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Entropy measurement and online
quality control of bit streams by a
true random bit generator

Cesare Caratozzolo'?*, Valeria Rossi'?, Kamil Witek'23,
Alberto Trombetta®, Mateusz Baszczyk?®, Piotr Dorosz?,
Wojciech Kucewicz® and Massimo Caccia'?

!Dipartimento di Scienze e Alta Tecnologia, Universita degli Studi dell'Insubria, Como, Italy, ?Random
Power s.r.l, Milano, Italy, *AGH University of Science and Technology, Krakéw, Poland

Generating random bit streams is required in various applications, most notably
in cyber-security, which is essential for Internet of Everything applications
to enable secure communication between interconnected devices. Ensuring
high-quality and robust randomness is crucial to mitigate risks associated
with predictability and system compromise. True random numbers provide
the highest levels of unpredictability. However, known systematic biases that
can emerge from physical imperfections, environmental variations, and device
aging in the processes exploited for random number generation must be
carefully monitored. This article reports the implementation and characterization
of an online procedure for the detection of anomalies in a true random bit
stream. It is based on the NIST adaptive proportion and repetition count tests,
complemented by statistical analysis relying on the Monobit and RUNS tests. The
procedure is implemented in firmware through dedicated hardware accelerators
processing configurable-length sequences, with automated anomaly detection
triggering alerts after three consecutive threshold violations. The implementation
is performed simultaneously with bit stream generation and also provides an
estimate of the entropy of the source. A statistical analysis of the results from
the NIST procedure to evaluate the symbols of the bit-stream as independently
and identically distributed is also performed, leading to a computation of the
minimum entropy of the source that cross-checks the previously mentioned
estimate. The experimental validation of the approach is performed up the bit
streams generated by a quantum, silicon-based entropy source.

KEYWORDS

statistical, test, QRNG, TRNG, entropy, min-entropy

1 Introduction

The use of massive amounts of random numbers is a critical issue in security-related
techniques and tools for protecting and sharing data in open, distributed environments
(Gennaro, 2006; Seyhan and Akleylek, 2022), as well as their deployment in large statistical
and numerical simulations (Cowan, 2016).

The need for high-quality random numbers has driven the search for new, more
reliable, and robust approaches for their generation. Current solutions are divided into
two main categories: true random number generators (TRNGs) and pseudo random
number generators (PRNGs). TRNGs are driven by observables connected to stochastic,
chaotic, or quantum natural phenomena. The latter, where unpredictability is rooted in
the laws of nature, guarantees the highest level of security; they are identified as quantum
random number generators (QRNGs). PRNGs, also known as deterministic random bit
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generators (DRBGs), are deterministic algorithms implemented in
software or firmware which, given an initial value known as a seed,
emulate the properties of TRNGs; therefore, unpredictability in the
generated sequences is irreducibly constrained.

TRNGs are not immune to systematic deviations: known biases
can arise from device imperfections, environmental variations
(temperature, voltage), or hardware aging, which may reduce
entropy if left undetected. Recent studies have emphasized this
vulnerability. For example, Zhang B. et al. (2025) demonstrated
that classical fluctuations can subtly compromise QRNG outputs
despite passing standard statistical batteries. Likewise, IoT
deployments have suffered from reduced entropy due to slow
or unstable randomness harvesting (Fox, 2021). These cases
highlight that even quantum or physical sources of entropy require
continuous online quality control.

In parallel, PRNGs provide an efficient way to emulate
randomness for simulations and general computational tasks.
However, their deterministic nature makes them unsuitable
for applications where unpredictability is essential, such as
cryptography. This distinction reinforces the necessity of
employing TRNGs or QRNGs in the domain of cybersecurity
(Herrero-Collantes and Garcia-Escartin, 2017).

Proving randomness poses challenges regarding diagnostic
statistical methods and their implementation. The open problem
can, therefore, be stated as follows: how can one efficiently
guarantee, in real time, that a TRNG or QRNG remains unbiased
and unpredictable under realistic operating conditions? Current
efforts address this challenge in two ways. On the one hand, heavy
statistical test suites such as NIST SP800-22 (Rukhin et al., 2001)
or TestU01 (UEcuyer and Simard, 2007) provide high sensitivity
but require large data volumes and offline computation, making
them unsuitable for online monitoring. On the other hand, lighter
“health tests” recommended by NIST SP800-90B (Turan et al,
2018) provide rapid detection but are limited in scope, targeting
catastrophic failures rather than gradual entropy degradation.
More recent TRNG architectures have optimized throughput and
resource efficiency at the hardware level (Piscopo et al., 2025), but
generally focus less on embedding comprehensive online quality
monitoring. Bridging this gap is the objective of this work.

Our contributions: In this article, we present an anomaly
detection procedure based on a sample of outputs from the NIST
health tests, namely the repetition count test (RCT) and the
adaptive proportion test (APT), complemented by the Monobit and
RUNS statistics. More precisely, two main contributions enhance
the analysis of source entropy.

Unlike the lightweight NIST health tests, which flag and discard
individual failing sequences, our framework extends the tests
into a distribution-based analysis. By accumulating outcomes over
multiple sequences, it distinguishes ordinary statistical fluctuations
from persistent deviations, enabling online detection of long-term
drifts and supporting entropy estimation consistent with NIST’s
min-entropy bounds.

As a premise to the assessment of the diagnostic developed,
the procedure to test the symbols of the dataset as independently
and identically distributed (IID) and consequently compute the
minimum entropy of the source described in Turan et al. (2018)
is analyzed.
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Firstly, results obtained from the Monobit and RUNS tests
are given a statistical interpretation by measuring the shift of the
average of a sample from the expected value for an unbiased
sequence of bits, instead of the traditional approach that analyzes
single-bit strings and outputs a result for each one of them.

Secondly, an innovative method is proposed to estimate a
lower bound on the source entropy based on the measured
RCT failure frequency, overcoming limitations of traditional
approaches that require significant amounts of storage and
additional computations.

The
implemented, embedded in the entropy extractor of a proprietary

procedures were software-tested and firmware
silicon-based QRNG embodiment, to maximize efficiency and
guarantee online execution without impacting the bit-generation
rate. This article also provides detailed descriptions of the
FPGA-based hardware implementations of these statistical tests,
structured as finite state machines that enable online anomaly
detection and continuous quality monitoring of the generated
random bit streams.

The article is organized as follows: in Section 2, some of
the most relevant related work is briefly mentioned; in Section
3, the QRNG system architecture and firmware implementation
are described; in Section 4, the IID procedure is described and
analyzed; in Section 5, a short introduction to the statistical
tests is presented; Section 6 describes the procedure relying
on the aforementioned statistical tests, and the experimental
results obtained using a silicon-based QRNG are reported; finally,
conclusions and outlook are drawn in Section 8.

This article represents an extended version of the research
initially presented at the 2024 IEEE Cyber-Security and Resilience
Conference (Caratozzolo et al., 2024). Here, we elaborate on the
firmware implementation of the statistical tests and IID procedures,
as well as the calculation of min-entropy, all of which serve as
premises for the developed procedures.

2 Related work

The earliest quantum bit generators relied on analyzing series
of pulses originating from a detector by alpha, beta, or gamma
particles emitted by unstable radioactive nuclei. Such pulses
are unpredictable, statistically independent, and uncorrelated,
allowing for bit extraction through various techniques (Figotin
et al., 2004). Nevertheless, using radioactive sources comes
with several drawbacks, including the need for shielding for
radiation protection and limitations imposed by the detector
characteristics in terms of limited throughput and radiation-
induced damage. All of these factors hinder the widespread
adoption of such technologies.

In recent years, the field of QRNGs has witnessed significant
advances driven by the unique properties of quantum phenomena
using various instruments and methods. A comprehensive review
can be found in Herrero-Collantes and Garcia-Escartin (2017).
Further developments include high-throughput implementations
such as mesh-topology XOR ring oscillator TRNGs validated by
NIST and AIS-31 tests (Lu et al., 2025), DSP-based compact FPGA
designs assessed with NIST and Dieharder (Frustaci et al., 2024),
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and state-switchable oscillators verified through NIST evaluations
(Wu, 2025), as well as highly parameterized FPGA-based designs
with Keccak post-processing and compliance with NIST 800-90B
health tests (Piscopo et al., 2025). More experimental proposals,
such as dynamic hybrid TRNG architectures (Zhang Y. et al., 2025),
report partial validation but primarily target throughput and area
efficiency, aiming to balance entropy quality with performance.

Generation methods can result in the production of sequences
of binary symbols or larger alphabets. Regardless of the mechanism,
the significant impact of the randomness quality of both PRNGs
and TRNGs in security applications emerged from several use
cases. A well-known example that surfaced in 2008 (Debian
Security Team, 2008) concerns a critical vulnerability within
the Debian Linux release of OpenSSL, resulting in low entropy
during cryptographic key generation. Despite being discovered
and promptly fixed, the response was sluggish, and certificate
authorities persisted in issuing authentications with weak keys even
after the vulnerability was disclosed (Yilek et al., 2009).

More recent work, such as Fox (2021), reports that errors in
cryptographic key generation in IoT devices—due to a slow rate
of random bit harvesting—went unnoticed, leading to a significant
loss of entropy affecting the security of billions of devices. Almost
surely, such vulnerabilities could have been promptly detected
by implementing online randomness quality estimation methods.
This need is actually recognized by NIST, which prescribes in the
DRBG (Barker and Kelsey, 2015) and TRNG (Barker et al., 2012)
procedures the implementation of “health tests,” namely quality
assessments of possibly limited sensitivity but rapid execution.

Besides NIST, a noteworthy addition to randomness testing
is reported in Sys et al. (2017). The method is designed to
detect biases in the random bit-stream by employing Boolean
functions, extending the approach of the Monobit statistics
detailed in Section 5. These results require a lower volume
of data compared to the standard NIST and Dieharder
Statistical Test Suites while maintaining a significant level
of reliability. Other work on testing randomness and its
improvement through post-processing can be found in
Foreman et al. (2024).

Recent studies involving randomness testing through AI have
also been proposed, for example Feng and Hao (2020) and Goel
etal. (2024).

3 QRNG embodiment

The QRNGs developed as part of the In-silico Quantum
Generation of Random Bit Streams (Random Power!) project are
implemented in two primary embodiments: a single generator
board (SGB) and an enhanced 64 x generator board configuration,
whose specifications are reported in Table 1. The overall objective
of the project is to demonstrate a scalable, low-cost hardware
platform for entropy generation and continuous quality control,
suitable for applications ranging from secure communications to
big data infrastructures. Unlike algorithmic generators, which are
deterministic, the proposed devices extract entropy from physical
phenomena (Caccia et al., 2020).
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TABLE 1 Table of specifications for the two embodiments of the
silicon-based QTRNG under consideration on which the online health
tests were firmware implemented: the single generator board and the
64 xx generator board.

Single generator

64 x generator

board board

Dimensions (cm?) 8 x 3.5 11.1 x 31.2 x 2.0

No. of generators 1 array 64 arrays

Raw bitstream 100 kbps 32 Mbps

NIST DRBG output NA 1 Gbps

(SP800-90 A, B, C)

Control Xilinx Spartan 7 Xilinx KRIA K26 SOM
/0 USB or bits-on-pin Eth or PCI-Express
Power supply USB (5V, 0.5A) 12V, 8A

Power consumption <2.5W 20W

Encryption and
authentication (AES256)

Encryption of No
the bit-stream

- Firmware implemented
online sanity checks
(Monobit, RUNs)

- Firmware implemented
online sanity checks
(Monobit, RUNs, APT,

Specific features

RCT)
- Auxiliary - Run control through
post-processing through Trusted Execution
SHA256 function Environment

- Temperature control
through Peltier cooler

- FIPS-140-3 compliant by
design

Bit streams are generated by analyzing the time series of self-
amplified endogenous pulses in Silicon PhotoMultipliers (SiPMs).
These pulses originate from stochastically generated charge carriers
in an array of p-n junctions operated beyond their breakdown
voltage, mimicking the statistics of radioactive decay events. The
physical mechanism is well modeled in semiconductor theory:
charge carriers randomly crossing potential barriers enter a high
electric field region and trigger an avalanche multiplication by
impact ionization in the Geiger-Miiller regime. A full description of
the underlying processes can be found in reviews of SiPM physics
(McKay, 1954; Senitzki B., 1958; Haitz, 1965). Using SiPMs as
entropy sources ensures compactness and robustness: pulses are
large (millions of electrons) and short (tens of nanoseconds), which
enables precise time-tagging and efficient bit extraction without the
need for additional post-processing.

The hardware implementation of these principles is shown in
Figure 1. Each board integrates the SiPM detector array, biasing,
temperature control and/or compensation features, a proprietary
time-to-digital converter (TDC), and a field-programmable gate
array (FPGA) responsible for bit extraction and health monitoring.

The prototype implementation replaces discrete commercial
TDCs with an embedded FPGA TDC IP Core. The inclusion of
the TDC within the FPGA fabric, as shown in Figure 1, allows for
on-the-fly updates and tweaks as the device development improves.
This design was chosen to increase throughput and upgradability
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FIGURE 1
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General overview of FPGA-based QTRNGs developed by RandomPower (Caccia et al., 2020). The stochastic impulses are generated by the SiPM. A
dedicated analog circuitry (substituted by a dedicated chip in the 64 x) implements the triggering logic, generating a digital signal that is fed directly
into the FPGA. Inside the FPGA, it is timestamped by a dedicated TDC, and the timestamps are then analyzed by the bit generator to produce four-bit
symbols. Optional post-processing, in the form of a SHA-256 whitening accelerator, can be applied to remove any residual bias if needed. After
passing through the Health Test accelerator (implementing Monobit, RUNS, APT, and RCT), the bit-stream can be routed through a NIST-compliant
DRBG. The resulting output may then be directed to the USB interface (in the case of the SGB) or to the Ethernet/PCle interface (in the case of the
64x). ARM TrustZone ensures isolation of the control logic and allows only approved applications to manage the process. The main difference
between the 64x and the SGB is highlighted in light blue: the 64 integrates a temperature controller and thermoelectric module to stabilize the

and to reduce costs and possible attack surfaces (Fagan et al,
2025). Generally, the process of time stamping is performed with
external TDCs; however, this increases complexity and decreases
flexibility. Additionally, the temperature-dependent calibration
logic allows for removing the non-linearities generated by
temperature shifts.

The FPGA TDC converts electrical impulses to random bit
streams by analyzing inter-arrival times of nine-pulse series to
generate four-bit sequences, resulting in an alphabet of 2* = 16
possible symbols for each cycle.

It is worth noting that correlations during the generation
process, dead times of the QRNG during time stamping of the
pulses, and external factors, such as thermal runaways, may
introduce time-dependent anomalies in the generation of bits or
symbols, making the implementation of efficient, near real-time
health tests a very relevant tool for assessing the quality of the
generated sequences.

4 The |ID procedure

The main metric for the evaluation of the randomness
of a bit-stream is given by the measure of the minimum
which

entropy, is described in document (Turan et al,
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Input: A sequence S=(s7, Sy, ...
Output: The statistic T

. SL)

1 Compute the sample mean: X < {Y5_;s;;
2 for 1« 1 to L do

3 | b |Ti(s -5
,du);

4 T < max(dq, do, ...

5 return T

Algorithm 1. Excursion test statistic.

2018) and is subject to the assumption that the symbols
that make up the stream are independently and identically
distributed (the IID hypothesis in the following). The NIST
procedure to assess the latter, detailed in Chapter 5 of
the same document, is based on a bootstrapping method
performed on eleven statistical tests that can be grouped into
the excursion test statistic, statistics on runs, statistics on
collisions, periodicity and covariance tests, and the compression
test. The pseudo-codes as described in NIST documentation
for a representative from each category are outlined below in
Algorithms 1-5, respectively.
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Input: A sequence S=(S7, S, ..., SL)

Output: Test statistic T

—_

Construct a new sequence S' = (s}, s), ..., S| _;)
s.t.:;

2 for i< 1 to L—1 do

3 if S; > S;jyq then
4 ‘ s« -1,

5 else

6 L s« +1;

7 Initialize run counter: T« 1;
8 for 1 <2 to L —1 do
9 if s #s’_, then

10 L Increment T;

11 return T

Algorithm 2. Number of directional runs.

Input: A sequence S=(S7,Sp, ..., S.)
Output: Test statistic T

1 Initialize empty list C<« [ ];

2 Set 1« 1;

3 while 1 <L do

such that the

..., Sitj—1) contains a

4 Find the smallest j>1
subsequence (sj, Sii1,
repeated value;

5 if no such j exists then
6 L break;

7 Append j to list C;

8 Update i« 1i+7;
9 Compute T « average(C);

10 return T

Algorithm 3. Average collision test.

A sequence of length n_symbols is taken as input for the
above statistical tests. The outcomes (hereinafter referred to as
Tx) are taken as reference and used to compare the results of
the aforementioned tests on a shuffled set of the input sequence
obtained via Fisher-Yates shuffle algorithm: whenever the latter
(here called Ti) are greater than Tx, a counter CO is updated; if they
are equal to Tx, a second counter CI is updated. Such counters are
evaluated independently for each test, and a number n_sequences
of shuffled sequences is tested. The symbols are validated as IID
if, for every test, both CO > 0.0005 * n_sequences and C1 4+ CO <
0.9995x%n_sequences (i.e., if the reference value Tx does not lie in the
upper or lower 0.05% of the total population of Ti.). This is actually
a generalization inferred from the parameters provided in the NIST
documentation, as the standard procedure considers only the fixed
values n_symbols= 10° and n_sequences= 10%, with thresholds for
IID validation of CO > 5 and C1 + CO < 9995. The procedure is
outlined in Algorithm 6.

Frontiersin Computer Science

10.3389/fcomp.2025.1642566

Input: A sequence S=(s7, S, ...,S ) and a lag
parameter p <L
Output: Test statistic T

Initialize T« 0;

—

2 for i< 1 to L—p do

3 if s; = Siyp then
4 L Increment T;
5 return T

Algorithm 4. Periodicity test.

Input: A sequence S=(S7,S2,...,SL)

Output: Test statistic T

—

Encode S as a space-separated string of values;
2e.9g., S=(144,21,139,0,0,15) - “144 21 139 0 ©
15";

Compress the string using the bzip2 compression

w

algorithm (see http://www.bzip.org/) ;
4 Let T be the length of the compressed string in
bytes;

return T

[

Algorithm 5. Compression test statistic.

Input: A sequence S=(sS7,S2, ..., S.)
Output: Decision on the IID assumption
1 foreach test k do
2 Initialize counters: COx <0, Clyx < 0;
3 Compute test statistic Txx on S;

4 for j <1 to Nsequences do

5 Permute S using the Fisher-Yates shuffle
algorithm;

6 foreach test k do

7 Compute test statistic Ti on the permuted

data;

8 if T1 > Txy then

9 L Increment COy;

10 if T1 =Txy then

11 L Increment Clg;

12 foreach test k do

13 if COy +C1y <0.0005 - Nsequences OF

COx > 0.9995 - ngequences then

14 L return Reject the IID assumption;

—

5 return Assume the noise source outputs are IID

Algorithm 6. Permutation based procedure to test the IID
Assumption.

For a fixed test, the population of the Ti considering n_symbols=
10% and n_sequences= 10° is shown as a histogram in Figure 2. The
reference value Tx is marked by a red line.
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Distribution of the Results T for excursion test
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FIGURE 2
Histogram of the Ti population for the excursion test on 10°
sequences of 10% symbols each. The reference value Tx associated
with the input sequence is marked by a vertical red line, and the
mean and standard deviation of the population are reported on
the graph.

One can already get a qualitative assessment by observing
that the reference value Tx is not as far toward an edge of
the axes to disprove the IID assumption. As far as that is
concerned, however, Tx could just as well fall within the greater
10% of the Ti population: the outcome of the Boolean conclusion
on IID behavior would be the same, but the probability for
the counter CO to increase at each iteration would be greatly
affected. This aspect was taken into consideration in the statistical
analysis developed in the following, which is not a part of any
NIST documentation.

The IID tests described by NIST, albeit concise and simple,
cannot be easily evaluated in terms of a theoretical distribution of
their outcomes. To perform a critical statistical study of the results,
understand the NIST procedure, and test the implementation done,
an approach similar in spirit to what is done by NITS in the IID
evaluation itself is developed. Instead of comparing the distribution
of the values Ti obtained in a single run, the distribution of
the counter CO across multiple runs is considered. The latter is
assumed to be binomial, with a probability of success p (ie.,
the increase of CO) given by the relative value of the reference
result Tx.

In this section, the parameters for a single run (i.e., a single
value of C0) are n_symbols = 10° and n_sequences = 200, repeated
a number n_iterations = 500 of times. These values are chosen
to fully use one of the 250MB files generated by our QRNG
in the following steps while leaving some buffer, keeping both
the population of the histogram and the space of the results
Ti, respectively, high and wide enough for the results to be
meaningful. The reason for including this buffer will become
clear shortly, as an additional test introduced later requires
it. The same parameters were maintained for consistency in
the analysis.
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Figure 3A displays the results for the excursion test: the
blue dots outline the distribution of the measured CO (each
is accompanied by its binomial error), while the red line
represents the theoretical binomial distribution they are supposed
to follow. The box on the graph reports the mean and standard
deviation of the dataset, the probability of success p for the
increase of the counter CO (computed as the relative position
of the reference value Tx with respect to the population
Ti, ie., in which percentile of the population stands the
red line in Figure2, and used to compute the theoretical
binomial distribution), and the value of the reduced XZ for the
dataset under the null hypothesis of them following the red
binomial distribution.

Throughout the previous analysis, the fact that the value Tx
was taken as reference for all the following ones put the input
sequence in a very special position. As it was briefly mentioned,
such value is effectively picked at random, thus having the potential
of skewing significantly the binomial distribution of the counter
C0, whose probability of success parameter p can vary significantly
with the sole requirement of being 0.0005 < p < 0.9995. To
bypass the special role given to the first sequence and have a
predictable and uniform value for p throughout the tests and the
tested files, a second ratio for the increase of CO is developed, to
which we refer as TjNorm. Instead of having a fixed reference,
the sequences are evaluated in pairs: given a statistical test, the
counter C0 is increased whenever the result on the jth sequence
is greater than the one on the jth + 1 sequence. If such results
turn out to be equal, the pair is discarded, so that the results
are normalized and the probability of increase of the counter
Cois p =
buffer to account for the fact that some sequences will probably

0.5 in each iteration. The need to provide some

be ignored forces us to lower either the values of n_symbols,
n_sequences, or n_iterations from those that would fit in the 250 MB
file analyzed.

With this new method, Figure 3B was plotted, with parameters
n_symbols = 10°, n_sequences = 200 and n_iterations = 500.
These values were chosen giving priority to n_iterations being
high enough for the statistical interpretation to be relevant and
to n_symbols = 10% being high enough so that the space of the
results of the tests (i.e., what was previously called the Ti) would
be wide enough. This is the equivalent of Figure 3A and it is to
be interpreted in the same way. Just a caveat: the mean value of
the distribution is correctly 50, with n_sequences = 200 and p =
0.5, because, as the sequences are evaluated in pairs, they give an
effective halved number of values of CO compared to their previous
“Tx method” counterpart.

After a bitstream has been validated as IID, its minimum
— log(pimax)
where pax is the frequency of the symbol that is the most

entropy can be easily calculated as H_min =

likely to occur. The NIST prescription described in Turan
et al. (2018), chapter 6, actually considers a lower bound on
this quantity by taking the highest bound on p,.c at 2.576
sigma CL (corresponding to a z value at 0.995). Figure 4
shows the frequencies of the symbols compared to the uniform
distribution (red dashed line) for a 250MB file generated
by our QRNG; each is accompanied by its binomial error.
The resulting minimum entropy is 3.9997 &£ 0.0002, where
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A) Distribution of CO for test excursion, Tx method
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FIGURE 3

(A) Distribution of 500 counters CO for the excursion test, each computed over 200 sequences of 10° symbols and evaluated with respect to the
value of the input sequence. The observed distribution is shown by blue dots with binomial error bars, and its mean and standard deviation are
reported in the box. The probability of increase of the counter CO p, computed a priori, is used to plot the theoretical expected binomial distribution
in red. The reduced chi-square of the data with respect to this binomial is reported in the box. (B) Distribution of 500 counters CO for the excursion
test, each computed over 200 sequences of 10° symbols and evaluated with respect to the value of the previous sequence considering disjointed
pairs. The observed distribution is shown by blue dots with binomial error bars, and its mean and standard deviation are reported in the box. The
probability of increase of the counter CO p, equal to 0.5 by construction, is used to plot the theoretical expected binomial distribution in red. The
reduced chi-square of the data with respect to this binomial is reported in the box.
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Hmin = 3.9997 + 0.0002, Hmin NIST=3.9991

0.06252 1

0.06251 1

006250 +=[=--===f==f====f=-F == P-=Z-=f-

0.06249

Frequency of the symbols

0.06248

=== uniform distribution

0.06247 -

1 2 3 45 6 7 8 9101112131415
Symbols
FIGURE 4
Scatterplot of the frequencies of the four-bit symbols in a 250MB
file generated by the QRNG under consideration and consequent
evaluation of the minimum entropy. Each frequency is accompanied
by a binomial error bar and the expected uniform distribution is
plotted as a red dashed line. The minimum entropy Hn;, and the
estimation for minimum entropy according to NIST guidelines
HminNIST are reported. The first is accompanied by an uncertainty
obtained by propagating the binomial uncertainty on pmax, while the
second is a lower bound estimate that considers an upper bound on
Pmax at 99.5% CL.

the uncertainty was obtained by propagating the binomial
uncertainty of pyay, and the lower bound on it, as computed
following NIST standards, is 3.9991. Both are displayed on
the graph.
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The Python implementation of the procedure for evaluating
the IID assumption, the statistical analysis performed to assess it
(which can also serve value as validation of the implementation)
and the computation of the minimum entropy is made available in
a public GitHub repository.*

5 Standard online statistical tests

The anomaly detection procedure, presented in Section 6, is
based on a set of four wellknown and recognized tests, operating
on single sets of bits or symbols. The Monobit and RUNS tests
were selected from the numerous tests within the NIST test
suite based on their simplicity, which is essential for a firmware
implementation, and the complementary information they offer.
Specifically, the Monobit test assesses the asymmetry of bit
distribution within a bit-string, whereas the RUNS test quantifies
the occurrence of bit-flips. Due to their minimal correlation, these
tests maximize the information inferred from the data. These two
tests find their natural generalization to symbols of multiple bits,
respectively, in the adaptive proportion and the repetition count
tests, which are defined by NIST in Turan et al. (2018) and used to
assess the eligibility of a sequence to seed a DRBG.

5.1 Symmetry tests

5.1.1 Monobit
The Monobit test (Rukhin et al., 2001) asserts
the asymmetry between zeros and ones in a bit

1 https://github.com/RandomPower/IID_validations
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sequence. Given a set of n bits, the stochastic variable is
defined as

n
S,,:in:2n1—n (1)
i=1

where x; = 2¢; — 1, ¢; is the bit state and n; is the number of 1s
in the bit sequence. Provided that the bit values are independent
and identically distributed, the number of bits set to 1 follows the
binomial probability density function:

B(ni,n,p) = pra—=p, )

nyl(n —nm)!
with p being the probability of generating 1. If both values are
equally probable, then S, = 0, with standard deviation o5, = /n.
The Monobit test fails whenever a sequence has a value S, that
exceeds an alarm level k/n, where k is defined according to the
sensitivity and false alarm rate set by the user.

5.1.2 Adaptive proportion test

The APT expands upon the binary checks performed by the
Monobit test to include an alphabet of m symbols. As defined in the
NIST documentation (Turan et al., 2018), the stream is divided into
sequences of length n. The frequency of the occurrence of the first
symbol is checked against the hypothesis of a binomial distribution
withp = 1/m.

Specifications for the sequence length to be considered are
specific to the alphabet used and are provided by NIST. For binary
sequences, the recommended length is n = 1,024, while for non-
binary sequences, it is suggested to use n = 512. Within each
sequence, the occurrences of the first symbol are counted and
compared to a cut-off threshold corresponding to a defined failure
probability. The cut-off threshold can be calculated relying on
the binomial cumulative distribution function, assuming an equal
probability for each of the m symbols to be generated.

5.2 RUNS tests

5.2.1 RUNS

This test counts the number of series of consecutive identical
bits in a sequence of specified length, as shown in Figure 5. It is
worth noting that this quantity can be measured by the number of
bit flips plus one.

This test complements the Monobit: for a given value of ny, it
measures the expected number of bit flips in the sequence under the

1T 1111 01 0 O 111 0 0 01
B 1

5 bits 1bit 2 bits 3 bits Ibits 1bit
FIGURE 5

The RUNS test counts the number of sequences of consecutive
identical bits in a bit-stream. In this figure, a sequence of n = 16 bits
containing a total of seven runs is shown.
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hypothesis of a “fair coin.” The underlying probability distribution
is the probability of having runs of a specific length conditioned on
the number of ones in the sequence with p = 1/2. By defining

as the fraction of bits set to 1, the average number of runs and the
variance are given by Bradley (1968)

R=2nr(1—-m)+1,

(3)
x 2n(1 —m)2nm(1 — ) — 1],

2
R n—1
corresponding to the first and second moments of the underlying
probability distribution function. Ultimately, the purpose of
this test is to determine whether the oscillation between sub-
sequences of identical bits is too fast or too slow compared to
the expectations (Soto and Bassham, 2000). As for the Monobit,
whenever a sequence exceeds a threshold value R + kog, the test
is considered failed.

5.2.2 Repetition count test

The RCT also relies on the concept of runs, generalizing the
test to sequences of symbols. However, instead of counting the
number of symbol changes, it focuses on the length of consecutive
identical instances.

The probability « of having at least C consecutive equal symbols
can be written as:

a=Pk=C) = (1—ppip{ ' =Y (A—pdp{ (4
i=1 i=1

where k is the length of the runs, p; stands for the probability
associated with the i-th symbol of the alphabet, and (1 — p;)
represents the probability of the symbol generated before the
current one being different, resetting the counter of the length of
the run. Assuming p; > py > .... > py;, Equation 4 can be given an
upper bound by:

a=Pk=C)<(m—1)-pf =(m—1)2""C, ©)

where H is the min-entropy defined as H = —log,(max{p;})
(Turan et al., 2018). Once the value of « is defined, the cut-off
threshold C can then be computed as:

C= Ll{ [logz(m -1 - logz(a)ﬂ- (©)

It should be noted that Equation 6 differs from the original
NIST prescription as a consequence of the implementation, which
is based on the assumption that the symbols are being analyzed
sequentially. Consequently, it embodies the viewpoint of the
“observer symbol,” which must differ from the preceding one and
match the subsequent C — 1 symbols.

NIST recommends choosing the o parameter between 272° and
240, equivalent to, respectively, a 50 and a 7o confidence level,
presuming a Gaussian distribution of the measured quantities. In
this work, a value of @ = 2720 is chosen.
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6 Anomaly detection procedure and
experimental results

The anomaly detection framework proposed in this work
departs in scope and intent from the health tests described
in the previous section. NIST defines the repetition count and
adaptive proportion tests as lightweight monitors intended solely
to detect catastrophic failures of the entropy source, with each
failure leading to the rejection of the sequence under test. In
contrast, our procedure extends these tests, together with the
Monobit and RUNS statistics, into a statistical framework that
evaluates series of test outcomes. Rather than discarding each
failing sequence, we accumulate results to distinguish between
sporadic fluctuations, statistically expected in any random source,
and persistent deviations that indicate a systematic bias. This shift
from single-sequence rejection to distribution-based monitoring
enables online detection of long-term drifts in source quality while
simultaneously supporting an estimation of entropy that can be
cross-checked against NIST’s min-entropy bounds.

Once a sample of results from the health tests on N series
of n bits (or symbols) is collected, procedures are developed
and commissioned with the aim of identifying long-term drift or
otherwise assessing the randomness quality.

The inter-failure sequence number (ISN) is introduced, which
represents the average measured number of sequences between two
failures. This measure is employed as a qualifier for the tests.

6.1 Monobit

The diagnostic power of the Monobit on single bit-strings can
be assessed as the capability to detect anomalies in the number of
ones 1 in a sequence of n random bits, as those result in an absolute
value of S, in excess of kog,, where k determines the confidence
level. This condition can be written as:

Sy > ko =— (2n; —n) > ko

1 (7)
— n; > E(k\/ﬁ—l-n).

If j bits are forced to one, the alarm is triggered whenever the
number of ones in the remaining n — j random bit string n} ” is

n—j 1 .
n > E(k«/ﬁ+ n) — j. (8)

The rate at which this happens can be computed as the tail of
the distribution of 7]/ and represents the true positive probability
(TPP) for Monobit fails; on the other hand, the false positive
probability (FPP) is associated with the statistical distribution of
ny for an unbiased string. The comparison between these two
quantities over a sequence of n = 32 bits at varying confidence
levels (ranging from 0 to 40) is illustrated in Figure 6. Notably, the
sensitivity is close to 50% unless the number of biased bits grows to
a significant fraction. On the other hand, the analysis of a series of
Sy values can lead to a procedure enhancing the TPP, thus providing
a basis for anomaly detection with single-bit precision.
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FIGURE 6

Sensitivity scan of the Monobit test across different confidence
levels for a sequence of length n = 32 bits with a number j of biased
bits ranging from 1 to 10. For a fixed number of biased bits, the
corresponding curve is obtained by plotting the false positive
probability vs true positive probability for a ko threshold, with k
varying from O to 4. To meaningfully distinguish between a true
positive and a false positive warning for bias on a single sequence,
the number of corrupted bits must be a significant fraction of the
total. This brings us to consider the mean of the Monobit results
over a series of sequences as the relevant statistics.

This consideration can be extended to all the tests described
in the previous section, driving the shift in focus from the
assessment of a single string to the statistical analysis of a series
of N sequences of n random bits. This approach is aimed at an
online differentiation between systemic failures, which indicate
a bias in the source of bits, and occasional failures caused by
statistical fluctuations.

The observable considered is S, the average value of S, over N
sequences, which is expected to be Gaussian distributed because of
the central limit theorem. A bias model is introduced by setting j
bits to 1 and, as outlined in Figure 7, two potential bias indicators
can be considered: a normalized shift of the average value and
a variation in the fraction of events in the distribution’s tails.
Presuming every sequence to be biased, the dependence of the shift
on the number j of biased bits is linearly dependent on j, in fact

S, =2n —n= 2(n’11_j +j) - (n" +j)= ©)
= (211?_] — n”fj) +]

and E[S,] = j, eventually scaled by the fraction of biased sequences
in the series. On the other hand, the fraction of events in the
tail is expected to be non-linearly dependent on j, since it is the

integral of the normalized S, distribution above the threshold value
k. The sensitivity of the two measures is presented in Figure 8 for
an exemplary sequence length n = 32 as the number of biased bits
changes. The biasing frequency ranges from every sequence to one
in every thousand, across series of N = 2° sequences. Results prove
that the S, shift estimator outperforms the method of counting
events in the tails. Setting a k = 3 confidence level, the effect of
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a single biased bit can be detected for tampering frequencies higher
than one in 10 sequences, while at least five biased bits are required
when one in 100 sequences is biased, and sensitivity is limited for
lower frequencies unless a higher statistic is considered.

The features of the S, distribution are the basis of the online
assessment of the quality of the bit-stream produced by the
generator. If the S, of the current series exceeds the 3¢ threshold, a
false positive warning is raised. The threshold was chosen as a trade-
off with the sensitivity to the errors detected. If it is set too low, too
many False Flags will be detected, while too high a threshold might
not detect actual malfunctions. Therefore, the trade-off was set to

Distribution of Normalized S,
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FIGURE 7

Exemplary distributions of the normalized mean outcomes S, of the
Monobit test for an unbiased (in blue) and biased (in red) bit stream.
The bias introduces an asymmetry between the Os and the 1s that
results in a shift of the distribution from the expected. Two metrics
can be considered to distinguish the two: the shift in the mean value
of the distribution and the number of events in the tails over a fixed
threshold, here illustrated by the dashed line.

10.3389/fcomp.2025.1642566

a threshold of 30, corresponding to a 99.9% confidence level or
false flag probability of 107>. The joint probability of having two
consecutive uncorrelated warnings is approximately 107°, while
the probability of three is 1077, Therefore, the likelihood of such
occurrences is negligible unless a bias in the generation process
is present.

A 1 Gb sample is partitioned into series, each with N = 217
sequences of n = 32 bits. As shown in Figure 9, the S, trace
plot during online production indicates no catastrophic failures
of the entropy source, despite a single warning being triggered by
statistical fluctuations. The strength of this method lies in its ability
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FIGURE 9

Trace plot of the computed mean of the Monobit statistics S, during
online production over a number of series of N = 217 sequences of
n = 32 unbiased bits each for a total of 1 Gb. The orange horizontal
lines represent the 30 confidence level of deviation from the
expected value that act as thresholds: a value of S, outside the
range raises a warning; three consecutive warnings signal a
catastrophic failure in the bit generation.
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Comparison between the sensitivity of the estimators in the detection of a bias for the Monobit test: the shift of the mean value of S, (in blue) is
evaluated against the variation in the number of anomalies expected (in orange), calculated as the integral of the distribution of events in the tails
over the 3o limit, when a number of bits is forced to 1. The comparison is performed with the bias being introduced in every sequence (A), once
every 10 sequences (B), and once every 100 sequences (C). The value of the pull function with respect to the unbiased sequence for the two
estimators consistently identifies the shift on the mean value of S, as the most sensitive.
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to detect systematic failures of the entropy source during online
generation and to promptly alert the user of the malfunctions.

Moreover, a retrospective analysis is performed on the
properties of the distribution of the number of sequences in
between two failures (inter-failure sequence number, ISN). The
average value of ISN clearly depends on the threshold value over
which a failure is declared, as reported in Table 2, so to have a
large statistic of failures, the analysis is performed by setting k =
1. Results are shown in Figure 10, where the trend is fitted with
the model

P(X =x)=p(1—p)*}, (10)

which describes the probability P of having the next failure
after x sequences, with p being the failure probability. Results
are statistically compliant with the hypothesis of an unbiased
distribution, as confirmed by the total number of failing sequences
in 1 Gb of data (measured to be 74.6 2.6 against an expected value
of 77).

6.2 RUNS

As for the Monobit, a collection of RUNS values was used
to define a diagnostic tool for biases and systematic failures by
analyzing samples of N sequences of n bits. It is reasonable to
assume that the considerations previously outlined for the Monobit

TABLE 2 Expected ISN (i.e., ISN) given ko CL in a normal distribution.

10.3389/fcomp.2025.1642566

persist, so the analysis is focused on the shift of the average of the
measured number of runs from the expected mean. As the latter
depends on the actual number of ones n; present in the sequence,
a normalized shift is considered instead: For each sequence, the
measured number of runs Ry, is replaced by the z-score

€3))

which is expected to exhibit a Gaussian behavior by the central
limit theorem. Unbiased series of N sequences are expected to be
centered around z = 0.

Following the same approach as the Monobit test, the
investigation of the sensitivity of the RUNS test is performed
by introducing a bias in the number of runs in the sequences.
By defining

(12)

presuming the sequence to be biased, an average change by AR in
the number of runs will induce a variation
_ AR
AZ=—,
oz

(13)

which can be identified as long as |AZ| > k - oz where k is
set according to the required confidence level. The threshold at k
standard deviations from the expected value of number of runs in a
series is, therefore,

k 2-tailed failure probability ISN
|AR| > k- —. (14)
1 0.317 3.15 ~N
3 27 %107 3704 The shift of the z-score due to the bias, with a frequency of
5 5.7 x 107 17 % 106 once every 10 sequences, could be detected with single-bit precision
; J 56w 1012 1o 101 at a confidence level of up to 50. As reported in Table 3, this
.56 x .9 x . P P
level of accuracy in sensitivity is maintained for sequences up to
A)o Inter-Failure Distribution on Normalised Data B) i Inter-Failure Distribution on Normalised Data C) 7 Inter-Failure Distribution on Normalised Data
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FIGURE 10
Normalized occurrences of the ISN, i.e., the number of sequences between two consecutive failures, with the threshold set at 1o for (A) the Monobit
test, (B) the RUNS test, and (C) the RCT test. The blue datapoints are fitted with the orange line, and the goodness of fit is evaluated via the reduced
chi-square. The mean value of the dataset ISN is then compared with the value computed from the fit ISNg:. The ISN for the Monobit test (A) and for
the RUNS test (B) are evaluated over 1 Gb of random bits generated with the QRNG under consideration and fitted assuming that the probability for it
to be equal to x is P(ISN = x) = p(1 — p)*~1, with p being the failure probability reported on the graph. Both ISNs: and ISN are compatible with the
expected value for an unbiased bitstream. The ISN for the RCT test (C) is evaluated over a sample of 100 Gb of random bits and fitted assuming an
exponential trend. Both ISNg: and ISN are compatible with the expected value for an unbiased bitstream.
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TABLE 3 Sensitivity of the RUNS test at 56 CL for AR variations of the
number of runs, by analyzing 10° unbiased sequences and computing the

averageo.

Lengthn Avg.o

32 2.695 0.009 0.043 0.016
64 3.906 0.012 0.062 0.016
128 5.590 0.018 0.088 0.016
256 7.953 0.025 0.126 0.016

0.1 Unbiased Sequence

0.05 tMean Value = 0.0006+0.0002

Average Z-Score

-0.05 1
-0.1 - - - - - -
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Series no.
FIGURE 11

Trace plot of the z-scores with associated error bars for the RUNS
test computed online during production over 307 series of N = 217
sequences of n = 32 unbiased bits. The red dashed line indicates the
expected value for a random bitstream and the orange lines mark
the warning thresholds at 3o. With this choice, 0.3% of the
population is expected to generate warnings: the observed count of
1 warning over 307 series aligns with this expectation.

128 bits long, while for longer sequences—or equivalently for a
lower frequency of the bias—the sensitivity is limited and the test
requires a larger deviation AR from the expected average to spot
the bias.

Experimental results from the online evaluation of the z-
score are displayed on the trace plot of Figurell. In the
absence of catastrophic failures, the computed z-scores remain
within the expected confidence level, except for the expected
statistical fluctuations.

Further analysis is conducted by measuring the ISN, employing
the same dataset and setup parameters as the Monobit test. The
results of the dataset provided by the considered architecture
are statistically compliant with the hypothesis of an unbiased
distribution, and are reported in Figure 10.

These findings indicate that, similarly to the Monobit test, the
RUNS test is reliable for the online identification of systematic
failures of the system during production. These failures cause the
distribution to shift significantly from the expected value and can
be detected with a relatively small sample size.
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TABLE 4 Exemplary cut-off thresholds for multiple H and « values, given
m = 16.

H o C
2 2720 12
2 2740 22
4 2720 6
4 2740 11

6.3 Repetition count test

The repetition count test is approached in a statistical
framework by examining the properties of the distribution of the
ISN, with the aim of assessing the quality of the bit-stream in terms
of the min-entropy H. Due to the large amount of data necessary,
this analysis is conducted retrospectively, rather than being
performed online. However, it implies no extra computational costs
since it uses data already collected from tests required by NIST
specifications for the DRBG procedure.

As per NIST recommendations, the failure probability « is
set to 2729; this, together with the previously mentioned fact that
the architecture under scrutiny provides four-bit symbols, sets
the threshold for the number of consecutive identical symbols to
C = 6, as reported in Table 4. Failures within a defined window
are, therefore, expected to be driven by the Poisson distribution,
with the number of sequences between two occurrences being
exponentially distributed.

Over 100 Gb of random bits generated by each of four silicon-
based QRNG boards are considered, divided into three sets for each
board. To avoid floating-point approximation problems associated
with exponentials with extremely low numbers, the measures were
lja = 96-4—logx(15)
6 and H 4.
As a matter of fact, the observed ISNs, normalized over the

scaled with respect to the expected ISN

obtained by applying Equation 6 with C
number of failures, conform with the exponential hypothesis, as
shown by the fit in Figure 10, with the computed parameter for
the exponential distribution consistently falling within the 99.7%
confidence interval of the expected value for an unbiased source.
The measured entropy H and an estimation of the min-entropy
are evaluated starting from ISN. The measured entropy is obtained
by substituting in Equation 6 the measured average failure rate

a 1 /IS_N, as C is fixed, and the uncertainty is computed by

propagating the error:

11
“ Cln2o,’

oH (15)

As the statistic on the number of failures is sufficiently large,
the ISN is assumed to approximately follow a Gaussian distribution
with standard deviation equal to oy = /fiis, where ng;
denotes the total number of failures in the sample. To determine
a lower bound on the min-entropy, a shift of 3oz to the right of
the average is considered to recover the largest possible true value
of o (hereby denoted as &) compatible with a 99.7% confidence to
the observed one:

= ISN =1ISN — 307N (16)

Q| —
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This value is then substituted in Equation6 to get the
corresponding limit on the entropy. The results are reported in
Figure 12, where different cut-off thresholds C = 6,7,8 are
considered. Notably, the measured entropy does not consistently
adhere to its physical constraints, reflecting the heuristic nature
of the collected data, where the number of failures fluctuates.
The reported min-entropy estimation represents the minimum
entropy value that aligns with the measured outcome, computed
by applying the aforementioned 3o shift of the measured value.
Taking C = 6, this lower bound consistently falls between 3.989
and 3.998 for each of the subsets of samples considered for all the
boards. With an increase in the cut-off threshold, the probability
of encountering a failing run diminishes, thus resulting in a
larger uncertainty.

6.4 Adaptive proportion test

The analysis of the APT follows the same statistical approach
as the RCT to estimate the min-entropy. As defined by NIST
512
symbols. The number of occurrences of the first symbol within each

guidelines, the data are partitioned into sequences of n =

sequence is counted, and the test is failed if the count exceeds a set
threshold C. The failure probability, therefore, follows a binomial
cumulative distribution function (B_cdf):

Pk > C) :B_cdf(C— LN — 1,p), (17)
where p is the probability of occurrence of the selected symbol,
and the —1 in the first and second arguments is due to the
first symbol being fixed and already accounted for. Assuming an
unbiased bit-stream, p = %. Instances where the frequency of
occurrences for the first symbol falls below a lower threshold are
also considered. In such cases, the corresponding binomial cdf is
included in Equation 17 to compute the overall failure probability.
In this setting, given the failure probability « = 272 and m = 16,
the test is deemed unsuccessful if the count of a symbol exceeds
C > 62 or is smaller than C < 8. The observed results, obtained
by varying the cut-oft threshold, are plotted in Figure 13 and
compared with the theoretical binomial cumulative distribution, to
which they comply.

The failure probability is linked to the probability of occurrence
of a symbol p, which yields the bit-stream entropy as H =
—log, (p). Figure 14 displays an estimated p = 0.0627 £ 0.0002
based on measured failures and binomial error. Table 5 provides
a summary of the measured entropy values and their uncertainties.
By taking the weighted average for each set from each board, the
lower bound on the entropy within a 99.7% confidence level is
H(#46847) = 3.9917, H(#46848) = 3.9724, H(#46851) = 3.9842,
and H(#46855) = 3.9824.

The investigation on the APT could be extended by
evaluating the occurrences of every symbol in the alphabet under
consideration. In fact, such an integration is further validated by
the fact that the minimum entropy is linked to the occurrence
rate of the most probable symbol. Likewise, the failure probability
for each symbol is assumed to be binomial. However, potential
correlations between the symbols could significantly affect the
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Measured Entropy vs. Estimated Min-Entropy
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FIGURE 12

The plots exhibit the measured entropy, labeled as *, with the
related uncertainty, and the min-entropy estimation, labeled as x,
which corresponds to the lower bound on the measured entropy
given a 99.7% confidence. The theoretical limit H = 4 for a perfectly
entropic stream of four-bit symbols is marked by the blue
continuous line. The values were computed on 100 Gb of data
produced with generators #46847 (red), #46848 (green), #46851
(orange), and #46855 (purple), divided into three sets [reported in
(A—C), respectively], by running the RCT test with three values of the
cut-off threshold C. For C = 6, the min entropy estimations
consistently fall between 3.989 and 3.998. Increasing the cut-off
threshold diminishes the number of failures, thus increasing the
error.
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FIGURE 13

The performance of the APT for different values of the cut-off
threshold over the unbiased bit-stream generated with our QRNG is
reported in orange. The datapoints consistently lie within 3o from
the expected value given by the binomial cumulative distribution
function, which is plotted in blue.
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The estimation of the entropy H of the bit-stream as a sequence of
four-bit symbols is computed by evaluating the probability p of
occurrence of the most frequent symbol as the measured number
of failures of the RCT on the bit-stream. The observed number of
failures is traced back by the red continuous line to the
corresponding p on the cumulative distribution function that
governs the RCT (in blue). The result is accompanied by an
uncertainty obtained by tracing back a one sigma binomial error on
the observed number of failures (red dashed lines). The computed p
is p = 0.0627 &+ 0.0002. The purple line marks the expected fails for
the theoretical limit H = 4. Taking the +3 sigma value for the
number of failures gives a lower bound for the entropy of the
bit-stream of 3.983 at a 99.7% confidence level.

number of failures recorded. Assessing these correlations and
defining precise thresholds is necessary and will be addressed in
future work.
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7 FPGA implementation of the
anomaly detection procedure

The anomaly detection procedure outlined in Sections 5
and 6 was firmware implemented, enabling direct integration of
statistical tests within the bit generation logic and facilitating
online performance monitoring alongside bit generation; this
minimizes latency and maintains the generation rate. These tests
are run in real time as finite-state machines and provide early
warning of anomalies without interrupting the bit stream. The tests
included are:

e Monobit (frequency) test: checks the balance of zeros and
ones in the output stream. A significant deviation from 50%
indicates bias in the entropy source.

e RUNS test: counts the number of consecutive identical bits
(“runs”). Deviations from the expected distribution may
indicate correlations between successive bits, due to after-
pulsing or hardware faults.

e Adaptive proportion test (APT): monitors the number of
occurrences of the first symbol within a sliding window.
This test is sensitive to sudden changes in the probability
distribution that the Monobit test alone may not catch.

e Repetition count test (RCT): detects long runs of identical
symbols, which may be due to hardware lock-ups or failure
modes that cause the output to get stuck.

Together, these tests provide complementary coverage:
monobit and APT focus on balance and drift, while RUNS and
RCT catch temporal correlations and catastrophic failures. Unlike
traditional off-line test suites, this real-time monitoring allows
the generator to signal degradation in real time without off-chip
latency, enabling online entropy estimation and system-level
corrective actions.

The hardware-implemented blocks responsible for statistical
test computations are structured as FSMs, which operate as
sequential logic units where each state depends on both the
previous state and current computational outcomes. The following
section details the FSM implementations used to perform the tests.
The descriptions will reference the block diagram presented in
Figure 15.

To improve computational performance and reduce FPGA
resource usage, floating-point arithmetic was replaced with fixed-
point arithmetic. Fixed-point operations are inherently more
efficient for FPGA implementations as they require less logic (and
thus lower power consumption), are easier to pipeline, and simplify
algorithm integration.

The main contribution of this implementation is the focus
on monitoring shifts in the mean of the failure distribution, as
explained in Section 6. This adjustment reduces computational
overhead while better supporting the goal of identifying
distribution drift rather than extreme deviations.

To implement this approach, the system detects three
consecutive failures (adjustable from 1 to 16). Assuming these
failures are uncorrelated and with a 30 confidence threshold (0.001
false positive rate), the probability is P = 107°. At a 32 Mbit/s
generation rate and 64 kbits per test iteration, this corresponds to
one false alarm every 69 days on average.
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TABLE 5 A comprehensive report on the measured entropy for the RCT and APT for « = 2-2°, showing that all values fall within the theoretical entropy
limit, considering statistical fluctuations during the generation process, and assuming an unbiased bit-stream.

Sets\boards #46847 #46848 #46851 #46855

RCT APT RCT APT RCT APT RCT APT
Set 1 3.997 £ 0.003 4.00715018 3.999 £ 0.003 3.990100% 3.999 £ 0.002 4.00475508 4.001 % 0.003 3.95510005
Set 2 4.005 £ 0.003 4.0247501¢ 3.998 & 0.003 3.99010008 3.999 £ 0.002 3.99710008 4.004 £ 0.002 4.00475508
Set3 4.000 % 0.003 4.00615012 4.002 %+ 0.003 3.99410000 4.000 + 0.002 3.99210:008 3.997 4 0.002 4.01215812
Weighted Avg. 4.001£0.002 | 4.011£0.007 | 3.991£0.002 | 3.99240.005 = 3.999£0.001 | 3.997 % 0.004 4.006 = 0.002 4.003 = 0.005
99.5% CL 3.996 3.993 3.987 3.978 3.996 3.986 3.997 3.991
min-H NIST 3.999 3.999 3.998 3.999

The last row reports the min-entropy estimated according to the entropy source validation program by NIST (Turan et al., 2018). The estimated values through the proposed method are lower

due to the larger error.
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Block diagrams of the hardware-implemented statistical tests. Each accelerator is realized as a Finite-State Machine with Datapath. The (A) RUNS
accelerator is the most complex one, since the result depends not only on the parameters but also on the current tested bits, which makes it
unfeasible to use pre-calculated values in every step. The (B) Monobit accelerator, thanks to its simpler test statistic, does not suffer from these
drawbacks. The (C) APT and (D) RCT accelerators are by far the simplest ones, requiring only counting operations and comparison to predefined
thresholds. For the RUNS and Monobit tests, the standard NIST implementation computes a p-value using the error function (erfc). In our hardware
implementation, this step is omitted. Instead, the raw test statistics are directly compared against o -based thresholds derived from the Gaussian
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Regarding resource usage, the APT and RCT implementations
collectively require approximately 300 Look-Up Table (LUT)
elements (0.3% of K26’ available resources), 90 registers(< 0.1%),
and three block RAM units (2.1%). The Monobit utilizes 480
LUTs (0.4%), 260 registers (0.1%), and 1 block RAM unit (0.7%).
Comparatively, the RUNS implementation demands significantly
higher resources, using 1,730 LUTs (1.5%), 1,900 registers (0.8%),
and three block RAM units (2.1%).

7.1 RUNS test

The FSM controlling the RUNS test operates by processing
incoming bit sequences and monitoring their statistical properties

Frontiersin Computer Science

in real time. The system is configured with two key parameters:
the sequence length n and the number of sequences to
analyze N.

During operation, the FSM analyzes each bit sequence through
several steps. In reference to Figure 15A, block (rl) counts the
incoming symbols by counting the number of clock cycles during
which the symbol bus is valid, while block (r2) accumulates the
number of ones in each sequence by summing 4 bits from the
symbol bus, and block (r3) calculates the number of runs by
detecting transitions between consecutive bits. This operation is
executed by a module the calculates the number of bit flips in
a single symbol. It also remembers the last bit to account for a
possible flip between consecutive symbols. These measurements
are then used to compute a standardized test statistic z, according
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to Equation 11, which quantifies how much the observed pattern
deviates from expected random behavior.

Among the NIST statistical tests, Monobit, APT, and RCT are
easily adapted to firmware as they are based on bit or symbol
counting. However, the RUNS test requires complex mathematical
operations to compute the normalized z value, as the quantities
needed for its evaluation vary with each sequence. This prevents
the use of pre-calculated constants and significantly increases
computational complexity for firmware implementation.

As a result, two dedicated Xilinx IP cores were used as firmware
accelerators: fixed-point CORDIC to calculate the square root of a
variable using iterative shift and add/subtract operations, and fixed-
point divider (Xilinx Divider generator) to compute the inverse
of a variable using the iterative high radix division algorithm.
Both accelerators introduce processing latency but offer predictable
execution times.

The division operations are performed by simple bit shifting.
This is the reason why input parameters (in terms of n and N)
were carefully limited. Multiplying by parameters is performed
by simple bit shifting operations. Multiplications that involve
unpredictable operands (symbolized by darkened circles) are
performed by Lookup Tables. Carefully placed result latching
regions separate pipeline stages and decrease synthesis and
implementation timing requirements.

Block (r4)
values, while block (r5) continuously compares them against

maintains a running average of these z
configurable statistical thresholds. When three consecutive
measurements fall outside the acceptable range, the system
triggers an anomaly detection flag, allowing external control
systems to respond by halting data generation and alerting
the administrators.

The flexible
for different sequence lengths, ranging from 2° to 2'! bits,

implementation supports a configuration
and can analyze between 4 and over 2 million sequences,
providing adaptability for different testing requirements and

performance constraints.

7.2 Monobit test

The implementation of the Monobit test on firmware follows
a similar pipeline to the RUNS. Block (m1) counts the number of
ones in each generated symbol.

The Monobit test FSM operates in a similar way to the
RUNS pipeline. The system processes sequences using the same
configurable parameters: sequence length n and number of
sequences N.

During execution, block (m1) counts the number of ones in
each incoming symbol sequence, while block (m2) controls the
FSM execution steps based on symbol reception events. The logic
constantly calculates the Sn value, but it is treated as valid only
when the required number of bits has been processed, which
is typical for FPGA logic designs. The system then computes
the average bias across all sequences according to Equation 1,
which measures how far the proportion of ones deviates from
the expected value. Block (m3) compares these computed averages
against predefined statistical thresholds expressed as multiples
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of standard deviations. The system tracks consecutive threshold
violations and raises a hardware failure flag when three consecutive
measurements exceed the threshold, indicating potential bias in the
generation process.

Raw results, as well as summary statistics, are buffered in FIFO
memory for access by other firmware components. Similar to the
RUNS, the implementation supports sequence lengths from 22 to
2! bits and can analyze between 4 and over 2 million sequences,
with the constraint that both parameters should have matching
parity (both even or both odd powers) to maintain even thresholds
and simplify computational operations.

7.3 Adaptive proportion test

The adaptive proportion test (APT) FSM monitors sequences
for excessive repetitions of symbols that could indicate biased bit
generation. The system operates on fixed-length sequences of 512
symbols to detect statistical anomalies, as recommended by NIST
(Turan et al., 2018).

During operation, block (al) locks the first symbol of each
sequence as a reference. Block (a2) then systematically compares
each of the following 511 symbols against this locked reference,
incrementing an internal counter whenever a match is detected.
This process continues until the complete 512-symbol sequence
has been analyzed. Upon completion of each sequence, block (a3)
evaluates whether the total count of matching symbols exceeds
the predetermined statistical threshold. When the count falls
outside acceptable boundaries, the system asserts an anomaly flag,
signaling potential bias toward a particular symbol value that could
compromise randomness quality.

It is worth noting that the counter is reset to one because the
first occurrence should also be counted.

7.4 Repetition count test

The repetition count test (RCT) FSM continuously monitors
the bit stream for excessive consecutive repetitions of identical
symbols, similarly to the RUNS but operated at the symbol level.

During operation, block (c1) processes each incoming symbol
in the data stream. Block (c2) maintains a one-cycle delay register
that enables comparison between consecutive symbols by storing
the previous symbol value. The system then compares the current
symbol against the delayed previous symbol, incrementing
an internal repetition counter when consecutive matches
are detected.

The counter resets to one whenever consecutive symbols differ,
ensuring accurate tracking of only continuous repetition sequences.
Additionally, the counter undergoes a forced reset after every 512
symbols to remain consistent with NIST specifications.

Block (c3) provides immediate anomaly detection by
continuously monitoring the repetition counter against a
configurable threshold. When consecutive repetitions exceed the
specified limit, the system immediately raises an anomaly flag
without waiting for sequence completion.

frontiersin.org


https://doi.org/10.3389/fcomp.2025.1642566
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Caratozzolo et al.

8 Conclusion

Starting from four wellknown and recognized tests (the
Monobit, the RUNS, the repetition count test, and the adaptive
proportion test) for the assessment of the eligibility of a
string of random bits to seed a DRBG, a method for the
online evaluation of the source of randomness is developed.
While originally every failing sequence was discarded, here such
results are considered in a statistical framework to distinguish
between the effect of an actual systematic bias in the bit
generation and extreme values that are compatible with ordinary
statistical fluctuations.

The sensitivity and effectiveness of bit-wise tests are assessed by
introducing a bias model by deliberately forcing the value of some
of the bits in the test sequences. On series of 2° sequences of 32 bits,
the Monobit-like test is able to identify the tampering of a single
bit done once every 10 sequences with a 99.7% confidence level and
can go up to spotting a bias once every 100 sequences if the bits
forced are in groups of 5. On series of 2!7 sequences of 32 bits, the
RUNS:-like test is able to pinpoint the presence of a biased bit in 10
sequences with a 50 confidence level.

The symbol-wise tests, based on the RCT and the APT, are used
to provide an online estimation of the entropy of the bit stream.
Four different boards implementing our QRNG are evaluated,
yielding consistent lower bounds of 3.989 and 3.983 at 30 for
four-bit symbols. Such results are compatible with the calculation
of the min-entropy carried out on the boards according to NIST
specifications described in Turan et al. (2018). As this calculation
relies on the symbols of the bitstream being independently and
identically distributed, the dataset under study was validated as
such and the procedure to do so analyzed. While the official
procedure does certainly result in a more precise assessment, this
method has the advantage of providing an early-stage, online
evaluation of a lower bound for the entropy of the random bit
generator without any additional burden, as the data used are those
provided for the health test.

For all the tests, the concept of inter-sequence failure number
(ISN) is introduced and used to evaluate the performance of our
QRNG on a statistical basis. As the nature of this observable
requires a significant amount of data (much more than the anomaly
detection procedure developed on the Monobit and RUNS tests),
the tests are implemented in firmware to minimize the lag on
bit-harvesting.

The procedures presented in this work, while effective,
are subject to several limitations. First, the analysis assumes
that the generated data are representative of typical operating
conditions; environmental stress tests (temperature extremes,
voltage variations) were not performed. As a result, the stability
of the proposed methods under such conditions remains to be
assessed. Second, the choice of thresholds (e.g., 30, @ = 2720)
reflects a balance between sensitivity and false-alarm probability.
These values, although consistent with NIST recommendations,
retain a degree of heuristic tuning and could require re-
optimization for alternative use cases. However, this flexibility
can be considered a strength of the proposed methodology, as
these values can be adjusted by the user depending on the
sensitivity, false positive rate, and reaction time required by the
specific application.
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Finally, we remark that the proposed tests yield significant
results starting from a relatively small sample of generated bits.
This opens the way for highly optimized implementations of
entire test suites using FPGAs, which would enable a resource-
efficient randomness assessment of generated bit-streams without
significantly slowing down the harvesting process.
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