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The risk of fires in both indoor and outdoor scenarios is constantly rising around 
the world. The primary goal of a fire detection system is to minimize financial 
losses and human casualties by rapidly identifying flames in diverse settings, such as 
buildings, industrial sites, forests, and rural areas. Traditional fire detection systems 
that use point sensors have limitations in identifying early ignition and fire spread. 
Numerous existing computer vision and artificial intelligence-based fire detection 
techniques have produced good detection rates, but at the expense of excessive 
false alarms. In this paper, we propose an advanced fire and smoke detection 
system on the DetectNet_v2 architecture with ResNet-18 as its backbone. The 
framework uses NVIDIA’s Train-Adapt-Optimize (TAO) transfer learning methods to 
perform model optimization. We began by curating a custom data set comprising 
3,000 real-world and synthetically augmented fire and smoke images to enhance 
models’ generalization across diverse industrial scenarios. To enable deployment 
on edge devices, the baseline FP32 model is fine-tuned, pruned, and subsequently 
optimized using Quantization-Aware Training (QAT) to generate an INT8 precision 
inference model with its size reduced by 12.7%. The proposed system achieved a 
detection accuracy of 95.6% for fire and 92% for smoke detections, maintaining a 
mean inference time of 42 ms on RTX GPUs. The comparative analysis revealed 
that our proposed model outperformed the baseline YOLOv8, SSD MobileNet_v2, 
and Faster R-CNN models in terms of precision and F1-scores. Performance 
benchmarks on fire instances such as mAP@0.5 (94.9%), mAP@0.5:0.95 (87.4%), 
and a low false rate of 3.5% highlight the DetectNet_v2 framework’s robustness 
and superior detection performance. Further validation experiments on NVIDIA 
Jetson Orin Nano and Xavier NX platforms confirmed their effective real-time 
inference capabilities, making them suitable for deployment in safety-critical 
scenarios and enabling human-in-the-loop verification for efficient alert handling.
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1 Introduction

The threat of fire accidents has always been a greater cause of 
concern; it has a high potential to cause severe damage to the economy, 
society, and mankind. National Disaster Management Authority 
(NDMA) of India (Fires in India: Learning Lessons for Urban Safety, 
2020) has listed numerous causes of fire incidents, including gas or 
electric device malfunctioning, electrical faults, and explosions caused 
by flammable objects. As per the statistics, most of the fire-related 
fatalities are due to inhalation of toxic gases, which are more 
dangerous than external burn injuries. Oxygen deprivation by the 
release of poisonous gases from burning objects is the other serious 
cause of fire-related deaths. Fire is categorized as a human-induced 
disaster by the NDMA, highlighting the necessity of effective 
prevention measures. According to UK government data, the fire 
service responded to 5,55,759 events in 2019, out of which fires 
accounted for 28% (1,57,156) of these incidents (Fires in India: 
Learning Lessons for Urban Safety, 2020). In India, as per the National 
Crime Records Bureau's (NCRB) Accidental Deaths and Suicides in 
India (ADSI) report [Accidental Deaths and Suicides in India (ADSI), 
2022], as many as 7,435 persons lost their lives in over 7,500 fire 
incidents in 2022. Currently, smoke and flame detector technologies 
are widely used for indoor environments (Gov, Fire Alarms-Property 
Management, 2020). However, these detectors have several 
restrictions, especially in detecting the rate of fire spread, size, and 
spatial extent, which are crucial inputs for fire personnel required to 
act in time. Conventional methods that rely on thermal cameras or 
smoke detectors often fail to cover bigger industrial spaces, and large-
scale deployments are practically not viable considering the 
deployment and maintenance costs. These are non-invasive 
approaches and lack a thorough understanding of the surrounding 
environment. In contrast, computer vision (CV) based systems are 
more intrusive because they rely on continuous video streams to 
provide greater spatial coverage and real-time analysis. Video 
surveillance, a critical component of early warning systems, plays an 
important role in monitoring and alerting authorities about fire events 
occurring in various environments, such as buildings, factories, and 
public spaces. The AI-based video surveillance solutions are one of the 
fastest-growing fields of computer vision (CV) research, which 
provides automated detection, tracking, and monitoring features to 
various end-users, including home security, traffic control, and airport 
surveillance (Wang, 2013) departments. With the help of video 
surveillance systems, the early detection of accidental and catastrophic 
fire events can significantly reduce the likelihood of casualties and 
significant damage to properties. The practical limitations of the 
conventional smoke detectors create better opportunities for computer 
vision researchers to develop intriguing alternative solutions (Xiong 
et  al., 2007). In recent years, several video-based fire and smoke 
detection algorithms have been proposed to overcome the traditional 
detectors' limitations, providing more efficient and scalable solutions. 
Fire behavior modeling by combining various signals and image 
processing techniques (Çetin et al., 2013) led to early breakthroughs 
in the video-based fire detection research. Vision-based systems are a 
part of the broader artificial intelligence (AI) research and are 
becoming increasingly important in the development of fire safety 
applications (Healey et al., 1993).

Earlier systems employed handcrafted feature extraction methods 
to carry out fire or smoke detection tasks under diverse environmental 

conditions (Jadon et  al., 2020). However, these methods lacked 
precision and robustness. To accomplish these tasks, several video-
based detection systems proposed the use of textural features like 
color, shape, and motion cues. Yet, accurately capturing and 
representing fire and smoke features involving irregular motion, 
fluctuating shape, varying color, texture, and density remains an open 
challenge, leading to high false alarm rates. As discussed at the 
beginning of this section, conventional thermal imaging cameras and 
smoke detectors provide very limited coverage, particularly in large-
scale workplaces. The high initial setup and maintenance costs make 
them less accessible to many organizations. Hence, the demand for 
affordable alternatives that improve fire and/or smoke detection 
capabilities by utilizing emerging CV and AI-based technologies is 
consistently rising. By utilizing existing CCTV camera infrastructure, 
organizations can easily integrate these intelligent systems into their 
setups. Thus, offering budget-friendly real-time AI surveillance 
solutions (Pincott et al., 2022) that are not only efficient but can easily 
adapt to any given operational environment. These not only enable 
prompt identification of fire hazards but also quickly alert the 
concerned to control the damage, as illustrated in Figure 1. Given the 
critical need for early warning systems in industrial and manufacturing 
sectors, innovative solutions are essential for protecting both human 
lives and factory assets.

To address these issues, we propose an advanced as well as a cost-
effective computer vision and artificial intelligence-based fire and 
smoke detection system. The workflow of the proposed framework 
involves the generation of the synthetic dataset, structuring the data, 
and training on the DetectNet_v2 model to evaluate its performance 
in terms of detection accuracy, inference speed, and deployable 
parameters. The dataset was constructed by utilizing publicly available 
fire and smoke repositories and extending it by extracting high-quality 
frames from online video sources. The next step involves accurate 
bounding box annotations around fire and smoke regions, before 
training. The training operation is carried out on a pre-trained 
DetectNet_v2 architecture that is later optimized via the NVIDIA 
TAO Toolkit. Model reliability is validated by experimenting on test 
datasets containing complex industrial operational scenarios to 
analyze false-positive and missed-detection cases.

2 Related work

This section provides a detailed literature review to highlight the 
gaps in the research as well as the rationale for the goals of the study 
and the methods that were selected.

2.1 CNN-based forest fire and smoke 
detection systems

Climate change and human activities in forest areas have caused 
the frequency of wildfire incidents to increase drastically in recent 
years. High deployment and maintenance costs of thermal sensors 
and smoke detectors, coupled with limited coverage area and slow 
response times, especially in dense vegetated forests, make them 
unpopular choices. On the other hand, computer vision-based 
detection systems offer a cost-effective alternative that enables 
automatic and real-time forest surveillance solutions even under low 
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visibility and challenging weather conditions. These computer 
vision-based systems are often developed using Convolutional 
Neural Networks (CNN) and deep learning-based frameworks to 
achieve high detection performances on input frames supplied from 
live video feeds (Zhou et al., 2016). Since CNN architectures can 
perform feature extraction and classification operations in a single 
pass, they offer highly accurate detections at low latency even in 
applications involving complex or low-light scenes. Thus, eliminating 
the need to develop handcrafted ground truth features. Their 
deployment in wildfire monitoring can significantly contribute to 
timely alerting and mitigation efforts. Several CNN-based studies 
have demonstrated their applicability in forest fire detection 
scenarios through acceptable precision and recall performances. The 
use of CNNs in vision-based coal mine area surveillance has reported 
good detection accuracies with negligible false detection rates, 
thereby creating an impact in critical applications (Toptaş and 
Hanbay, 2020). These research findings influence their deployment 
in similar forest areas, where early smoke detection can 
be  particularly challenging due to occlusion, poor lighting, and 
cluttered backgrounds. Further, CNN-based models need to 
constantly adapt to changing weather conditions and diverse 
vegetation types in forest landscapes. This emphasizes the need for 
further investigation into the development of more resilient and 
generalizable architectures that utilize contextual and temporal 
information for improved reliability.

Numerous studies have concentrated on CNNs' adoption in 
CV-based fire and smoke detections, demonstrating their superior 
performance over traditional vision-based fire detection methods 
(Avazov et al., 2022; Zhang et al., 2016). To classify fire and smoke 
patterns from real-time video streams, wildfire detection systems (Wu 
and Zhang, 2018) employed DL-based frameworks, including SSD 
(Single Shot MultiBox Detector), YOLO (You Only Look Once), and 
Faster R-CNN. Even though methods reported good detection 
accuracies at reasonable computational costs, the detection latency 
and validation under noisy environments are not reported in this 
literature. Generalization capabilities in unseen environments when 
these models are trained on small, customized datasets are also not 
well explained. Without clear evidence on trade-offs, selecting the 

optimal detection framework for specific deployment scenarios will 
become more challenging.

In another study, the forest fire and smoke detection using a 
DL-based method (Sathishkumar et al., 2023) utilizes transfer learning 
techniques on pre-trained models like VGG16, InceptionV3, and 
Xception, combined with a “learning without forgetting” approach. 
While learning without forgetting guarantees that the model can 
continuously learn new classes without forgetting previously learned 
ones, transfer learning enables the model to leverage the information 
from large-scale datasets. While this approach improves detection 
adaptability and classification accuracy, it lacks a detailed examination 
of hyperparameters, model configurations, and performance 
scalability required for fine-tuning the models before deployment in 
diverse conditions. So far, the researchers have predominantly focused 
on outdoor environments, particularly in forest fire scenarios. Still, a 
significant research gap exists in the development and evaluation of 
CNN-based fire detection models customized for commercial or 
industrial workplace scenarios, where fire characteristics, visual 
obstructions, and environmental variations pose key challenges. 
Urgent need to address these gaps is essential for developing 
comprehensive, real-world fire detection solutions that extend beyond 
forest environments.

2.2 CNN-based fire and smoke detection 
systems in industrial environments

An important method of real-time fire and smoke detection from 
video surveillance involves the use of a parallel computing CUDA 
(Compute Unified Device Architecture) (Filonenko et  al., 2018) 
framework, designed to accelerate NVIDIA GPUs' performance. In 
applications involving moving object detection, the CUDA framework 
adopts a background subtraction technique and performs color 
probability analysis to segregate smoke from non-smoke objects. 
Apart from this, it performs boundary roughness predictions and edge 
density analysis to detect unseen smoke patterns. Since the CUDA 
frameworks heavily rely on the static visual fire patterns and attempt 
to speed up these computations to match the best performances in 

FIGURE 1

Workflow of the computer-vision-based indoor fire and smoke detector system.
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controlled environments (stationary cameras). Hence, making it 
inappropriate for dynamic industrial surveillance applications.

An alternative approach, a deep CNN-based fire detection system 
called “DeepCNN” (Muhammad et  al., 2019), utilizes AlexNet 
(Krizhevsky et al., 2017) and a transfer learning technique to develop 
an intelligent feature map selection strategy for fire detection. Despite 
its smaller model size (3 MB compared to AlexNet's 238 MB), this 
method achieves 94.50% accuracy, while minimizing false alarms, 
making it suitable for resource-constrained environments. However, 
the study lacks emphasis on contextual scene understanding or object-
level reasoning, which act as important deciding parameters for robust 
decision-making in complex industrial scenarios. The absence of a 
specific and tailored dataset containing varied industrial scenes 
further limits the model’s differentiating capacity.

Another complex video-based smoke detection system called 
“AdVISED” (Gagliardi and Saponara, 2020) integrates multiple 
analytical techniques to perform image segmentation, color space 
analysis, Kalman filtering for object tracking, and geometric feature 
extraction tasks. The objective of this multifaceted method is to 
enhance the resilience and accuracy of smoke detections in systems 
where smoke appearance is influenced by textured or colored 
backgrounds. Thus, limiting the robustness due to varying lighting 
conditions or when smoke characteristics deviate from their required 
patterns. Additionally, the cumulative computational load imposed by 
sequential processing stages may hinder real-time performance, 
especially in embedded or resource-constrained devices.

CNN-based YOLOv2 architecture offers fast processing 
capabilities on a small training dataset, making it the best choice in 
the development of efficient fire-smoke surveillance applications 
(Saponara et al., 2021). Several studies utilized Faster R-CNN (Tien 
et al., 2020), Inception_v2 (Wei et al., 2020; Feng et al., 2016), and SSD 
MobileNet_v2 (Sandler et al., 2018; Tsang, 2020) models to evaluate 
on indoor-specific datasets. Training with a limited and diverse dataset 
resulted in more missed detection rates, achieving average accuracy.

To boost the real-time performance on resource-constrained 
applications such as coal mines, an improved YOLOv8s-based model 
with faster convolution layers and attention mechanisms was 
developed. This approach achieved a mean Average Precision (mAP) 
of 91.0%, while consuming fewer computational resources, making it 
appropriate for mine surveillance environments (Kong et al., 2024; 
Redmon et al., 2016). Further research is required to fully assess its 
scalability and versatility across different coal mining conditions 
before deploying it in larger mine areas. A method to detect small 
objects such as cell phones utilised a combination of YOLOv8 and 
ResNet-18 feature classification layers (Deshpande et al., 2025b), to 
produce a decent mean Average Precision (mAP@0.5) of 49.5% at an 
Intersection-over-Union (IoU) threshold of 0.5. Similarly, the ResNet-
18-based traffic monitoring systems (Deshpande et  al., 2025c; 
Deshpande et al., 2025a) under complex backgrounds achieved a high 
91.42% accuracy for triple riding violations, and 98.5% for helmet 
violations at considerably slower detection rates.

The incidents involving fire hazards, early detection, and swift 
actions are essential to prevent production disruptions, property 
losses, and fatalities in manufacturing industries. Despite advances in 
CV and DL technologies, many existing fire and smoke detection 
systems still face significant limitations such as high false detections, 
inadequate inference speeds, and poor generalization issues. 
Unpredictable fire and smoke patterns, inappropriate lighting 

conditions, occlusions, and limited industry-specific fire and smoke 
datasets are the additional factors that hinder the model's performance. 
Very few researchers have tried to solve the indoor residential fire and 
smoke detection problem. To bridge these gaps, we  propose a 
computer vision and AI-based fire/smoke detection system specifically 
designed to serve industrial indoor and outdoor use cases using the 
DetectNet_v2 architecture. To quickly optimize and develop a reliable 
fire and smoke hazard detection system, we employ a transfer learning 
approach that enables us to seamlessly integrate the proposed solution 
with the existing CCTV infrastructure to serve a variety of industrial 
use cases. The rest of this paper is organized as follows: Section 3 
describes our proposed DetectNet_v2 framework, Section 4 presents 
a comprehensive experimental setup and evaluation procedures. 
Section 5 concludes the study by highlighting contributions and 
potential future research directions.

3 Proposed computer vision-based 
fire and smoke detection system

To address the challenges discussed in the previous section, 
we present a transfer learning based real-time fire and smoke detection 
system using the DetectNet_v2 framework that utilizes ResNet-18 as 
its backbone network. The overall system workflow, comprising 
dataset engineering, model training and validation, and performance 
evaluation, is depicted in Figure 2.

3.1 Data engineering and preprocessing

The first phase in the implementation process involves the 
construction of a comprehensive and diverse custom dataset to 
perform the training and evaluation of the proposed fire and smoke 
detection model. The dataset comprises synthetically generated 
(augmented) images from video frames featuring a wide range of fire 
and smoke scenarios captured in industrial and indoor environments. 
Bounding box annotations across accurate fire and smoke regions of 
interest (ROIs) are marked to ensure that the model learns to localize 
fire and smoke instances effectively.

Image acquisition, pre-processing, and data augmentation: 
we started the process by collecting a total of 1,360 images containing 
fire and smoke incidents from publicly available internet sources and 
a publicly available dataset (Senthil, 2025). These samples feature 
various industrial parameters across different lighting conditions and 
environmental variations, as indicated in Figures 3a,b.

To extend the dataset size and simulate on realistic scenarios, 
synthetic augmentation using Adobe Premiere Pro is performed as 
shown in Figure 3c. The fire and smoke assets extracted from stock 
video repositories are blended into base images to generate synthetic 
cases, resulting in 1,580 augmented samples, as summarized in 
Table 1. This process involves strategic placement and blending to 
achieve a natural integration of the effects into the existing 
environment. Techniques such as color matching, scaling, and motion 
tracking are employed to ensure that the fire and smoke appear 
seamless within the footage. In addition, 1420 real-world images from 
various online sources and public repositories (Senthil, 2025) are 
curated, representing authentic fire and smoke incidents across diverse 
environments as listed in Table 1. The pre-processing techniques, like 

https://doi.org/10.3389/fcomp.2025.1636758
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Deshpande et al. 10.3389/fcomp.2025.1636758

Frontiers in Computer Science 05 frontiersin.org

resizing and denoising, are applied to enhance the image quality and 
make it best suitable for feature extraction. Denoising is achieved 
primarily through built-in effects and plugins designed to reduce 
video noise, especially in low-light footage. In the later step, the 
gathered images are carefully processed and annotated with the help 
of a flexible labelling application called “LabelImg”. To ensure correct 
ground truth for supervised learning, critical fire and smoke 
characteristics are carefully labeled and annotated, as indicated in 
Figure 4a. To enable edge devices such as Jetson Orin to efficiently 
perform real-time processing at a minimum average benchmark 
inference speed of 22 frames by keeping GPU memory usage as low 
as possible, we limit image size to 1280x720 pixel resolution. This 
resolution helps to balance model accuracy and computational load 
on resource-constrained edge platforms. After the data cleaning 
process, the combined effort resulted in a dataset of 3000 (1640 fire 
and 1360 smoke) images containing 1580 augmented and 1420 real-
world images, as detailed in Table 1.

KITTI format: the training process on the DetectNet_v2 
architecture requires the utilization of NVIDIA’s TAO Toolkit. To 

comply with the TAO’s object detection pipeline, the annotated 
images are carefully converted to the KITTI format. Each KITTI 
label file is a plain text file where each line corresponds to one 
object instance. A total of 15 elements per object are included as 
indicated by a sample KITTI file (top) and its description (bottom) 
depicted in Figure  4b. The description typically indicates 
the following:

 • class name: e.g., “fire”
 • xmin, ymin, xmax, ymax: e.g., 27, 18, 127, 203

The remaining fields can be set to default values (e.g., 0) as they 
are not used during training. After all images are labelled and 
converted to the appropriate format, the final dataset is ready to 
be used for training the DetectNet_v2 model.

3.2 Model selection and training

Several state-of-the-art deep learning-based object detection 
algorithms have been explored recently to address the challenges 
discussed in Section 2.2. Here is a list of the most well-established and 
widely used object detection architectures:

 • Single-shot MultiBox Detector (SSD)
 • Region-Based Convolutional Neural Network (R-CNN)
 • You Only Look Once (YOLO)
 • RetinaNet
 • DetectNet
 • CenterNet

Among these, the YOLOv8 framework has gained popularity 
for its speed and accuracy since it treats the object detection task 
as a regression issue rather than a classification task and hence 
predicts bounding boxes with its class probabilities directly from 
complete images in a single pass. YOLOv8 demonstrated 
suboptimal performance in generalizing fire and smoke detection 
under varying industrial conditions, including changing lighting, 
texturing, and scene complexities. In contrast, DetectNet_v2 works 
effectively in diverse environmental situations and is tailored for 
real-world deployment, making it a more suitable choice for fire 
and smoke detection tasks. The model offers robustness to cluttered 
backgrounds, and it works effectively in places that produce varying 
lighting conditions. Transfer learning, DetectNet_v2’s grid-based 
prediction, and a reliable feature extraction pipeline help to 
accurately localize fire and smoke objects in complex manufacturing 
process scenarios that contain amorphous fire or smoke-
like objects.

3.2.1 NVIDIA TAO toolkit and DetectNet 
(ResNet-18) model

To perform model customization and training, we employed a 
low-code, Python-based AI toolkit called the “NVIDIA TAO Toolkit,” 
specifically designed for accelerating the development of computer 
vision (CV) applications. The transfer learning feature of TAO enables 
users to adapt pre-trained models on user-defined custom-labeled 
datasets, facilitating effective pattern identification in complex setups 
without requiring extensive model knowledge. The toolkit is based on 

FIGURE 2

Workflow of our proposed computer vision-based fire and smoke 
detection system.
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TensorFlow and PyTorch and provides access to more than 100 
pre-trained models. The models can be exported in ONNX format, 

ensuring compatibility across multiple inference engines and 
platforms, as indicated in Figure 5.

As seen in Figure 5, the TAO workflow supports the following 
crucial operations:

 • Dataset preparation and augmentation
 • Model training and evaluation
 • Inference and performance tuning
 • Pruning, quantization, and export for deployment

Detectors such as Faster R-CNN follow a two-stage mechanism 
where the candidate object regions are generated before 
accomplishing classification operations. On the contrary, NVIDIA’s 

FIGURE 3

Sample fire and smoke datasets used in our work representing (a) indoor and outdoor industrial environment, (b) fire and smoke samples,  
(c) augmented fire (orange) and smoke (blue) images, (d) real-world fire and smoke instances (Senthil, 2025).

TABLE 1 Summary of augmented and real fire and smoke images used in 
our study.

Category Class Total 
images in 
datasetAugment Real

Fire 861 779 1,640

Smoke 719 641 1,360

Total 1,580 1,420 3,000
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DetectNet_v2 is a single-stage deep learning-based framework 
optimized for deployment for real-time inference and robust object 
localization operations. The model’s unified pipeline helps to 
perform object classification and bounding box regression tasks 
together and thereby maintains high detection accuracy despite 
reduced computational overheads. To meet the object detection task 
requirements, the framework accepts the datasets to be converted 
from other common formats (e.g., COCO) to KITTI. During the 
preprocessing step, the raw labeled KITTI data is converted into a 
binary format compatible with TensorFlow called “TFRecords”. 
Further, DetectNet_v2 performs dataset translation, model training, 

evaluation, inference, pruning, calibration, tensor generation, and 
model export tasks as depicted in Figure 6.

We employ a pre-trained ResNet-18 model as the backbone 
feature extractor within the DetectNet_v2 architecture and retrain it 
on the KITTI dataset. ResNet (Residual Network) is available in 
several configurations (e.g., ResNet-18, ResNet-50). Derived from the 
concept of residual connections, the ResNet allows gradients to skip 
one or more layers to mitigate the vanishing gradient problem and 
effectively train deeper neural networks. Figure  7 illustrates the 
ResNet architecture that comprises 18 convolutional layers (ResNet-
18) grouped into residual blocks.

FIGURE 4

Sample LabelImg and KITTI file (a) fire and smoke labelling indicated by green boxes, (b) a sample text file of an image containing 15 elements per 
object in an image.

FIGURE 5

NVIDIA TAO overview (NVIDIA, 2025).
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Each pair of identically coloured layers denotes a residual block, 
and the black arrows indicate shortcut (skip) connections. Residual 
connections, which omit some layers to allow for deeper networks, are 
scattered throughout the network. Feature maps' spatial dimensions 
are decreased via pooling layers, and classification is carried out by the 
last fully connected layer.

Convolutional layers: convolutional layers process the input image 
by applying a series of learnable filters. To create an activation map, 

each filter moves across the input image (or feature map). The 
convolution operation for a particular filter (W) and input (X) can be 
expressed mathematically using Equation (1):

 
( ) ( ) ( )

= =
∗ = + − + −∑∑

1 1
W X)(i,j X i m 1,j n 1 ·W m,n

M N

m n  
(1)

FIGURE 6

Workflow for creating an optimized and trained DetectNet_v2 (NVIDIA, 2025).

FIGURE 7

DetectNet_v2 with ResNet-18 backbone: layer overview (Beji, 2025).
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Here, M and N are the filter's dimensions, while (i, j) are the 
spatial coordinates in the output activation map.

Activation functions: the convolutional layer's output is subjected 
to a non-linear application of the ReLU (Rectified Linear Unit) 
activation function. The ReLU function is represented with the help 
of Equation (2):

 ( ) ( )=ReLU max 0,x x  (2)

By introducing non-linearity, this enables the network to learn 
intricate patterns.

Batch normalization: to stabilize the learning process and 
minimize the number of training epochs needed, this layer normalizes 
the input to each layer. Given an input 𝑥 with mean 𝜇 and variance 
𝜎^2, batch normalization is defined using Equation (3):

 

µ

σ

−
=

+2
ˆ xx

ò  
(3)

 γ β= +ˆy x

Here, 𝛾 and 𝛽 are learnable parameters, and 𝜖 is a small constant 
to prevent division by zero.

Residual connections: the main principle of ResNet is the insertion 
of residual (skip) connections that bypass one or more layers. A 
residual block for an input x is defined in Equation (4):

 { }( )= +, iy F x W x (4)

Here, the input sent through the shortcut connection is denoted 
by 𝑥, and 𝐹(𝑥, {𝑊𝑖}) denotes the residual mapping to be learned (a 
function of the weights 𝑊𝑖).

Pooling layers (max pooling): by choosing the largest value in each 
window, this stage shrinks the spatial dimensions of the input feature 
map (or patch). For a feature map 𝑋 and a pooling window of size 
𝑘×𝑘, max pooling is obtained using Equation (5):

 ( ) ( )= ≤ < ≤ < + +, max 0 ,0 ,Y i j m k n k X i k m j k n  (5)

3.3 Performance evaluation of the trained 
detection models

An overview of a machine learning model's performance on a set 
of test data is provided using a confusion matrix. Based on the 
model's predictions, the matrix showcases the proportion of accurate 
and inaccurate instances. This method is commonly utilized to test 
the classification model’s performance to predict a categorical label 
for each input instance. We construct a confusion matrix including 
true positives, false positives, and negative results during 
model testing.

Precision: precision measures the accuracy of the positive 
predictions made by the model. One way to describe it is as the ratio 

of all positive forecasts to precisely predicted positive observations as 
expressed in Equation (6).

 ( )= +Precision TP / FPTP  (6)

 • The number of correctly detected objects is known as True 
Positives (TP).

 • The amount of erroneously detected objects (false alarms) is 
defined as False Positives (FP).

Precision gauges how well the model predicts good outcomes. It 
may be  defined as the ratio of all positive forecasts to precisely 
predicted positive observations.

Recall/sensitivity: recall measures the ability of the model to detect 
all relevant objects in the dataset. It is the proportion of all truly 
positive observations to all accurately projected positive observations 
as defined in Equation (7).

 ( )= +Recall TP / TP FN  (7)

False Negatives (FN) are the number of true positive cases that 
were incorrectly predicted as negative. It additionally reveals missing 
objects that were not detected. When a model accurately predicts a 
negative outcome when the actual result is negative, this is known as 
a True Negative (TN) measurement. Additionally, it displays 
accurately recognized non-objects.

4 Results and discussion

To evaluate the effectiveness of the proposed fire and smoke 
detection system, we  perform transfer learning utilizing the 
NVIDIA TAO (Train, Adapt, Optimize) Toolkit, and carry out all 
experiments on an NVIDIA RTX 2000 Ada GPUs. Later, to achieve 
edge deployment compatibility, we  optimize the final pruned 
DetectNet_v2 engine through the INT8 quantization technique. 
The resulting TensorRT engine is then deployed to produce good 
inference runtime efficiency. After post-processing operations, the 
DBSCAN algorithm is used to refine and merge bounding box 
predictions, which is especially helpful in situations where fire and 
smoke instances appear fragmented or spatially dispersed. To 
ensure consistency during training and inference tasks, all input 
images are resized to a uniform resolution of 1280 × 720 pixels. 
We use the Adam optimizer and train the DetectNet model with a 
weight decay set to 3e-9, epochs set as 120 with a batch size of 4 per 
GPU, using a learning rate that ramps up gradually from 5e-06 to 
5e-04 during the first 10% of training (12 epochs) and then 
smoothly decays back toward 5e-06 over the next 70% of training 
(84 epochs) using a cosine-like annealing schedule. These 
hyperparameters were chosen based on extensive benchmarking 
with NVIDIA TAO Toolkit recommendations and empirical 
evaluation to ensure stable training, faster convergence, and 
deployment compatibility.

Dataset categorization: the augmented and real-world image 
dataset categorization for training and testing operations is 
summarized in Table 2. The table provides comprehensive dataset 
information used for training and testing our model.
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To guarantee that the model learns fire and smoke patterns from 
both synthetic and real-world images, a balanced and diverse training 
environment is created by carefully structuring this dataset. Further, 
we  guarantee no overlap between the two sets by randomly 
distributing the images into 90% training and 10% test sets (90:10 
split) as given below:

Training set: comprises 2,600 images (90%), including:

 • Fire instances - 763 augmented and 624 real-world images.
 • Smoke instances - 667 augmented and 546 real-world images.

Test set: is made up of 400 (10%) randomly selected images, which 
do not overlap with the training images, as follows:

 • Fire instances - 98 augmented, and 155 real-world images.
 • Smoke instances - 52 augmented and 95 real-world images.

The model evaluation results, performance metrics, and 
comparative analysis with baseline detectors are presented in the 
following sections.

4.1 Training and testing the DetectNet_v2 
model

The training process began with a pre-trained DetectNet_v2 
architecture. The pre-trained model is originally trained on large-
scale, general-purpose datasets such as KITTI and COCO (Tsang, 
2020), providing good object detection capabilities on relatively 
low-resolution inputs (3×368×640). To meet fire and smoke detection 
systems requirements, the model is greatly improved using the TAO 
Toolkit, which offers a simplified but effective framework for 
performing transfer learning and fine-tuning. The TAO-optimized 
framework, in conjunction with domain-specific training and higher 
input resolution, allows us to retrain the model on our custom fire and 
smoke dataset, enabling it to effectively learn specific visual features 
such as diminishing smoke in complex scenarios, mist, fog, or clouds. 
This refined model was trained on higher-resolution input images 
(3×720×1280) to capture finer detail, such as thin smoke trails or 
early-stage flames in complex industrial environments, necessary for 
alerting the concerned authorities. These performance enhancements 
prepare the model to work with NVIDIA DeepStream and TensorRT 
edge inference frameworks. Our DetectNet_v2 framework is evaluated 
across multiple test conditions, and its effectiveness is demonstrated 
in Figure 8. In indoor conditions (Figure 8a), outdoor conditions 
(Figure 8b), and on an unseen dataset (Senthil, 2025) (Figure 8c), our 
model accurately identifies true-positive and false-negative instances 
for both fire and smoke cases. Notably, our model exhibited strong 

generalization on unseen data, confirming its reliability for live 
surveillance applications and its suitability for real-world deployment. 
These findings indicate that the recommended methodology is well-
suited for real-time implementation in intelligent surveillance systems, 
guaranteeing prompt fire hazard identification with low 
computational overhead.

4.2 Baseline model evaluation

Our proposed DetectNet_v2 model’s training and validation 
losses during the evaluation process are presented in Figure 9. The 
model's validation loss curve in Figure 9a exhibits a steady downward 
trend, reaching the fourth decimal place after approximately 120 
training indicating a stable convergence and robust optimization. 
Whereas the model's efficient learning and strong generalization 
capabilities are confirmed by the training loss curve's sharp reduction 
to 0.00008 within just 35 epochs, as observed in Figure 9b. To provide 
a neutral and unbiased comparison with our proposed DetectNet_v2, 
we retrained SSD MobileNet_v2 and Faster R-CNN (Inception_v2) 
benchmark detectors on our custom fire and smoke dataset using 
identical experimental conditions like input resolution of 1280×720, 
KITTI annotation format, and a 90:10 training-to-testing split.

Various model performance parameter comparisons are listed in 
Table 3 below. In contrast to Faster R-CNN and MobileNet_v2, our 
suggested DetectNet_v2 produced low validation loss and training 
loss, with faster convergence occurring within fewer total training 
steps. These improvements can be  attributed to architectural 
differences and model optimization processes. To ensure model 
efficiency and stability, we continued to train the DetectNet_v2 until 
it converged.

Following retraining, we further evaluated the performance of our 
proposed DetectNet_v2 using a confusion matrix containing 253 fire 
and 147 smoke test images (refer to Table 2).

The confusion matrix, in Figure 10, highlights the DetectNet_v2’s 
classification performance on the unseen fire and smoke test dataset. 
The model's effectiveness on diverse industrial scenarios is confirmed 
through 95.6% fire and 92% smoke detection accuracy results. These 
outcomes reveal the model's ability to correctly identify true instances 
while maintaining a low false prediction (<3.5%). On the other hand, 
low false positives and negatives indicate strong precision (94.8% for 
fire, 93.0% for smoke) and recall (95.3% for fire, 92% for smoke) 
outputs.

The Faster R-CNN (Pincott et  al., 2022) and MobileNet_v2 
(Pincott et  al., 2022) baseline models are validated with test 
conditions discussed in 4.2. Our models' classification performance 
values obtained from the confusion matrix and other state-of-
the-art methods' performance results are reported in Table 4. Our 
DetectNet_v2-based detector produces the highest fire and smoke 

TABLE 2 The augmented and real-world image dataset categorization for training and testing our proposed DetectNet model.

Category Training images Testing images Total images 
in dataset

Augment Real Total Augment Real Total

Fire 763 624 1,387 98 155 253 1,640

Smoke 667 546 1,213 52 95 147 1,360

Total 2,600 400 3,000
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FIGURE 8

Visual examples of fire (green bounding boxes) and smoke (blue bounding boxes) detections by the proposed DetectNet_v2 model across different 
environments: (a) indoor industrial settings, (b) outdoor industrial scenarios, and (c) unseen test images (Senthil, 2025).

FIGURE 9

Training behavior of the proposed DetectNet_v2 model: (a) smooth and consistently converging validation loss curve, and (b) training loss curve 
indicating efficient learning with minimal overfitting.

TABLE 3 DetectNet_v2, faster R-CNN, and SSD MobileNet_v2 model performance parameter comparisons.

Performance parameters Proposed DetectNet_v2 Faster R-CNN with 
Inception_v2 Jadon et al. 

(2020)

SSD MobileNet_v2 Jadon 
et al. (2020)

Total steps 42,102 90,973 36,348

Training duration 3 h 28 min, 50 s 5 h 32 min, 40 s 7 h 49 min, 30 s

Average loss 0.0141 0.084 1.912

Minimum loss 0.00008 0.0032 0.731
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detection accuracies and F1-scores over the other reported 
benchmark models, demonstrating its capability for reliable and 
real-time fire and smoke detection in industrial environments.

Figure  11 illustrates the proposed fire and smoke detection 
performance across multiple evaluation metrics. A detailed 
performance comparison of our proposed DetecNet_v2 over 
YOLOv8s, Faster R-CNN, SSD MobileNet_v2, DeepCNN, and 
AlexNet benchmark models reveals that our model consistently 
outperforms the state-of-the-art methods in accuracy, precision, and 
F1-scores.

4.3 Ablation study of pre-trained vs. 
fine-tuned and TAO optimized DetectNet_
v2

A detailed ablation study was conducted to evaluate the effects 
of fine-tuning, pruning, and quantization on the performance of 
DetectNet_v2 across different training and optimization stages. The 
results are summarized in Table  5. We  start with a COCO-
pretrained DetectNet_v2 model with an initial size of 93.3 MB. This 
baseline model is fine-tuned (unpruned) by training on our custom 
fire and smoke dataset at 120 epochs. Pruning is done to eliminate 
unnecessary weights and minimize the size of the model after it has 
been trained, using a ResNet-18 backbone. This step also helps us 
to achieve higher mAP@0.5:0.95 performance. As a result of this 
step, the model size is reduced from 43 MB to 37.5 MB (12.7% 
reduction) and is further retrained to recover accuracy. We use the 
Quantization-Aware Training (QAT) method with INT8 precision 
included in the NVIDIA TAO Toolkit v5.0 to optimize the model 
for real-world edge deployments. To guarantee evaluation integrity 
and avoid data leakage before QAT, we carefully shortlisted 300 
class-balanced (calibrated) fire and smoke image samples (from our 
training set) representing diverse illumination, indoor/outdoor 
scenarios. We use TensorRT 8.6.1 on an NVIDIA RTX 2000 Ada 
GPU for evaluating live inference stream performance and 
achieving the model benchmarking with a batch size of 1 to 

represent real-world deployment scenarios. The model is deployed 
as an optimised INT8 TensorRT engine after initially being exported 
from the TAO Toolkit. The performance evaluation was carried out 
across 1000 consecutive frame runs, with each frame having a 
resolution of 1280 × 720 (FP32 RGB). We use COCO-style mean 
Average Precision (mAP@0.5:0.95) to measure the model's 
performance across a range of IoU thresholds from 0.5 to 0.95 to 
thoroughly evaluate fire/smoke detection stability. With a mAP@0.5 
of 94.26% and a mAP@0.5:0.95 of 85.4%, our proposed system 
demonstrates excellent accuracy in fire/smoke localization and 
classification across various environmental conditions. A 
comparison of the FP32, pruned FP32, and INT8 models in Table 5 
reveals a maximum accuracy drop of <1.5 %, with mAP@0.5:0.95 
continuously over 85%, indicating outstanding performance 
retention after quantization.

The histogram in Figure 12 illustrates the latency distribution per 
frame over 1000 inference passes, showcasing a mean inference time 
of 42.5 ms and a standard deviation of ±3.8 ms, indicating a narrow 
and consistent runtime spread.

This performance demonstrates the real-time frame 
processing limit of 24 frames per second (FPS), independent of 
the input video source frame rate, which is essential for 
deployment on NVIDIA Jetson devices with the TensorRT engine. 
Further, we carried out frame-level analysis on 400 test images 
(See Table 2) and observed that only 14 frames produced false 
positives, resulting in a false alarm rate of only 3.5%. These 
numbers demonstrate the model's agility and dependability, 
particularly in crowded and visually complex industrial conditions 
where minimising false detections is crucial for real-world 
implementation. We measure the classification performance of the 
DetectNet_v2 fire and smoke detector model using ROC and 
Precision-Recall (PR) curves as shown in Figure 13. ROC curves 
in Figure 13a reveal high area under the curve (AUC) values of 
0.954 for fire and 0.922 for smoke, demonstrating superior 
discrimination capacity and a low false positive rate over a range 
of thresholds. On the other hand, PR curves in Figure 13b produce 
AUC scores of 0.949 for fire and 0.916 for smoke, striking an 
excellent balance between precision and recall. The performance 
metrics listed in the confusion matrix discussed in Section 4.1 
(Figure 10) further validate these results and discuss how resilient 
and reliable the model is in correctly identifying fire/smoke 
incidents, keeping very low misclassifications.

4.4 Edge-device validation

To validate the deployment readiness on edge devices, 
we comprehensively benchmark the INT8-optimized DetectNet_v2 
discussed in Section 4.3 on NVIDIA Jetson Xavier NX (16 GB) and 
Jetson Orin Nano (8 GB) using DeepStream SDK 6.3 and TensorRT 
8.6.1 (NVIDIA, 2025).

We set a batch size of 1 to run a single-stream inference on the 
1280 × 720 resolution input stream. Results in Figure 14 show that 
Jetson Xavier NX achieved 22.3 FPS with an average latency of 45 ms, 
while Jetson Orin Nano reached 19.4 FPS after a 52 ms latency. The 
Xavier NX was able to consume 1.4  GB of memory, drawing a 
maximum of 12.8 W of power. The Orin Nano ended up using 1.7 GB 
of memory, restricting maximum power consumption to 9.2W. These 
features, along with both devices achieving 18 FPS, make them ideal 

FIGURE 10

Confusion matrix showing the classification results of the proposed 
DetectNet_v2 model on the unseen test data.
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for implementing AI models in resource-constrained (energy and 
space) applications.

4.5 Failure cases and human-in-the-loop 
deployment

Figure 15 provides insight into some difficulties encountered 
by our model during real-world validation by demonstrating the 
practical constraints using six visual representations grouped into 

false negative and false positive cases. Figure 15a illustrates a false 
negative instance that occurred due to fire reflections during the 
early-stage fire ignitions were confused as fire-like objects, or 
bright light reflections from a white board resembling smoke, 
were incorrectly classified as smoke. False positive instances 
depicted in Figure 15b occur due to similar-looking objects, for 
instance, welding sparks or steam, that get wrongly classified as 
fire or smoke. These failure cases are strongly influenced by 
factors like poor illumination conditions, blurry frames, visually 
confusing images, or lack of domain knowledge, strongly affecting 

TABLE 4 Proposed fire and smoke detection performance comparison with state-of-the-art models.

Model Class Accuracy Precision Recall F1-score

Proposed DetectNet_v2
Fire 95.6% 0.95 0.953 0.952

Smoke 92% 0.93 0.919 0.922

YOLOv8s (Kong et al., 2024) Fire and smoke 91% 0.906 0.851 0.878

Faster R-CNN with 

INCEPTIONV2 (Jadon et al., 

2020)

Fire 94.1% 0.89 0.96 0.92

Smoke 91.7% 0.90 0.91 0.91

SSD MobileNet_v2 (Jadon 

et al., 2020)

Fire 91.5% 0.87 0.89 0.88

Smoke 88.2% 0.85 0.88 0.86

DeepCNN Muhammad et al. 

(2019)
Fire 94.5 0.86 0.97 0.91

AlexNet (Krizhevsky et al., 

2017)
Fire 94.39 0.85 0.92 0.88

FIGURE 11

Proposed model performance metric comparisons with state-of-the-art methods.

TABLE 5 Pre-trained vs. fine-tuned and retrained DetectNet_v2 (ResNet 18) model comparison.

Model variant Fire accuracy (%) Smoke accuracy 
(%)

mAP@0.5 (%) mAP@0.5:0.95 (%) Model size 
(MB)

Fine-tuned FP-32 

(unpruned)
96.42 92.94 94.9 86.7 43

Pruned, retrained with 

QAT INT8
95.26 91.92 94.2 85.4 37.5
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the reliability of the proposed systems. Training our proposed 
DetectNet_v2 on diverse datasets certainly has helped to mitigate 
many of the above-mentioned issues, but a certain amount of risk 
still exists while deploying in real-world scenarios. To address 
these issues, a human-in-the-loop (HITL) validation mechanism 
can be interfaced with conventional safety infrastructure, such as 
suppression modules or alarm panels, through edge ports or cloud 
relay, ensuring backward compatibility. Thus, creating a two-tier 
safety architecture is required to improve safety and decision 
trustworthiness. HITL interventions work especially well when 
there are low-confidence detections, visual ambiguities (such as 

steam, fog, welding sparks, or reflections), sensor failures, and 
hardware degradation (such as reduced or blurred frames). In 
such circumstances, the human operator verifies AI-generated 
alerts before making an alert decision. Overall, HITL assists 
operators in multi-stream surveillance systems to filter wrong 
alarm decisions or human oversight errors after correct threat 
validations. As this method strikes the right balance between 
automation and supervision, it is particularly well-suited for 
safety-critical areas like power plants, warehouses, and industrial 
sites where missed detections or false alarms could have 
dire repercussions.

FIGURE 12

Inference latency distribution histogram for 1,000 frame runs.

FIGURE 13

The proposed fire and smoke DetectNet_v2 model’s classification performance with high area under the curve (AUC) values based on (a) ROC curves 
and (b) precision-recall curves.
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FIGURE 14

NVIDIA Jetson Xavier NX and Jetson Orin Nano (edge device) performance comparison.

FIGURE 15

Observed failure cases, (a) false negative, (b) false positive.
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5 Conclusion and future scope

In this work, an optimized DetectNet_v2 model with a ResNet-18 
backbone is used to develop a real-time, vision-based fire and smoke 
detection system for both indoor and outdoor industrial 
environments. Our system leverages pruning and Quantization-
Aware Training (QAT) operations on a custom dataset containing 
3,000 real-world and augmented fire/smoke images, producing a high 
detection accuracy (95.6% for fire, 92% for smoke), maintaining a low 
inference latency of 42 ms. These results enabled us to further validate 
deployment readiness on edge devices like Jetson Xavier NX and 
Orin Nano and examine their actual throughput and power efficiency 
requirements. Evaluation metrics such as mAP@0.5:0.95 (87.4%), low 
false-alarm rates (3.5%), and ROC/AUC scores further confirm the 
effectiveness and readiness of models for real-world deployment. This 
study lays a solid platform for readily deployable AI-driven fire 
suppression systems and offers reliable, scalable, and context-aware 
surveillance solutions.

Future research must concentrate on the development of newer 
model compression and acceleration strategies to optimize edge 
device performance on 1080p or 4K high-resolution video streams. 
System’s reliability and generalizations can be further improved via 
diversified datasets constructed by gathering large industrial setup 
images captured across various geographical locations. The integration 
of temporal information from video sequences to capture fire and 
smoke progression patterns may be carried out to boost the model’s 
confidence score. Additional strategies, such as multi-modal sensor 
fusion by combining vision with heat, gas, or smoke sensors, can 
enhance system reliability by minimizing false alarms. Finally, motion 
blur, poor contrast, or visual ambiguity problems encountered from 
complex scenes during fire and smoke detection tasks can lead to 
serious problems when working in safety-critical applications. Future 
systems should explore the possibilities of adopting human-in-the-
loop (HITL) verification frameworks into the existing automated 
detection systems to build a safer planet.
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