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The computer-aided diagnosis helps medical professionals detect and classify lung 
diseases from chest X-rays by leveraging medical image processing and central 
server-based machine learning models. These technologies provide real-time 
assistance to analyze the input and help efficiently detect the abnormalities at the 
earliest. However, traditional learning models are not suitable for live scenarios 
that require privacy, data diversity, and decentralized processing. The Federated 
learning-based model facilitates the protection of medical data privacy while 
processing a large volume of medical images, aiming to improve the overall efficiency 
of the model. This paper proposes a Federated Learning based Ensemble Model 
(FLEM) framework for an efficient diagnosis of lung diseases. The FLEM utilizes 
explainable AI techniques, including SHAP, Grad-CAM, and Differential Privacy, 
to provide transparency and interpretability of predictions while maintaining the 
privacy and security of medical data. We applied InceptionV3, Conv2D, VGG16, and 
ResNet-50 models on the COVID-19, TB, and pneumonia datasets and analysed 
the performance of the models in FLEM and Central Server-based Learning Model 
(CSLM). The performance analysis shows that the FLEM model outperformed 
the traditional CSLM model in terms of accuracy, training time, and bandwidth 
consumption. CSLM witnesses a quicker convergence time than FLEM. Although 
the CSLM model converged after a considerable number of epochs, it resulted 
in a 5, 8, 9, and 10% accuracy reduction compared to the FLEM-based training 
of InceptionV3, Conv2D, VGG16, and ResNet50 that achieved accuracies of 91.8, 
88, 92.5, and 95.5%, respectively.
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1 Introduction

Respiratory disorders, also known as lung problems, refer to various illnesses that affect 
the airways and other components of the lungs. Some well-known examples of these disorders 
include Covid-19, pneumonia, and tuberculosis (Ouyang et  al., 2020). Recent research 
indicates significant mortality rates associated with these conditions, with approximately 334 
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million deaths attributed to Covid-19, one billion to tuberculosis, and 
1.6 million to lung cancer (Asswin et al., 2023; Ganeshkumar et al., 
2023; Phogat et al., 2023). Pneumonia has also caused millions of 
deaths and placed a considerable burden on healthcare systems 
worldwide. Lung diseases consistently rank among the leading causes 
of death globally. Early identification is crucial for increasing long-
term survival rates and improving the likelihood of recovery. 
Traditionally, lung disorders have been diagnosed using skin tests, 
blood tests, and chest X-rays (Al-qaness et al., 2024). These approaches 
are useful, but they often lack precision, rapidity, and the ability to 
detect subtle changes in lung conditions. To address these challenges, 
deep learning has emerged as a transformative approach in this field. 
By leveraging advanced algorithms and large datasets, deep learning 
enhances diagnostic accuracy and discovers complex patterns in 
imaging data that traditional methods may disregard. Deep learning 
algorithms have emerged as a comprehensive approach for diagnosing 
lung infections caused by Covid-19, tuberculosis, and pneumonia, 
which are widely recognized as the leading causes of severe illness and 
mortality associated with the respiratory system on a global scale. 
Previous research has predominantly focused on the identification 
and detection of these specific lung diseases (Ganeshkumar et al., 
2023). COVID-19, commonly known as corona virus illness, is a 
respiratory virus (Phogat et al., 2023; Al-qaness et al., 2024). Timely 
and accurate analysis of medical images is required for early detection 
of abnormalities, which facilitates recovery from life-
threatening conditions.

Recent technological advances have changed the e-healthcare 
environment as AI-powered healthcare (Durga et al., 2024). AI 
systems require centralized data collection and compute-intensive 
processing, leading to poor quality of experience due to network delay 
and data privacy issues (Ashwini et  al., 2024; Sabry et  al., 2024). 
Federated Learning (FL), an emerging distributed collaborative AI 
paradigm, coordinates the training of models within the proximity of 
data sources. It promises healthcare facilities without sharing private 
data, which is mandatory in today’s intelligent healthcare sector 
(Ouyang et al., 2020). In the innovative healthcare sector, medical 
image analysis uses deep learning algorithms to process large amounts 
of health data and to detect chronic diseases early (Arun Prakash et al., 
2023; Durga et al., 2024). This paper focuses on using an FL-based 
framework for identifying lung diseases such as COVID-19, TB, and 
pneumonia. The motivation of this research is that FL differs from 
traditional machine learning models in terms of participating clients 
and dataset parameters. The FL-based efficient framework is a 
collaborative learning environment aiming for consistent solutions. In 
an FL-based hospital environment, hospital local servers are the 
participating devices that can have heterogeneous hardware.

The key highlights of the paper are, (1) to classify the lung diseases 
such as COVID-19, TB, and pneumonia we build FLEM, a federated 
learning based efficient framework for medical image processing. (2) 
Deep learning models such as InceptionV3, Convolution2D, VGG16, 
and ResNet50 have been analyzed on the proposed framework to find 
which one accurately detects lung disease from the given input. (3) 
The pre-trained version of these models with learned features was 
deployed at Hospital server. The detailed workflow at the local device 
of each hospital and central server was given. (4) Experimental 
comparison of the performances of FLEM and CSLM in terms of 
Accuracy, Training time, convergence time and Bandwidth 
consumption was presented. (5) The proposed FLEM-XAI framework 

employs explainable AI to provide transparency and interpretability 
of predictions while maintaining the privacy and security of medical 
data. The rest of the paper is organized as follows: Section 2 details the 
related work. Section 3 discusses the proposed FL-based efficient 
architecture, algorithm, and flow of work. Section 4 presents the 
results and performance evaluation. Section 5 concludes the paper 
with possible directions towards future research.

2 Related work

Automated accurate chest X-ray lesion detection is challenging. 
These images often exhibit lesions with blurred boundaries, varying 
sizes, irregular shapes, and uneven density, making it challenging to 
identify them accurately (Li et  al., 2020; Deshmukh et  al., 2021). 
Additionally, traditional convolutional neural networks (CNNs) used 
for this task are comprised of convolution units that have limitations 
when it comes to sampling irregular shapes. Consequently, CNNs 
struggle to extract the intricate details and refined features necessary 
for detecting and characterizing chest X-ray lesions effectively (Hu 
et al., 2020; Li et al., 2020). Xi et al. developed the dual-sampling 
attention network to automatically recognize COVID-19 from 
pneumonia (Ouyang et al., 2020). They use a 3D CNN and a novel 
online attention module to diagnose lung infections. In detecting 
COVID-19 images, this system has an AUC of 0.944, accuracy of 
87.5%, sensitivity of 86.9%, specificity of 90.1%, and F1-score of 82.0%. 
A supervised deep learning architecture was suggested for COVID-19 
detection. A huge dataset from many hospitals worldwide was used to 
evaluate this technology. The framework correctly identified 95.12% 
of COVID-19 X-rays. COVID-19 cases were distinguished from 
normal and severe acute respiratory syndrome cases with 97.91% 
sensitivity, 91.87% specificity, and 93.36% precision (Hu et al., 2020).

Deep learning-based recommender systems utilizing deep CNN 
architectures (Sethi et  al., 2020) have proven to be  effective in 
identifying important biomarkers associated with COVID-19, among 
other diseases. These systems achieve an impressive overall 
classification accuracy of 87.66% across seven different classes. 
Moreover, when specifically detecting COVID-19, this method 
achieves exceptional accuracy rates of 99.18%, sensitivity of 97.36%, 
and specificity of 99.42%. Transfer learning and picture augmentation 
were used to train and validate many pre-trained deep CNNs in 
(Chowdhury et  al., 2020). These networks learned to distinguish 
between normal and COVID-19 pneumonia and between viral and 
COVID-19 pneumonia with and without image enhancement. The 
first scenario has 99.7% classification accuracy, precision, sensitivity, 
and specificity, while the second had 97.9, 97.95, 97.9, and 98.8%. The 
results reported in (Apostolopoulos et al., 2020) indicate that training 
of CNN from scratch can discover biomarkers for a variety of 
diseases, each of which includes COVID-19. The average accuracy of 
categorizing the presentations into the seven classes was 87.66%. This 
method achieved an accuracy of 99.18%, with a sensitivity of 97.36% 
and a specificity averaging 42%. Overall, this approach proved to 
be efficient in identifying the virus.

Based on deep CNN, the DeTraC which stands for Decompose, 
Transfer, and Compose is a transfer learning method (Abbas et al., 
2021). This model transfers knowledge from broad item identification 
to the specific domain tasks effectively. Analyzing the obtained 
experimental results, it was proved that DeTraC is capable of 
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detecting COVID-19 based on the test dataset of global hospital 
images. DeTraC effectively segmented COVID-19 X-rays with 93.1% 
accuracy. These photos reserved these cases different from normal 
and severe acute respiratory syndrome cases with 100% sensitivity. 
The COVID-19 infection can be detected by deep learning in two 
stages. The first process involves Segment-Level categorizing by 
employing deep learning architectures and multi-tasking with Slice-
Level categorizing as its primary task. This allowed the trained 
models to classify CT scan parts. Another one is the two-stage 
method of identifying and classifying COVID-19 cases with 
satisfactory outcomes indicated (Bougourzi et al., 2021). The models 
developed earlier for COVID-19 and CAP infections were used 
together with XGBoost classifier to analyze the CT scan and classify 
it to be  normal, COVID-19 or pneumonia infected (Serte and 
Demirel, 2021; Aggarwal et  al., 2022; Mahbub et  al., 2022; Jin 
et al., 2023).

Prior to performing more detailed classifications using DenseNet 
and EfficientNet in the Two-Stage CNN (Chaudhary et al., 2021), the 
detection networks are aligned based on the precise regions of 
interest to be  focused on. de Moura et  al. (2022) proposed an 
automated classification technique to detect COVID-19 at an early 
stage using chest X-Ray images. The study conducted by Nasari et al. 
utilizes DenseNet169 for feature extraction, whereas XG Boost is 
employed to provide precise results (Nasiri and Hasani, 2022). 
Federated Learning (FL) makes centrally controlled trials less time-
consuming, increases the possibility to trace the data, and makes the 
evaluations of changes in algorithms easier. The first untrained model 
is uploaded to many servers or nodes in the client–server architecture 
of FL. These nodes partially learn with the data that they own and 
send back the result to a central federated server. If there are 
intentions to train the models conjointly without the raw information 
the above process continues to the realization of the planned goal. A 
federated learning system (Feki et al., 2021) employs deep learning 
for the early identification of COVID 19 on chest X rays. This 
approach makes it possible for the medical institutions to 
communicate among themselves at the same time protecting patient’s 
privacy. Similar to a centralized method, this learning method has a 
comparably good result attributable to not sharing or accumulating 
large amounts of private information. In distributed learning, the 
different medical facilities can build models, and carry out precise 
testing on COVID-19 in a way that does not violate the patient right 
to privacy. The FL based architecture was proved as a resilient and a 
comprehensive model (Dayan et al., 2021). In particular, the new 
global FL model–EXAM involved the data of CXR and EMR of many 
institutes. In the case of using FL it was possible not to store the data 
in one place which in its turn contributed to the protection of privacy 
of the members including the member universities. The distributed 
data structure on the other hand makes the cooperative model 
training possible while at the same time protecting the data.

3 Federated learning based ensemble 
model (FLEM) with explainable AI 
framework

This section describes the FL-based efficient framework used for 
detecting lung diseases from chest X-ray images. Figure 1 shows the 
FL based architecture employed for diagnosing lung diseases. The 

proposed FLEM follows a Centralized Federated Learning 
Architecture which includes Client nodes, server nodes, and a 
communication channel. Client nodes own and protect data. Each 
node trains a model using its local dataset. Server node that 
coordinates the federated learning process by aggregating the updates 
received from the client devices and updating a global model without 
accessing the local datasets. A Communication Channel employs a 
secure communication protocol to transmit updates between clients 
and the central server. In Federated Learning, the communication 
protocol consists of multiple rounds of client–server communication. 
First, the central server initializes a global model and sends it to all 
participating client nodes. Next, each client node receives the global 
model parameters and trains the model using its local dataset for a 
specified number of epochs. After completing local training, the 
clients compute updates, such as gradients and send these updates 
back to the central server. Notably, only model parameters and not 
raw data are transmitted, preserving data privacy. The proposed 
framework consists of a hospital server and central server processing.

3.1 FLEM XAI framework setup

The proposed Federated learning framework as shown in Figure 1 
was employed where lung disease data is distributed across multiple 
healthcare institutions (hospitals). Each hospital trains its model locally. 
The FLEM framework consists of InceptionV3, Conv2D, VGG16, and 
ResNet-50 models. Each participating hospital server could potentially 
use the model architectures based on the data available. A central server 
aggregates the updates from all clients, refines the global model, and 
then redistributes it. The training process involves the following

 • Local Training: Each hospital server trains its local model on its 
own dataset and updates its model based on the local loss 
function targeting lung disease diagnosis (e.g., classification of 
chest X-ray images as normal or indicative of a disease).

 • Aggregation: We use Federated Averaging (FedAvg) to combine 
the model weights from different clients into a robust global 
model while minimizing data exposure.

3.2 Processing at the central server

Processing at the central server includes 3 steps as follows. (1) 
Collecting data: A list of hospitals and other data sources are used to 
gather chest X-ray images with and without lung illness which is well-
labeled and pre-processed data. (2) Model training and central server: 
A deep learning model is developed by employing CNNs and tagged 
data. (3) Federated learning configuration: Partner hospitals have an 
edge server configured to receive a model broadcast from the central 
server. The trained model is split and deployed on the edge server. The 
server begins to transfer subsets of the model to the pre-designated 
edge server to commence training.

3.3 Processing at the hospital edge server

Every participating edge server receives the latest model through the 
model broadcast. The hospital server initiates the development of its 
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particular section of the model with local information. It trains the model 
using local data. The model that is updated centrally is tested for precision 
using a dataset different from the one used in constructing it. The training 
process is continued until the model is appropriately accurate. After the 
model training, the hospital edge server uploads the encrypted gradient 
to a central server. Subsequently, the server applies a merge procedure to 
integrate the individual model components into the total model. The 
central server aggregates the gradient update model parameters of each 
participating edge server. The central server sends the final updated 
model to each participant. The final model at the edge devices diagnoses 
lung diseases such as COVID-19, TB, and pneumonia from chest X-rays. 
The flowchart of the client side processing is shown in Figure 2. It shows 
the step by step process along with output as loading path, pre-processing 
of images, augmentation of images label encoder, resNet50, algorithm 
selected, train resnet50 algorithm by giving input to the trained model the 
classifier the lung disease.

4 Materials and methods

4.1 Deep learning models employed

Deep learning trains computational models to classify lung 
disease images. Figure 3 shows the steps involved in lung disease 
classification. Advanced deep learning systems may outperform 
humans in accuracy. Models must be  trained with massive 
categorised data and neural network structure. Deep learning 
methods VGG16, Resnet 50, InceptionV3, and Convolution2d 
were used to recognize and analyze data. Federated transfer 
learning is employed to develop collaborative training of models 
across multiple participative hospital servers. Local model 
training happens by adapting the pre-trained model to their local 
dataset. As shown in Figure 1, each hospital server updates the 
model parameters to the central server, continuing to set up the 

FIGURE 1

FL-based efficient framework for Smart healthcare sector.
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base model for consistent results. Each model underwent training 
for a fixed duration of 100 epochs. The architecture encompasses 
multiple layers and components, which are carefully designed 
and optimized for the task at hand.

4.1.1 VGG16
The VGG16 CNN architecture is among the most efficient for 

vision models. This convolution and max pool layer layout were 
carried over into the design. Finally, it features two FC (fully connected 
layers) and asoftmax for output. VGG16 denotes that it has 16 
weighted layers. This network is quite extensive.

4.1.2 ResNet-50
ResNet50 has skip-connected residual blocks that speed up 

gradient flow. The network can be  exceedingly deep without 
experiencing concerns like fading gradients. Individual components 
in unused blocks receive the gradient. Our 50-layer convolutional 
neural network, RESNET-50, utilised ImageNet architecture with 
pre-trained layers. This architecture can classify photos into 1,000 
separate items.

4.1.3 Convolution2D
2D convolution is the process of convolving two signals that 

exist in two different orthogonal planes. We can generalize this 
concept to accommodate multidimensional signals, leading to 
multidimensional convolution. Digital convolution entails point-
by-point multiplication and adding the immediate values of two 
inputs, of which one is inverted and sampled together with the 
other at successive intervals. To expand the 1D convolution 
method to 2D convolution, one of the input signals must 
be  reversed once more. Digital image processing convolves a 
discrete digital image with a smaller 2D matrix, known as the 
kernel. This convolution procedure preprocesses image data and 
extracts low-level features.

4.1.4 InceptionV3
Inception v3 was demonstrated to achieve up to 78.1 overall 

accuracies on the Image dataset. The model has symmetric and 
asymmetric construction components such convolutions, average 
pooling, max pooling, concatenations, dropouts, and entirely linked 
layers. The model regularly batch normalises activation inputs. The 
softmax function is utilised to calculate the loss.

4.2 FLEM XAI model and dataset

FL ensures that third parties do not get a chance to mine patients’ 
sensitive information. As more edge devices arrive, training is faster, 
which also implies fast model updating. The model and analysis of the 
proposed approach are also equally simple, where only a chest X-ray 
image is needed to identify lung disease. Hospitals can use automated 
software applications to revolutionize healthcare for efficient diagnosis 
and healthcare assistance. The proposed FLEM framework could 
be used in such applications that also provide a user interface to get 
recommendations for doctors, specialists and nearby hospitals.

FIGURE 2

Flowchart of client side processing.

FIGURE 3

Lung disease classification steps.
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Kaggle was used to obtain 11,000 chest X-RAY images for COVID-
19, PNEUMONIA, and TUBERCULOSIS samples (Kaggle, 2021). 
We then trained a model on these datasets. The images represent various 
demographics including age and gender, and variations in disease 
presentation. Images were collected under diverse equipment and patient 
positioning. The pixel values have been adjusted to fall within a standard 
range 0–1) for the neural networks to learn effectively. The images were 
resized to 200×200 pixels and the details are shown in Table 1. Data 
Augmentation techniques such as rotation and zooming have been 
applied to improve dataset size and prevent overfitting. The processed 
dataset was divided into training, validation, and test sets.

The CNN architectures we  used for training data included 
InceptionV3, ResNet50, Convolution2D, and VGG16. The selection of 
InceptionV3, Conv2D, VGG16, and ResNet-50 for the proposed 
framework is based on the unique advantages of each model, providing a 
diversified approach that can capture a wide range of features. InceptionV3 
can capture multi-scale features due to its inception modules, which 
contain filters of different sizes. This architecture is effective in handling 
varying sizes and styles of images, thus improving performance on diverse 

datasets. Conv2D model can serve as a baseline for performance 
benchmarking. VGG16 has 3×3 convolutions and permits deep feature 
extraction despite its depth. ResNet50 model is robust in scenarios with 
large amounts of data and complex features, making it a strong candidate 
for ensuring that intricate relationships within data are captured effectively. 
We used weighted averaging ensemble and assigned weights to each model 
based on their individual performance such as accuracy and F1 score.

Deep learning algorithms have been used to diagnose lung illness. 
This section describes the creation of a chest X-ray detection model 
for COVID-19 and other lung diseases, such as pneumonia and 
tuberculosis. Hospital professionals can feed the scanned images to 
the web user interface, which provides lung disease classification 
results and possible suggestions on specialty hospitals. Figure 4 shows 
the block diagram of FLEM server side processing. FL central server 
holds a global CNN ensemble model comprising architectures like 
VGG, ResNet50, InceptionV3, Conv2D. This global model is split by 
parameter segments) and selectively dispatched to partner hospitals’ 
edge servers. Each hospital clients receives its subset of the model and 
trains using local hospital data. After local training, each Hospital 
server sends its updated weights back to the central server securely. 
The central server aggregates updates using Federated Averaging 
(FedAvg). The proposed FLEM-XAI framework employs explainable 
AI to provide transparency and interpretability of predictions while 
maintaining the privacy and security of medical data. An XAI added 
FLEM model comprises of the following:

 (1) Model Training & Federated Learning Setup: Each participating 
hospital trains its own local model. Updates are aggregated at 
a central server using Federated Averaging (FedAvg). The 
FLEM framework consists of InceptionV3, Conv2D, VGG16, 
and ResNet-50 models.

FIGURE 4

Block diagram of FLEM server side processing.

TABLE 1 Parameters for training the models.

Parameters InceptionV3, VGG16, 
ResNet50, Convolution2D

Batch size 32

Image dimension 200×200

Optimizer Adam

Activation Function sigmoid

Loss Function binary_cross entropy
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 (2) Incorporating Explainability Methods: The following XAI 
techniques have been used to interpret the predictions made by the 
FLEM model: SHAP (Shapley Additive Explanations) is employed 
to analyze the importance of different features, Grad-CAM 
(Gradient-weighted Class Activation Mapping) is used to visualize 
regions in X-ray images that influence model decisions and, 
Federated XAI (FedXAI) offers privacy-preserving explanations.

 (3) Ensuring Security and Privacy in FLEM-XAI: The 
proposed FLEM-XAI uses Differential Privacy (DP) 
method where noise injection is added to gradients to 
ensure privacy and the noise scale is configured as noise_
scale = 0.01. Secure Aggregation (SA) techniques can 
be applied to mask sensitive data. We use TenSEAL (CKKS 
encryption) to encrypt model updates.

5 Simulation and performance analysis

This section describes the simulation environment, results, and 
performance analysis of FLEM and the tested setup and result analysis of 
XAI-FELM with RESNET50. The proposed FLEM framework for lung 
disease classification was tested using four distinct deep-learning models: 
InceptionV3, Convolution2D, VGG16, and ResNet50. The proposed work 
focuses on analyzing and comparing the performance of the four 
employed models and identifying the best model for the 
target environment.

5.1 Simulation setup

The simulations were carried out in Python language using the Keras 
and TensorFlow libraries. We executed the framework on Windows 10 
with 16GB RAM, Intel i5 processor, and NVIDIA GeForce GTX GPU 
1080 Ti with 11GB memory. The opted GTX GPU has the support of 
CUDA 8. This study incorporated pre-processing of the data, dividing it 
into training and validation sets and a subsequent testing set. We used 
CNN frameworks such as InceptionV3, ResNet50, VGG16, and 
Convolution2D to construct the diagnostic models. We chose to focus on 
the TensorFlow system in conjunction with the Keras library (Durga et al., 
2025). We simulated the environment, which involves four machines: one 
acting as a central server and three as hospital local servers, each with 
different configurations, as given below.

Hospital local servers 1,2 and 3:
 • GPU: GTX 1080 Ti
 • RAM: 11GB
 • Python: 3.9
 • CUDA: 8

Server:
 • GPU: GTX 1080 Ti
 • RAM: 11GB
 • Python: 3.9

 • CUDA: 10.1

5.2 Dataset used

Kaggle was used to obtain the chest X-ray images for the 
COVID-19, TB, and pneumonia samples datasets. The collection 

includes 11,000 chest X-rays comprising COVID-19, pneumonia, 
tuberculosis, and normal non-diseased images. The dataset 
includes Anterior-posterior chest X-rays of diseased people in 
PNG format. The sample dataset is shown in Figure 5. We trained 
65% of our dataset and tested 35%. Unlike centralized deep 
learning model training, the FL need not collect all the data on a 
single server. The FLEM framework enables model training using 
diversified datasets. Thus, it promises data privacy and minimizes 
the need for a huge amount of data transfer. In the current work, 
the central server model training has been completed with 3000 
no. of chest x-ray images. Four models considered are 
InceptionV3, Convolution2D, VGG16 and ResNet50 for the 
classes of covid19, Pneumonia and tuberculosis diseases (Jasmine 
Pemeena Jasmine Pemeena Priyadarsini et al., 2023; Akinwamide 
et al., 2024) The dataset is divided into three portions, and the 
three hospital servers will use each portions for local model 
training. The dataset division ensures that a variable number of 
images with varied sizes are allocated to each HLS, ensuring a 
diligent dataset for the investigation. The FLEM initial training 
session starts by assigning HLS1 15c00 images of size 107.81 MB, 
HLS2 1000 images of size 100.2 MB, and HLS3 2200 images of 
size 175 MB, totaling 4700 images. The subsequent model 
training uses 1000 images of size 89 MB on HLS1, 1650 images of 
size 120 MB on HLS 2, and 2000 images of size 150 MB on HLS3, 
totaling 4650 images. As shown in the Figure 4, in client-side 
processing, the model parameters were updated with the central 
server to refine the central model. In the third level of  
training, HLS1, 2, and 3 were assigned 2000, 3500, and 4000 no. 
of images with a total size of 165MB, 190MB, and 220MB, 
respectively.

The first stage in the workflow is data pre-processing; the 
second is training before image augmentation. We  conduct 
validation to check the accuracy of the models after 
pre-processing a portion of the datasets for 100 epochs. Next, 
we perform K-fold cross-validation using different test data to 
evaluate the models' ability to categorize lung infections. Users 
receive the model outputs to guide their interpretation of X-ray 
images for infection and to enhance the accuracy of this 
assessment. This process is essential for a variety of reasons, 
primarily because it enables healthcare decision-making and 
contributes to the timely diagnosis of diseases. The parameters 
used for training the model is shown in Table 1.

5.3 Performance metrics

The performance metrics such as Precision (P), Recall (R), 
F1-score (F1Score) and Accuracy (A) are used to compare the 
performances of the employed InceptionV3, Convolution2D, VGG16 
and ResNet50 models. The details are described as follows,

Precision is computed as the ratio of actual positive cases correctly 
classified to the total number of positive cases classified. Equation 1 
shows the precision.

 
=

+
P

P P

TP
T F  

(1)

Where PT  denotes True Positive cases that are positive that have been 
typed as positive and PF  is the cases that are actually negative but have 
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FIGURE 5

Sample dataset.
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been typed as positive. Sensitivity, which is also referred to as recall or true 
positive rate, is obtained by comparing the number of actually positive 
patients that were correctly diagnosed on the part of a total number of 
actually positive patients. Recall is described by Equation 2.

 
=

+
P

P N

TR
T F  

(2)

In Equation 2, False Negative NF  represents the false negative 
instances, which means they are identified to be negative while they 
are positive. The F1-score obtained from the average of the precision 
and recall, which gives an equal measure of the performance of the 
model. Equation 3 shows the F1-score calculation.

 

× = × + 
1 2Score

P RF
P R  

(3)

Accuracy is the percentage of correct predictions out of the total 
predictions made. Equation 4 demonstrates the accuracy. Accuracy 
quantifies and evaluates the overall model performance across 
all classes.

 

+
=

+ + +
P N

P N P N

T TA
T T F F  

(4)

All these metrics give a measure of the ability of the model in the 
identification of COVID-19, pneumonia, and tuberculosis from the 
chest X-ray images. Higher values are more desirable in distinguishing 
between the affected and non-affected instances, which is critical for 
decision-making in clinical practice.

5.3.1 Performance metrics of the FLEM 
framework

FLEM framework differs from Central Server-based Learning 
Model (CSLM) frameworks in terms of performance measures 
such as training time, convergence time and bandwidth 
consumption. Each of these performance metrics is described 
as follows.

CSLM training time ( )t
CT  is the sum of the time required to load 

the dataset in the server ( )load
datasetT  and the time expended for training 

the model at central server( train
CT ) and is described in Equation 5.

 = +t
C

load train
CT datasetT T  (5)

FLEM server training time ( )t
FT  is defined as the sum of time 

required for parallel training of local models on every hospital server 
( )train

FT , time required to aggregate the models ( )model
AT  and the 

communication time consumed between hospital local servers and the 
central server ( C

FCT ).

 = + +t
F

train model C
F A FCT T T T  (6)

CSLM convergence time is the time taken by the deployed model 
to obtain a certain level of accuracy in the central server. Equation 7 
shows the formula of this convergence time.

 

( )

=
= ∑ t

1

e
nt

C
n

C C
 

(7)

Where, e is the total no. of epochs needed for convergence and 
( )
t
nC is the time taken for the nth epoch.

FLEM convergence time ( t
FC ) is defined as the time taken by the 

model to converge based on FL-based training. Equation 8 shows the 
formula of the FLEM convergence time.

 

( ) ( ) ( )

=

 = + + 
 ∑ aggregation communicationlocal

1

r
n n nt

F
n

C T T T
 

(8)

In Equation 8, r is the number of communication rounds needed 
for convergence, ( )

local
nT  is the training time at hospital local server for 

the nth round, ( )
aggregation

nT is the aggregation time for the nth round and 
( )
communication

nT  is the communication time for the nth round.
The total bandwidth consumption of the central server ( )CB

based deep learning framework refers to the two way communication 
bandwidth of the central server and the client.

 = × ×2C dB D S  (9)

Equation 9 shows the formula of computing the BW consumption 
of the CSLM framework. In Equation 9, D is the number of data 
samples and dS  is the size of each data sample.

The total bandwidth consumption of FLEM ( )FB  is defined by 
using equation 10.

 = × ×F 2 MB r S  (10)

In Equation 10, r is the number of communication rounds and MS  
is the total size of the model parameters in Bytes.

5.4 Results and discussion

This study used four distinct models: InceptionV3, 
Convolution2D, VGG16, and ResNet50. Three data sets were used to 
train the FLEM models to ensure the functioning of FL. The 
experiments were conducted with three rounds of training, and the 
results obtained by the employed models were analyzed to find a 
suitable model for lung disease classification. Table  2 presents a 
comprehensive summary of the results attained by the employed 
models on the proposed FLEM framework. The results were obtained 
after updating the third round of training.

Figure  6 shows the graph comparing the performance of the 
employed model in terms of precision, recall, F1 score and accuracy. 
ResNet50 showed outstanding performance in metrics for COVID-19 
classification, with an accuracy of 97.72%. VGG16 also performed 
well, while Convolution2D had the lowest scores. Inception V3 
achieved better results with 6.67% more accuracy than Conv2D due 
to the use of an inception module that helps capture different levels of 
features by using multiple filter sizes. Overall, RESNET 50 achieved 
noticeable results, with a 5.3 and 6% increase in accuracy compared 
to inception V3 and VGG16. The reason is ResNet50’s effectiveness in 
learning complex features. Conv2D represents a simpler architecture 
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with fewer parameters and layers than the others, which limits its 
capacity to learn complex patterns, resulting in lower performance.

InceptionV3 model implementation revealed 5.85, 7.03, 5.69 
and 6.39% increases in precision, recall and F1-Score and 
accuracy, respectively, for Pneumonia classification. ResNet50 

again showed superior performance for Pneumonia classification 
with an accuracy of 95.42%, which is 3.09% higher than 
InceptionV3 and 3.6% higher than VGG16. ResNet50 achieved a 
high accuracy of 93.17% for Tuberculosis classification when 
compared with the other three models. InceptionV3 and VGG16 

FIGURE 6

Perfomance comparisns of employed models after third round of model training.

TABLE 2 Performance evaluation of InceptionV3, Convolution2D, VGG16 and ResNet50 models on COVID-19, PNEUMONIA and TUBERCULOSIS 
classification.

Model Name Lung disease Precision Recall F1-Score Accuracy

InceptionV3 COVID-19 92.8 92.8 91 92.8

Convolution2D 87.9 88.9 87.5 87

VGG16 93 92 93 93

ResNet50 95.68 96.82 96.2 97.72

InceptionV3 PNEUMONIA 92.7 92.29 91.8 92.56

Convolution2D 87.57 86.23 86.86 87

VGG16 93 92 93 92.5

ResNet50 94.06 92.76 93 s.4 95.42

InceptionV3 TUBERCULOSIS 91.29 90.9 90.96 90.15

Convolution2D 91.05 89.03 89.78 89

VGG16 93 92 92.07 92.25

ResNet50 94.40 94.07 92.7 93.17
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were also effective, producing an accuracy of 90.15 and 92.25%, 
while Convolution2D had the lowest performance with 89% 
accuracy.

Figures 7A–D shows the confusion matrix, ROC curve, Epochs 
vs. accuracy and Epochs vs. loss graph of the ResNet50 model, 
respectively. The Epochs versus testing data accuracy of Inceptron V3, 
Convolution2D, VGG-16 and ResNet50 models are shown in Figure 8. 
Figure 8A shows the testing data accuracy of CNN models such as 
InceptionV3, Convolution2D, VGG16, and ResNet50 for a COVID-19 
dataset with varying numbers of epochs. The accuracy of InceptionV3 
increases as the number of epochs increases. The results revealed that 
the highest accuracy, 92.8%, was achieved at 100 epochs, and it 
decreased to 78% at 20 epochs. Both Convolution2D and VGG16 
models also show a drop in accuracy with less no. of epochs. With 
Convolution2D and VGG16 models, the proposed method achieved 
the highest accuracy of 87 and 93% at 100 epochs, respectively, 
whereas, at 20 epochs, Conv2D and VGG16 models produced an 
accuracy of 69.1 and 82%, respectively. From the results shown in 
Figure 8A, the ResNet50 model produced a high accuracy of 97.72% 
compared to the other three models at 100 epochs, even though it 
started up with 84.69% accuracy with 20 epochs.

The performance comparison in terms of accuracy computed with 
varying epochs is shown in Figure 8B for the pneumonia dataset. 
ResNet50 achieved a higher accuracy on the proposed FLEM 
framework than the other three models tested on the proposed 
framework. The model’s test accuracy increases as the no. of epochs 
increases. InceptionV3, Conv2D, and VGG16 showed an accuracy of 
92.56, 87, and 92% at 100 epochs, and the accuracy significantly 
decreased to 83, 72.25, and 84% at 20 epochs, respectively.

Figure  8C shows the accuracy percentage comparison of the 
employed models on the proposed FLEM framework for the 
Tuberculosis dataset for the different epochs from 20 to 100. The 
inceptionV3 model showed a significant rise in accuracy from 69 to 
90.15% for epochs 20 and 100. The accuracy increases with fewer 
epochs. Results revealed the progressive accuracy increase for 
increasing epochs, and the Conv2D model produced 89% accuracy at 
100 epochs. VGG16 showed gradual performance improvement from 
an accuracy value of 73 to 92.25%. As the graphs show, the ResNet50 
model outperformed the other three models with the highest 
accuracy of 94%.

Table 3 shows the comparative measures in terms of training time, 
convergence time, and bandwidth consumption between the proposed 

FIGURE 7

(A) Confusion matrix, (B) ROC curve, (C) Epochs vs. Accuracy graph (D) Epochs vs. Loss graph of RESNET 50 Model.
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FIGURE 8

Accuracy of INCEPTIONV3, Conv2D, VGG16 and ResNet50 models on the proposed FLEM framework for (A) COVID-19, (B) Pneumonia and (C) TB 
classification.
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FLEM framework and the CSLM framework. The description of the 
performance measures is given in Section. The performance records 
of the FLEM and CSLM framework vary depending upon several 
factors, such as the total size of the dataset, the number of HLS, the 
computation power and storage capacity of the machines and the 
network speed.

The total training time is measured by recording the total 
experiment time and it is measured using Equation 5 and 6. Each HLS 
connected with the configured Central server with an uplink speed of 
16 Mbps and downlink speed of 26.5Mbps. The investigations were 
carried out with 100 epochs. InceptionV3, Conv2D, VGG16 and 
ResNet50 models were deployed and tested with variety of dataset on 
both CSLM and FLEM framework. With FLEM framework, parallel 
processing at HLS can save the training time with an assumption of 
stable network conditions. The training time is considerably high due 
to the initial loading time of the dataset and huge processing at 
central server.

In the FLEM framework, the overall convergence took longer 
than the convergence time at CSLM due to the distributed nature 
and potential variability in  local training performance. The 
convergence time for CSLM and FLEM is measured using 
Equation 7 and 8 respectively. It often requires multiple 
communication rounds to reach convergence. A shorter 
convergence time resulted in a CSLM environment as training is 
centralized and consistent on an average of 22.5% higher 
convergence time in the FLEM environment than in the CSLM 
environment. Though the CSLM system converges more quickly 
with a certain level of accuracy than FLEM, the obtained accuracy 
is significantly less in the CSLM environment. The table results 
showed that though the CSLM system converged with a 
considerable number of epochs, it resulted in a 5, 8, 9, and 10% 
accuracy reduction when compared to the FLEM-based training 
of InceptionV3, Conv2D, VGG16, and ResNet50, respectively. 
Thus, the FLEM framework ensured better accuracy than the 
central server-based learning model.

The bandwidth consumption of the CSLM framework was 
computed using Equation 9. We  consider 5,000 chest X-ray 
images, each approximately 95 KB. By substituting the value 
BW = 2 × 5,000 × 95,000 = 950,000,000 bytes = 950 MB per sec. 
The bandwidth consumption at the FLEM environment was 
computed using Equation 10. We assume the average dataset size 
at each HLS is 180 MB, and the number of rounds is 3. The 

approximate size of the model update for the three employed 
models includes 3*9 MB = 27 MB. The total bandwidth 
consumption of the FLEM model is 2*3*27 = 162 MB per sec. 
FLEM framework consumed less bandwidth by sharing only the 
model update parameters rather than sharing the massive volume 
of raw data. Federated learning effectively minimizes the 
bandwidth and storage needs for data transmission. However, 
frequent communication rounds can increase bandwidth usage. 
CSLM resulted in higher bandwidth consumption due to the 
transfer of large volumes of raw data to the central server.

5.5 XAI-FLEM test bed setup and results

From the observations on accuracy and related performance 
measures such as Bandwidth consumption, training time, and 
convergence time explained in Section 5.4, the FL framework with the 
ResNet50 model outperformed the other learning models. Hence 
we created a test bed that simulates the XAI-FLEM using ResNet50 
for lung disease diagnosis, along with Explainability using Grad-
CAM, SHAP, FedXAI, and Differential Privacy. This simulation 
involves: 3 virtual hospitals (participating client nodes), Shared 
ResNet50 model structure, Simulated local data partitions, Model 
training on local data, Explainability per node (Grad-CAM, SHAP), 
Federated Aggregation (FedAvg), FedXAI (aggregated Grad-CAM) 
and Differential Privacy (Gaussian noise to gradients) (Alkhanbouli 

TABLE 3 comparative measures in terms of training time, convergence time, and bandwidth consumption between the proposed FLEM framework and 
the CSLM framework.

Model Framework Training Time 
(minutes)

Nth Epoch at 
which converged

Convergence Time 
(minutes)

Accuracy (%)

InceptionV3 CSLM 575 80 545 86.5

InceptionV3 FLEM 600 100 580 91.8

Conv2D CSLM 620 75 590 79.5

Conv2D FLEM 640 100 620 88

VGG16 CSLM 580 85 550 84.2

VGG16 FLEM 625 100 600 92.5

ResNet50 CSLM 584 70 554 85.65

ResNet50 FLEM 610 100 585 95.5

TABLE 4 Testbed Components.

Component Description

Dataset Split Partition the chest X-ray dataset among 3 clients 

(hospitals)

Local Training Each hospital trains ResNet50 on randomly partitioned 

data

Model Aggregation Federated Averaging (FedAvg) for global model

Grad-CAM Local explainability visualizing model focus on lungs

SHAP Analyze feature importance on a per-hospital basis

FedXAI Aggregate local Grad-CAM heatmaps to simulate global 

explanation

Differential Privacy Noise injected to gradients before sharing with server
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FIGURE 9

Local explainability via Grad-CAM.

FIGURE 10

SHAP summary plot.

et  al., 2025; Mohale and Obagbuwa, 2025). Table  4 shows the 
description of the Test bed components.

Figure 9 shows the heat maps for each hospital’s model using 
Grad-CAM. Each column represents participating hospital client 
nodes (1, 2, 3). The rows show two different input X-ray images. 
Grad-CAM highlights important regions for prediction in red and 
yellow. From the figure, we  can observe the following variability: 
Hospital 1 focuses more on both lungs, Hospital 2 emphasizes the 
central region, and Hospital 3 shows no visible heat map, indicating 
either low confidence or no activation due to local data variance. 
Figure 10 illustrates the distributions of the feature importance across 
hospitals using SHAP (SHapley Additive exPlanations). The X-axis 

shows the impact of each feature on model output. The Y-axis 
represents the impact on each features such as pixel groups and lung 
texture features. Each dot on the graph corresponds to a prediction 
sample. The coloring indicates feature values, with red representing 
high values and blue representing low values. The repeated triplets 
correspond to Hospitals 1, 2, and 3. Hospitals 1 and 2 exhibit a strong 
focus on Feature 1 and Feature 2, whereas Hospital 3 displays greater 
variation or noise, which may be  attributed to differing data 
distributions or training instability.

Figure  11 shows the Grad-CAM heatmap generated through 
FedXAI (federated explainability) which was obtained by averaging 
the from Grad-CAM outputs from hospital clients. From the figure, it 
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is evident that the Central lung region exhibits the highest relevance. 
The primary purpose of this demonstration is to highlight the privacy-
preserving aggregation of interpretability information, enabling the 
insights without sharing raw models or data.

Figure 12 consists of two graphs: the top graph displays Accuracy vs. 
Rounds and the Bottom graph compares Accuracy vs. DP(Differential 
Privacy) Noise Level. In the first graph, the blue line illustrates the model 
performance over training rounds. Accuracy starts at approximately 82%, 
and plateaus around 91%, indicating that FL with ResNet50 converges 
fairly well. The second graph has the X-axis representing the noise level 
added to gradients for DP, and the Y-axis shows the final model accuracy. 
The orange curve shows accuracy drops as noise increases. The graph 
emphasizes the trade-off between privacy and performance where 
increased privacy results in lower accuracy.

6 Conclusion and future work

This research investigates employing the federated learning-XAI 
based framework for efficient diagnosis of lung diseases. The 

trained model is deployed in hospitals for real-time privacy-
preserving diagnosis. FLEM-XAI uses techniques such as SHAP, 
Grad-CAM, and FedXAI to promote transparent decision-making. 
This framework implements Federated Differential Privacy (FedDP) 
to ensure data security. The FLEM-XAI framework combines 
Federated Learning (FL) with explainable AI (XAI) techniques such 
as SHAP, Grad-CAM, and Differential Privacy. This enhances the 
interpretability of lung disease classification models while ensuring 
data privacy in medical settings. The feasibility analysis of using the 
FLEM-XAI model as a replacement for the traditional central 
server-based learning model has been conducted with COVID-19, 
tuberculosis, and pneumonia datasets. The performance analysis 
was carried out using InceptionV3, Conv2D, VGG16, and ResNet50 
focusing on metrics such as Precision, Recall, F1 Score, and 
Accuracy. The FLEM framework was implemented with a 
simulation. Also, the performance of the proposed FLEM 
framework was justified by computing the training time, 
convergence time and the total bandwidth consumption. The 
testing data accuracy of CNN models such as InceptionV3, 
Convolution2D, VGG16, and ResNet50 for COVID-19, Pneumonia 
and Tuberculosis datasets with an increasing number of epochs 
analysed. Results show that the model resulted in better accuracy 
with the FLEM environment. The ResNet50 model produced a high 
average accuracy of 95.5% compared to the other three models at 
100 epochs. Also, it is evident from the results that the FLEM 
framework consumed less bandwidth by sharing only the model 
update parameters rather than sharing the massive volume of 
raw data.

Exploring model compression techniques can significantly 
reduce the bandwidth needed during training. Additionally, 
examining diverse datasets with different characteristics yields more 
robust results. Since FLEM involves combining multiple models, 
improving interpretability is essential. Future work focuses on 
developing techniques that offer insights into how ensemble decisions 
are made, thereby fostering user trust in federated environments. In 
the future, we  aim to apply the FLEM-XAI to more real-world 
applications by utilizing fully homomorphic encryption to safeguard 
against adversarial attacks within the proposed framework.
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FedXAI aggregated heatmap.

FIGURE 12

Training and performance.
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