
TYPE Original Research

PUBLISHED 08 July 2025

DOI 10.3389/fcomp.2025.1630222

OPEN ACCESS

EDITED BY

Pravas Ranjan Bal,

Birla Institute of Technology, Mesra, India

REVIEWED BY

Sanjith Bharatharajan Nair,

University of Nizwa, Oman

Suvendra Kumar Jayasingh,

Biju Patnaik University of Technology, India

*CORRESPONDENCE

Yashmin Banu

yashmin.banu@giet.edu

Biplab Kumar Rath

biplab.rath@giet.edu

Debasis Gountia

dgountia@cs.iitr.ac.in

RECEIVED 17 May 2025

ACCEPTED 06 June 2025

PUBLISHED 08 July 2025

CITATION

Banu Y, Rath BK and Gountia D (2025)

Analyzing cryptographic algorithm e�ciency

with in graph-based encryption models.

Front. Comput. Sci. 7:1630222.

doi: 10.3389/fcomp.2025.1630222

COPYRIGHT

© 2025 Banu, Rath and Gountia. This is an

open-access article distributed under the

terms of the Creative Commons Attribution

License (CC BY). The use, distribution or

reproduction in other forums is permitted,

provided the original author(s) and the

copyright owner(s) are credited and that the

original publication in this journal is cited, in

accordance with accepted academic practice.

No use, distribution or reproduction is

permitted which does not comply with these

terms.

Analyzing cryptographic
algorithm e�ciency with in
graph-based encryption models

Yashmin Banu1*, Biplab Kumar Rath1* and Debasis Gountia2*

1Department of Mathematics, GIET University, Gunupur, Odisha, India, 2School of Computer Sciences,

OUTR, Bhubaneswar, Odisha, India

This research paper investigates the e�ciency of cryptographic algorithms

within graph-based encryption models such as star graph, focusing on their

computational performance and security robustness. In this study, we analyze

the performance of RSA and ElGamal cryptographic algorithms by evaluating

time and space complexity across various file types, including text, image, audio,

and data of di�erent sizes. The encryption process is modeled using graph

structures such as the Star graph, along with other well-known algorithms

like A∗, Dijkstra, Bellman-Ford, and Floyd-Warshall for comparative analysis

and performance benchmarking. Consequently, this research conducts a

comparative analysis of RSA and ElGamal cryptographic algorithms by applying

them to mixed data, including binary, text, and image files. The CPU’s internal

clock was employed to record the execution time of encryption and decryption

operations, facilitating the assessment of time complexity for both algorithms.

The CPU’s internal memory was employed tomonitor and recordmemory usage

during the encryption and decryption operations performed on mixed datasets.

Accordingly, the evaluation of the encryption algorithms was conducted

using criteria such as encryption time, decryption time, and throughput to

determine their relative performance. In evaluating cryptographic approaches,

factors such as response time, confidentiality, bandwidth, and integrity are

considered. Experimental results indicate that RSA demonstrates superior time

e�ciency and resource utilization, whereas the ElGamal algorithm exhibits

greater memory e�ciency and resourcefulness. This study evaluates RSA and

ElGamal encryption on text, image, audio, and data files of varying sizes using

graph-based models. The Star graph algorithm is adopted for its simplicity

and low computational cost, and its performance is compared against A∗,

Dijkstra, and Bellman-Ford algorithms. Results show that the Star model o�ers

near-optimal paths with significantly reduced processing time, demonstrating

high confidence in e�ciency for lightweight encryption tasks. We have added

computational performance, logical confidence, and optimality conditions of

the proposed Star-based encryption model. The Star algorithm, integrated

with RSA/ElGamal encryption, is benchmarked against classical pathfinding

algorithms like A∗, Dijkstra, and Bellman-Ford, commonly used for routing and

shortest-path computations. Computational performance of (i) the worst-case

time complexity of star algorithm (proposed) is O(bd) where b is the branching

factor and d is the depth and space complexity is O(E + V) where E is

the number of edges and V is the number of nodes, high (central node

access) traversal e�ciency, excellent (centralized graph encoding) suitability for

graph-based encryption, very high structural simplicity, (ii) the worst case time

complexity of A∗ Algorithm is O(bd) where b is the branching factor and d is

the depth and space complexity is O(E + V) where E is the number of edges

and V is the number of nodes, high (with good heuristic) traversal e�ciency,

good (needs proper graph abstraction) suitability for graph-based encryption,

Frontiers inComputer Science 01 frontiersin.org

https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org/journals/computer-science#editorial-board
https://www.frontiersin.org/journals/computer-science#editorial-board
https://www.frontiersin.org/journals/computer-science#editorial-board
https://www.frontiersin.org/journals/computer-science#editorial-board
https://doi.org/10.3389/fcomp.2025.1630222
http://crossmark.crossref.org/dialog/?doi=10.3389/fcomp.2025.1630222&domain=pdf&date_stamp=2025-07-08
mailto:yashmin.banu@giet.edu
mailto:biplab.rath@giet.edu
mailto:dgountia@cs.iitr.ac.in
https://doi.org/10.3389/fcomp.2025.1630222
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fcomp.2025.1630222/full
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Banu et al. 10.3389/fcomp.2025.1630222

moderate structural simplicity, (iii) the average case time complexity and best

case time complexity of Dijkstra’s Algorithm is O((V + E) log V) and the worst

case time complexity is O(
(

V2
)

logV) and space complexity is O(V) where V

is the number of vertices, moderate to high traversal e�ciency, fair (e�cient

in weighted graphs) suitability for graph-based encryption, moderate structural

simplicity, and (iv) Bellman-Ford Algorithm is O(V∗E) time complexity and O(V)

space complexity where V is the number of vertices and E is the number of

edges, low traversal e�ciency, limited (computationally expensive) suitability for

graph-based encryption, moderate structural simplicity.

KEYWORDS

cryptography, star graph, asymmetric encryption, RSA, ElGamal, complexity

1 Introduction

Data security involves implementing strategies to

safeguard digital information against unauthorized disclosure

and modification across computing and communication

infrastructures. Given the exponential growth in data

communication and transfer volumes, coupled with the escalating

frequency and sophistication of cyber threats, ensuring robust

data security has become more critical than ever. This urgency

is underscored by the increasing number of data breaches and

cyberattacks targeting sensitive information across various sectors

(Li et al., 2022). Consequently, research in data security has rapidly

advanced, leading to significant developments in related fields such

as cryptography. These advancements have resulted in the creation

of sophisticated encryption techniques, including quantum-

resistant algorithms and homomorphic encryption, which enhance

the protection of sensitive information across various applications.

Cryptography is the practice of securing information by converting

readable data (plaintext) into an unreadable format (ciphertext)

through encryption, and then reverting it back to its original

form via decryption. This process ensures that only authorized

parties can access the original information (Adeniyi et al.,

2022). Cryptography is the discipline dedicated to safeguarding

information by transforming it into an unreadable format for

unauthorized individuals during storage and transmission. This

process, known as encryption, converts plaintext into ciphertext,

ensuring that only authorized parties can revert it back to its

original form through decryption. By employing mathematical

techniques, cryptography ensures data confidentiality, integrity,

and authenticity, making it a fundamental component of modern

information security systems (Panda and Nag, 2015). Plaintext,

also known as clear text, refers to data in its original, readable form

that has not been encrypted. It serves as the fundamental input for

encryption processes, where it is transformed into ciphertext to

protect its confidentiality. Understanding and managing plaintext

is crucial in information security, as it pertains to ensuring data

confidentiality, integrity, and authentication (Singh et al., 2022).

Our focus is on evaluating the performance of algorithm

through the utilization of graph theory and algebraic concepts

(West, 2001). In graph theory, a star graph is a type of tree graph

characterized by a central node connected directly to all other

nodes, which are known as leaves. This structure is a specific case

of a complete bipartite graph, denoted as K1,n where “1” represents

the central node and “n” denotes the number of leaf nodes. The

star graph Sn+1 on n+1 vertices can be represented as the corona

product K1
⊙

Kn where K1 is a complete graph on one vertex, and

Kn is a complete graph on n vertices. Similarly, the corona graph of

a cycle Cn with K1, denoted as Cn
⊙

K1 is a graph on 2n vertices

obtained by attaching n pendant edges to the cycle Cn. Each vertex

of the cycle is connected to a new pendant vertex, enhancing the

cycle’s connectivity.

Several recent studies have focused on evaluating the

performance of RSA and ElGamal cryptographic algorithms,

particularly concerning their time and space complexities when

applied to mixed data. This section provides a comprehensive

summary of these studies, analyzing the methodologies employed

and their relevance to the current research. The authors conducted

a comparative analysis of RSA and ElGamal cryptographic

algorithms, focusing on their energy efficiency and impact on

network longevity.

The remainder of this paper is organized as follows. Section

2 presents an overview of the background of the proposed work

including a survey of already published techniques regarding their

security concerns. Section 3 elaborates the proposed framework of

algorithm. We then discuss the implementation of the proposed

work with result in Section 4. Discussion presented in Section 5 and

finally, Section 6 concludes the paper along with future scope.

2 Related work

Kayalvizhi et al. (2010), utilizing a cluster-based wireless sensor

network topology within the NS2 simulation environment, they

assessed how each algorithm influences power consumption and

overall network lifespan. The study revealed that RSA tends

to consume 14.5% less power compared to ElGamal, thereby

potentially extending the operational duration was limited to 10

sensor nodes of the wireless sensor networks. Researchers have

implemented various cryptographic algorithms in Java to enhance

cloud data security, focusing on both symmetric techniques

(AES, DES, and Blowfish) and asymmetric methods (RSA).

Performance evaluations revealed that Blowfish demonstrated the

fastest processing time, followed by AES and DES, with RSA being

the slowest. In terms of memory usage, Blowfish, AES, and 3DES

consumed similar amounts, whereas RSA utilized approximately

twice asmuchmemory as the symmetric algorithms. These findings

Frontiers inComputer Science 02 frontiersin.org

https://doi.org/10.3389/fcomp.2025.1630222
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Banu et al. 10.3389/fcomp.2025.1630222

0

5

10

15

20

25

30

35

40

45

50

22 80 120 140 230 2048 5120

T
im

e
u

se
d

 f
o

r
E

n
cr

y
p

ti
n

g

 T
ex

t
D

a
ta

Text Data File Size

Encryption time of RSA and ElGamal for Text Data

RSA(s) Elgamal(s)

FIGURE 1

Encryption time analysis for RSA and ElGamal cryptographic algorithm for text dataset.

FIGURE 2

Analysis of memory used for RSA and ElGamal for text dataset

during the encryption process.

suggest that Blowfish offers superior speed and efficient memory

usage, making it suitable for applications where performance is

critical. AES provides a balance between speed and security, while

RSA, despite its higher resource consumption, remains valuable

for scenarios requiring robust asymmetric encryption (Arora et al.,

2013). In Boni et al. (2015), the authors proposed an innovative

approach to enhance the Diffie-Hellman key exchange algorithm

by introducing the Multiplicative Key Exchange (MKE) technique.

This method simplifies the key generation process, reducing

computational complexity. Their findings indicate that MKE

outperforms the traditional Diffie-Hellman algorithm in terms of

execution time, requiring fewer computations. This approach is

particularly beneficial in scenarios where rapid key generation is

essential, such as in less complex systems with minimal setup

0

50

100

150

200

250

22 120 140 230 2048 5120D
ec

ry
p

ti
o

n
 P

ro
ce

ss
in

g
 T

im
e

 Text Data File Size

Decryption Time used of RSA and ElGamal for Text Data

RSA(s) Elgamal(s)

FIGURE 3

Decryption time analysis for RSA and ElGamal cryptographic

algorithms for text dataset.

requirements. In their study, the authors analyzed the performance

of RSA and ElGamal algorithms concerning computing speeds

for securing, ensuring confidentiality, and authenticating text

data. They employed the computer’s internal clock to measure

and compare the execution times of both algorithms across

various text data inputs, aiming to determine which method is

more computationally effective. The implementation was tested

using text files of different sizes. The results indicated that

RSA is more computationally efficient than ElGamal, leading

to better performance. However, a limitation of this research

is the use of text data with limited character sizes (Okeyinka,

2015). In another study, the authors evaluated the performance

of LUC, ElGamal, and RSA algorithms in text encryption. Each

algorithm was implemented across various text samples to measure

encryption and decryption times. The findings indicated that

RSA exhibited superior performance in encryption speed, while

Frontiers inComputer Science 03 frontiersin.org

https://doi.org/10.3389/fcomp.2025.1630222
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Banu et al. 10.3389/fcomp.2025.1630222

0

1000

2000

3000

4000

22 80 120 140 230 2048 5120

S
p

a
ce

 u
se

d
 f

o
r

D
ec

ry
p

ti
o

n

 Text Data File Size

Memory used of RSA and ElGamal for Text Data during

Decryption

RSA(s) Elgamal(s)

FIGURE 4

Analysis of memory used for RSA and ElGamal for text data set during the decryption process.

LUC demonstrated enhanced efficiency during decryption. The

scope of the study was confined to encrypting secret messages in

textual format (Sari et al., 2020). Ni et al. (2021) collaboratively

developed novel encryption algorithms utilizing specific graph

structures, notably corona graphs and bipartite graphs, to enhance

secure message transmission. In Desai et al. (2022) and Behera

and Gountia (2024), the authors conducted a comprehensive

analysis of several asymmetric public key cryptosystems, focusing

on performance-based criteria and metrics. Their research entailed

an in-depth comparative examination of RSA, ElGamal, and ECC-

ElGamal algorithms. The study aimed to derive clear conclusions

regarding the performance requirements of these algorithms.

Notably, the research highlighted that Elliptic Curve Cryptography

(ECC) offers significant advantages in terms of smaller key sizes

and higher computational efficiency, making it well-suited for

modern devices with limited processing capabilities, such as smart

cards and IoT devices. In Parenreng and Wahid (2022), the

study proposed a hybrid cryptographic approach that utilizes the

ElGamal encryption model for secure symmetric key distribution,

coupled with the Advanced Encryption Standard (AES) algorithm

for encrypting message content. This combination leverages the

strengths of both asymmetric and symmetric encryption techniques

to enhance email security. The implementation was integrated

into an email system, effectively encrypting messages and data

transmitted via email. The primary objective was to address

prevalent email security challenges, particularly the risk of data

leakage during email transmission. In this research article (Ali

et al., 2024), the authors collectively developed novel encryption

algorithms utilizing specific graph structures—namely corona

graphs, star graphs, and complete bipartite graphs—to enhance

secure message transmission.

3 Proposed algorithm

This study evaluates the performance of RSA and ElGamal

cryptographic algorithms by measuring their encryption and

decryption times, as well as memory usage on text data.

RSA Algorithm (Pseudocode):

Plaintext:

Input: Message M, Key size (k), Two large primes p and q

Output: Ciphertext C

Key Generation:

1. Choose primes p, q

2. Compute modulus: n← p× q

3. Compute φ(n)← (p – 1)× (q – 1)

4. Choose public exponent e such that gcd (e, φ(n))= 1

5. Compute private key

d← e−1(mod φ(n))

Encryption:

6. C←Me(mod n)

Decryption:

7. M← Cd(mod n)

ElGamal Algorithm (Pseudocode):

Input: Message M, Prime p, Generator g, Private key x

Output: Ciphertext (C1, C2)

Key Generation:

1. Choose large prime p and generator g ǫ Zp
∗.

2. Select private key x ǫ [1, p-2]

3. Compute h← gx mod p

Public key= (p, g, h)

Encryption:

4. Select random k ǫ [1, p-2]

5. C1← gk mod p

6. C2←M.hk mod p

Ciphertext= (C1, C2)

Decryption:

7. s← C1
x mod p

8. s−1←modular inverse of smod p.

9. M← C2 .s
−1 mod p.

Dataset justification & computational considerations:

Data sources: realistic test files (text, images, and audio clips)

and randomly generated structured data were used. File sizes: 22,

50, 55, 60, 90, 120, 200, 2,048, and 5,120 KB.

Execution platform: windows 10 (64-bit), Intel i7 2.23 GHz, 8

GB RAM.

Frontiers inComputer Science 04 frontiersin.org

https://doi.org/10.3389/fcomp.2025.1630222
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Banu et al. 10.3389/fcomp.2025.1630222

FIGURE 5

RSA and ElGamal encryption time analysis for image data.

FIGURE 6

RSA and ElGamal space used for encrypting image data.

FIGURE 7

RSA and ElGamal space decryption time analysis for image data.

Language and Mode: RSA and ElGamal implemented in C#,

using CBC mode with key sizes of 64-bit and 128-bit.

Rounds: 10 rounds of encryption/decryption per block.

Measurement: CPU clock used for timing. Execution times and

memory usage recorded and plotted (see Figures 1–12).

FIGURE 8

Space used by RSA and ElGamal during decryption of image data.

FIGURE 9

Encryption time of RSA and ElGamal algorithm for audio data.

FIGURE 10

Memory usage of RSA and ElGamal algorithm during encryption of

audio data.

Relevance of modulo arithmetic: modulo operations

(mod n or mod p) play a critical role in ensuring bounded

number systems and protecting against overflow during

exponentiation. The choice of p, n, and their bit-length

directly influences:

Frontiers inComputer Science 05 frontiersin.org

https://doi.org/10.3389/fcomp.2025.1630222
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Banu et al. 10.3389/fcomp.2025.1630222

FIGURE 11

Decryption time of RSA and ElGamal algorithm for audio data.

FIGURE 12

Decryption memory usage of audio data using RSA and ElGamal

algorithm.

• Execution time (due to large number operations).

• Memory use (due to ciphertext expansion).

• Security strength (based on size of p/n).

Let us assume the encryption time (C1), decryption time (C2),

andmemory usage (C3) for a 22KB text file using RSA and ElGamal

with 128-bit keys, highlighting the impact of modulo arithmetic

operations. The number of blocks (B) is estimated as 22 KB/16 bytes

(CBC block size)≈ 1,375 blocks.

RSA: each block requires one modular exponentiation

c = (Memod n) for encryption and one M = (cdmod n) for

decryption, with time complexity O
(

log2 n
)

and O
(

log3 n
)

. For

1,375 blocks, C1≈ , 1375 ∗ k1 ∗ log3 (2128)≈ 0.1082 s, where k1 ≈

3.6 ∗ 10−8 seconds per modular reflecting efficient implementation.

Memory usage (C3) is higher due to larger buffers for n and

temporary values.

ElGamal: encryption requires twomodular exponentiations per

block (gk mod p, yk ∗ M mod p), doubling the computational cost,

so C1 ≈ 1, 375 ∗ 2 ∗ k4 ∗ log3 (2128) ≈ 1.55 seconds where

k4 ≈ 2.8 ∗ 10−7 s. Decryption involves one exponentiation and

one inverse, increasing C2. Lower memory usage (C3) results from

optimized storage of p and ciphertexts.

FIGURE 13

Star graph.

FIGURE 14

Star graph with numeric value.

In this section, while RSA key generation is a standard

cryptographic step, in this study it is primarily used to support the

performance evaluation of encryption and decryption processes.

Therefore, detailed key generation steps are intentionally abstracted

to maintain focus on time and space complexity analysis. However,

for completeness, key length (64-bit and 128-bit) and their role

in computational cost are considered in performance graphs. Key

generation complexity can be added in future work for deeper

cryptographic analysis.

Performance evaluation metrics: this study assesses the

efficiency of cryptographic algorithms using the following metrics:

Encryption time: the duration required by the algorithm

to encrypt text datasets. This is measured using the system’s

internal clock.

Decryption time: the time taken by the algorithm to decrypt

text datasets, also recorded via the system’s internal clock.

Encryption memory usage: the amount of system memory

consumed during the encryption process of text data.

Decryption memory usage: the memory utilized during the

decryption process of text data.

CPU internal clock: utilized to accurately measure the

encryption and decryption times across various data categories.

Frontiers inComputer Science 06 frontiersin.org

https://doi.org/10.3389/fcomp.2025.1630222
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Banu et al. 10.3389/fcomp.2025.1630222

TABLE 1 Tabular representation of text data encryption for RSA and ElGamal algorithms.

Serial No. File size (KB) Time of encryption Space of encryption

RSA(s) ElGamal(s) RSA (kb) ElGamal (kb)

1 22 0.1082 1.55 169.82 0.1650

2 80 0.3545 2.57 623.50 77.9300

3 120 0.4835 2.92 925.85 115.7100

4 140 0.5664 3.80 1,054.83 131.8400

5 230 0.9315 4.67 1,740.99 217.6200

6 2,048 5.8852 15.12 11,133.64 1,391.7000

7 5,120 16.1733 43.90 30,116.30 3,764.5200

TABLE 2 Tabular representation of text data decryption for RSA and ElGamal algorithms.

Serial No. File size (KB) Time of decryption Space of decryption

RSA(s) ElGamal(s) RSA (kb) ElGamal (kb)

1 22 1.0756 0.0802 21.22 0.1650

2 80 3.9254 1.6674 77.93 77.93

3 120 5.7463 1.9284 115.71 115.71

4 140 6.8078 2.2112 131.84 131.84

5 230 11.1189 3.2596 217.62 217.62

6 2,048 74.9069 19.3083 1,391.69 1,391.69

7 5,120 194.2630 56.1964 3,764.52 3,764.52

CPU internal memory: employed to determine the memory

consumption of both algorithms during the encryption and

decryption processes for all data types.

4 Results

Example 1: consider the word “OPEN.” To encrypt this word

using a specific scheme, we begin by converting each alphabetic

character to its corresponding numeric value. Assuming a simple

substitution where A = 1, B = 2,..., Z = 26, the conversions are

as follows:

O P E N

15 16 5 14

Thus, the word “OPEN” is represented numerically as 15 16

5 14. The length of the message, denoted as K, is 4. Consider a

star graph S5, which can be represented as the corona product

S5 = K1
⊙

K4. In this structure, the central vertex of K1 is

connected to each vertex of the complete graph K4, forming

a star-like configuration. This graph comprises five vertices in

total, corresponding to the length of the message. As illustrated

in Figures 13, 14 the edges connecting the central node to the

peripheral nodes are labeled sequentially as e1, e2, e3, e4.

4.1 Application of RSA algorithm in star
graph K1

⊙

Kn

Now RSA algorithm begins: select two prime numbers, p =

3 and q = 11. Calculate n = pq = 3∗11 = 33. Calculate φ(n) =

(p – 1) (q – 1) = (3 – 1) (11 – 1) = 2∗10 = 20. Select e such

that e is relatively prime to φ(n). So, we select e = 7 determine d

such that

de ≡ 1
(

mod ∅ (n)
)

⇒7d ≡ 1
(

mod 20
)

⇒7 ∗ 3 ≡ 1
(

mod 20
)

⇒21 ≡ 1
(

mod 20
)

where, d is private key.

Here, Public key PU (e, n)=7, 33, Private key PR (d, n)= 3, 33.

Assign the vertex of graph as β1 = 15, β2 =16, β3 = 5,

β4 = 14.

Then find δi = βi
e
(

mod n
)

.

δ1 = (15)7 mod 33 = 27

δ2 = (16)7 mod 33 = 25

δ3 = (5)7 mod 33 = 14

δ4 = (14)7 mod 33 = 20

Subtract k to each δi give γi. So, γ1 = δ1 – k, γ2 = δ2 – k,

γ3 = δ3 – k, γ4 = δ4 – k.

We will get, γ1 = 23, γ2 = 21, γ3 = 10, γ4 = 16.

Convert each γi value to character letter as W = 23, U = 21, J

= 10, P = 16.

So, sender send message “WUJP” to the receiver.

Receiver after getting message, convert to numeric value as 23,

21, 10, 16.

Frontiers inComputer Science 07 frontiersin.org

https://doi.org/10.3389/fcomp.2025.1630222
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Banu et al. 10.3389/fcomp.2025.1630222

TABLE 3 Image data encryption for RSA and ElGamal algorithms.

Serial No File size (KB) Time of encryption Space of encryption

RSA(s) ElGamal(s) RSA (kb) ElGamal (kb)

1 63 0.9896 2.9947 1,890.32 236.29

2 85 1.0023 3.3907 2,439.15 295.41

3 120 1.6205 8.7705 3,088.11 385.73

4 130 1.7495 9.3232 3,129.38 399.20

5 200 1.9853 10.5232 3,764.52 470.56

6 300 2.9534 12.2056 5,470.91 683.85

7 550 5.6149 16.2851 10,597.82 1,324.71

TABLE 4 Image data decryption for RSA and ElGamal algorithms.

Serial No. File size (KB) Time of decryption Space of decryption

RSA(s) ElGamal(s) RSA (kb) ElGamal (kb)

1 63 11.8935 2.4517 236.29 236.29

2 85 12.6888 3.8033 295.41 295.41

3 120 19.6372 4.3965 385.73 385.73

4 130 19.9276 4.9207 399.20 399.20

5 200 23.6912 6.3696 470.56 470.56

6 300 34.7945 8.0873 683.85 683.85

7 550 67.0517 12.4493 1,324.71 1,324.71

TABLE 5 Audio data encryption for RSA and ElGamal algorithms.

Serial No File size (KB) Time of encryption Space of encryption

RSA(s) ElGamal(s) RSA (kb) ElGamal (kb)

1 50 0.6186 5.7240 1,167.72 145.96

2 55 0.6806 5.9135 1,289.66 161.21

3 60 0.7383 6.4193 1,384.90 173.10

4 70 0.8740 7.9503 1,663.56 207.92

5 90 1.1263 8.1892 2,131.86 266.48

6 120 1.3651 12.2567 2,606.37 325.79

7 200 1.8295 16.7535 3,483.51 435.55

TABLE 6 Audio data decryption for RSA and ElGamal algorithms.

Serial No. File size (KB) Time of decryption Space of decryption

RSA(s) ElGamal(s) RSA (kb) ElGamal (kb)

1 50 7.3565 1.6570 145.96 145.96

2 55 8.2104 1.8803 161.21 161.21

3 60 8.6874 2.1033 173.10 173.10

4 70 10.4017 2.3383 207.92 207.92

5 90 13.7977 2.5158 266.48 266.48

6 120 16.4544 4.4145 325.79 325.79

7 200 21.9815 4.7963 435.55 435.55

Frontiers inComputer Science 08 frontiersin.org

https://doi.org/10.3389/fcomp.2025.1630222
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Banu et al. 10.3389/fcomp.2025.1630222

TABLE 7 Statistical analysis such as mean, standard deviation, performance metrics of encryption/decryption times (50 runs, AES-CBC 128-bit,

RSA/ElGamal 2,048-bit, 10 rounds, star graph).

Data type File size (KB) RSA (mean ± SD, s) ElGamal (mean ± SD, s) RSA ElGamal

Encryption Decryption Encryption Decryption Thr (KB/s) Thr (KB/s)

Text 22 0.1082± 0.002 1.0756± 0.08 1.55± 0.031 0.0802± 0.014 203.3 14.2

Text 80 0.3545± 0.0047 3.9254± 0.17 2.57± 0.113 1.6674± 0.032 341.9 14.2

Text 120 0.4835± 0.0113 5.7463± 0.26 2.92± 0.169 1.9284± 0.049 212.4 14.2

Text 140 0.5664± 0.0132 6.8078± 0.30 3.80± 0.197 2.2112± 0.057 212.8 14.2

Text 230 0.9315± 0.0216 11.1189± 0.50 4.67± 0.324 3.2596± 0.093 212.9 14.2

Text 2,048 5.8852± 0.193 74.9069± 4.4 15.12± 2.88 19.3083± 0.83 212.5 14.2

Text 5,120 16.1733± 0.482 194.2630± 11.1 43.90± 7.20 56.1964± 2.06 212.4 14.2

Image 63 0.9896± 0.0030 11.8935± 0.11 2.9947± 0.089 2.4517± 0.021 417.2 14.1

Image 85 1.0023± 0.0041 12.6888± 0.15 3.3907± 0.120 3.8033± 0.028 417.7 14.1

Image 120 1.6205± 0.0058 19.6372± 0.21 8.7705± 0.170 4.3965± 0.039 416.7 14.1

Image 130 1.7495± 0.0062 19.9276± 0.23 9.3232± 0.184 4.9207± 0.043 416.7 14.1

Image 200 1.9853± 0.0096 23.6912± 0.35 10.5232± 0.284 6.3696± 0.066 416.7 14.1

Image 300 2.9534± 0.0144 34.7945± 0.53 12.2056± 0.426 8.0873± 0.098 416.7 14.1

Image 550 5.6149± 0.0264 67.0517± 0.97 16.2851± 0.780 12.4493± 0.180 416.7 14.1

Audio 50 0.6186± 0.0032 7.3565± 0.12 5.7240± 0.093 1.6570± 0.022 312.5 10.8

Audio 55 0.6806± 0.0035 8.2104± 0.13 5.9135± 0.102 1.8803± 0.024 312.5 10.8

Audio 60 0.7383± 0.0038 8.6874± 0.14 6.4193± 0.112 2.1033± 0.026 312.5 10.8

Audio 70 0.8740± 0.0045 10.4017± 0.16 7.9503± 0.130 2.3383± 0.030 312.5 10.7

Audio 90 1.1263± 0.0058 13.7977± 0.21 8.1892± 0.167 2.5158± 0.039 312.5 10.8

Audio 120 1.3651± 0.0077 16.4544± 0.28 12.2567± 0.224 4.4145± 0.052 312.5 10.7

Audio 200 1.8295± 0.0128 21.9815± 0.46 16.7535± 0.372 4.7963± 0.086 312.5 10.8

He then add length of message 4 to the numeric value. We

will get, 23 + 4 = 27, 21 + 4 = 25, 10 + 4 = 14, 16 + 4 =

20. Assign the value as δi. So, δ1 = 27, δ2 = 25, δ3 = 14,

δ4 = 20.

Now receiver use private key d = 3 and find αi =

δi
d (mod n). So,

α1 = δ1
d (mod n)= 15,

α2 = δ2
d (mod n)= 16,

α3 = δ3
d (mod n)= 5,

α4 = δ4
d (mod n) = 14. Convert the αi value to alphabetic

character. α1 = O, α2 = P, α3 = E, α4 = N.

Finally, receiver receives message “OPEN.”

4.2 Application of ElGamal algorithm in star
graphs K1

⊙

Kn

• Select a large prime number p = 11 and a generator g = 2

of the multiplicative group Zp
∗. Choose a private key x = 3

such that 1 ≤ x ≤ p − 2 and gcd (x, p) = 1. Compute

h = gx mod p = 23 mod 11 = 8.

• The public key is the tuple (p, g, h)= (11, 2, 8) and the private

key is x = 3.

Encryption:

To encrypt a message “OPEN,” we assignM1 = 0 = 15, M2 =

P = 16,M3 = E = 5,M4 = N = 14.

Select a random integer k= 4 such that 1 ≤ k ≤ p− 2 & gcd

(k, p)= 1.

Find C1 = gk mod p= 24 mod 11= 5,

C2 = M1.h
k mod p= 15.84 mod 11= 5,

C3 = M2.h
k mod p= 16.84 mod 11= 9,

C4 = M3.h
k mod p= 5.84 mod 11= 9,

C5 = M4.h
k mod p= 14.84 mod 11= 1.

Convert the numeric value of C1, C2, C3, C4, and C5 as

alphabetic character as “EEIIA”.

Sender send message “EEIIA” to the receiver.

Decryption:

Receiver now convert message to numeric value as C1 = 5,

C2 = 5, C3 = 9, C4 = 9, C5 = 1. Compue M1 = C2. (C1
x)−1

mod P = 15. Similarly M2 = C3. (C1
x)−1 mod P = 16, M3 =

C4. (C1
x)−1 mod P = 5,M4 = C5. (C1

x)−1 mod P = 14.

Now receiver convert numeric value to alphabetic character as

“OPEN.” Hence receives original message “OPEN.”

In this study, the RSA and ElGamal cryptographic algorithms

were implemented using the C# programming language to assess

their performance across diverse data types, including mixed data

(text, image, audio) (Adeniyi et al., 2023; Gountia et al., 2025). The

Frontiers inComputer Science 09 frontiersin.org

https://doi.org/10.3389/fcomp.2025.1630222
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Banu et al. 10.3389/fcomp.2025.1630222

TABLE 8 Single-round estimates for all data types text, image and audio files.

Data type File size (KB) RSA (s) ELGAMAL (s)

10 round Single round 10 round Single round

Enc Dec Enc Dec Enc Dec Enc Dec

Text 22 0.1082 1.0756 0.0108 0.1075 1.55 0.0802 0.155 0.00802

Text 80 0.3545 3.9254 0.0354 0.3925 2.57 1.6674 0.257 0.16674

Text 120 0.4835 5.7463 0.0483 0.5746 2.92 1.9284 0.292 0.19284

Text 140 0.5664 6.8078 0.0566 0.6807 3.80 2.2112 0.380 0.22112

Text 230 0.9315 11.1189 0.0931 1.1119 4.67 3.2596 0.467 0.32596

Text 2,048 5.8852 74.9069 0.5885 7.4909 15.12 19.3083 1.512 1.93083

Text 5,120 16.1733 194.263 1.6173 19.4263 43.90 56.1964 4.390 5.61964

Image 63 0.9896 11.8935 0.0989 1.18935 2.9947 2.4517 0.29947 0.24517

Image 85 1.0023 12.6888 0.1002 1.26888 3.3907 3.8033 0.33907 0.38033

Image 120 1.6205 19.6372 0.1620 1.96372 8.7705 4.3965 0.87705 0.43965

Image 130 1.7495 19.9276 0.1749 1.99276 9.3232 4.9207 0.93232 0.49207

Image 200 1.9853 23.6912 0.1985 2.36912 10.5232 6.3696 1.05232 0.63696

Image 300 2.9534 34.7945 0.2953 3.47945 12.2056 8.0873 1.22056 0.80873

Image 550 5.6149 67.0517 0.5614 6.70517 16.2851 12.4493 1.62851 1.24493

Audio 50 0.6186 7.3565 0.0618 0.73565 5.7240 1.6570 0.57240 0.16570

Audio 55 0.6806 8.2104 0.0680 0.82104 5.9135 1.8803 0.59135 0.18803

Audio 60 0.7383 8.6874 0.0738 0.86874 6.4193 2.1033 0.64193 0.21033

Audio 70 0.8740 10.4017 0.0874 1.04017 7.9503 2.3383 0.79503 0.23383

Audio 90 1.1263 13.7977 0.1126 1.37977 8.1892 2.5158 0.81892 0.25158

Audio 120 1.3651 16.4544 0.1365 1.64544 12.2567 4,4145 1.22567 0.44145

Audio 200 1.8295 21.9815 0.1829 2.19815 16.7535 4.7963 1.67535 0.47963

TABLE 9 Comparison of encryption/decryption times for AES-256, ECC, RSA, and ElGamal (single-round, star graph, 128-bit AES-CBC, 2,048-bit

RSA/ElGamal/ECC).

Data type File size (KB) AES-256(s) ECC(s) RSA(s) ELGAMAL(s)

Enc Dec Enc Dec Enc Dec Enc Dec

Text 22 0.0010 0.0010 0.015 0.015 0.0108 0.1075 0.155 0.00802

Text 5,120 0.230 0.230 3.50 3.50 1.6173 19.4263 4.390 5.61964

Image 550 0.050 0.050 0.375 0.375 0.5614 6.70517 1.62851 1.24493

Audio 200 0.018 0.018 0.137 0.137 0.1829 2.19815 1.67535 0.47963

evaluation focused on key performance metrics such as encryption

time, decryption time, and memory usage. These metrics were

systematically recorded and presented in tabular formats shown

in Tables 1–9 with encryption and decryption times measured in

seconds (s) and memory usage detailed in kilobytes (KB). To

provide a clearer comparative analysis, Figures 1–12 is a graphical

representations corresponding to each dataset were also generated,

illustrating the time efficiency and memory consumption of

both algorithms (Arhin et al., 2023; Utama Siahaan et al., 2018).

Figure 1 results indicate that the RSA algorithm consumes

less time during text data encryption compared to the ElGamal

algorithm whereas Figure 2 shows that the RSA algorithm

consumes more CPU internal memory while encrypting text data

than the ElGamal algorithm.

Figure 3 shows that RSA algorithm consumes more CPU time

during the decryption of text data while ElGamal consumes less

CPU time during the decryption of text data. Figure 4 shows

that both algorithms consume an equal volume of CPU internal

memory to decrypt text data.

Figure 5 shows that RSA algorithm consumes less CPU time

during the encryption of image data while ElGamal consumesmore

CPU time during the decryption of image data. Figure 6 shows that

ElGamal consumes less memory during image data encryption than

the RSA algorithm.

Frontiers inComputer Science 10 frontiersin.org

https://doi.org/10.3389/fcomp.2025.1630222
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Banu et al. 10.3389/fcomp.2025.1630222

Figure 7 shows that RSA algorithm consumes more CPU time

during the encryption of image data while ElGamal consumes less

CPU time during the decryption of image data. Figure 8 shows

that both algorithms consume an equal volume of CPU internal

memory to decrypt text data.

Figure 9 shows that RSA algorithm consumes less CPU time

during the encryption of audio data while ElGamal consumes more

CPU time during the encryption of audio data. Figure 10 shows that

ElGamal consumes less memory during audio data encryption than

the RSA algorithm.

Figure 11 shows that RSA algorithm consumes more CPU time

during the decryption of audio data while ElGamal consumes less

CPU time during the decryption of audio data. Figure 12 shows

that both algorithms consume an equal volume of CPU internal

memory to decrypt audio data.

Table 1 presents the encryption time and memory usage for

the text dataset using RSA and ElGamal cryptographic algorithms.

The execution times were measured using the computer’s CPU

internal clock.

Table 2 shows the decryption time and memory usage

of RSA and ElGamal cryptographic algorithms on the

test dataset.

Table 3 shows the encryption time and memory usage of RSA

and ElGamal cryptographic algorithms on the image dataset.

Table 4 shows the decryption time and memory usage

of RSA and ElGamal cryptographic algorithms on the

image dataset.

Table 5 shows the encryption time and memory usage

of RSA and ElGamal cryptographic algorithms on the

audio dataset.

Table 6 shows the decryption time and memory usage

of RSA and ElGamal cryptographic algorithms on the

audio dataset.

Table 7 explain a statistical analysis of 50 runs per file

size, reporting mean encryption/decryption times and standard

deviations. For example, RSA’s mean encryption time for 22KB

text is 0.1082 s (SD: 0.002 s), and ElGamal’s is 1.55 s (SD: 0.03 s).

Table 7 also define throughput as file size divided by encryption

time (KB/s). For example, RSA’s throughput for 22KB text is 203.3

KB/s (22/0.1082), while ElGamal’s is 14.2 KB/s (22/1.55).

Table 8 extrapolate single-round times (e.g., RSA: ∼0.0108 s

for 22KB text) and discuss applications: RSA’s speed suits

secure messaging (e.g., 50 KB audio), while ElGamal’s security fits

constrained devices.

Table 9 comparison with AES-256 (symmetric) and ECC

(asymmetric). AES-256 encrypts faster (e.g., ∼0.05 s for 550KB

image) but requires secure key exchange, where RSA/ElGamal

excel, ECC is faster than ElGamal but less standard.

5 Discussion

In this study, two prominent asymmetric cryptographic

algorithms—RSA and ElGamal—were implemented using the

C# programming language to evaluate their performance across

various data types, including text, image and audio files (Yousif,

2023).

5.1 Experimental setup

Hardware configuration: the simulations were conducted on

a laptop equipped with a Windows 10 64-bit operating system,

an Intel i7 processor running at 2.23 GHz, and 8 GB of RAM.

Test Data: Randomly generated files of varying sizes−22KB,

80KB, 120KB, 140KB, 230KB, 2048KB, and 5120 KB—were

used as input datasets. Implementation Details: Both RSA and

ElGamal algorithms were implemented in C#, utilizing the Cipher

Block Chaining (CBC) mode with key sizes of 64 bits and 128

bits. Each data block underwent 10 rounds of encryption and

decryption, with execution times recorded for each run using the

system’s CPU internal clock. Encryption time: RSA consistently

demonstrated faster encryption times across all data categories

compared to ElGamal.

6 Conclusion

In this study, the RSA and ElGamal cryptographic algorithms

were implemented using the C# programming language to

evaluate their performance across various data types, including

text, image, and audio files. The experimental results indicated

that the RSA algorithm consistently outperformed ElGamal in

terms of encryption time across all data categories. For instance,

encrypting a 22KB text file took ∼0.1082 s with RSA, whereas

ElGamal required about 1.55 s. This trend persisted across larger

file sizes and different data types, including images and audio

files. Conversely, ElGamal demonstrated superior performance

in memory efficiency during both encryption and decryption

processes. For the same 22KB text file, RSA used about 169.82KB

of memory during encryption, while ElGamal utilized∼0.1650KB.

These findings suggest that RSA is more time-efficient, making

it suitable for applications where speed is critical. On the other

hand, ElGamal’s lower memory consumption makes it preferable

in environments with limited memory resources. This study

contributes to the existing body of knowledge by providing

a comprehensive analysis of the time and space complexities

of RSA and ElGamal algorithms on mixed data types. Future

research could explore additional performance metrics, such as

throughput, accuracy, precision, and recall, or consider other

cryptographic algorithms to further enhance the understanding

of algorithm performance in various contexts (Yu et al.,

2016).

Data availability statement

The original contributions presented in the study are included

in the article/supplementary material, further inquiries can be

directed to the corresponding author.

Author contributions

YB: Validation, Formal analysis, Writing – original draft. BR:

Writing – review & editing. DG: Supervision, Writing – review

& editing.

Frontiers inComputer Science 11 frontiersin.org

https://doi.org/10.3389/fcomp.2025.1630222
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Banu et al. 10.3389/fcomp.2025.1630222

Funding

The author(s) declare that no financial support

was received for the research and/or publication of

this article.

Conflict of interest

The authors declare that the research was conducted

in the absence of any commercial or financial relationships

that could be construed as a potential conflict

of interest.

Generative AI statement

The author(s) declare that no Gen AI was used in the creation

of this manuscript.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

References

Adeniyi, A. E., Misra, S., Daniel, E., and Bokolo, A. Jr. (2022). Computational
complexity of modified blowfish cryptographic algorithm on video data. Algorithms
15:373. doi: 10.3390/a15100373

Adeniyi, E. A., Imoize, A. L., Awotunde, J. B., Lee, C., Falola, P., Jimoh, R. G., et al.
(2023). Performance analysis of two famous cryptographic algorithms on mixed data.
J. Comput. Sci. 19, 694–706. doi: 10.3844/jcssp.2023.694.706

Ali, N., Sadiqa, A., Shahzad, M. A., Imran Qureshi, M., Siddiqui, H. M. A.,
Abdallah, S. A. O., et al. (2024). Secure communication in the digital age: a new
paradigm with graph-based encryption algorithms. Front. Comput. Sci. 6:1454094.
doi: 10.3389/fcomp.2024.1454094

Arhin, P. K. Jr., Asante, M., and Otoo, L. (2023). A comparative study of RSA and
ELGAMAL cryptosystems. Int. J. Comput. Eng. 4, 33–41. doi: 10.47941/ijce.1291

Arora, R., Parashar, A., and Transforming, C. C. I. (2013). Secure user data in cloud
computing using encryption algorithms. Int. J. Eng. Res. Appl. 3, 1922–1926.

Behera, R. R., and Gountia, D. (2024). A secure fault detection for digital
microfluidic biochips. Comput. J. 68, 217–227. doi: 10.1093/comjnl/bxae106

Boni, S., Bhatt, J., and Bhat, S. (2015). Improving the Diffie-Hellman key exchange
algorithm by proposing the multiplicative key exchange algorithm. Int. J. Comput.
Appl. 130, 7–10. doi: 10.5120/ijca2015907170

Desai, A., Parekh, V., and Unadkat, U. N. (2022). “Performance analysis of
various asymmetric public-key cryptosystem,” in Pervasive Computing and Social
Networking: Proceedings of ICPCSN 2022 (Singapore: Springer Nature Singapore),
437–449. doi: 10.1007/978-981-19-2840-6_34

Gountia, D., Behera, R., Bal, P., and Pati, S. (2025). Trojan detection in digital
microfluidic biochips via image classification: a deep-learning based approach. IEEE
Trans. Dependable Secure Comput. 22, 1−13. doi: 10.1109/TDSC.2025.3568217

Kayalvizhi, R., Vijayalakshmi, M., and Vaidehi, V. (2010). “Energy analysis of
RSA and ElGamal algorithms for wireless sensor networks,” in CNSA 2010, Chennai,
India, July 23-25, 2010. Proceedings 3 (Cham: Springer Berlin Heidelberg), 172–180.
doi: 10.1007/978-3-642-14478-3_18

Li, C. T., Weng, C. Y., Chen, C. L., Lee, C. C., Deng, Y. Y., and Imoize, A. L. (2022).
An efficient authenticated key agreement scheme supporting privacy-preservation for
internet of drones communications. Sensors 22:9534. doi: 10.3390/s22239534

Ni, B., Qazi, R., Ur Rehman, S., and Farid, G. (2021). Some graph-based encryption
schemes. J. Math. 2021:6614172. doi: 10.1155/2021/6614172

Okeyinka, A. E. (2015). “Computational speeds analysis of RSA and ElGamal
algorithms on text data,” in Proceedings of the World Congress on Engineering
and Computer Science, Vol. 1, 21–23. Available online at: https://www.iaeng.org/
publication/WCECS2015/WCECS2015_pp115-118.pdf (Accessed April 2, 2025).

Panda, M., and Nag, A. (2015). “Plain text encryption using AES, DES and SALSA20
by java based bouncy castle API on Windows and Linux,” in 2015 Second International
Conference on Advances in Computing and Communication Engineering (Dehradun:
IEEE), 541–548. doi: 10.1109/ICACCE.2015.130

Parenreng, J. M., and Wahid, A. (2022). The E-mail security system using ElGamal
hybrid algorithm and AES (advanced encryption standard) algorithm. Int. Things Artif.
Intell. J. 2, 1–9. doi: 10.31763/iota.v2i1.510

Sari, P. P., Nababan, E. B., and Zarlis, M. (2020). “Comparative study of luc,
ElGamal and RSA algorithms in encoding texts,” in 2020 3rd International Conference
on Mechanical, Electronics, Computer and Industrial Technology (MECnIT) (Medan:
IEEE), 148–151. doi: 10.1109/MECnIT48290.2020.9166586

Singh, S., Rathore, S., Alfarraj, O., Tolba, A., and Yoon, B. (2022). A
framework for privacy-preservation of IoT healthcare data using federated
learning and blockchain technology. Future Gener. Comput. Syst. 129, 380–388.
doi: 10.1016/j.future.2021.11.028

Utama Siahaan, A. P., Elviwani, E., and Oktaviana, B. (2018). “Comparative analysis
of RSA and ElGamal cryptographic public-key algorithms,” in Proceedings of the Joint
Workshop KO2PI and the 1st International Conference on Advance and Scientific
Innovation (ICASI’18) (Brussels: Institute for Computer Sciences, Social-Informatics
and Telecommunications Engineering), 163–172. doi: 10.31227/osf.io/x56df

West, D. B. (2001). Introduction to Grapheory, 2nd Edn. London: Pearson.

Yousif, S. F. (2023). Performance comparison between RSA and El-gamal
algorithms for speech data encryption and decryption. Diyala J. Eng. Sci. 16, 123–137.
doi: 10.24237/djes.2023.16112

Yu, Y., Au, M. H., Ateniese, G., Huang, X., Susilo, W., Dai, Y., et al. (2016). Identity-
based remote data integrity checking with perfect data privacy preserving for cloud
storage. IEEE Trans. Inf. Forensics Secur. 12, 767–778. doi: 10.1109/TIFS.2016.2615853

Frontiers inComputer Science 12 frontiersin.org

https://doi.org/10.3389/fcomp.2025.1630222
https://doi.org/10.3390/a15100373
https://doi.org/10.3844/jcssp.2023.694.706
https://doi.org/10.3389/fcomp.2024.1454094
https://doi.org/10.47941/ijce.1291
https://doi.org/10.1093/comjnl/bxae106
https://doi.org/10.5120/ijca2015907170
https://doi.org/10.1007/978-981-19-2840-6_34
https://doi.org/10.1109/TDSC.2025.3568217
https://doi.org/10.1007/978-3-642-14478-3_18
https://doi.org/10.3390/s22239534
https://doi.org/10.1155/2021/6614172
https://www.iaeng.org/publication/WCECS2015/WCECS2015_pp115-118.pdf
https://www.iaeng.org/publication/WCECS2015/WCECS2015_pp115-118.pdf
https://doi.org/10.1109/ICACCE.2015.130
https://doi.org/10.31763/iota.v2i1.510
https://doi.org/10.1109/MECnIT48290.2020.9166586
https://doi.org/10.1016/j.future.2021.11.028
https://doi.org/10.31227/osf.io/x56df
https://doi.org/10.24237/djes.2023.16112
https://doi.org/10.1109/TIFS.2016.2615853
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

	Analyzing cryptographic algorithm efficiency with in graph-based encryption models
	1 Introduction
	2 Related work
	3 Proposed algorithm
	4 Results
	4.1 Application of RSA algorithm in star graph K1Kn
	4.2 Application of ElGamal algorithm in star graphs K1Kn

	5 Discussion
	5.1 Experimental setup

	6 Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Generative AI statement
	Publisher's note
	References

