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Brownian motion (BM) is a stochastic model that has been extensively studied 
in physics, finance, and engineering. However, its potential use in cryptographic 
applications remains underexplored. This paper presents a comprehensive review 
of the capabilities, limitations, and cryptographic properties of various BM models, 
including the Wiener process, geometric BM, fractional BM, Ornstein–Uhlenbeck 
process, multidimensional BM, and reflected BM. We reviewed the mathematics of 
these models, simulate their random evolutions, and compare their cryptanalytic 
properties. A comparison of these sources highlights unique characteristics 
that can provide cryptographic resilience, including long-range dependence, 
multidimensional modeling of noise, and constraints on randomness. We also 
describe the main limitations and potential weaknesses of each model. This paper 
addresses gaps in the application of stochastic process to cryptographic design 
and provides a foundational guideline for the continued development of secure 
systems based on Brownian dynamics.
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1 Introduction

Brownian motion (BM) is the random movement of particles suspended in a fluid, first 
reported by Brown in 1827 (Chen et al., 2023). It has been widely used to model stochastic 
processes in physics (Tawade et al., 2022), finance (Thapa et al., 2022), biology, and engineering. 
The Wiener process, geometric Brownian motion (GBM), and advanced generalizations such 
as fractional Brownian motion (fBM) (Wang et al., 2022) and the Ornstein–Uhlenbeck (OU) 
process are commonly employed to characterize randomness, diffusion, and mean-reverting 
processes within complex systems (Ibrahim et al., 2021; Urumov et al., 2024).

The mathematical application of BM to real-world problems has been extensively studied 
but, to the best of our knowledge, the cryptographic aspect of this model has remained largely 
unexplored. Given the growing importance of high-entropy randomness, secure 
communication, and adaptive encryption protocols in contemporary cryptographic 
underpinnings, BM-like models show promise (Kumar et al., 2022; Santra et al., 2021). Their 
stochasticity, long-range dependence, and self-similarity may serve as sources of entropy or as 
frameworks for designing robust, noise-resistant security protocols.

This paper aims to bridge the gap between stochastic process modeling and cryptography. 
We provide a rigorous review and simulation-based comparison of six BM models, assessing 
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their capabilities and limitations in the context of cryptographic 
requirements. Our contributions are as follows:

	•	 Analyze and simulate key BM variants (Wiener, GBM, fBM, OU, 
multidimensional, and reflected BM) to demonstrate their 
structural differences and stochastic behaviors.

	•	 Explore their cryptographic applicability for pseudo-random 
number generation.

	•	 Present a comparative evaluation highlighting security benefits, 
implementation complexity, and limitations for each model.

	•	 Identify challenges in real-world adoption and propose future 
directions for integrating BM models into cryptographic 
system design.

Recent advances in BM models have significantly deepened our 
understanding of randomness, diffusion, and long-range dependence 
in complex systems. In this work, we review and simulate the six key 
variants of Brownian motion models to assess their structural 
distinctions and stochastic behaviors within a cryptographic context. 
By aligning the historical evolution and advanced modeling 
techniques of BM with critical cryptographic challenges such as 
pseudo-random number generation, this paper defines the scope and 
aims of our project. Our comparative evaluation not only details the 
operational benefits and complexities of each model but also utilizes 
the potential for BM-based approaches to contribute to the 
development of more secure, and adaptive encryption mechanisms.

Despite the mathematical maturity of Brownian models, their 
integration into practical cryptographic primitives remains 
underexplored. Most existing work either applies BM in unrelated 
domains or theorizes its potential without experimental grounding. 
This paper addresses this gap by classifying major BM models for 
cryptographic relevance and evaluating their 
implementation feasibility.

2 Brownian motion models

2.1 Wiener process

The Wiener process, also known as standard BM, is the 
fundamental continuous-time stochastic process used in probability 
theory. It serves as the building block for many stochastic models, 
including those applied in financial modeling, physics, and control 
theory (Durrett, 2019). A Wiener process ( )W t  is a stochastic process 
that satisfies the following conditions (Kleinert, 2009):

		  Initial condition: ( ) =0 0W .
		  The increments ( )W t  − ( )W s  for s <  t are independent of 

past values.
		  For s  <  t, the increment ( )W t  − ( )W s  follows the normal 

distribution ( )W t  − ( )W s  ∼ N(0, t − s).
		  The function ( )W t  is continuous in t with probability 1.
		  The expected value of the process given past values is equal to 

the current value: E[ ( )W t ∣ ( )W s ] = ( )W s  for s < t.

The function ( )W t  has continuous sample paths with probability 
1, in the topological sense, not to the likelihood of the process taking a 
particular value or direction. The key statistical property is that the 

increments ( ) ( )−W t W s  (for s < t) are normally distributed with mean 
zero and variance t−s, and these increments are independent of the past 
values of the process. This ensures that while the motion is continuous 
in time, its direction and magnitude remain entirely random.

These properties define standard BM, which has applications in 
physics, finance, and mathematics. The differential form of the Wiener 
process is given by d ( )W t  ∼ N(0, dt), where d ( )W t  represents an 
infinitesimal change in the Wiener process, and dt is an infinitesimal 
time increment. Since d ( )W t  is Gaussain increment with mean zero 
and variance dt, it serves as the driving force for many stochastic 
differential equations. Figure 1 presents a sample plot of the Wiener 
process simulation.

2.2 Geometric Brownian motion

Geometric BM is used to model processes where the logarithm of 
the variable follows BM with drift. It is commonly applied in financial 
mathematics to model stock prices (Hull, 2017). The stochastic 
differential equation (SDE) for GBM is:

	 ( ) ( ) ( ) ( )µ σ= +d d d ,S t S t t S t S t 	 (1)

where ( )S t  is the value of the process at time t, μ is the drift 
coefficient, σ is the volatility coefficient, d ( )W t  is the increment of the 
standard Wiener process ( )W t , and dt represents an infinitesimal 
time increment.

In cryptography, GBM can model the evolution of certain security 
parameters over time, aiding in the assessment of long-term security. 
It is utilized in option pricing and modeling stock prices. The GBM 
model assumes that asset prices follow exponential BM, ensuring that 
prices remain positive. Applying Itô’s lemma to solve the SDE yields 
the explicit solution.

	
( ) ( ) ( ) ( )S t S t W t20 exp /2 ,µ σ σ = ⋅ − ⋅ + ⋅   	

(2)

where S(0) is the initial price at time t = 0, and the term σµ
 

−  
 

2

2

accounts for drift correction due to the variance of the stochastic term. 
Figure 2 presents a plot of a GBM simulation. The process models the 
evolution of a stock price over time, incorporating both drift (μ = 0.1) 
and volatility (σ = 0.2). The exponential growth pattern is evident, 
along with random fluctuations introduced by the BM component.

2.3 Fractional Brownian motion

fBM is a generalization of standard BM that incorporates long-
range dependence and self-similarity (Biagini et  al., 2008). It is 
widely used in fields such as finance, network traffic modeling, and 
image processing, where memory effects play a crucial role. 
Fractional BM, BH(t), is a Gaussian process with mean zero and 
covariance function.

	
( ) ( ) ( )  = + − − 

22 21 ,
2

HH H
H HE B t B s t s t s

	
(3)
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where H is the Hurst exponent, which controls the correlation 
structure (if H = 0.5, fBM reduces to standard BM; if H > 0.5, the process 
exhibits positive correlation; and if H < 0.5, the process exhibits negative 
correlation), and s and t are two time points. Note that s and t denote two 
distinct instants in time at which the process is observed, with s < t in the 
standard formulation. They are used to evaluate the covariance structure 
of the fractional BM. The distinction is that s represents the earlier time 
point and t the later time point, so that the difference t-s determines the 
time lag over which statistical dependence is measured.

Unlike standard BM, fBM is not a Markov process and does not 
have independent increments. A common way to define fBM is via the 
Mandelbrot–van Ness representation, given as:

	

( )
( ) ( )

( ) ( ) ( )

H H

H
t H

t s s
B t

H W s t s W s

1 10
2 2

1
2

0

1 ,
1

d d2

− −
−∞

−

  
 − − − 
   =   Γ +     + −   

∫

∫ 	

(4)

FIGURE 1

Sample plot of Wiener process.

FIGURE 2

Sample plot of GBM.
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where ( )W s  is a standard Wiener process and Γ(·) is the gamma 
function. This integral representation ensures that BH(t) satisfies the 
required covariance structure. Figure 3 presents a sample plot of an 
fBM simulation with Hurst parameter H = 0.7. The process exhibits 
long-range dependence and self-similarity, characteristic of fBM.

2.4 Ornstein–Uhlenbeck process

The Ornstein–Uhlenbeck (OU) process describes the velocity of 
a particle undergoing BM with friction. It is defined by the SDE.

	 ( ) ( )( ) ( )θ µ σ= − +d d d ,X t X t t W t 	 (5)

where ( )X t  is the value of the process at time t, θ is the rate of 
reversion to the mean, μ is the long-term mean, σ is the volatility 
coefficient, and d ( )W t  is the increment of a Wiener process 
(Vasicek, 1977).

In cryptography, the OU process can model the fluctuation of 
certain security metrics around a desired level, facilitating the design 
of adaptive security systems. It is a mean-reverting stochastic process 
that describes how a system tends to drift toward a long-term mean 
over time. It is widely deployed in financial modeling, physics, and 
biology. It is commonly used in finance to model interest rates and 
mean reversion. Applying Itô’s lemma and solving the SDE yields the 
explicit solution for ( )X t :

	 ( ) ( ) ( ) ( )θθ θµ σ − −− −= + − + ∫0 0
1 d

t t st tX t X e e e W s
	

(6)

This equation shows that ( )X t  exponentially tends to μ with rate 
θ, and the stochastic integral refers to the random part around this 
mean. The key property of the model is mean reversion: if ( )X t  > μ, 

the drift term θ(μ −  ( )X t ) brings it down toward μ, and if ( )X t  < μ, 
the drift term pulls it upward toward μ.

The second property is the stationary distribution: as t → ∞, the 
random variable ( )X t  becomes normally distributed:

	
( ) σµ

θ

 
  
 

2
~ , ,

2
X t 

	
(7)

where the variance σ
θ

2

2
 decreases as θ increases. Thus, faster mean 

reversion leads to lower fluctuations.
The third property is the autocorrelation function: ( )X t  can 

be expressed as

	
( ) ( )( ) θσ

θ
− −=

2
cov ,

2
t sX s X t e ∣ ∣

	
(8)

This shows that correlations decay exponentially over time. 
Finally, the OU process has the Markov property: the future behavior 
of ( )X t  depends only on its present value, not past values. Figure 4 
illustrates a sample plot of an OU process simulation. The blue line 
represents the simulated process over time, and the red dashed line 
indicates the long-term mean μ = 0. This process illustrates the 
tendency of mean reversion over time.

2.5 Multidimensional Brownian motion

Multidimensional BM (also called vector-valued BM) is a 
generalization of one-dimensional BM, with the process defined in a 
multidimensional space. It models random motion in higher 
dimensions and is widely deployed in financial models, diffusion 

FIGURE 3

Sample plot of fBM.
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processes, and statistical physics. In this case, the process is represented 
as a vector of BMs, where each component represents BM in one 
dimension (Vasicek, 1977).

Let ( )W t  = ( ( ) ( ) ( )… T
1 2, , , )dW t W t W t  represent multidimensional 

BM in ℝd, where each component ( )iW t  is a standard Wiener process 
(one-dimensional BM). The components are mutually independent for 
different i, with each following the distribution

	 ( ) ( )d ~ 0,diW t t 	 (9)

The covariance structure of multidimensional BM is given by 
( ) ( )( ) ( )δ=cov , min ,i j ijW t W s s t , where δij is the Kronecker delta 

(i.e., components are independent if ≠i j ). More generally, a 
multidimensional BM can be defined with covariance matrix Σ , so 
that ( )( )W t tcov = Σ . In this paper, we consider the standard case 
where the components are independent, corresponding to dI .Σ =

The multidimensional BM ( )W t  is a vector-valued process and 
can be written as

	 ( ) ( ) ( )( )= …
T

1 2d ,d , ,d ,dW t W t W td tW 	 (10)

where ( ) ( ) ( )( )= …
T

1 2, , , dW t W t W ttW  is the multidimensional 
BM vector at time t, each ( )iW t  is one-dimensional BM, and the 
components ( )iW t  are mutually independent. Figure 5 presents a 3D 
plot of multidimensional BM. The random path illustrates the 
stochastic behavior of BM extended to a multidimensional space.

2.6 Reflected Brownian motion

Reflected Brownian motion (RBM) is a constrained form of BM that 
cannot cross a specified boundary (Øksendal, 2003). It is often used to 

model queueing systems, diffusion processes in confined spaces, and 
other constrained stochastic processes. In one dimension, a standard 
reflected BM Z(t) with a lower reflecting barrier at 0 is defined as:

	 ( ) ( )= ,Z t B t 	 (11)

where B(t) is standard BM. This definition ensures that Z(t) never 
takes negative values by “reflecting” any negative excursions back into 
the positive domain. For a general reflected BM in a domain D with 
reflection at the boundary, the process satisfies:

	 ( ) ( )µ σ= + +d d d d ,tX t W t R t 	 (12)

FIGURE 4

Sample plot of OU process.

FIGURE 5

Sample plot of multidimensional BM (3D).
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where ( )X t  is the reflected BM, μ is the drift coefficient, σ is the 
volatility, ( )W t  denotes standard Wiener process, and ( )R t  is 
non-decreasing and increases only when ( )X t  is on the boundary. 
This process enforces the constraint ( )X t  ∈ D and increases only 
when ( )X t  is on the boundary, where D is the domain constraining 
the reflected BM. This model has several properties; for example, it 
ensures that the process never falls below the defined boundary. 
RBM is often formulated as a Skorokhod problem, where a correction 
term is introduced to keep the process within the allowed domain. 
Figure 6 presents a sample plot of a reflected BM simulation. The 
process behaves similarly to standard BM but reflects at zero, 
ensuring that the process value remains non-negative. The process is 
constrained such that it cannot take negative values, and whenever it 
reaches zero, it is reflected back into the positive domain. This 
reflection mechanism creates a lower bound but does not impose any 
positive limit or asymptotic upper bound. The fluctuations above 
zero remain stochastic and unbounded over time, determined by the 
volatility parameter σ and the drift μ of the underlying 
Wiener process.

3 Applications of Brownian motion

3.1 Applications of Wiener process

The Wiener process is a fundamental concept in stochastic 
processes, with applications in finance, physics, biology, mathematics, 
and engineering. In finance, it is used to model stock prices and option 
pricing. Its increments are independent and normally distributed, 
making it a key component of models such as the Black–Scholes 
model, which is central to option pricing and risk control (Bian, 2024). 
It also supports the prediction of stock price movements, capturing 
the volatility and uncertainties present in financial markets. This 

process is invaluable for traders and financial analysts, who rely on 
such probabilistic models to predict prices.

In physics, the Wiener process appears in many fields, including 
statistical mechanics and thermodynamics. It is used to model the BM 
of a particle suspended in a fluid, providing insights into the effects of 
thermal fluctuations. Moreover, it is applied to noise modeling of 
electronic devices, where the Gaussian Wiener process helps analyze 
and cancel noise in systems such as high-electron-mobility transistors 
(Mohammadzade et al., 2021).

In biology, the Wiener process is employed to describe nerve 
firing rates and growth and development processes. It captures the 
chance variations in population size, which are important in the study 
of interactions between species and ecosystem dynamics. The 
continuous nature of the Wiener process enables the simulation of 
stochastic fluctuations in biological systems, making it an important 
resource in evolutionary biology and ecology (Bevia et al., 2021).

Mathematically, the Wiener process plays a key role in 
stochastic calculus and is used as a building block to construct 
more sophisticated mathematical objects. It is a natural setting for 
studying systems perturbed by randomness (Li and Qian, 2020). 
The process has also been applied to advanced mathematical 
theories—for example, cubature on Wiener space, which develops 
approximations for expectations of functionals of diffusion 
processes, and is important in mathematical finance (Hayakawa 
and Tanaka, 2021).

In engineering, the Wiener process is commonly adopted in 
reliability engineering and deterioration modeling. It is employed to 
estimate the remaining useful life of systems and components, and its 
random character is valuable for interpreting and estimating 
degradation patterns (Li et al., 2020; Shangguan, 2023). For example, 
it has been applied in the reliability evaluation of hard disk drives and 
lithium-ion batteries (Muhammad et al., 2022; Zhu et al., 2022). The 
Wiener process is also important in the maintenance of engineering 

FIGURE 6

Sample plot of reflected BM.
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systems, helping to optimize inspection and preventive replacement 
policies (Gao et al., 2023).

3.2 Applications of geometric Brownian 
motion

GBM is important in various disciplines. Its features, particularly 
price log-normality and the capacity to model continuous paths with 
drift and volatility, support the analysis and forecasting of 
dynamic systems.

In the financial sector, GBM is commonly used for stock and 
option pricing. The Black–Scholes model of investment, which has 
had a profound effect on financial markets, is based on the assumption 
that the prices of financial assets follow a GBM process. This allows 
the development of closed-form solutions for option prices, enabling 
traders and analysts to compute the fair value of options using the 
volatility and expected returns of the underlying asset (Brătian et al., 
2021; Lv and Wang, 2020). GBM is also used to forecast the price of 
commodities, such as crude oil; it contributes to the interpretation of 
price fluctuations and supports investment decision-making 
(Pangestika, 2023; Moroz and Yalymova, 2021).

In economics, GBM has been used to represent various economic 
phenomena and indicators, such as inflation rates and market 
behaviors (Sun et al., 2022). For example, GBM has been applied to 
analyze stock market index dynamics and to understand market 
efficiency and the behavior of asset prices in different economic 
scenarios (Brătian et al., 2021). In addition, the GBM model has been 
adopted in supply chain financing, where it can assist decision-making 
by representing the uncertainty of financial flows (Zhao et al., 2020).

GBM is applied to reliability analysis and risk estimation in 
engineering systems. It can model the deterioration of parts, allowing 
engineers to estimate failure rates and plan maintenance schedules. It 
is also implemented in telecommunications to model signal distortion 
and noise in communication systems (Sun et al., 2022).

In biology, GBM is used as a basis for modeling population 
dynamics and disease spread. Epidemiologists have used it to study 
the spread of pandemics, such as COVID-19, and predict future 
outbreaks from past data. GBM’s ability to capture noise inherent in 
biological systems is becoming invaluable to ecologists examining 
population growth and disease spread (Fabiano and Radenović, 2021).

GBM can be utilized in stochastic calculus and is a fundamental 
part of many mathematical fields, such as SDEs. It also serves as a tool 
for studying noise-induced phenomena in systems described by 
deterministic mathematical models. GBM’s characteristics can be used 
to investigate complex mathematical issues, such as relationships 
among averages used in finance (Kipp and Koziol, 2020). It also has 
potential applications in time series analysis for modeling auto-
correlated processes and improving forecasting accuracy.

3.3 Applications of fractional Brownian 
motion

fBM is a generalization of BM with long-range dependence and 
self-similarity, and it is applied in multiple disciplines. The properties 
of this model enable it to portray more complex systems than a simple 
model. The complexity of fractional BM comes from the Hurst 

exponent, which determines whether the process shows long-range 
dependence (H > 0.5) or anti-persistence (H < 0.5). This makes fBM 
capable of capturing correlations across multiple time scales, giving it 
memory, fractal geometry, and self-similarity that standard BM lacks.

In finance, fBM is more suitable for fitting asset prices and financial 
derivatives than classical models. It accounts for the long-memory 
behavior of financial time series required to understand market 
dynamics and volatility clustering (Sun et  al., 2022). fBM has been 
utilized in option pricing with fractional stochastic volatility models for 
the realistic pricing of derivatives in markets with long-memory volatility.

In physics, fBM describes several special cases with fractal 
properties and long-range correlations. For example, it has been used 
to model turbulent flows (Gao and Sun, 2021) and diffusion processes, 
as its self-similar nature is consistent with the complex dynamics of 
such systems. Its application to SDEs allows for the modeling of 
systems with memory effects and the universal properties of a wide 
range of physical processes. Furthermore, fBM has been used to 
describe the dynamics of noise-driven systems to investigate heat 
transfer and light propagation (Suryawan, 2020).

fBM can also be used to extend the representation of long-range 
dependence in biological phenomena. It has been found particularly 
useful for modeling the ontogenetic allometries of populations, where 
its long-memory feature is required to model the erratic fluctuations 
found in field population data (Li and Qian, 2020; Sun et al., 2022). 
Moreover, fBM has been used to model the spread of infectious 
diseases, yielding valuable insights into outbreak dynamics and the 
efficacy of control measures (Gao and Sun, 2021).

fBM is also used to model traffic patterns in networks exhibiting 
self-similarity and long-range dependence. Classical models often fail 
to capture such characteristics, making fBM a more appropriate choice 
(Li and Qian, 2020; Suryawan, 2020). A better understanding of such 
patterns is essential for network design, resource management, and 
improving the quality of service (Zhao et al., 2020).

In image processing, fBM is used for texture analysis and image 
synthesis. Its recursive properties make it useful for modeling natural 
textures, which are typically fractal in nature. For example, fBM is 
applied to synthesize texture patterns that match the statistical 
characteristics of natural images, supporting the generation of realistic 
computer graphics (Bou et al., 2021). It is also deployed in image 
de-noising and enhancement, especially when noise with memory can 
be modeled as such—that is, when the quality of an image indicates 
the presence of noise of the same type (Suryawan, 2020).

3.4 Applications of Ornstein–Uhlenbeck 
process

The OU process is a stochastic process utilized in many fields and 
domains. Its properties, including mean reversion and normally 
distributed increments, make it suitable for modeling processes that 
tend to return to a mean level.

In finance, the OU process is used to describe interest rates and 
asset prices. It forms the basis of the Vasicek interest rate model, which 
captures how interest rates change over time (Wu et al., 2021). It is also 
applied to model the volatility of financial assets, helping explain 
return dynamics and the effect of shocks on prices.

In physics, it models the movement of particles in viscous fluids, 
acting as a prototype for the velocity of particles subject to random 
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forces and friction. It is also useful for understanding system dynamics 
in thermal equilibrium (Mariani et al., 2023). The process is studied 
in the context of stochastic resonance, providing insights into how 
noise can enhance the detection of weak signals in physical systems 
(Mariani et al., 2023). It is also applied in optical tweezers, where the 
motion of trapped particles is simulated to study their behavior under 
different conditions.

In biology, the OU process is used in evolutionary dynamics and 
population genetics. It models the adaptive evolution of traits in 
populations (for example, how traits increase with skill level), where 
mean reversion reflects the tendency of traits to stabilize around an 
optimal value (Giorno and Nobile, 2022). The OU process is also 
applied in neuroscience to simulate neuronal activity and analyze 
the time-dependent fluctuations in firing rates. This contributes to 
understanding neural coding and information processing in 
the brain.

In economics, the OU process is used to simulate indicators such 
as inflation rates and GDP growth. Its mean-reverting nature makes 
it suitable for modeling the cyclical characteristics of economic 
variables, helping economists examine the stability and oscillation of 
economic systems. It is also implemented in econometrics to model 
time series data and study relationships among several economic 
variables over time (Wu et al., 2021).

3.5 Applications of multidimensional 
Brownian motion

MBM is a stochastic process that generalizes BM to multiple 
dimensions. It has many useful applications, as it allows for the 
modeling of nonlinear systems composed of many parts.

In finance, MBM is important for capturing the dynamics of 
several correlated assets. It is used to price multi-asset options, where 
asset dependencies and covariances must be considered. For example, 
it is applied to portfolio optimization and is useful in analyzing the 
risk and return properties of portfolios containing multiple assets 
(Guillaume, 2024).

In physics, MBM models the motion of systems of particles in 
multiple dimensions, particularly when the particles interact. It is also 
used to study diffusion in complex media where particles move under 
multiple forces acting in different directions (Zhou, 2024). MBM is 
useful in statistical mechanics, as it simplifies the study of systems with 
many degrees of freedom.

In engineering, MBM is utilized in control and signal processing. 
It provides a framework for multidimensional noise modeling in 
communication systems. For example, it is useful for constructing 
optimal control policies for randomly perturbed systems (Bouaicha 
et  al., 2022). MBM is also applied to simulate multidimensional 
diffusion, which is important in predicting the behavior of complicated 
engineering structures under uncertainty.

In machine learning, MBM is used for anomaly detection and 
pattern discovery in high-dimensional data. It has recently been 
shown that features extracted using MBM can be effectively used in 
learning methods. MBM can also help identify patterns, as well as rare 
or abnormal events, in complex data sets (Muñoz-Gil et al., 2021). It 
is adopted in stochastic models that incorporate prediction 
uncertainty, thereby increasing the robustness of machine learning 
algorithms (Abdar et al., 2021; Kirichenko, 2023).

3.6 Applications of reflected Brownian 
motion

RBM is a stochastic process suitable for describing systems with 
constraints. It is applied across a range of disciplines, such as 
queueing theory, finance, biology, and engineering, because it 
captures the dynamics of systems undergoing reflection 
at transitions.

In queueing theory, RBM is used for systems whose queue 
length cannot become negative, reflecting a common physical 
characteristic of service systems. Ascione et al. (2022) proposed 
delayed RBM in association with fractional queues, suggesting its 
usefulness for heavy traffic approximations in performance 
analysis under limiting conditions. Similarly, Dai et al. (2022) 
applied RBM to queues in series, verifying its potential for 
representing network traffic as it approaches Gaussian processes.

In finance, asset prices and risk management strategies can 
be  modeled by RBM. The concept of reflection applies to 
situations where asset prices are bounded below. Banerjee et al. 
(2022) discussed the use of RBM in financial contexts, 
particularly in analyzing heavy traffic approximations in 
queueing systems within financial models. Additionally, RBM is 
relevant in optimal stopping and singular control problems, 
where the reflection at a boundary represents a critical decision 
threshold (Ata, 2024).

In biology, RBM models population dynamics and ecological 
systems where populations cannot fall below a certain level. Here, 
the reflection property represents a minimum viable population 
size, below which the population cannot decline. This is essential 
for understanding species survival and ecosystem dynamics 
under various environmental pressures. Although direct 
references to RBM are less common in biological studies, the 
principles of reflected processes can be adapted to systems with 
such constraints.

In engineering, RBM is applied in areas such as control 
systems and reliability analysis. For example, it can model the 
dynamics of systems whose output must remain non-negative 
despite random disturbances. Menshikov discussed RBM 
behavior in generalized parabolic domains, which are relevant to 
engineering applications involving diffusion and boundary 
conditions (Menshikov, 2023). RBM is also used to analyze 
stochastic networks, helping to assess the performance and 
reliability of systems subject to random inputs and constraints.

Table 1 summarizes the applications and characteristic properties 
of each process discussed in this chapter.

4 Applications of Brownian motion in 
cryptography

One important application of the Wiener process in cryptography 
is the generation of true random numbers. To demonstrate its 
cryptographic potential, we used a simulated Wiener process to generate 
random numbers, as shown in Algorithm 1. These numbers were 
evaluated for randomness and entropy characteristics. We implemented 
a simple Python-based simulation using NumPy, modeling the Wiener 
process by adding a random Gaussian value at each time step to simulate 
Brownian increments. The normalized values were binarized using a 0.5 
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threshold to yield a random bitstream. This bitstream was then 
evaluated for Shannon entropy using Method 1. The output entropy of 
the 1,000-bit stream was approximately 0.998, indicating a high level of 
randomness (ideal = 1.0). These results suggest that even basic BM 
models can serve as effective sources of entropy. With further 
refinement, such systems could support cryptographically secure 
random number generation.

In Dey et al. (2021), Suwais (2023), Suwais and Almanasra (2023), 
Suwais (2022), Gilardi-Velázquez et al. (2023), and de la Fraga and 
Ovilla-Martínez (2024), the researchers highlighted that true random 
number generators, which are crucial for secure cryptographic 
algorithms, can be derived from the stochastic dynamics of particles 
undergoing BM. The randomness inherent in the collisions between 
particles and ambient molecules results in nondeterministic outputs, 
making BM suitable for cryptographic applications where 
unpredictability is paramount (Bian, 2024). This capability is essential 
to ensure that the keys generated in encryption algorithms are not 
only random but also secure against prediction.

In the context of public key cryptography, the Wiener process has 
been shown to enhance the security of existing algorithms. For 
example, Ranasinghe discussed how the Rivest–Shamir–Adleman 
algorithm can be  improved by utilizing properties of the Wiener 
process to defend against specific attacks, such as Wiener’s attack 
(Mohammadzade et al., 2021). By incorporating stochastic elements 

TABLE 1  Summary of BM models.

Process Applications Key uses Characteristic properties

Wiener process
Finance, physics, biology, 

mathematics, engineering

Stock price modeling, noise modeling, population 

dynamics, stochastic calculus, reliability engineering

Continuous paths, independent increments, 

Gaussian characteristics

Geometric BM
Finance, economics, engineering, 

biology, mathematics

Stock and commodity price modeling, economic indicators, 

risk assessment, population dynamics, SDEs

Log-normal distribution, continuous paths 

with drift and volatility

Fractional BM
Finance, physics, biology, network 

traffic, image processing

Asset price modeling, turbulent flows, population 

dynamics, network traffic analysis, texture analysis
Long-range dependence, self-similarity

OU process Finance, physics, biology, economics
Interest rates modeling, particle dynamics, evolutionary 

dynamics, economic indicators

Mean reversion, Gaussian distribution of 

increments

Multidimensional 

BM

Finance, physics, engineering, 

machine learning

Modeling correlated assets, diffusion in complex media, 

control systems, anomaly detection

Multiple interacting components, vector-

valued motion

Reflected BM
Queueing theory, finance, biology, 

engineering

Queue length modeling, risk management, population 

dynamics, control systems

Reflection at boundaries, constraints on 

system dynamics

ALGORITHM 1

BM-based random number generator.

METHOD 1  Compute entropy.

1: from collections import Counter

2: bit_counts = Counter(binary_rng)

3:
p = [count/len(binary_rng) for count in bit_counts.

values()]

4:
print(“Shannon Entropy of RNG Bitstream:,” 

entropy(p, base = 2))
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derived from the Wiener process, the robustness of cryptographic 
systems can be significantly increased.

One important aspect of GBM is its ability to model asset prices 
that incorporate randomness and volatility, such as financial 
derivatives. The randomness in GBM can be employed to design 
secure cryptographic keys and protocols. For example, it can 
generate uncertain keys, which are indispensable in secure 
communications and data encryption (Bevia et al., 2021). Prices 
modeled by GBM follow a log-normal distribution, enabling the 
generation of random and unpredictable keys that are resistant to 
attack. Furthermore, different types of financial instruments can 
be valued using GBM. This ability to simulate asset prices allows 
GBM to be used to devise efficient pricing strategies. For example, 
the valuation of Asian options based on the average price of an asset 
over a specified time interval is described by GBM (Li and Qian, 
2020). This feature can be  extended to cryptographic protocols 
involving option-pricing systems for secure transactions.

A key feature of fBM is its ability to generate true random 
numbers with cryptographically-valid entropies. The high degree 
of randomness produced by fBM is important for cryptographic 
applications, including secure key generation systems that 
generate unpredictable and attack-resistant random keys 
(Hayakawa and Tanaka, 2021). This is particularly relevant in 
applications requiring high-quality randomness, such as secure 
communications and data encryption. Another application of 
fBM is in the construction of secure communication protocols, 
as its properties make it suitable for describing noise in 
communication channels, which could be  a key factor for 
designing secure cryptosystems. By implementing fBM in 
cryptographic schemes, the security of data communication over 
potentially insecure networks can be improved (Li et al., 2020).

A possible application of the OU process is the creation of 
pseudorandom numbers. The OU model can generate sequences 
of numbers that satisfy the properties of randomness, while its 
mean-reverting property ensures that these numbers do not drift 
too far from a central value. This is important in cryptographic 
applications where controlled randomness is desired (Shangguan, 
2023). Its ability to incorporate noise processes and 
communication channel dependencies also makes it useful for 
modeling noise and developing robust security strategies 
(Muhammad et al., 2022).

Random number generation is one of the key cryptographic 
applications of MBM. Its stochastic nature makes it suitable for 
generating random sequences required in cryptography. These 
sequences can be designed or accessed by protocol designers and 
relevant parties during the generation of secure keys that are rare 
yet unpredictable, and thus resistant to cryptographic attack (Zhu 
et al., 2022). Secure communication protocols can be enhanced 
with MBM, whose properties allow for effective modeling of 
noise and channel fluctuations. MBM can also be  used in 
cryptographic algorithms to increase the security of data transfer 
over insecure networks (Gao et al., 2023).

Finally, RBM can be used to model noise and fluctuations in 
communication channels, supporting secure communication over 
data transmission channels. When combined with a cryptologic 
algorithm, RBM has the potential to support cryptographic 
techniques that are resistant to many forms of attack (Lv and Wang, 
2020). In finance, RBM is often used to model the evolution of asset 

prices that are nonlinear to barriers. This application could 
be repeated in cryptography, particularly in the pricing of financial 
derivatives such as options (Pangestika, 2023).

5 Limitations of Brownian motion in 
cryptography

Although the Wiener process has proven useful for cryptographic 
applications, its inherent limitations may restrict its broader 
applicability. One key limitation is that it can be predicted at given 
moments. Although its outputs are random, the mathematical 
structure of the Wiener process can produce patterns that can 
be exploited by attackers. For example, if an attacker can predict some 
of the process’s outputs, this will weaken the security of generated 
cryptographic keys (Gharari et al., 2024; Hematpour et al., 2024; Alia 
and Suwais, 2020).

Although GBM is widely used in financial models, it has some 
drawbacks in encryption scenarios. A major limitation of this 
model is the assumption of constant volatility, which is unrealistic 
in markets. In encryption key creation, such constant volatility 
may result in patterns with attackable sequences (Bevia et  al., 
2021). Furthermore, although GBM can produce random 
numbers, and the log-normal distribution of prices might 
be  sufficiently random for certain applications, it may not 
be  random enough for cryptographic applications. The 
predictability in the prices of underlying assets, as modeled by 
GBM, can yield a wider range of vulnerabilities in cryptosystems 
that use such values for key generation and secure communication 
(Li and Qian, 2020).

fBM incorporates the concept of long-range dependence, which 
can be both advantageous and disadvantageous in cryptography. Since 
fBM produces true random number sequences with self-similarity, its 
long memory might result in correlations that an adversary can 
exploit. In cryptographic applications, this may lead to a different class 
of vulnerability when the predictability of future outputs depends on 
past outputs (Hayakawa and Tanaka, 2021). Moreover, realizing fBM 
in practical cryptographic protocols could be difficult, which may 
compromise the security of cryptographic protocols based on this 
model (Li et al., 2020).

The OU process is mean-reverting, which can be disadvantageous 
in cryptography. Mean reversion results in some predictability in the 
generated sequences, which makes it possible for attackers to predict 
future values given observed values. This regularity can be exploited 
to attack the OU process, raising questions about the security of keys 
generated by the process (Shangguan, 2023; Muhammad et al., 2022). 
Moreover, its use to obtain pseudorandom numbers may introduce 
biases that can be  exploited to break cryptographic systems (Zhu 
et al., 2022).

A related model is the multiple beta model, which can represent 
complex systems with many correlated dimensions. However, it has 
some limitations for cryptographic use, such as a more complicated 
process for generating random sequences. The inherently multivariate 
character of this model can make it difficult to ensure the 
independence of generated values (Gao et  al., 2023). Moreover, 
correlations between dimensions may introduce predictability into 
the output sequences. This creates the potential for adversaries to 
exploit such correlations and make inferences about the rules or keys, 
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or the data being protected (Brătian et  al., 2021). Finally, the 
computational cost of simulating MBM can be high, reducing its 
suitability for cipher systems with real-time key generation (Lv and 
Wang, 2020).

RBM is a useful model for constrained stochastic processes; 
however, it may have drawbacks in cryptographic settings. One 
such limitation is the potential for its reflection property to 
be exploited to predict patterns, particularly if an adversary can 
assume or determine the reflection boundaries. This can reduce the 
unpredictability of RBM-generated random numbers (Pangestika, 
2023). Although RBM can model noise in communication 
channels, any improvement to security resulting from dithering 
may be limited by the nature of the reflection boundaries. If these 
boundaries are not well-defined or change dynamically, the 
robustness of some cryptographic protocols based on RBM may 
be compromised (Moroz and Yalymova, 2021). Furthermore, the 
computational overhead of RBM may introduce vulnerabilities to 
basic forms of cryptanalysis (Sun et al., 2022).

Table 2 summarizes the limitations of the different BM models.

6 Conclusion

This paper has provided a systematic review of the 
cryptographic potential of BM and its key variants, including the 
Wiener process, GBM, fBM, the OU process, multidimensional 
BM, and reflected BM. By examining their mathematical 
foundations and simulating their stochastic behaviors, we have 
shown how features such as long-range dependence, mean 
reversion, multidimensional noise, and reflection constraints 
highlights the strengths and the weaknesses of these models when 
considered for cryptographic use.

Our exploratory simulations, such as the Wiener-based bitstream 
and entropy evaluation, are viewed as illustrative demonstrations of 
entropy potential rather than as a concrete cryptographic 

implementations. These experiments confirm that BM models are rich 
in stochastic structure and can provide high levels of randomness. The 
comparative analysis across the six models highlights that while BM 
offers valuable building blocks for entropy generation and noise 
modeling, further refinement is required before these processes can 
serve as practical cryptographic primitives.

Our findings suggest two clear paths for future research. First, 
more extensive benchmarking is needed to transform BM-based 
entropy sources into robust pseudorandom number generators. 
Second, hybrid designs that integrate BM dynamics with established 
cryptographic protocols—potentially in post-quantum settings or 
adaptive systems that respond to real-time noise—may deliver 
resilient architectures.
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TABLE 2  Limitations of BM models.

Type of BM Limitations

Wiener process
Predictability over time may lead to exploitable patterns

Past values do not influence future values

Geometric BM

Assumption of constant volatility may not reflect real-world conditions

Predictable patterns in key generation can be exploited by adversaries

Log-normal distribution may not provide sufficient randomness for cryptography

Fractional BM

Long-range dependence can lead to correlations exploitable by attackers

Complexity of implementation may introduce errors or inefficiencies

Predictability of future values based on past values can compromise security

OU process

Mean-reverting behavior introduces predictability in generated sequences

May not adequately capture real-world noise in communication channels

Potential biases in pseudorandom number generation

Multidimensional BM

Increased complexity in generating random sequences

Correlation among dimensions may introduce predictability

High computational resources needed, leading to inefficiencies

Reflected BM

Reflection mechanism can lead to predictable patterns

Effectiveness depends on well-defined and stable reflection boundaries

Mathematical complexity may result in implementation errors
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