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Introduction: With the recent breakthroughs in driving automation and
the development of smart vehicles, human-technology interaction issues,
such as detecting comfort levels in automated driving, have been gaining
increasing attention. Given the evidence of discomfort levels being an evolving
psychological state in time, the tracking of discomfort levels for passengers of
an automated vehicle can be considered a time-varying phenomenon.
Methods: We assessed a passenger’s discomfort level in a smart, automated
vehicle using physiological, environmental, and vehicle automation features
from different sensors. Our approach is to dynamically predict discomfort levels
using time-dependent models, particularly the Temporal Fusion Transformer
(TFT), an advanced attention-based deep learning architecture providing an
interpretable explanation of temporal dynamics as well as high-performance
forecasting over multiple horizons. The models are trained and evaluated using
a dataset of 100 participants of a simulated automated driving experiment,
during which they signaled their level of discomfort using a manual device. Two
TFT models, TFT-full and TFT-restricted, are investigated depending on which
physiological, environmental, and vehicle automation signals are used as inputs.
The results are compared with the auto-regressive model DeepAR. Different
window sizes are used to analyze the impact of the window size on the model's
performance.

Results: Among the tested models, TFT-restricted with a window size of
300-time steps (about 5 s) demonstrates the best performance in predicting
discomfort levels on our data, with a mean absolute error (MAE) of 0.037 and
a root mean square error (RMSE) of 0.131.

Discussion: In our study, TFT-restricted outperformed TFT-full and the
autoregressive model DeepAR in discomfort prediction, delivering superior
results for all metrics. Finally, our study shows that the TFT can capture
temporal dependencies in the data and help us interpret the model for detecting
discomfort, which is essential for analyzing and improving people’s acceptance
of automated vehicles.

KEYWORDS

discomfort detection, Temporal Fusion Transformer, automated vehicle, human-
technology interaction, time series forecasting

1 Introduction

The rapid growth of research on autonomous driving is an indicator that it will
significantly impact our transportation and society in the future. Consequently, driving
will become a cooperative task between a human and a vehicle that is able to perceive, act,
and make decisions. Thus, human-technology interaction aspects need to be taken into
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account in the development of automated vehicles to achieve
acceptance of such technology, to build reliable cooperation
between the user and the machine, to lay a foundation in offering an
enjoyable journey, and most importantly, to strengthen their trust
in that particular technology (Kyriakidis et al., 2019).

Among human factors, passenger comfort is considered
a key requirement for the acceptance and usage of driving
automation, especially at higher levels of automation such as
highly or fully automated driving (SAE-Level 4-5) (J3016-201806,
2024). Thus, automated vehicles need to provide a pleasant
passenger experience to make humans feel comfortable to “put
their lives in the hands of computers” (Wintersberger et al,
2018). We understand comfort as a psychological construct
that can be defined as feeling pleasantly relaxed based on the
trust in the vehicle’s ability to execute the driving task safely
(Constantin et al., 2014). It is influenced by the characteristics
of the passengers (e.g., their attitudes toward the technology)
(Hartwich et al., 2020), the driving behavior of the automated
vehicle (e.g., speed, acceleration) (Dettmann et al., 2021), and the
surrounding traffic situation (e.g., situation complexity) (Hartwich
et al, 2018). Attempts to reduce passenger discomfort and
thereby provide comfort during automated driving would benefit
from real-time discomfort detection or prediction, which could
trigger counteracting measures such as driving style adaptations
(Dettmann et al., 2021) or in-vehicle information presentation
(Hartwich et al, 2021). However, discomfort detection poses
challenges, such as the selection of suitable discomfort indicators
or the development of high-performance algorithms. It is essential
to note that discomfort evolves over time, which should be
represented through temporal information on an algorithmic
level (Trende et al., 2020).

In this paper, we focus on testing a state-of-the-art
computational model to predict the discomfort experienced
by passengers based on the information recorded by the sensors
in a driving simulator study. We are interested in predicting
discomfort in the future given past information, including the state
of the environment, the vehicle, and its passenger, as indicated
by psycho-physiological measures such as heart rate or pupil
diameter (Beggiato et al., 2019) patterns. The Temporal Fusion
Transformer (TFT) (Lim et al., 2021) was selected due to its
ability to handle long-term dependencies and provide interpretable
insights, making it particularly suited for discomfort prediction.
The main contribution of this study is applying the TFT to the
novel domain of discomfort prediction in automated vehicles
by using physiological, environmental, and vehicle state data.
Additionally, we systematically analyze the impact of varying
window sizes on model performance, which is an underexplored
part of time series forecasting in this domain. Subsequently, we
focus on explaining which input features are the most important
for detecting discomfort and illustrating which part of the input
is the most influential for forecasting. Finally, to evaluate the
TFT model, we trained two different TFT models, TFT-full
and TFT-restricted, and compared their performance against
DeepAR, an established time series forecasting model. We focus
on TFT and DeepAR in this study, while in the future, it will be
important to evaluate other advanced models, such as Mamba-
based architectures or other LSTM-based architectures, to have
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a more comprehensive review of the models. Furthermore, the
robustness and scalability of the presented model for real-world
applications are very important. While we use a simulated
environment, the scalability in real environments remains for
future research.

2 Related work

There are various techniques to detect discomfort in an
automated vehicle. However, finding a mathematical model that
can describe human experiences using the available data requires
considering non-linearities and the complexity of the parameters
involved. Moreover, discomfort detection has to be defined as
a time-dependent problem since discomfort evolves over time.
Although researchers have tried implementing different algorithms
to detect various states of discomfort, to the best of our
knowledge, none of them described or viewed the problem as a
time-dependent one.

For instance, Dommel et al. (2021) proposed a logistic
regression and a Support Vector Machine (SVM) model and
compared them to detect discomfort based on psychological
parameters. Niermann et al. (2021) designed a linear model
and explored different combinations of features when predicting
discomfort. Todorovikj et al. (2022) developed a new approach
based on the k-Nearest Neighbors (k-NN) algorithm to significantly
improve the prediction of the discomfort of individual passengers.
However, these studies have not considered the time-varying
nature of discomfort, and their implementation utilizes simple
discriminative machine learning techniques.

Deep Neural Networks (DNNs), especially Recurrent
Neural Networks (RNNs), have been developed to handle
sequential data and are successfully used to predict temporal
sequences and trends. One instance of the application of such
models is presented by Wollmer et al. (2011), where a model
was developed based on Long Short-Term Memory (LSTM)
(Hochreiter and Schmidhuber, 1997) networks for real-time
driver distraction recognition using the long-term temporal
context of driving and head-tracking data. Through empirical
analysis of their driving dataset, they have demonstrated that
LSTM networks offer reliable inattention detection across different
individuals, achieving an accuracy of up to 96.6%. The study
gathered experimental data from 30 participants using various
sensors to measure both head position and rotation in realistic
driving situations.

Time series prediction is not limited to tasks involving driving,
and there are plenty of studies on models and methods using
DNNs to predict future instances of a measured signal. The work
of Khedhiri (2022) gives insight into a temperature prediction
task by a comparison of the Seasonal Autoregressive Fractionally
Integrated Moving Average (SARFIMA) (Qi et al., 2020) and LSTM
methods, empirically demonstrating the better performance of
LSTM models. Autoregressive models refer to a class of time series
algorithms that use their own predictions to predict the future
of a time series further than the horizon they were trained on.
Gehring et al. (2017) proposed a convolutional architecture that
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exceeded the accuracy of a deep LSTM model on a sequence-
to-sequence task. Salinas et al. (2020) proposed a novel model,
Deep Temporal Clustering, to integrate dimensionality reduction
and temporal clustering in a completely unsupervised way. The
Amazon Research group proposed a method for generating
accurate probabilistic forecasts based on training an auto-regressive
recurrent network model called DeepAR (Salinas et al., 2020).
Lai et al. (2018) developed LSTNet, which is based on the
LSTM architecture and is an auto-regressive model for learning
temporal dependencies.

Furthermore, conventional models, which are typically less
computationally expensive, could benefit from coupling with the
aforementioned temporal models. Liu et al. (2022) proposed
a combination of Convolutional Neural Networks (CNN) and
LSTM for real-time driver fatigue detection. Experimental data
in this study were obtained by collecting images of the
driver using cameras throughout a 6-h continuous driving
session. The driver’s image was then used to subjectively
evaluate their level of fatigue. Their model detected fatigue
with an accuracy of 99.78%, with an average detection time of
16.94 ms/frame.

Although LSTM-based models are ubiquitously utilized, they
fall short when predicting long sequences. In recent years, however,
self-attention-based neural networks such as the Transformer
architecture (Vaswani et al., 2017) have achieved considerably
better performance in time-dependent problem modeling,
including language modeling. The self-attention mechanism in
the Transformer architecture enables the model to learn temporal
patterns of sequences effectively. Li et al. (2019) introduced
Transformer-based models employing convolutional layers for
local processing and a sparse attention mechanism to enhance the
receptive field size during prediction. These Transformer-based
models have been widely applied to address time series problems
successfully. For instance, Wu et al. (2020) developed a method
that employs Transformer-based models to forecast Influenza
prevalence and showed a similar performance to Autoregressive
Integrated Moving Average (ARIMA), a standard statistical
method for time series forecasting.

Models such as GRU and Bi-LSTM are recurrent-based
architectures short-
dependencies in sequential data. However, they often have
limitations in longer temporal dependencies, handling

that can extract and medium-term

heterogeneous inputs, parallelization of computation, and
offering interpretability (Lim et al., 2021; Vaswani et al., 2017).
Recently, transformer models like Informer (Zhou et al., 2021) and
Autoformer (Wu et al.,, 2021) have been used for long-sequence
forecasting. Nevertheless, these models are not specifically
designed to integrate heterogeneous inputs from multiple sensors
or provide interpretability of input features over time. These
aspects are important in real-world automated driving scenarios,
where data comes from different sources and needs to be processed
jointly. In contrast, the TFT explicitly supports this setting
through components such as variable selection networks, gating
mechanisms, and interpretable multi-head attention.

A groundbreaking state-of-the-art model for time series
prediction based on Transformers is the TFT proposed by Lim et al.
(2021). Its impressive performance compared to its predecessors
and our empirical comparison to other well-known models
motivated us to use this model in our data. Due to the ability of
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DeepAR (Salinas et al., 2020) to train significantly faster than its
counterparts, it appears to be a promising candidate for comparison
with the TFT model on our dataset.

3 Materials and methods
3.1 Dataset

The dataset for training and evaluating the models was obtained
through a previous driving simulator study (Bocklisch et al,
2023), in which 100 first-time users were able to experience
fully automated driving [SAE-Level 5 (J3016-201806, 2024)] in a
standardized and safe environment.

3.1.1 Participants

The 100 participants of the study (63 female, 37 male) were
between 20 and 43 years old (M = 25.9, SD = 4.9). All of them held
a valid driver’s license, but none of them had experienced higher
levels of driving automation before. Prior to the study’s conduct, all
participants signed an informed consent. In this context, they were
informed about the experimental procedure, including information
on the automated driving system in the driving simulator, simulator
sickness, data privacy, and their right to discontinue the study
at any time without consequences. As compensation for their
time, they could choose between credit points (for students of the
university) or a monetary payment.

3.1.2 Simulated driving environment

The study was conducted in a fixed driving simulator, which
consisted of a fully equipped vehicle interior, a projector-based
180° horizontal field of view extended by a rear-view mirror and
two side mirrors, and the SILAB 5.1 simulation environment. In
this simulator, all participants experienced two simulated fully
automated rides (SAE-Level 5) (J3016-201806, 2024): a short
familiarization ride to get accustomed to the driving environment
and a test ride that was used for the collection of discomfort data.
The test ride was performed along a 7 km long test track, which
consisted of 4 km of urban road with a speed limit of 50 km/h and
3 km of rural road with a speed limit of 100 km/h. It included a
wide variety of traffic scenarios to create variance in the discomfort
experienced during automated driving. Simple scenarios (e.g.,
driving straight ahead with little surrounding traffic) were expected
to induce less passenger discomfort, while complex scenarios (e.g.,
changing onto the oncoming lane to bypass obstacles, approaching
intersections with a lot of surrounding traffic) were expected
to provoke higher passenger discomfort (Hartwich et al., 2018).
Automated driving along the test track was prerecorded based on
a dynamic driving style and replayed identically for all participants.
The driving simulator did not provide haptic feedback, but the
steering wheel was turning automatically in accordance with the
lateral driving behavior of the vehicle. In addition, participants were
able to trace the actions of the automated driving system visually
through the windows, mirrors, and the instrument cluster, which
presented all information known from manual real-world driving
(e.g., speedometer) as well as the status of the automated driving
system (deactivated/activated).
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FIGURE 1

feedback during fully automated driving (right)

Driving simulator with sensor setup for discomfort assessment (left); including handset control as an experimental tool for continuous discomfort

3.1.3 Discomfort assessment

The discomfort assessment during driving included a manual
input device for continuous feedback by the participants (i.e., the
value to be predicted by the models) as well as a sensor setup for
recording potential indicators of discomfort (i.e., the input data for
the models) (see Figure 1). The manual input device was an ACD
Pro 10 handset control, which the participants used to continuously
indicate their perceived discomfort on a scale from 0 (comfortable)
to 100 (uncomfortable) while driving (Hartwich et al, 2018).
The handset control method was validated in previous studies,
in which the discomfort indicated by participants via handset
control during differently comfortable rides was comparable to
their discomfort expressed in standardized questionnaires after
these rides (Hartwich et al., 2018). However, in comparison to
a post hoc questionnaire, the handset control allows for more
detailed analyses of situational discomfort changes during driving.
In these previous studies and the study presented here, discomfort
changes indicated via handset control during driving corresponded
to theory-based expectations: on average, participants indicated
situations that were expected to be more uncomfortable based
on the state of the field (e.g., complex intersections) as more
uncomfortable than other situations. Before the test ride, the
participants exercised the usage of the handset control during the
familiarization ride, in which situations of different complexity
were presented in order to provide a standardized impression
of the possible range of situations. The handset control signal
was recorded with a frequency of 60 Hz. The sensor setup for
recording potential discomfort indicators included the SMI Eye
Tracking Glasses 2 for recording gaze data (e.g., pupil dilation)
with a frequency of 60 Hz and the Microsoft Band 2 smart band
for measuring physiological data (e.g., heart rate) with a frequency
of 10 Hz. In addition, data on the behavior of the simulated
automated vehicle and characteristics of the traffic situation were
provided by the simulation software at a frequency of 60 Hz. The
four groups of input data (gaze behavior, physiological parameters,
driving environment, driving behavior of the automated vehicle)
were selected based on suitability for a non-intrusive, continuous
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online assessment during driving as well as known associations
with psychological driver or passenger states such as stress, fear or
psychological discomfort (see for example Dettmann et al., 2021;
Beggiato et al., 2019).

3.1.4 Data preparation

Data of each sensor was recorded by independent data loggers.
During the study conduct, the system time of all data loggers was
synchronized continuously using a software tool (Meinberg NTP
Software) based on the network time protocol. After recording,
raw data from all loggers were imported into a PostgreSQL-
based storage and analysis framework (Beggiato, 2015). Within
this framework, all sensor inputs were inspected for missing or
implausible data and were then synchronized based on the driving
simulator data (60 Hz). Therefore, data from all sensors were
added to the corresponding timestamps of the driving simulator
data. For smart band data (10 Hz), data of the last time stamp
were reproduced until the next time tamp of the driving simulator
data in order to adjust the different sampling rates. Gaze data
provided by the eye tracker, as well as physiological data provided
by the smart band, had to be further prepared to derive potential
indicators of discomfort. The eye tracker recorded raw pupil
diameter values for each eye. These values were preprocessed based
on the procedure recommended by Kret and Sjak-Shie (2019),
including the exclusion of implausible values (< 1.5mm; > 9.0
mm), dilation speed artifacts, and outliers from the trend line.
Preprocessed pupil diameter values for the right and left eye were
averaged to obtain a single variable for pupil dilation. The smart
band provided a continuous interbeat interval by measuring the
time between two consecutive heartbeats. To remove artifacts,
values outside the plausible range (<400 ms; >1,500 ms) were
excluded from this variable. Based on the data provided by these
sensors, additional variables were computed as potential indicators
of discomfort. Supplementary Table S3 provides a full list of input
variables. Eye blinks recorded by the eye tracker were transformed
into a blink rate, which represents the number of blink events
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per second, as well as into a continuous interblink interval, which
represents the time between the beginning of the last and the
beginning of the next blink event. Based on the x, y, and z gaze
vectors of each eye provided by the eye tracker, the standard
deviation for each axis and eye was calculated for a rolling time
window of 5 s. These six values were then averaged to obtain a
single variable for the dispersion of gaze behavior. Based on the
preprocessed interbeat intervall of the smart band, we calculated
heart rate (as reciprocal of the interbeat interval), change in heart
rate (hear rate slope as linear regression of heart rate) and heart
rate variability (as the root mean square of successive differences
between the interbeat intervals) as additional indicator variables
(each over a rolling time window of 10 s). Figure 2 provides an
overview of the whole data processing pipeline.
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3.2 Methodology

This section describes the problem formulation, model
architecture, input/output configuration, and evaluation procedure
used for discomfort prediction.

3.2.1 Model input/output definition

The TFT model is an optimized deep neural network for multi-
horizon time series forecasting (Lim et al., 2021). At the core of
the TFT architecture lies self-attention, a mechanism that enables
the model to learn the interrelationships between sequence items in
parallel. TFTs have two main characteristics that make them highly
proficient in time series forecasting.
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First, TFTs can support heterogeneous inputs of input data,
ranging from time-dependent to static, and from known variables,
which can either be obtained in advance or is already determined
(such as the date or time in the future), to unknown variables,
which can only be quantified at each step and are not identified
in advance. Although our specific dataset does not include static
features, it is important to note that, in this context, static features
could represent different automated vehicles with distinct physical
characteristics. It should be emphasized, however, that our analysis
is conducted solely in a simulated environment, and including
known variables or unknown features in the data can improve
the model’s performance by augmenting the input. For instance,
future-known variables, such as data or signals obtained from
the driving simulator at time f, are already incorporated into the
forecasts. Besides, unknown inputs, like physiological signals, can
also be incorporated to support the forecasting process. Thus, in
time series forecasting, detailed consideration of the nature of
different input features is required, with each known or unknown
feature requiring specific data handling techniques to maximize the
extraction of critical patterns from the data.

Second, TFTs provide an interpretability mechanism that
explains the relative importance and influence of inputs.
Unfortunately, the most typically used explainability methods for
deep neural networks, such as Local Interpretable Model-Agnostic
Explanations (LIME) (Ribeiro et al., 2016) and Shapley Additive
exPlanations (SHAP) (Lundberg and Lee, 2017), are unsuitable
for time series data. In their standard form, post-hoc methods like
LIME and SHAP do not account for the temporal ordering of input
features (Lim et al., 2021). For example, LIME builds surrogate
models independently for each data point, handling each point as a
separate entity without considering the time steps before or after it.
Likewise, SHAP considers features independently for neighboring
time steps, ignoring the dependencies between different time steps.

In order to define the input and output of a time series
model, it is necessary to separate the variables into static, time-
dependent, and target variables. A static covariate is represented
by the variable S;. For a time series dataset with I unique entities,
such as different participants, each entity i is associated with a
specific set of inputs X;; and the corresponding scalar target y;;.
This separation of variables is important for building an accurate
time series model. Time-dependent input features X;; are also
divided into two categories Xj; = [z}’;,xgt], where z;; € 9 (mz)
are unknown covariate features that can only be measured at each
time step and x;; € R are future known covariate features
that can be predetermined, such as the velocity and acceleration
of an automated vehicle. We define discomfort prediction as a
sequence-to-sequence forecasting problem. Given a window of past
sensor data, the model predicts a future sequence of discomfort. In
this approach, we used physiological, environmental, and vehicle
signals as input sequences to forecast the passenger’s discomfort
level up to 250 time steps ahead. We use quantile regression for our
forecasting by setting the 10-th percentile at each time step. The
forecasting function is defined as follows:

Vi@ 6. T) = fq(Ts Yip—k: 15 Zis—k: > Xisp—k - 1415 5i)> (1)

where Ji(g, t, ) is the forecasted g-th quantile for the value 7 €
{1, ..., Tmax} in the entity i at time ¢, which in our scenario would
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be the discomfort value obtained by the handset-controller. f(.) is
our prediction model. Simultaneously, given all past information
within a finite window of retrospection k, we anticipate the
target (discomfort) value for 7,4 time steps ahead. In our
implementation, the static information s; is not considered, as it is
evident in the dataset that every feature is time-dependent.

To match an automated driving experience in a real
environment, we intentionally exclude the use of past discomfort
outputs, y;,;—k:» as the input signal. This decision is based
on the knowledge that discomfort cannot be directly measured
in real-world scenarios. Our method, therefore, does not have
autoregression, which is the process of predicting the future value
of a time series given its past values. Rather, our model is based
on a sequence-to-sequence framework, where the model takes a
sequence of past sensor signals as input and estimates a sequence
of future predictions as output. We do not give the target value
(discomfort) as an input signal to the model, because it is necessary
to prevent any information leakage from the target into the input
sequence. By avoiding the use of auto-regression and carefully
picking the input and output sequences, we can ensure that our
model is accurate and robust for predicting future values of the
output sequence. Multi-head attention is a strong element in
TFT that allows models to focus on different parts of the input
signal when making predictions. It is like having multiple sets
of perspectives, and each explores a different aspect of the data,
which is especially useful for capturing complex patterns from
the data.

3.2.2 Temporal Fusion Transformer architecture

The TFT model also introduces Interpretable Multi-Head
Attention, making it easier to understand how the model uses
attention. Each attention head still focuses on different aspects
of the data, but they all share and collectively decide on what is
important in the data. This makes the model’s decision-making
process more transparent and understandable and helps us to better
grasp why it makes specific predictions. The TFT model consists of
five main components that improve its predictive powers:

e Gating mechanism: this component allows the network to
bypass components that are not needed selectively. This helps
the model handle different types of data and adapt to different
scenarios.

e Variable selection network: this part of the network identifies
the most important input features at each time step by
ignoring less informative ones. This helps improve the model’s
performance, especially with real-time series data that may
contain noisy or irrelevant features.

e Static covariate encoders: these encoders integrate static
features into the network. It considers the context that doesn’t
change over time. This addition helps the model understand
the impact of these static factors on the time series data.

e Temporal processing: it learns both long- and short-term
temporal relationships from both known and wunknown
time-dependent inputs. A sequence-to-sequence layer is
designed for local processing, and simultaneously, long-term
dependencies are captured by an interpretable multi-head
attention block.
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e Prediction intervals: the model uses quantile forecasts to
estimate a range of possible values for each forecast period
(Wen et al., 2017). These prediction intervals provide an
understanding of the uncertainty and potential variability in
the predictions.

Figure 3 illustrates the structure of the TFT model. Details
about these mechanisms can be found in the original publication
(Lim et al, 2021). The model takes the raw temporal input
signals and selects the most relevant variables at each step
by using the static context and temporal dependencies. These
chosen variables then go to the temporal processing component,
where LSTMs capture local dependencies and multi-head attention
mechanisms identify the long temporal patterns with weighting
the relevance of earlier time-steps to prediction time. The gating
mechanism manages information flow throughout the network,
passing only the most relevant information forward to reduce
noise and overfitting. Multi-head attention mechanism to improve
interpretability, and is calculated as:

K
Attention(Q, K, V) = Softmax < Q

T
v,
v dattn )

where Q,K,V € R are the query and key and value matrices

and day is the attention dimension. To enhance learning capacity,
multi-head attention is introduced.

MultiHead(Q, K, V) = [Hy, ..., Hu] W,

Hj, = Attention(QWy, KW, vW{"),

with

where W((gh ), WI(<h ), Wg’ ) € R are learned projection weights for
each head h, and Wy € R combines the outputs concatenated
from all heads. Additionally, the TFT Model originally introduced
Interpretable multi-head attention (H) and shared the value
projection across all heads, and is calculated as

H
ol . 0 ey ®
H=— ;Attentlon(QW JKWR, VW),

where Wy € R is shared across heads. The final output is projected
using Wy € R. This formulation allows each head to learn different
temporal dependencies and makes the attention weights easier to
interpret (more details in Lim et al., 2021). Finally, in the prediction
intervals, probabilistic forecasts are generated, providing a range of
potential outcomes and their associated uncertainties.

We used the TFT architecture as described by Lim et al. (2021)
without structural modifications.

3.2.3 Evaluation metrics

To assess and compare the forecasting performance, four
statistical metrics are utilized: Mean Absolute Error (MAE), Root
Mean Square Error (RMSE), Coefficient of determination (R?),
and Pearson correlation (Pcorr). These metrics provide quantitative
measures of the accuracy and quality of the forecasts. For a target

1, y2, -
. ¥n}, the formulas for these metrics are as follows:

sequence y = .»¥n} and a predicted sequence y =
52 -

n

1
MAE = - Z||yt—j;t

t=1
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1 <& R
RMSE = Z ;(}71 — }/t)z (3)
n ~\2
R 2= =) 4
ST O — Ellyl? @
_ Cov(y,))
Peorr = std(y) std(7) ®)

The MAE and RMSE metrics are utilized to evaluate the error
level between the predicted and actual results. Lower values of these
metrics indicate higher forecasting performance. The coefficient of
determination R?> compares the variance of the residual error to
the variance of the target sequence around its temporal average
[E[y]. The particular benefit of R? is that it provides a normalized
measure of how well the predictions explain the variability of
the actual data. A coefficient of determination equal to 1 denotes
that the predictions perfectly fit the data. The Pcoyr, calculated
using the covariance Cov() and standard deviation std() functions,
represents the strength of the linear relationship between the target
and predicted signals, ranging from -1 to 1. An absolute value of 1
indicates a perfect relationship between the target and the predicted
signal. It is mainly useful for assessing the linear relationship
between the target values and the predicted signal. TFT training
involves a joint minimization of the quantile loss, as described in
Wen et al. (2017), which is aggregated across all quantile outputs.
To achieve quantile predictions, the Quantile Loss (QL) is explicitly
formulated for each quantile g as follows:

ew=> Y>3y QL(y1, (gt — 7,7),9) ©

Mrt,
y1€QqeQ =1 max

QL(y 3> 9) = q - max{0, (y — )} + (1 — @) - max{0, () — y)} (7)

2 denotes the training data domain, which comprises M
samples, W stands for the weights associated with TFT, and g is
a set of quantile values. The set g comprises the following quantiles:

q =1{0.1,0.27,0.36,0.45,0.54,0.63,0.72, 0.81, 0.9} (8)

The size of the set is 10, indicating that 10 quantile values are
being considered.

3.2.4 DeepAR

DeepAR is an autoregressive recurrent network that can learn
a single global model from the past data of all time series in a
dataset (Salinas et al., 2020). Compared to traditional statistical
methods like ARIMA (Newbold, 1983), DeepAR obtains a better
performance and can be trained much faster than TFT, making it a
practical option for the discomfort prediction task. DeepAR utilizes
an encoder-decoder architecture based on LSTM, as indicated in
Figure 4. The encoder takes past time series data and processes it
through a stack of LSTMs to generate a compressed representation
of the state of the time series. The decoder then takes this
representation as input and generates a probability distribution
over the future values of the time series. During training, DeepAR
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The proposed TFT architecture. The TFT model contains three types of inputs: static covariates, time-varying past signals (known and unknown), and
time-varying future signals (known in advance). This architecture integrates key modules for interpretable and accurate forecasting. The variable
selection network dynamically identifies important and relevant variables within each time window according to the static context and temporal
dependencies. In addition, it combines the LSTM structure and multi-head attention mechanisms to capture local and global temporal patterns. The
gating mechanism controls the flow of information and tries to reduce noise by allowing the most essential information to pass through. Notably, the
interpretable multi-head attention mechanism allows the model to focus on specific time steps or patterns in the past that are most relevant to the
current prediction, which is helpful to capture long-range temporal dependencies that LSTM layers alone may miss, and improves both performance
and interpretability in sequences where causes and effects are temporally distant.

is optimized to minimize the negative log-likelihood of the actual
future values given the predicted probability distribution. This
allows it to capture the uncertainty and variability in the time series,
making it an effective tool for generating accurate probabilistic
forecasts. In our setup, we used a one-layer LSTM encoder-decoder
architecture and the normal distribution for the output.

4 Performance evaluation

4.1 Preprocessing

Because of the possible shortcomings of the sensors, the
generation of our dataset was highly susceptible to missing entries,
inconsistent collection, and noise due to the simultaneous use
of different sensors. These faulty readings and the occasional
absence of values may provide an incorrect view of the overall
domain from which the data is supposedly sampled. Furthermore,
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we eliminated nine participants from our dataset because they
had no discomfort reaction throughout the experiment. Eleven
participants were further excluded as their gaze data had no entries.
The remaining 80 participants are included in the dataset. Data
normalization is a transformation performed on a single input
to evenly distribute and scale the data to a range acceptable to
the network. To establish a standard baseline, input features are
rescaled through standardization or Z-score normalization before
being fed into the TFT and DeepAR models (Equation 9).

x — mean(x)

std(x) ©)

The MinMaxScaler method from scikit-learn (Pedregosa et al.,
2011) is used to normalize the handset-controller values between
0 and 1. This normalization process is applied only once to the
input data before it is used in the models. There are no multiple
sets generated randomly for normalization. Finally, all datasets are
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FIGURE 4

DeepAR model overview. Training phase (left side): At time step t, the model gets three inputs: the covariates x;¢, the target value at the previous time
step, zjt—1, and the last output from the model, h;¢_1. The network’s output at time t, denoted as h;; = h(hj¢—1, Zjt—1., X;t, @), is utilized to calculate the

parameters 6;; = 6(h;, ) for the likelihood function (z|6), which in turn is employed to train the model parameters. During the prediction phase, the

historical data of the time series z;; is given for t < to. For the prediction interval (right side) when t > to, a predicted sample Z;; (.|0;¢) is generated, fed
back into the model for forecasting the subsequent point, and this process is continued until the end of the forecast period at t = to + T, producing a
single sample path. By repeating the prediction procedure, multiple sample paths are generated, illustrating the combined predicted distribution

(Salinas et al., 2020; Graves, 2013).

partitioned into training, validation, and test sets with a ratio of 70%
(56 participants): 10% (eight participants): 20 % (16 participants).

The discomfort experienced by each participant during the
test drive was distinct and varied. A detailed overview of the
handset control responses of participants during the test drive
is illustrated in Figure 5. It is visible that different participants
displayed different response patterns. For instance, Participant
Number 5 showed relatively trivial reactions, mostly during
complex traffic scenarios. Conversely, participants 38 and 40
demonstrated their most noticeable reactions outside complex
traffic scenarios, as indicated by the gray shade segments in the
graph. Nevertheless, many reactions must occur outside of these
traffic scenarios. These additional responses add complexity to
predicting and analyzing the discomfort experienced during the
test drive.

The overall data pipeline, from data preparation to
preprocessing, is illustrated in Figure 2.

4.2 Training procedure

In this study, we use the PyTorch-Forecasting library for
implementing our model (Beitner, 2020). This library has a specific
class, TimeSeriesDataset, to organize and structure our data in
a format suitable for training the model. Our analysis involves
the use of two distinct models: TFT-full and TFT-restricted.
In the TFT-full model, all physiological signals such as pupil
diameter and blink rate variables are considered as unknown
inputs. However, the state of the vehicle (e.g., speed, acceleration)
and characteristics of the driving environment (e.g., speed and
distance to surrounding vehicles) are treated as known inputs. This
approach is based on our assumption that the automated vehicle
possesses inherent knowledge about its planned actions and obtains
information about the surrounding environment. We consider
these inputs to be known and expect an improvement in the
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accuracy of passenger discomfort prediction. In the TFT-restricted
model, we consider both the environmental and physiological
signals as unknown inputs while keeping the vehicle signals as
known inputs. This method was used to explore the relationship
between the known signals from the driving simulator and the
level of discomfort experienced by passengers. Figure 6 shows the
differences between the inputs of the TFT-restricted and TFT-full
models. For example, let’s consider a situation where the vehicle
is approaching an intersection. In the TFT-full model, the vehicle
has information about its current speed, acceleration, and distance
to the intersection (these are the known inputs). These known
inputs are based on the vehicle’s sensors and programmed route.
The vehicle is aware that it will need to slow down or stop at
the intersection, as this knowledge is part of its programmed
actions. However, passenger reactions, like changes in pupil size
or blinking rates as they approach the intersection, are considered
unknown inputs because they vary from participant to participant
and cannot be predicted accurately in advance. In the TFT-
restricted model, the vehicle is still aware of its current speed and
acceleration (known inputs). Nevertheless, other environmental
signals, such as the behavior of surrounding vehicles, are considered
as unknown inputs, as they may change unexpectedly. Similarly,
the physiological reaction of the passengers remains unknown.
In addition, we train a DeepAR model for comparative analysis.
However, due to the DeepAR model’s autoregressive nature, the
handset controller’s value is treated as an unknown input. Unlike
the TFT model, where the handset-controller value was explicitly
excluded as an input, the DeepAR model directly incorporates this
value as an input variable. The decision to omit the past discomfort
signal when training the TFT was made based on the understanding
that any sensor in a real-world scenario cannot directly measure
discomfort. However, DeepAR is not designed to predict a variable
whose past is not provided; therefore, it was necessary to use the
past discomfort signal in an autoregressive manner when training
this model.
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FIGURE 5
Handset controller values (discomfort levels) of three random participants. (a—c) Correspond to these different random participants and illustrate
their levels of discomfort in an identical scenario. The gray-shaded area represents complex and, therefore, potentially discomfort-inducing driving
conditions, such as traffic lights or lane changes.
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TABLE 1 Comparative analysis of model performance in a 250-step prediction on the test set using different input window sizes. The data of each sensor

was synchronized based on the 60 Hz of the driving simulator data.

Window_size

Model name

TFT_full 500 0.043 0.0001 0.138 0.0005 0.25 0.0069 0.691 0.0024
TFT_restricted 0.04 0.001 0.1315 0.0025 0.383 0.07 0.721 0.0181
DeepAR 0.058 0.002 0.154 0.004 0.165 0.007 0.115 0.011
TFT_full 400 0.041 0.0002 0.136 0.0003 0.292 0.0033 0.7 0.0011
TFT_restricted 0.0402 0.0005 0.132 0.0019 0.394 0.054 0.727 0.014
DeepAR 0.0458 0.003 0.148 0.0054 0.177 0.012 0.134 0.002
TFT_full 300 0.0385 0.0001 0.134 0.0004 0.357 0.003 0.716 0.001
TFT_restricted 0.037 0.0001 0.131 0.0007 0.443 0.015 0.739 0.003
DeepAR 0.0492 0.003 0.153 0.005 0.197 0.0012 0.193 0.002
TFT_full 200 0.0385 5.1e-5 0.135 0.0004 0.401 0.0022 0.707 0.0049
TFT _restricted 0.0378 0.0004 0.133 0.0018 0.431 0.008 0.732 0.0082
DeepAR 0.0495 6.9E-05 0.1608 0.00018 -0.07 0.036 0.1952 8.3E-05

Bold values indicate the best performance within each column.

4.3 Hyperparameter optimization 5 Results

The hyperparameters of both models are optimized through
a random search, which involves 15 iterations. This optimization
process is performed on the training data. During each iteration,
a different set of hyperparameters is randomly selected and
evaluated. The performance of each set is assessed based on
its ability to predict passenger discomfort accurately. The best-
performing hyperparameters are then chosen for the final
models. The search ranges for all hyperparameters are listed
in a Supplementary Table SI. To reduce the dimension of
hyperparameter search and the amount of guesswork involved in
selecting a good starting learning rate, we use the learning rate
finder (Smith, 2017) with the use of Pytorch Lightning. The TFT
models reported here are trained using the final hyperparameters
of Supplementary Table S2.

Frontiersin Computer Science

5.1 Time series prediction

We first investigate the impact of different input window sizes
on the performance of the TFT-full, TFT-restricted, and DeepAR
models. The input window sizes are 500 (approximately 8 s), 400
(about 6.5 s), 300 (about 5 s), and 200 (about 3.5 s) time steps.
The objective is to determine the optimal window size of the input
signal for detecting discomfort using both the full TFT model and
the restricted version. Previous experiments with non-transformer-
based neural networks indicated poor results for small window
sizes, such as less than 1 second. As a result, the search space for
window sizes is constrained to these sizes to focus on potential
improvements in model performance. Predictions are made for a
horizon of 250 time steps (about 4 s) ahead.
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TABLE 2 Performance comparison of TFT-restricted against other models for all input window sizes. We considered the mean and 95% confidence
intervals (Cl) for 10 runs. Paired t-tests were applied to evaluate statistical significance (p = 0.05).

Metric Window size Models TFT_restricted Mean + Cl p-value
MAE 200 TFT_restricted vs. TFT_full 0.0378 [0.0375, 0.0382] 4.66E-3
TFT _restricted vs. DeepAR 0.0378 [0.0375, 0.0382] 1.29E-12
300 TFT_restricted vs. TFT_full 0.0370 [0.0369, 0.0372] 8.18E-7
TFT _restricted vs. DeepAR 0.0376 [0.0375, 0.0378] 1.27E-06
400 TFT_restricted vs. TFT_full 0.0404 [0.0398, 0.0409] 2.71E-2
TFT _restricted vs. DeepAR 0.0404 [0.0398, 0.0409] 1.49E-4
500 TFT_restricted vs. TFT_full 0.0401 [0.0388, 0.0414] 5.57E-4
TFT _restricted vs. DeepAR 0.0401 [0.0388, 0.0414] 1.03E-8
RMSE 200 TFT _restricted vs. TFT_full 0.1331 [0.1316, 0.1347] 2.06E-2
TFT _restricted vs. DeepAR 0.1331 [0.1316, 0.1347] 9.76E-11
300 TFT _restricted vs. TFT_full 0.1310 [0.1305, 0.1316] 1.13E-6
TFT _restricted vs. DeepAR 0.1310 [0.1305, 0.1316] 4.69E-08
400 TFT _restricted vs. TFT_full 0.1325[0.1312, 0.1339] 1.33E-4
TFT _restricted vs. DeepAR 0.1325[0.1312, 0.1339] 8.95E-06
500 TFT _restricted vs. TFT_full 0.1314 [0.1285, 0.1342] 7.75E-4
TFT _restricted vs. DeepAR 0.1314 [0.1285, 0.1342] 2.33E-6
R? 200 TFT _restricted vs. TFT_full 0.4310 [0.4243, 0.4377] 8.07E-6
TFT _restricted vs. DeepAR 0.4310 [0.4243, 0.4377] 4.40E-10
300 TFT _restricted vs. TFT_full 0.4418 [0.4301, 0.4536] 2.51E-7
TFT _restricted vs. DeepAR 0.4418 [0.4301, 0.4536] 3.41E-7
400 TFT _restricted vs. TFT_full 0.3947 [0.3626, 0.4268] 1.24E-4
TFT _restricted vs. DeepAR 0.3947 [0.3626, 0.4268] 2.17E-7
500 TFT _restricted vs. TFT_full 0.3831 [0.3260, 0.4402] 6.03E-4
TFT _restricted vs. DeepAR 0.3831 [0.3260, 0.4402] 2.13E-5
Peorr 200 TFT _restricted vs. TFT_full 0.7320 [0.7249, 0.7391] 2.43E-4
TFT _restricted vs. DeepAR 0.7320 [0.7249, 0.7391] 1.36E-10
300 TFT _restricted vs. TFT_full 0.7398 [0.7371, 0.7424] 1.30E-7
TFT_restricted vs. DeepAR 0.7398 [0.7371, 0.7424] 1.61E-9
400 TFT _restricted vs. TFT_full 0.7284 [0.7197, 0.7372] 8.60E-5
TFT_restricted vs. DeepAR 0.7284 [0.7197, 0.7372] 3.37E-7
500 TFT _restricted vs. TFT_full 0.7197 [0.7039, 0.7356] 5.13E-3
TFT_restricted vs. DeepAR 0.7197 [0.7039, 0.7356] 5.18E-8

Each model is trained 10 times with randomly initialized
weights to avoid any possible bias. Table I shows the mean
and standard deviation of the evaluation metrics over the 10
different training runs for the TFT-full, TFT-restricted, and
DeepAR models. By presenting the mean and standard deviation,
we provide a measure of the average performance of the
model as well as the variability of the results across different
training runs.

According to the data in Table I, it is clear that the TFT-
restricted model, with a window size of 300, outperformed the other
models. To evaluate the statistical significance of these performance
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differences, we performed paired ¢-tests between the TFT-restricted
and the other models across 10 independent runs. Table 2 reports
the mean and 95% confidence intervals (CI) of the TFT-restricted
model along with the p-values from these comparisons. The results
demonstrate that the improvements of TFT-restricted over both
TFT-full and DeepAR are statistically significant (p < 0.05) across
all metrics and window sizes.

Supplementary Table 54 presents the Diebold-Mariano (DM)
(Diebold and Mariano, 2002) test to again statistically evaluate
the performance of the proposed TFT and DeepAR models as
secondary analysis.
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FIGURE 7
Comparison of MAE values of TFT-full, TFT-restricted, and DeepAR
for various input window sizes.

Figure 7 depicts the analysis of MAE performance for our
different models across various window sizes. The results indicate
that a window size of 300 performs better, highlighting its suitability
as the optimal window size for our model. A shorter window size
allows our model to focus on fewer time steps. Across various
window sizes, the TFT-restricted model consistently outperforms
the other models. Taking a closer look at the predictions, we
can see in Figure 8 the predictions made by the restricted model
for a single sequence of a random participant. For this specific
participant with a fixed horizon, given different sizes of past
windows, the prediction is shown, i.e., the prediction window in
all the subplots is the same. These plots represent the handset
controller and the predicted values using the last 300, 400, and
500 time steps as input. The predicted value is plotted with the
prediction intervals, and the orange area shows the uncertainty of
the predicted values. Figure 8a highlights the individual prediction
for 250-time steps ahead using the TFT-restricted model with a
window size of 300, which closely aligns with the ground truth.
Conversely, Figures 8b, ¢ demonstrate a decrease in prediction
accuracy and certainty as the window size increases. Furthermore,
a larger window size diminishes the model’s sensitivity to short-
term data variations, resulting in reduced accuracy for short-term
predictions. In general, using quantiles to compute uncertainty in
time series forecasting allows the model to better understand the
potential range of outcomes.

Figure 9 illustrates the of
discomfort for the participant’s entire route from the test set.

one-step-ahead predictions

To maintain fairness in the comparison, we specifically visualize
the TFT-restricted, TFT-full, and DeepAR models, all with a
window size of 300, as it has exhibited superior performance
across various evaluation metrics. Among these models, the TFT-
restricted model shows the closest alignment with the ground truth
and achieves an R? score of 0.62. On the other hand, the TFT-full
model demonstrates a reasonably close alignment with an R?-score
of 0.59. Finally, the DeepAR model shows the poorest result, with
an R%-score of 0.4. Figure 10 shows the TFT-restricted model’s
prediction uncertainty for a test participant. We use a 300-time

Frontiersin Computer Science

13

s i = Observed
- Predicted
D 90
©
L~
<l
Q@
D 151
b=
8|
D 1.0
172]
ke
c
m
x
0.5 1
-300 -200 -100 0 100 200
Time index
(a) Prediction of the TFT-restricted model with an
input window size of 300.
1.54
—  QObserved
——  Predicted
1.4 4
4]
3
‘>ﬂ 1.3 4
T
Q9
S 1.2 4
B
c
8 11
o
g 1.04
2% Y
o
©
= 0.9 4 L_\
0.8 4
400 -300 -200 -100 0 100 200
Time index
(b) Prediction of the TFT-restricted model with an
input window size of 400.
2.00 4
— Observed
—— Predicted
1.75 1
Q
=2
© 1.50 1
>
3
2 4254
o
=
[=
8! 1.00 4
kT
3 075 4
=4
T
T
0.50 1
0.25 . . . ; .
=500 =400 -300 =200 =100 Q 100 200
Time index
(c) Prediction of the TFT-restricted model with an
input window size of 500.
FIGURE 8

Visual representation of predictions from the TFT-restricted for a
single sequence with different input window sizes. The sequence
was randomly selected from the test set and demonstrated the
model's performance on individual instances. The orange line
(Continued)
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FIGURE 8 (Continued)

indicates the model's predictions, while the blue line corresponds to
a specific participant’s ground truth handset controller values. The
orange-shaded area represents the prediction intervals, providing
insights into the uncertainty in the forecast. The transparency in the
orange area indicates the confidence level. The uncertainty is
computed using quantiles. (a—c) Correspond to the prediction
window sizes of 300, 400, and 500, respectively.

step window size (equivalent to 5 s). Our analysis focuses on the
one-step-ahead prediction and employs a set of 10 quantiles chosen
as our quantile levels. Following this, we compute these quantiles’
mean and standard deviation and visualize the uncertainty by
displaying both the mean and standard deviation across the entire
trajectory. This helps us to understand the uncertainty dynamics
within the TFT predictions for the entire test route. It is observable
that when discomfort increases slowly, the uncertainty associated
with TFT predictions tends to be lower compared to situations
where discomfort increases rapidly. This can be attributed to the
temporal nature of the TFT model and its window size of 300
time steps. The model captures and leverages temporal patterns
in the data, enabling it to make predictions based on historical
information within the defined window. On the other hand,
when discomfort increases rapidly, the patterns and dynamics
change abruptly within the defined window. The TFT-restricted
model may struggle to capture and interpret such rapid changes
effectively, leading to higher uncertainty in its predictions. Another
interesting relationship is the correlation between the uncertainty
level of the model and the rate of change in the state of discomfort.
This relation will show whether the higher uncertainty arises
mostly when the rate of discomfort is significantly above zero,
when only the absolute values are considered. The rate of change
in discomfort is the derivative of the discomfort signal, which
can be obtained by the absolute difference in discomfort at time ¢
minus discomfort at time ¢ — 1, divided by At. Therefore, one can
plot the derivative of the discomfort signal against the standard
deviation of the prediction. The analysis, encompassing the entire
test set, showed a Porr of 0.474. This visualization is included in
Supplementary Figure S1.

5.2 Interpretability

In this section, we show how the restricted TFT model with
a window size of 300 helps to interpret the relationship between
the input signals (known and unknown). We demonstrate the
model’s interpretability by assessing the importance of each input
signal in the prediction process. Additionally, we showcase the
visualization of attention-weighting patterns. Variable importance
is quantified by analyzing the variable selection weights. In
concrete terms, we aggregate the selection weights for each variable
across our entire test set and plot the 10-th percentile of each
sampling distribution. The results are shown in Figure 11, which
shows the importance of input signals observed in the past,
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Figure 12, which plots the importance of input signals known in
the future, and Figure 13, which predicts the attention weighting
patterns. No variable importance was assigned to static inputs as
they were not considered in the dataset. The encoder variables,
representing known past values at prediction time, consist of
previously selected features and a relative time index. Figure 11
displays the importance of each variable known at prediction
time. Acceleration received the highest attention importance with
a proportion of 22%, followed by the speed of the rear car
(11.5%) and the average standard deviation of the gaze vector
(10.33%). Variables on the encoder side with gradually decreasing
importance are the roll, vehicle indicators, heart rate changes,
and other signals depicted in Figure 11. The variables in the
decoder include the signals that are known until the end of
the prediction time steps. Their interpretation and significance
are shown in Figure 12. Based on the decoder chart, it is clear
that the roll signal of the vehicle shows the highest attention
importance, accounting for nearly 17.9% of its impact on predicting
the discomfort sequence. This is followed by the indicator of the
vehicle (14.2%) and the angle of the steering wheel (11.5%). The
RPM of the vehicle had the lowest attention importance, with
a score of only 5%. Figure 13 illustrates the attention-weighting
patterns across all our test datasets. In this graph, we specifically
represent the 10th percentile of each sampling distribution, which
provides insight into the lower range of attention weights. The
observed data exhibits a U-shaped pattern, signifying that the
model places significant importance on both the initial and final
portions of the input sequence. This pattern suggests that the
information at the beginning and end of the period is crucial for
the model’s predictions.

6 Discussion

Assessing discomfort in automated vehicles is challenging
due to multiple factors like inter-individual differences between
humans, diverse scenarios, and unpredictable environmental
conditions. In this study, we trained two temporal Transformer-
based models, TFT-full and TFT-restricted, to detect discomfort
during automated driving. TFT models generally have interesting
properties for time series forecasting, such as interpretability,
handling of long-term dependencies, relevant input feature
selection, data redundancy reduction, and versatility for different
datasets. Furthermore, TFT models are well-suited for real-world
scenarios, including the detection of discomfort in automated
vehicles. These features enable us to make accurate predictions
and surpass sophisticated methods like DeepAR. The analysis of
the importance of decoder and encoder variables highlighted the
significance of combining different input sources. The six most
important input variables (see Figure 11) included all four groups
of input data used in this study (gaze behavior, physiological
parameters, driving environment, and driving behavior of the
automated vehicle). This emphasizes the strength of a multimodal
discomfort assessment compared to single-mode approaches,
which corresponds with previous studies in this context (e.g.,
Niermann et al, 2021). Probable reasons for this finding are
that (a) human gaze parameters and physiological parameters
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FIGURE 9
Visualization of one-step-ahead discomfort predictions across a participant’s entire route from the test set. The focus is on TFT-full (a),
TFT-restricted (b), and DeepAR models (c); all have the configuration of the input window size of 300. The zoomed area on critical points
demonstrates the details of the predictions.
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FIGURE 10

Visualization of the uncertainty in TFT-restricted model predictions for a test participant using 300 time steps. Our analysis highlights the
one-step-ahead prediction, using 10 quantiles from 10 training iterations. The mean and standard deviation for these quantiles are computed,
providing a comprehensive visualization of uncertainty across the entire trajectory averaged over 10 training iterations with different starting
conditions.
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Visualizing the importance analysis of encoder variables (or unknown input signals) in TFT-restricted with 300 time steps. The analysis is conducted
across the entire test set and averaged over 10 training runs of the model. We classify the unknown signal using different colors, according to the
definition of TFT restricted in Figure 6b. The analysis provides an understanding of the importance of each unknown variable over time.
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FIGURE 12
Exploring the importance analysis of decoder variables (or known input signals) in TFT-Restricted with 300-time steps. The analysis is operated across
the entire test set and averaged over 10 training runs of the model. The analysis provides an understanding of the importance of each known variable

over time.

can be expressions of diverse psychological states (unspecificity)
and (b) identical environmental factors (e.g., driving environment,
driving behavior of the automated vehicle) can evoke different
psychological and physiological reactions for different individuals 0.55+
(interindividual differences). Therefore, detecting psychological
states such as discomfort in automated driving benefits from 0504
interpreting multiple signals from different sources in combination g
with each other, e.g., using context information about the driving g 045,
environment and driving behavior of an automated vehicle to 5
interpret the gaze behavior and physiological parameters of its :r-E)
passengers. Furthermore, it becomes crucial in future investigations E 0404
to investigate the importance of adjusting the past window
size in relation to the future window size. Our experiments 0.35-
explore varying past window sizes of 500, 400, 300, and 200
to predict a constant 250 time steps (about 4 s), and the &3
optimal performance belongs to the TFT model with a window ' . : : : i ; ;
size of 300 (about 5 s). This emphasizes the importance of 8 ® w ﬁfo o 20 X
studying different prediction window sizes in future studies T Index
by finding a trade-off between the length of the past and FIGURE 13
prediction windows. Visualizing attention weight patterns in TFT-Restricted with a
To simulate real-world conditions where actual discomfort 200-time step nput window size. This visualization contains the
entire test set, highlighting the importance of both the beginning
values are not available during driving, we intentionally excluded and end of the input sequence.
past discomfort levels from the model inputs. This is a strength

of the model and avoids data leakage. Regarding interpretability,
our main focus was to understand the importance of the
input signal types (e.g., sensor or feature names) rather than
identifying which specific parts of the time series were important
for the predictions. Therefore, we focused on feature-level
interpretability using variable importance scores. The presented
bar plots of variable importance (Figures 11, 12) summarize the
TFT’s multi-head attention weights aggregated over the test set
and prediction window. This shows the attention distribution
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across input variables and shows interpretable insights into
which features contributed most to the discomfort predictions.
In addition, Figure 13 shows aggregated attention weights over
the input sequences. Future work could explore visualizing
attention heatmaps over individual prediction windows to
provide even deeper temporal interpretability. We performed
a participant-based data split. Specifically, participants in the
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test set were not present in the training or validation sets;
therefore, the model’s performance reflects its ability to generalize
to unseen samples.

When interpreting the study results, a few methodological
limitations must be considered. First, the simulated driving
environment provides lower external validity than real-world
driving. Since failures of the automated driving system would
have had no actual safety effects, the participants might have
felt safer and more comfortable during fully automated driving
in the driving simulator than they would have felt in real-
world traffic. Therefore, discomfort values could be underestimated
by our results. However, driving simulations currently represent
the only approach to provide the experience of fully automated
driving (SAE-Level 5) (J3016-201806, 2024) along realistic routes
(i.e., long, diverse routes with a lot of other road users) in
a safe and ethical manner. Therefore, the results of the study
should be evaluated in real, fully automated vehicles in the
future. Second, the group of participants was not representative
of the population. Since taking part in the study was voluntary,
it was subject to some degree of self-selection. Therefore, the
participants could have been more interested in technology or
more open toward driving automation then the average of the
population, which might also have led to lower levels of discomfort
experienced during automated driving. In addition, the age and
gender distribution of the sample implicates an overrepresentation
of younger women, which might restrict the generalizability of
the results to other age groups and genders. Especially elderly
drivers (i.e., 65 years and older) are known to report specific
attitudes and experiences regarding modern technologies such
as fully automated driving (see, e.g., Hartwich et al, 2018).
Therefore, further studies based on more heterogeneous participant
groups are desirable. In the end, the TFT model, like many
sophisticated deep learning models, faces limitations in terms
of training time, especially on large datasets. The computational
complexity associated with transformer-based architectures can
result in longer training durations. Future investigations should
explore techniques such as model compression or quantization
to improve scalability and efficiency for real-time applications
in automated vehicles. Finally, we acknowledge that predictive
uncertainty is an inherent aspect of such forecasting models.
As shown in Figure 8, variations in input-window size affect
model performance, and the length of temporal context can
influence both predictive accuracy and stability. Additionally,
Supplementary Figure S1 shows that the standard deviation of
predictions changes with the rate of change in discomfort.
These observations show that predictive uncertainty may arise
from both the selection of temporal context in input and
the prediction window size, which could be another aspect
of investigation in future work, to model and quantify such
uncertainty explicitly.

7 Conclusion

In our study, TFT-restricted outperformed TFT-full and the
autoregressive model DeepAR in discomfort prediction, delivering
We speculate that TFT-
restricted outperformed TFT-full may be due to its statements

superior results for all metrics.
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of environmental signals as unknown inputs, which allows the
model to learn more from the vehicle’s signals and make better
predictions. Finally, our study shows that the TFT can capture
temporal dependencies in the data and help us interpret the
model for detecting discomfort. This is essential for analyzing
and improving people’s acceptance of using automated vehicles.
However, our study focused on adapting the TFT model to predict
discomfort in a simulated environment; we did not explore domain
adaptation, transfer learning, or robustness aspects such as missing
data or sensor failures in a real-world application. These topics are
outside the scope of the current investigation, but we recognize
them as important directions for future research.
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