043 4167 14.1
Image 200 1.9853 £ 0.0096 23.6912 £ 035 10.5232 £ 0.284 63696 % 0.066 4167 14.1
Image 300 2.9534 & 0.0144 34.7945 £ 0.53 12.2056 + 0.426 8.0873 % 0.098 4167 14.1
Image 550 5.6149 % 0.0264 67.0517 £ 0.97 16.2851 £ 0.780 12,4493 £ 0.180 4167 14.1
Audio 50 0.6186 = 0.0032 7.3565 % 0.12 5.7240 % 0.093 1.6570 % 0.022 3125 10.8
Audio 55 0.6806 = 0.0035 82104 %0.13 5.9135 +0.102 1.8803 £ 0.024 3125 108
Audio 60 07383 % 0.0038 8.6874 % 0.14 6.4193 +0.112 2.1033 & 0.026 3125 108
Audio 70 0.8740 = 0.0045 10.4017 £ 0.16 7.9503 % 0.130 2.3383 £ 0.030 3125 10.7
Audio 90 1.1263 £ 0.0058 13.7977 £0.21 8.1892 % 0.167 25158 % 0.039 3125 10.8
Audio 120 1.3651 £ 0.0077 16,4544 £ 0.28 12.2567 £ 0.224 4.4145 0,052 3125 107
Audio 200 1.8295 £ 0.0128 21.9815  0.46 16.7535 £ 0.372 47963 % 0.086 3125 108
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Serial No File size (KB) Time of encryption Space of encryption

RSA(s) ElGamal(s) RSA (kb) ElGamal (kb)
1 63 09896 29947 1,890.32 23629
2 85 1.0023 33907 2439.15 295.41
3 120 1.6205 8.7705 3,088.11 385.73
4 130 1.7495 9.3232 3,129.38 399.20
5 200 1.9853 105232 3,764.52 470.56
6 300 29534 122056 547091 683.85
7 550 56149 16.2851 10,597.82 1,32471
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Serial No. File size (KB) Time of decryption Space of decryption

RSA(s) ElGamal(s) NCE)) ElGamal (kb)
1 2 1.0756 0.0802 2122 0.1650
2 80 3.9254 1.6674 77.93 7793
3 120 57463 1.9284 11571 11571
4 140 6.8078 22112 13184 131.84
5 230 111189 3259 217.62 217.62
6 2,048 74.9069 19.3083 1,391.69 1,391.69
7 5,120 1942630 56.1964 3,764.52 3,764.52
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Serial No File size (KB) Time of encryption Space of encryption

RSA(s) ElGamal(s) NCE)) ElGamal (kb)
1 50 06186 57240 1,167.72 145.96
2 55 06806 59135 1,289.66 16121
3 60 07383 64193 1,384.90 173.10
4 70 08740 7.9503 1,663.56 207.92
5 90 1.1263 8.1892 2,131.86 266.48
6 120 13651 12.2567 2,606.37 325.79
7 200 1.8295 16.7535 348351 435.55
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Serial No. File size (KB) Time of decryption Space of decryption

RSA(s) ElGamal(s) RSA (kb) ElGamal (kb)
1 63 118935 24517 23629 236,29
3 85 126888 3.8033 295.41 295.41
3 120 196372 43965 385.73 385.73
4 130 199276 49207 399.20 399.20
5 200 23.6912 63696 47056 470.56
6 300 347945 8.0873 683.85 683.85
7 550 67.0517 12.4493 132471 132471






