& frontiers | Frontiers in Computer Science

@ Check for updates

OPEN ACCESS

EDITED BY
Daowen Qiu,
Sun Yat-sen University, China

REVIEWED BY

Prasanta Panigrahi,

Indian Institute of Science Education and
Research-Kolkata, India

Hao Li,

First Affiliated Hospital of Sun Yat-sen
University, China

*CORRESPONDENCE
Valter Uotila
valter.uotila@helsinki.fi

RECEIVED 18 June 2025
ACCEPTED 12 September 2025
PUBLISHED 07 October 2025

CITATION

Uotila V (2025) Left-deep join order selection
with higher-order unconstrained binary
optimization on quantum computers.

Front. Comput. Sci. 7:1649354.

doi: 10.3389/fcomp.2025.1649354

COPYRIGHT

© 2025 Uotila. This is an open-access article
distributed under the terms of the Creative
Commons Attribution License (CC BY). The
use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

Frontiersin Computer Science

TYPE Original Research
PUBLISHED 07 October 2025
pol 10.3389/fcomp.2025.1649354

Left-deep join order selection
with higher-order unconstrained
binary optimization on quantum
computers

Valter Uotila*

Department of Computer Science, University of Helsinki, Helsinki, Finland

Join order optimization is among the most crucial query optimization problems,
and its central position is also evident in the new research field where
quantum computing is applied to database optimization and data management.
In this field, join order optimization is the most studied database problem,
typically tackled with a quadratic unconstrained binary optimization model,
which is solved using various meta-heuristics, such as quantum and digital
annealing, the quantum approximate optimization algorithm, or the variational
quantum eigensolver. In this study, we continue developing quantum computing
techniques for left-deep join order optimization by presenting three novel
quantum optimization algorithms. These algorithms are based on a higher-order
unconstrained binary optimization model, which is a generalization of the
quadratic model and has not previously been applied to database problems.
Theoretically, these optimization problems naturally map to universal quantum
computers and quantum annealers. Compared to previous studies, two of our
algorithms are the first quantum algorithms to model the join order cost function
precisely. We prove theoretical bounds by showing that these two methods
encode the same plans as the dynamic programming algorithm with respect to
the query graph, which provides the optimal result up to cross products. The
third algorithm achieves plans at least as good as those of the greedy algorithm
with respect to the query graph. These results establish a meaningful theoretical
connection between classical and quantum algorithms for selecting left-deep
join orders. To demonstrate the practical usability of our algorithms, we have
conducted an extensive experimental evaluation on thousands of clique, cycle,
star, tree, and chain query graphs using both quantum and classical solvers.

KEYWORDS

quantum computing, quantum annealing, query processing, query optimization,
relational databases, join order selection, higher-order binary optimization

1 Introduction

Join order optimization is one of the critical stages in query optimization, where
the goal is to determine the most efficient sequence in which joins should be
performed (Selinger et al, 1979). Join order optimization plays a central role, as the
order of joins determines whether a query finishes in seconds or hours, especially in
large databases (Neumann and Radke, 2018). The problem is a well-researched NP-hard
problem (Ibaraki and Kameda, 1984) with various exhaustive and heuristic solutions (Leis
et al., 2015; Steinbrunn et al., 1997). The central position of join order optimization in
database research is also evident in the new research field where quantum computing

01 frontiersin.org

https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org/journals/computer-science#editorial-board
https://www.frontiersin.org/journals/computer-science#editorial-board
https://www.frontiersin.org/journals/computer-science#editorial-board
https://www.frontiersin.org/journals/computer-science#editorial-board
https://doi.org/10.3389/fcomp.2025.1649354
http://crossmark.crossref.org/dialog/?doi=10.3389/fcomp.2025.1649354&domain=pdf&date_stamp=2025-10-07
mailto:valter.uotila@helsinki.fi
https://doi.org/10.3389/fcomp.2025.1649354
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fcomp.2025.1649354/full
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Uotila

is applied to database optimization and data
management (Schonberger, 2022; Uotila, 2022). In this subfield,
the join order selection problem is the most studied (Schonberger
et al., 2023a; Winker et al, 2023a; Schonberger et al.,, 2023¢;
Nayak et al.,, 2024; Franz et al., 2024; Schonberger et al., 2023b;
Saxena et al., 2024; Liu et al,, 2025; Calikyilmaz et al., 2023). In
contrast, other quantum computing problems related to database
and data management include index selection (Gruenwald
et al, 2023; Trummer and Venturelli, 2024), cardinality and
query metric estimations (Uotila, 2024a, 2025b; Kittelmann
et al., 2024), transaction scheduling (Bittner and Groppe, 2020;
Nayak et al, 2025), resource allocation (Uotila and Lu, 2023;
Trummer, 2025), schema matching (Fritsch and Scherzinger,
2023), relational deep learning (Vogrin et al., 2024), and multiple
query optimization (Trummer and Koch, 2016).

Despite the interest in optimizing databases with quantum
computers, demonstrating a clear quantum advantage in database-
related problems remains open. Generally, demonstrating an
advantage of quantum over classical algorithms has proved
challenging in practice. Some experiments demonstrate specific
forms of quantum advantage (Arute et al, 2019; Harrow and
Montanaro, 2017; Kim et al., 2023; King et al., 2024; Madsen et al,,
2022; Zhong et al., 2020; Zhu et al., 2021), but none show widely
accepted benefits over classical algorithms in real-life applications.
On the other hand, some algorithms such as Shor’s (1994) and
Grover’s (1996) algorithms show a provable advantage over the best
classical algorithms on fault-tolerant quantum computers, which
do not yet exist.

Since demonstrating benefits from current quantum computers
has proved challenging, Schonberger et al. (2023b) suggested
moving from quantum hardware to quantum-inspired hardware,
especially in join order optimization. They argued that special-
purpose solvers and hardware, such as digital annealers, should
be used. While they demonstrated that this direction is promising
and feasible, they did not extensively examine the potential
benefits of modifying the underlying quantum optimization
model, which has been similar to the previous mixed-integer
linear programming solution for the join order selection
problem (Trummer and Koch, 2017).

If we seek (database) applications that are likely to benefit from
quantum computing, one of our central arguments is that we might
want to move from quadratic to higher-order models. Focusing on
the quantum computing paradigm that is restricted to quadratic
interactions between qubits, previous studies has shown that there
are only particular problems where these devices beat classical
computers (Denchev et al., 2016; King et al., 2024). On the other
hand, there is no evidence that this advantage would transfer to
practically relevant problems (Willsch et al., 2022).

In this study, we depart from quadratic models and instead
investigate higher-order binary optimization. As a continuation
of the idea to revise the underlying assumptions about hardware
(relaxing from quantum to quantum-inspired), we suggest applying
a special optimization model, a higher-order binary optimization
model, which is a relaxation of the previously widely used quadratic
model (Schonberger et al., 2023a; Trummer and Koch, 2017;
Schonberger et al., 2023b,¢; Nayak et al., 2024; Saxena et al., 2024).
We develop three higher-order binary optimization formulations

Frontiersin Computer Science

10.3389/fcomp.2025.1649354

for the join order selection problem in relational databases, with a
focus on left-deep join trees. We present two theoretical results that
connect the performance of these methods to the classical dynamic
programming and greedy algorithms. Finally, we demonstrate the
utility of the proposed algorithms by evaluating the methods
on quantum annealers and classical solvers. This evaluation also
demonstrates differences between quantum annealers and classical
solvers at a concrete application-level problem.

The previous quantum computing formulations for the
join order selection problem did not benefit from the query
graph’s structure, which we encode in the optimization problem
formulations. By using information from the query graphs and
assuming that cross products are computationally expensive, we
can reduce the size of the optimization problems. The other critical
scalability finding lies in the selection of binary variables. With a
clever choice of binary variables, we can compute the cost precisely
and reduce the number of variables and their types. The previous
studies (Schonberger et al., 2023a,b) has used four variable types
(variables for relations, joins, predicates, and cost approximation).
We decrease this number to one variable type, which works in most
cases, except for clique graphs, which require two types.

Quantum computing research for database applications has
not provided many precise theoretical results regarding the
performance of the developed methods. In this study, we prove two
bounds for our methods, which connect the quantum algorithms
to the classical ones. This is important because it helps in
understanding the capabilities of current quantum computation
solutions compared to established classical methods.

The key contributions are as follows:

1. We
optimization formulations for join order optimization, designed

introduce three higher-order unconstrained binary
for quantum annealers and classical solvers.

2. We prove theoretical bounds that connect these formulations to
classical dynamic programming and greedy algorithms.

3. We perform an
demonstrating both the practicality of our methods and

extensive experimental evaluation,

the contrasting capabilities of quantum and classical solvers.

The structure of the article is as follows. First, we formally state
the join order selection problem, discuss the quadratic and higher-
order binary optimization models, and define their connection to
quantum computing. Then, we present the main algorithms. We
prove the theoretical bounds for the accuracy of the methods.
We summarize the results from the experimental evaluation and
discuss how our contributions relate to previous studies on solving
the join order selection problem using quantum computing. The
implementation is available on GitHub (Uotila, 2025a).

2 Problem definition and background

2.1 Join order selection problem

We start by defining the join order selection problem.
Informally, the problem involves executing a SQL query that joins
tables in a fixed relational database. The order of the joins affects
the intermediate results and thus the total execution cost of the

frontiersin.org

https://doi.org/10.3389/fcomp.2025.1649354
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Uotila
SELECT *
FROM REL®, REL1, REL2, REL3
INNER JOIN REL® ON RELO.cl = REL2.c2
INNER JOIN REL1 ON REL1.c3 = REL2.c4
INNER JOIN REL2 ON REL2.c5 = REL3.c6

FIGURE 1
SQL query and its corresponding query graph. Each node represents
a relation, and edges represent join predicates.

query. The join order selection problem is known to be NP-hard in
the number of relations (Ibaraki and Kameda, 1984). The hardness
motivates the need for heuristics, approximation methods, and
potentially quantum optimization approaches. We will focus on the
computational complexity in the theoretical analysis.

We assume the SQL queries are given as query graphs of the
form G = (V,E), where V is the set of nodes (i.e., tables or
relations) and edges define the required joins between the relations.
Figure 1 illustrates a simple SQL query and its corresponding query
graph, where nodes represent relations and edges represent join
predicates. We denote relations as R; for a non-negative integer
i. Then, the set E is the set of edges defined by join predicates p;;
between relations R; and R;. Every relation R; has a cardinality,
denoted by [R;|, and every predicate has a selectivity 0 < f;; < 1.
The join is denoted by R; <, R;. This study assumes that the joins
are inner joins, but we will discuss the extension to other joins, such
as outer joins.

A join tree T of a query graph G is a binary tree in which each
relation of G appears exactly once as a leaf node. Each internal
node represents the join of its two children. For example, a non-
leaf node labeled Ry, o< ...
of which contains a subset of the relations Ry, .. ., Ry, Following
the definition in the study by Neumann and Radke (2018), we
define that a join tree T" adheres to a query graph G if for every

><t Ry, has two child subtrees, each

subtree T = T; <« T, of T, there exists relations R; and R,
such that Ry € T; and R, € T, and (R1,R;) € E. The join
order selection problem is finding a join tree T that adheres to the
query graph G and minimizes a given cost function. In this article,
we refer to the requirement that a join tree adheres to the query
graph as the validity constraint and the requirement of minimizing
execution cost as the cost constraint. Next, we define the standard
cost function for join trees.

Standard cost functions are based on estimating cardinalities
of intermediate results in the join order selection process (Leis
et al., 2015; Neumann and Gubichev, 2014; Cluet and Moerkotte,
1995). Thus, we first define how to compute the cardinality

Frontiersin Computer Science

10.3389/fcomp.2025.1649354

of a given join tree T. For a join tree T, its cardinality is
defined recursively.

[R;] if T = R; is a leaf node,

IT| = .
(Mrergenfi) ITITsL T =Ty T,
1

Based on the cardinalities, we define the cost function
recursively as

0 if T = R; is a leaf node,
c(T) = . @)
|T| + C(Ty) + C(T32) if T =Ty s To.

This is the standard cost function (Cluet and Moerkotte,
1995), which has
computing formulations (Schonberger et al, 2023a,b,c) and
in the
formulation (Trummer and Koch, 2017). More sophisticated

also been wused in earlier quantum

corresponding mixed-integer linear programming
cost models exist, whose integration into quantum optimization
formulations will be part of future research.

In practice, two additional restrictions are common in join
order optimization. First, query optimizers may avoid cross-
product joins (also known as Cartesian products) because they
produce large intermediate results. Unless explicitly required by
the query graph, cross products are excluded from consideration.
In our formulation, this differs from many previous quantum
formulations, making our approach query-graph-aware. Second,
optimizers often restrict the search space to left-deep join trees,
where each join combines an intermediate result with a leaf
relation. Left-deep trees dramatically reduce the search space
compared to bushy join trees, where both join inputs can be
intermediate results. Although bushy trees often yield lower costs,
the blowup of the search space in possible plans makes them
impractical for large queries. In this study, we follow these
conventions and focus on left-deep join trees without cross
products. It will be part of future research to include cross products,
bushy trees, and more sophisticated cost functions.

2.2 Dynamic programming and greedy
algorithms for join order selection

Our implementations of dynamic programming and greedy
algorithms follow the study by Neumann and Gubichev (2014).
They are well known and commonly used algorithms for join
order selection (Selinger et al., 1979; Neumann and Radke, 2018;
Moerkotte and Neumann, 2006, 2008). We present them in detail
to build a clearer connection between them and the higher-order
binary optimization formulation we develop in this work. Dynamic
programming provides a general framework for systematically
exploring possible join orders. In our study, we have fixed the cost
function (Equation 2) and employed the dynamic programming
algorithm with and without cross products. The algorithm without
cross products is presented in Algorithm 1. It relies on functions
that create left-deep trees for trees T} and T, and return costs for
join trees based on the cost function in Equation 2.

The algorithm that computes the dynamic programming result
without cross products is similar, except that for a query graph

frontiersin.org

https://doi.org/10.3389/fcomp.2025.1649354
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Uotila

Input: relations R={ry, rp, ..., rp}, selectivities S

Output: optimal left-deep join tree in dp_table[R]

1: initialize dp_table
2: for reR do
3: dp_table[{r}] <~ r © Base case: single relation
4: end for
5: for s=2 to |R| do > Size of subsets from 2 to n
6: for subset CR such that |subset|=s-1 do
7: if subset e dp_table then
8: for reR\ subset do

> Relations not in subset
9: T, < dp_table[subset]

10: To < dp_table[{r}]
> T, is leaf node making this left-deep

11: T, T_cost <« create_join_tree
(T1, T2, R, S)

12 join_key « subset U{r}
13: if join_key ¢ dp_table then
14: dp_table[join_key] <« T

> Update if key not in table
15: else
16: prev_cost < cost(dp_table

[join_key], R, S)
17: if T_cost <prev_cost then
18: dp_table[join_key] « T
> Update if lower cost

19: end if
20: end if
21: end for
22: end if
23: end for
24: end for

Algorithm 1. Dynamic programming for left-deep join order selection with
cross products.

G, we change line 6: for connected subgraph C G such that
|subgraph| = s — 1 do. Then, the algorithm proceeds with the
connected subgraphs of size s — 1, instead of all subsets of size s — 1.

The greedy algorithm is another standard algorithm for
optimizing join order selection, as represented in Algorithm 2.
Similar to the dynamic programming algorithm, we can consider
only solutions without cross products so that we iterate only over
relations connected to one of the relations already joined. In other
words, at each step, we compute a value called adjacent_relations,
which contains those relations R; so that if edge (R;,R;)) € G
in the query graph G, then R; ¢ joined_relations but R; €
joined_relations.

2.3 Unconstrained binary optimization

Optimization is one of the key fields where quantum computing
is assumed to provide computational value (Abbas and et al,
2024). This part provides a brief and high-level overview of how
optimization algorithms are developed in quantum computing.
We guide the reader to the study by Nielsen and Chuang (2010)

Frontiersin Computer Science

10.3389/fcomp.2025.1649354

Input: relations R={rq,..., rp}, selectivities S
Output: Greedy join order tree
1: join_result < [r;, ry] so that f; j|rillrj| is the
smallest
2: for 1 to |[R|—2 do
3: min_cost <« oo
4: min_table < None
5: for tableeR\ join_result do
> Iterate over tables which are not joined
6: current_join_tree « [table, join_result]
current_cost <« cost(current_join_tree, R, S)
8: if current_cost <min_cost then
> Choose table with smallest cost
9: min_cost « current_cost
10: min_table < table
11: end if
12: end for
13: join_result < [min_table, join_result]
14: end for

Algorithm 2. Greedy algorithm for left-deep join order selection with cross
products.

and Winker et al. (2023b) for more detailed information about
quantum computing. Additionally, the study by Schonberger et al.
(2023a) provides an excellent introduction to quantum annealing
and quadratic unconstrained binary optimization models for a
database specialist.

Our study relies on higher-order unconstrained binary
optimization (HUBO) (Boros and Hammer, 2002) problems,
which are a generalization of quadratic unconstrained binary
optimization (QUBO) problems. To the best of our knowledge,
there is limited research on formulating domain-specific problems
using HUBOs, which we will cover in more detail in the Discussion
section. One reason for this is that HUBO problems are complex
to solve not only theoretically but also practically (Boros and
Hammer, 2002). Due to this computational complexity, they
provide a potential area for exploring the practical benefits of
quantum computing over classical approaches. Despite being
challenging, they have a straightforward quantum computational
formulation in theory (Verchere et al., 2023).

Next, we formally define HUBO problems (Boros and Hammer,
2002) and demonstrate their connection to QUBO problems. Let
[n] = {1,..
variable vector of type x = (x1, .. .,x,) so thatx; € {0, 1} represents
values false and true for each i € [n]. The HUBO problem is the
following minimization problem of a binary polynomial:

arg min Z asl_[xi, (3)

x€l01)" g es

.,n} be an indexing set. Let x € {0,1}" be a binary

where s € IR. For each non-empty subset S, we have the
corresponding higher-order term e [;o5 Xi. In practice, we might
have ag = 0 for many terms. In the worst case, we have 2" — 1

terms. Alternatively, we can write the same polynomial as

Z ag Hxi = Z aix; + Za(iJ)xixj + Z O j e XiXj X + ...

Sc[n] ieS ie[n] i<j i<j<k
4)

frontiersin.org

https://doi.org/10.3389/fcomp.2025.1649354
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Uotila

Quadratic
problems are a restricted case of HUBO problems, where we

unconstrained binary optimization (QUBO)

consider only subsets of limited size, |S| < 2. Concretely, a QUBO
problem is the minimization problem of the polynomial.

Z aixi + Z (i) XiX;- (5)

i€[n] i<j

Both QUBO and HUBO problems are NP-hard (Lucas, 2014;
Boros and Hammer, 2002). As discussed, QUBO formalism has
been the standard method for tackling database optimization
problems, and many other wellknown optimization problems
(e.g., knapsack, maxcut, and traveling salesman) have a QUBO
formulation (Lucas, 2014).

2.4 Optimization on quantum hardware

Next, we provide a brief introduction to the basics of quantum
computing for optimization problems and discuss techniques for
solving HUBOs and QUBOs on quantum hardware. Quantum
computing can be divided into multiple paradigms, both in terms
of hardware and software. This division is exceptionally versatile,
as there is no single “winning” method for building quantum
computers yet. Quantum computers are designed to be built on
superconducting circuits (IBM, Google, IQM) (Wendin, 2017),
trapped ions (Quantinuum, IonQ) (Paul, 1990), neutral atoms
(Quera, Pasqal) (Grimm et al., 2000), photons (Xanadu) (Knill et al.,
2001), diamonds (Quantum Brilliance) (Neumann et al., 2008), and
many other quantum mechanical phenomena (Gill et al., 2022).
A special type of quantum hardware is a quantum annealer (D-
Wave) (Apolloni et al, 1989; Kadowaki and Nishimori, 1998),
which does not implement universal quantum computation but
offers specific optimization capabilities for QUBO problems.

In addition to the hardware, a partially hardware-dependent
software stack is designed to translate and compile high-level
quantum algorithms into a format that specific quantum hardware
supports. QUBOs are a widely accepted high-level abstraction
that can be solved on most quantum hardware. The other
common high-level abstraction is quantum circuits. Quantum
algorithm design can still be divided into paradigms: adiabatic
and circuit-based quantum computing, which are universal
quantum computing paradigms (Aharonov et al., 2004). Unlike
traditional introductions to quantum computing, we focus on
the fundamentals of adiabatic quantum computing. This choice
is motivated by the fact that our experimental evaluation
was conducted on a quantum annealer, a type of adiabatic
quantum computer.

Quantum computing can be implemented using the
adiabatic evolution of a quantum mechanical system (Farhi
et al, 2000; Mc Keever and Lubasch, 2024). This study uses
quantum annealing, which is a part of the adiabatic quantum
computing paradigm (Albash and Lidar, 2018). The evolution of
a quantum mechanical system is governed by the Schrédinger
equation (Nielsen and Chuang, 2010). This evolution models a
system with a Hermitian operator known as a Hamiltonian. In
this study, we are not interested in arbitrary Hamiltonians but in
those with a form that maps to QUBO and HUBO optimization

Frontiersin Computer Science

10.3389/fcomp.2025.1649354

problems. For QUBOs, the corresponding problem Hamiltonian,
also called an Ising Hamiltonian, is

> hiol+ Z]i,ja;fgg, (6)
i

j<i

where o} are Pauli-Z operators for each j. The correspondence

between the formulations in Equations 5, 6 is clear: the coeflicients
h; and J;; represent the linear and quadratic terms, respectively.
Operator o} corresponds to the variable x; for each i € [n]. For
HUBOs, the problem Hamiltonian is

2 Bs] oz

Scln] €S

where the correspondence to Equation 4 is similar. As QUBO and
HUBO problems are minimization problems, the goal is to find the
minimum eigenvalue and eigenstate of the problem Hamiltonian.
In other words, we aim to find a quantum state, called a ground
state, where Hamiltonian’s energy is minimized. As a result, we
obtain a solution to the corresponding combinatorial optimization
problem (Farhi et al., 2000).

Next, we describe how adiabatic quantum computing can find
the lowest eigenstate and solve the optimization problem. For
simplicity, let us focus on solving QUBOs on a quantum annealer.
General adiabatic quantum computing is similar (Albash and Lidar,
2018). We define the following Hamiltonian (D-Wave Quantum
Inc., 2025):

A(s) . B(s) : -
H(s) = 5 i 0'; +T Xi:hiUZl‘F;]i,jUZlU; , (7
[— /

initial Hamiltonian problem Hamiltonian

where A(s) is the so-called tunneling energy function and B(s) is the
problem Hamiltonian energy function at s. During the annealing
process, the value s runs from 0 to 1, causing A(s) — 0 and B(s) —
1. We begin with a simple initial Hamiltonian, whose ground
state is easily prepared, and gradually evolve it to the problem
Hamiltonian. By the adiabatic theorem (Albash and Lidar, 2018),
if the process is slow enough, the system remains in its ground
state and ends up solving the optimization problem. However,
quantum annealers are limited to solving QUBOs, meaning we
cannot encode higher-order terms in the problem Hamiltonian. In
contrast, universal adiabatic and gate-based quantum computers do
not have this restriction in theory.

Using classical computers, we can solve QUBOs using
(Kirkpatrick et al, 1983), digital
annealing (Aramon et al, 2019), and classical solvers such as

simulated annealing
Gurobi and CPLEX. Unfortunately, classical solvers, such as
quantum annealers, cannot natively solve higher-order binary
optimization models; instead, we must rely on rewriting methods
that reduce HUBOs to QUBOs. We introduce a reduction method
to rewrite higher-order problems into quadratic ones. The key
idea is to replace higher-order terms with slack variables. In
this study, we primarily rely on the D-Wave Ocean framework’s
ability to automatically translate HUBO problems into QUBO

frontiersin.org

https://doi.org/10.3389/fcomp.2025.1649354
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Uotila

problems. The HUBO to QUBO reduction based on minimum
selection (D-Wave Quantum Inc, 2024) follows the scheme:

xyz = maxw(x +y+z —2),
w

where x, y, z, and w are binary variables. This method iteratively
replaces the higher-order terms xyz with lower-order terms by
introducing auxiliary binary variables w. Depending on the order in
which variable terms are replaced, the QUBO formulation may vary
in format and the number of binary variables, but the minimum
point for the fixed HUBO remains unchanged.

3 Join order cost as HUBO

In this section, we develop two higher-order unconstrained
binary optimization (HUBO) problems that encode the cost
function (Equation 2) for left-deep join order selection problems.
We will later focus on the validity constraint separately. Since
validity will be built on the cost formulation, we present
the cost formulation first. Compared to previous quantum
computing research on join order optimization, we formulate
the optimization problem from the perspective of joins, instead
of relations (Schonberger et al, 2023a). This represents a new
conceptual angle to the problem, which makes the formulations
substantially distinct. The other new viewpoint is to encode
the costs into coefficients of the HUBO polynomial, instead of
encoding them with slack variables. This eliminates the need to
estimate costs and use additional variables or qubits for encoding
in the problem formulation.

The monomials in the HUBO formulation identify a specific
join order path. The coefficients in the formulation describe the
intermediate costs. Activating combinations of binary variables
enables us to compute total join order costs for various join orders
through activated monomials. Thus, the cost HUBO is the sum
of terms, and we show that the minimum of the polynomial
corresponds to the cost of the optimal plan.

Given a query graph G, the number of required joins to create
a valid left-deep join tree is |V| — 1, where |V] is the number of
nodes (i.e., relations or tables) in query graph G. This is easy to see
since the first join is performed between two relations, and after
that, every join includes one more relation until all the relations
have been joined.

Our algorithm is designed to rank joins, and the ranking
determines the order of the joins. This means a join (i.e., edge
in the query graph G) has a rank 0 < r < |V| — 1 if the join
should be performed after all the lower rank joins are performed.
We need |V| — 1 rank values to create a left-deep join order plan.
Having |V| — 1 rank values applies to left-deep join plans but
not bushy ones. For bushy plans, we can join multiple relations
simultaneously, meaning that some of the joins can have the same
rank, i.e., appear at the same level in the join tree. It will be part of
future research to tackle these cases.

Initially, any join, i.e., edge (R;,Rj) € G, can have any rank
0 < r < |V| — 1. Hence, we define the binary variables of our
HUBO problems to be

xi; €{0,13, (®)

Frontiersin Computer Science

06

10.3389/fcomp.2025.1649354

where the indices i and j refer to the edge (Ri,R;) € G, where
R; and R; are relations and r denotes the rank. Hence, our model
consists of (|V| — 1)|E| binary variables since for every rank value
0 < r < |V|—1, we have |E| many joins (edges) from which we can
choose the join.

The interpretation of these binary variables is as follows: If
xzj = 1, then the join (R;, R;) should be performed at rank . Now
the join (R;, R;) is not necessarily between the relations R; and R;
since at ¥ > 0, the left relation is an intermediate result of type
k.
Therefore, each tuple (R, R;) represents a logical join predicate

R, o<t ... bt Rj > ... px Ry, for some indices ki, ..
defined in the query graph, not a physical join operation in an

execution plan.

Example 3.1. Consider that we have a simple, complete query
graph of four relations {0,1,2,3}. Thus, we have |V]| 4
6 possible joins, and (|V| — 1)|E]| 24
binary variables. Depending on the selectivities and cardinalities,

relations, |E|

an example solution that the model can return is x8,1 =1, x}’z =1,
and x§’3 = 1, which gives us the left-deep join tree [[0,1],2],3].
The solution is not unique; also, x8,1 =1, xé’z = 1, and x§’3 =1
produce the same plan with the same cost.

3.1 Precise cost function as HUBO

After defining the binary variables of our optimization model,
we describe how to encode the cost function as a higher-order
unconstrained binary optimization problem, whose minimum
corresponds to the optimal cost up to cross products for the left-
deep join order selection problem. We describe the cost constraint
first, as the validity constraints can be computed based on terms
that we derive for the cost constraint. First, we demonstrate the
intuition behind the construction with an example.

Example 3.2. Every join should be performed at exactly one rank
for left-deep join trees. Starting from rank 0, let us say that we
choose to perform a join between the relations R; and R;, obtaining
R; > R,. The corresponding activated binary variable is x(l),2 =1.
Based on the cost function in Equation 2, the cost of performing
this join is fi2|R1||Rz2|, where |R;| and |R;| are the cardinalities for
the corresponding relations and fj ; is the selectivity. Thus, if we
decide to make this join at this rank, we include the term

0
f12IR1]IR2|x7 5

to the cost HUBO formulation. This example demonstrates that it
is easy to encode the costs at rank 0, which correspond to linear
variables in the cost HUBO.

Next, we assume the query graph gives us a join predicate with
selectivity f>3 between the relations R, and Rs3. Now we ask how
expensive it is to perform the join between the intermediate result
Ry > Ry and relation R3. By Equation 2, the cost of making this
join is

S1.22,3|R1[|R2 | R3] %)

assuming that there is no edge (R, R3), which indicates that f 3 =
1 (Cartesian product). Note that this is not the total cost of

frontiersin.org

https://doi.org/10.3389/fcomp.2025.1649354
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Uotila

performing all the joins but the cardinality of the resulting relation
R; <t Ry ><1 R3. The left-deep join tree (R; &< Ry) <t R3 should be
selected if the following total cost function evaluates to a relatively
small value.

0 0 .1
fi2lRl|Rz|x7 5 + fiafas|RilIR2 || R31x7 5 5.

When the binary variables are active, i.e., x(l)’2 = xéﬁ =1,
the previous function evaluates the total cost of performing the
join (R] > Rz) > R3.

A key insight is that the cardinality in Equation 9 depends only
on the set of relations being joined, not the order in which they were
joined. In other words, this means that the cardinality in Equation 9
is the same for any join result that includes the relations R;, Ry,
and R3, such as (R] > R3) > Rj and Ry >« (R2 > R3). This
naturally generalizes to any number of relations. The total costs of
these plans likely differ because intermediate steps have different
costs. Intuitively, our HUBO model seeks the optimal configuration
of joins to construct the full join tree, ensuring that the sum of the
intermediate results is minimized.

Next, we formally describe the construction of the HUBO
problem, which encodes the precise cost function for a complete
left-deep join order selection problem that respects the structure
of a given query graph G. The HUBO problem is recursively
constructed with respect to the rank r. The construction of the
HUBO problem becomes recursive because the definition of the
cost function in Equation 2 is recursive.

Step r = 0. Let G = (V,E) be a query graph. By Equation 2,
we include the costs of making the rank 0 joins to the cost HUBO.
Thus, we add terms

IR: o= Rl = fy RilIR) = i
for every join (R;, R;) € E, where we denote o;jy: = fi|Ri||Rj| as
the coefficient encoding the cost.

Step r = 1. For clarity, we also show step r = 1. Assuming we
have completed step r = 0, we consider adding variables of type xil) J
For every join (R;, Rj) € E, we select the adjacent joins (Ry, Ry) in
the query graph. An adjacent join means that the joins share exactly
one common relation. This creates quadratic terms of type x%.x .,

Lty
with coeflicients of type

1 .
ol it = Fiferfeifiy IR IR IR IR

WX] , to the cost HUBO.
Step for arbitrary r. Next, we consider adding a general rank
0 < r < |V| — 1 variables of form x, jto the HUBO problem. The

construction can be divided into three steps:

So, we add terms a; 7 ;)x

1. We identify completed subplans. For this general case, we
formalize the method using connected subgraphs of the query
graph and the monomials consisting of the binary variables. Let S
be the set of size r — 1 connected subgraphs in the query graph so
that every subgraph corresponds to terms that were generated at
step r — 1. The size of a subgraph is defined as the number of its
vertices. Each such subgraph corresponds to a term that specifies
a join order, resulting in an intermediate table containing exactly

Frontiersin Computer Science

10.3389/fcomp.2025.1649354

r — 1 relations. This means that the HUBO problem, encoding the
total cost up to this step, has the following form:

Z O‘(l])"t;"’ Z Z “(ljlj)xl] 1]’+

(i,j)eE (if)eE (i',j)eE
case r=1

+) s [1 -

SeS (R,',Rj)GS,OSkSrfl

case r=0

case r—1

2. We construct the new HUBO monomials for rank r. For
simplicity, we first focus on generating the next term without a
coefficient or. Let S € S be a fixed subgraph of the query graph.
Let (Ry, Ry) € E be an edge that is not part of the subgraph S but
connected to it so that either Ry € S or Ry € S (but not both
Ry, Ry € S). This means we join exactly one new relation. For this
fixed subgraph S and fixed join (Ry, Ry), we are going to add the
following element to the cost HUBO:

k r
M & o«

(Ri-R))€S,0<k=r—1 —
new variable at rank r

(10)

term at rank r—1

The new term is just the “old” term from the previous step
multiplied by the new variable x .

3. We compute the coefficient for the new monomial. A
coeflicient in the HUBO formulation represents a cardinality of
the intermediate relation formed by the set of joins encoded in
the corresponding monomial. Consider the new induced subgraph
S =8SuU {(R,-/,Rj/)}. The new coefficient «g is easy to compute
based on the subgraph S and the latest included join (Ry, Ry). Note
that the induced subgraph S’ may contain new edges besides the
latest included edge (R, Rj/). However, the new coefficient for term
(Equation 10) is

ag =[] fi [] Rl

(R,-,Rj)eS’ R,‘ES’

(1m

This formula is the general expression of Equation9
in Example 3.2.

This recursive process is repeated until we reach rank r =
|V| — 2, at which point the generated monomials will represent all
possible valid, complete left-deep join trees. The full cost HUBO is
—2.Theidea
of how the terms are appended at rank 2 is visualized in Figure 2.

the sum of all terms generated at all ranks from 0 to | V|

One of the final configurations is visualized in Figure 3, which also
shows how the terms are interpreted as join trees.

The concrete algorithm for generating the cost HUBO is
presented in Algorithm 3. It inputs a query graph and outputs the
cost HUBO. The keys in this dictionary are sets of relations, and the
values are tuples consisting of a monomial and its coefficient, which
define the HUBO polynomial for the problem.

3.2 Encoding heuristic cost function as
HUBO

While this formulation for the precise cost function is exact,
its computational complexity grows rapidly. Therefore, a heuristic

frontiersin.org

https://doi.org/10.3389/fcomp.2025.1649354
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Uotila

Variable in
generation

$22
(23) /é\ 4

0
T O
1

Z(0,2)

0
T
(12 °F

X
(1,2) Generates two new terms to HUBO:

w((]oa)m%l,z)x%z,s) and m(()l,z)m%o,z)m%z,?,)

FIGURE 2

With relations O, 1, and 2 already joined, relation 3 is the only option
for left-deep plans. Two combinations arise based on whether edge
(0,2) or (1, 2) joins first. Coloring links graph variables to the
monomials in HUBO.

(0,2) atrank 0
(2,3) at J,4) at

rank 2 /';)\ rank 4
A 4
(1,2) atrank 1 @

Term in HUBO
20209 09"

Join tree
= ([[[0, 2], 1],3],4]

FIGURE 3

One option as the final assignment for the binary variables in the
query graph. The algorithm returns the corresponding join tree if the
variables are selected as true. Coloring links between graph variables
and the monomials in HUBO, as well as to the generated plan.

approach is often necessary. Thus, we have modified the generation
of the cost function to include a greedy heuristic in the HUBO
construction process (Algorithm 3) to include only those higher-
order terms that are likely to introduce the least cost to the total
cost function.

The idea behind the heuristic is the following: First, we
again include all the rank O terms. When we start including
rank 1 terms, we consider only those rank 0 terms whose
cardinality (i.e., the coefficient o;;) in the HUBO objective) is
minimal. We have included a tunable hyperparameter n that
selects n terms with the smallest coefficients. Then, the HUBO
construction continues with the selected subset of terms. With
this heuristic, the size of the optimization problem is reduced
remarkably, although we lose the guarantee of finding the
optimal plan.

This heuristic is implemented by modifying Algorithm 3.
Specifically, in line 7, instead of iterating over all subplans from
the previous rank, we select only the top-n subplans with the
smallest associated cost coefficients. In other words, we change
line 7 to be “n many relations associated with the rank r — 1
variable with the smallest coefficients”. We will later prove that this
formulation produces at least as good a plan as the classical greedy

Frontiersin Computer Science

10.3389/fcomp.2025.1649354

Input: Query graph G=(V, E), selectivities f; ; for
(i,7) €k,

Output: Map M from subplans S to
(monomial, coefficient) for Heost

cardinalities |Rj| for ieV

1: Initialize an empty map M > Maps connected

subsets S to (monomial, coefficient)

2: for each r in 0, ..., |V| -2 do
3 for each edge e= (1, j) €E do
4: if r=0 then
5 S« {i, j}
6 monomial ex?’j
7 as < 1, jIR1lIR;l
> Equation 11 for 2-table join

8: MIS] < (monomial, as)
9: else
10: for each & with |S|=r+1 and S e M do
11: if (ieS and j¢S) or (jeS and

1¢S5) then
12: S« Su{i, j}
13: (Mg, ag) < M[S']
14: ms emswng
15: as < (n(u,v)eE[S] fu,V> (Meevisy IRt

> Equation 11; E[S] edges, V[S] vertices

16 MI[S] < (ms, as)
17: end if
18: end for
19: end if
20: end for
21: end for

22: return M

Algorithm 3. Construct monomials and coefficients for precise cost
HUBO.

algorithm and likely produces better plans for larger values of n.
For sufficiently large n, this formulation reduces back to the first,
precise cost HUBO formulation.

4 Join order validity as HUBO

For a HUBO formulation to be effective, its objective function
must be constructed so that the minimizing point also represents a
valid solution. In this case, validity refers to the join tree’s adherence
to the query graph, as defined in the Background section. All valid
solutions are usable, although they might not minimize the cost. In
this section, we present two approaches to encoding the validity of
solutions: cost function-dependent and cost function-independent.
A cost function-dependent approach is easy to construct but
produces a larger number of higher-order terms. The cost
function-independent approach is closer to the standard QUBO
formulations and identifies a set of constraints that the formulation
must satisfy. The advantage of the second formulation is that its
terms are primarily quadratic, which makes it easier to optimize
in practice.

frontiersin.org

https://doi.org/10.3389/fcomp.2025.1649354
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Uotila

4.1 Cost function-dependent validity

Considering the cost HUBO generation in the previous section,
we have generated higher-order terms that encode valid join trees
at rank r = |V| — 2. After applying Algorithm 3, we can access
these terms with M [V], where the set V is the node set, i.e., the
set of relations. Let us denote this set of terms as H: = M[V].
For example, one of the terms is represented in Figure 2. The first
validity constraint forces the model to select exactly one of these
terms as true, which ensures that the final join tree contains all
the relations.

4.1.1 Select one valid plan

We use a generalized one-hot (or k-hot) encoding from QUBO
formulations (Lucas, 2014; Schonberger et al., 2023¢). The encoding
constructs a constraint that reaches its minimum when precisely k
variables are selected to be true from a given set of binary variables.
In the generalized formulation, we construct an objective that is
minimized when exactly k terms are selected as true from a set of
higher-order terms. Let H be the set of higher-order terms at rank
r = |V| — 2. This functionality generalizes to higher-order cases
with the following formulation:

(-x)-

for some indices i, and j, for r =

(12)

VI=2 r
r=0 i j,

0,...,|V| — 2 that depend on the query graph. This polynomial

where h =

is minimized at a value of 0 if and only if exactly one term & in
the summation is equal to 1, thereby enforcing the selection of a
single valid plan. A detailed proof is provided in the theoretical
analysis section.

4.1.2 Every rank must appear exactly once in the
solution

A challenge with this approach is that the model may
produce solutions containing unnecessarily activated variables. For
example, a variable x might be set to 1, but if it only appears in terms
where another variable is 0 (e.g., xy, where y = 0), its activation
has no impact on the final cost. Consider the plan in Figure 2. The
HUBO that encodes this plan would have the same minimum even
if we set xj, = 1 because this variable would always be multiplied
by variables set to 0. While this can be solved with classical post-
processing, and it does not affect the theoretical construction, we
address it with an additional constraint. We include a constraint
that every rank should appear exactly once in the solution. This is
also an instance of one-hot encoding (D-Wave Systems Inc., 2024)
and encoded with the following quadratic objective:

V-2 2
DN EERD DR (13)
=0 (Ri,R))€E

The objective Hy is minimized when exactly one variable of type
x,r] is selected to be true for each 0 < r < |V| — 1. This constraint
enforces the fundamental rule of left-deep plans: At each rank r,

Frontiersin Computer Science

10.3389/fcomp.2025.1649354

exactly one join must be selected. The inner summation counts the
number of joins selected at rank r. The expression is minimized
to 0 when this count is exactly 1, thus providing a constraint for
each rank.

4.2 Cost function-independent validity

The validity constraint in Equation 12 produces higher-degree
terms due to exponentiation to the power of two, which we might
want to avoid. Hence, we develop join tree validity constraints
independently from the cost function. Notably, these validity
constraints are often quadratic, i.e., QUBOs, and are automatically
supported by many solvers. Because we develop the theory
considering the query graph’s structure, we have slightly different
constraints depending on the query graphs.

4.2.1 Clique graphs

Every rank must be selected exactly once in the solution. This
first constraint was already presented in Equation 13.

Select connected join tree. The second constraint encodes that
we penalize cases that do not form a connected join tree. To achieve
this, we include a constraint of the following form:

Vi—=2

> XY ca

r=0 (ij)eE (i'j)eE

(14)

where we sum over the elements if the indices satisfy | {i,j} N
{#.,i/}1 # 1. This constraint penalizes two types of invalid
sequences: (1) selecting the same join at two consecutive ranks
and (2) selecting two joins at consecutive ranks that share no
common relations. This encourages the model to select a new
join that connects to the existing intermediate result, forming a
connected graph.

Result contains all the relations. The third constraint forces us
to join all the relations. Our framework identifies joins as pairs of
relations (R;, R;). This leads to one relation R; appearing multiple
times in variables, referring to different joins in a valid solution. An
example of this is presented in Figure 3, where relation 2 appears
multiple times in the solution, consisting of joins such as (0, 2) and
(1,2). This third constraint encodes that we count the number of
relations and require that the count is at least one for each relation.
Counting relations involves a minimum of a logarithmic number
of slack variables (the method to do the logarithmic encoding
is presented in Lucas, 2014) in terms of relations. For technical
simplicity, we present the less efficient but equivalent method here:

2

V|—2 [V|—2
S+ Y mi-> >« (15)
RieG k=2 i r=1

The constraint reaches zero if at least one variable of type xj; is
true for each relation R;. The constraint ensures that each relation
R; is included in at least one selected join. It uses slack variables y;;
to encode the count of how many times a relation appears in the
plan, penalizing cases where the count for a given relation is zero.

frontiersin.org

https://doi.org/10.3389/fcomp.2025.1649354
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Uotila

4.2.2 Chain, star, cycle, and tree graphs

At every rank, we have performed rank + 1 many joins. This
constraint is related to the first validity constraint presented in the
study by Schonberger et al. (2023a) and Schonberger et al. (2023b).
They present the constraint in terms of relations, whereas we have
constructed it in terms of joins. The constraint encodes the number
of joins we must perform cumulatively at each rank. In other words,
when the rank is 0, we select one variable of type xgj to be true.
When the rank is 1, we choose two variables of type xll j to be true.
Formally, this constraint is

V-2 2
Z r+1— Z xf] . (16)
=0 (ij)eE

The constraint is minimized at 0 when foreach0 < r < |V|—1,
we have selected exactly r 4 1 variables of type x;; to be true.

Include the previous joins in the proceeding ranks. This
constraint is again similar to the second constraint presented in
the study by Schonberger et al. (2023a) and Schonberger et al.
(2023b), except that we express the constraint using joins. If the
join happened at rank r, it should be included in every proceeding
rank > r. In other words, we retain the information from the
performed joins for subsequent ranks. This can be achieved with
the following constraint:

[Vi=2

Z Z x{;l(l —). (17)

(i,)eE r=1

Now, if x{;l is active, then the model favors the case that x£j
— x£j =0.If x{,j = 0, the term
evaluates to 1, which penalizes the configuration.

is active too since in that case, 1

Respect query graph: chain, star, cycle. Since the cost
functions are designed to respect structures of query graphs, we use
the following constraint to encode the graph structure in chain, star,

and cycle graphs:
|V|—1
Z —szjx;,j,, (18)
r=0 (ij)eE (i',j')eE
where | {i,j} N {i/,j’} | = 1, which means that the joins have to

share exactly one relation. Setting the coeflicient —C as negative,
we favor the cases when the joins share precisely one relation. This
constraint is complementary to the constraint in Equation 14.

Respect query graph: tree. Unfortunately, the previous
constraint fails to encode the minimum for certain proper trees that
contain nodes with at least three different degrees. The simplest,
problematic tree shape is represented in Figure 3 (node 2 has degree
3, node 3 has degree 2, and the others have degree 1). The problem
is that with the constraint in Equation 18, not all the join trees have
the same minimum energy due to the different degrees of the nodes.
To address this problem, we develop an alternative constraint:

2

V-1
PN EED DD B I (19)
r=1 (ij)<E (i'j)eE

where again we form the sum over the elements if the indices
satisfy | {i,j} N {#,j'} | = 1. At every rank, this constraint selects

Frontiersin Computer Science

10.3389/fcomp.2025.1649354

T X!,
i,
tree to respect the query graph and be connected. This constraint

r-many pairs of type x to be true. This forces the returned join
is slightly more complex than the previous constraints, as it is
not quadratic but a higher-order constraint that includes terms
involving four variables. On the other hand, it does not introduce
additional variables.

Total HUBO and scaling cost and validity constraints.
Finally, the cost HUBO and the validity encoding HUBO are
summed together. Validity constraints are added to the objective
function with a large penalty coefficient C > 0. The penalty C
must be sufficiently large to ensure that any violation of the validity
constraints creates a penalty larger than any potential savings in
the cost function. This ensures that the cost Heost and the validity
objective Hy, are scaled properly so that the model favors valid
solutions over minimizing cost:

Hp = Heost + CHyg-

A possible heuristic is to set C to be greater than the maximum
value of Hcosr. We found that setting C to the sum of all positive
coeflicients in Hcos worked consistently in our experiments.

5 Theoretical analysis

This section proves two theorems that provide bounds for the
quality of the solutions that can theoretically be achieved with the
proposed HUBO formulations for the join order selection problem.
We introduced the classical baseline algorithms in Algorithms 1, 2.
We emphasize that the HUBO formulations and the proofs are
constructed to respect the underlying query graph. This means that
the algorithms assume that cross products are expensive and could
be avoided. Beneficial cross products can be explicitly encoded by
adding an edge to the query graph with a selectivity of 1, and the
proofs apply to cases with cross products by considering clique
graphs where some of the selectivities are 1. While our formulation
does not automatically discover such cross products, it can optimize
them if they are provided, and this is a promising direction for
future research.

By the definition of binary variables in Equation 8, we can prove
the theorems by induction on the rank parameter r in the proposed
HUBO constructions, as well as the iterations in the dynamic
programming and greedy algorithms. Our proof strategy is to show
that for every plan considered by the classical algorithms, there is
a corresponding assignment in our HUBO formulation with the
same cost, such that this assignment is also a minimizing solution
to the HUBO problem.

Lemma 1. Let G = (V, E) be a query graph and let x € {0, V-t

be a binary vector. Let Hy, be the validity constraint consisting
of constraints in Equations 12, 13. If the cost-dependent validity
constraint evaluates Hy,(x) = 0, then vector x encodes a valid
left-deep plan.

Proof. First, assume that the cost-dependent validity constraint
evaluates Hy,j(x) = 0. The first constraint in Equation 12 is

I

frontiersin.org

https://doi.org/10.3389/fcomp.2025.1649354
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Uotila

Vi=2 _r
r=0 %i.j,

0,...,|V| — 2 that depend on the query graph. This constraint

where h = =

for some indices i, and j, for r

is always non-negative since it is squared. It is positive, except
when exactly one of the terms in the sum), h is 1 when the
constraint evaluates to 0. The sum), h evaluates to 1 when
there is exactly one term / such that all the variables in the product
=V

= o Xi
is the valid join tree that the objective function returns as a solution

j are true. This combination of activated variables

to the minimization problem.
By construction of H (Algorithm 3), every monomial h € H
encodes a left-deep sequence since

e The construction starts from a single edge at rank 0.

e At rank r > 0, the construction extends the previously
accumulated connected subgraph (plan) by one edge (join)
that is incident to it, thereby adding exactly one new relation.

e The construction reaches a subgraph whose vertex set is V" at
rank |V| — 2.

These features define a valid left-deep plan. Therefore, the
unique x selected above maps to a valid left-deep join plan that
respects the query graph G.

Lemma 2. Let G = (V,E) be a query graph and let x € {0,1}/V1~!
be a binary vector. If the cost-independent validity constraint
evaluates Hy,(x) = 0, then x encodes a valid left-deep plan.

Proof. We divide the proof into two parts depending on the
structure of the query graph.

Clique graphs. In the case of clique graphs, the used validity
constraints are as follows.

1. There is precisely one join per rank, which is encoded with the
constraint in Equation 13.

. Consecutive joins must share exactly one relation and must not
be identical or disjoint, which was encoded with the constraint
in Equation 14.

3. Every relation appears at least once across all ranks, encoded in

Equation 15.

Assume that the cost-independent validity constraint evaluates
Hya(x) = 0. Since every constraint is non-negative, this means that
they have to evaluate to 0. The first point ensures that there are
exactly V| — 1 edges, and the second point ensures that the graph
is connected. Thus, it is a tree. The last point ensures that every
relation appears in the tree, and thus, it is a valid join tree.

The previous constraints are sufficient to also encode a left-
deep join tree without additional constraints. For r = 0, the
subgraph Sy contains two relations. The join e, at rank r+ 1 must
connect to the join e, at rank r by the constraint in Equation 14.
Since the overall graph of joins is a tree, adding e,y cannot form
a cycle with the previously selected joins. This implies that e,
must connect exactly one new relation to the set of relations S,.
Therefore, this progressive inclusion of exactly one new relation at
each step defines a left-deep join plan.

Chain, star, cycle, and tree graphs. In this case, the used
validity constraints are as follows:

Frontiersin Computer Science 11

10.3389/fcomp.2025.1649354

1. We have a cumulative cardinality: at rank 7, exactly r + 1
join variables are active, which is encoded by the constraint in
Equation 16.

. Join variables propagate across ranks: Once a join becomes
active, it remains active, encoded in the constraint in
Equation 17.

. Enforce the correct adjacency at each rank. This is encoded with

the constraints in Equations 18, 19.

Define A, = {(i,j) €E| xzj = 1} foreach0 < r < |V] — 1.
Assuming the previous points and Hy,(x) = 0, we obtain Ay C
Ay C -+ C Ajy|—2. From the first point, it follows that |[A,| = r+1,
and the second point ensures that A,_; C A,. Thus, exactly one
new join is added at each step. Moreover, the unique new join added
when passing from A,_; to A, shares exactly one endpoint with the
current result.

Next, we consider the structure. For chain, star, and cycle
queries, Equation 18 gives a negative reward for each pair of same-
rank joins that share exactly one endpoint. Summing over all
pairs at rank r forces A, to be a single connected component
because disconnected elements are penalized. For proper trees, the
constraint in Equation 19 enforces exactly r adjacent pairs among
the possibilities. That is a characterization of a tree on r + 2 vertices
with 7 + 1 edges, which makes A, connected and acyclic.

Since |A;| = r + 1 and A, is connected, it defines a tree. Since
A = Ar—1 U {e;} and A,_; is connected and acyclic, the only way
how A, is a tree is that the edge e, shares exactly one endpoint with
A,—1. This indicates that the plan is left-deep.

Theorem 3. Let G (V,E) be a query graph. Define binary
variables xI'] € {0,1} for each rank r € {0,...,|V|— 1} and join
edge (i,j) € E as we defined in the context of binary variables in
Equation 8. Let Hcost be the precise HUBO formulation obtained
by Algorithm 3 with the coeflicients given by Equation 11. This
means that every rank-r term corresponds to extending a connected
subgraph by one adjacent edge and carries the cardinality-based
cost contribution defined in Equation 1. Let Hy, be any of the
validity encodings in Section 4. Consider

Hpgi @ = Heost + CHygs

with a constant C > 0 chosen so that valid solutions are
always preferred to any invalid ones. Let x* minimize Hgyy. Then,
the solution x* encodes a valid left-deep plan T* without cross
products whose cost equals the cost from the DP algorithm without
cross products:

Hcost(x*) = C(T*)>
where C(-) is the recursive cost in Equation 2.

Proof. The proof consists of three parts, which ensure the
optimality and correctness: a bijection between valid DP plans
and assignments without penalty, a rank-wise construction which
identifies costs from Hcos with costs in the DP table, and penalty
scaling to enforce feasibility.

1. Based on Lemma 1 and Lemma 2, it suffices to show that
the set

{T | T is aleft-deep plan adhering G} (21)

frontiersin.org

https://doi.org/10.3389/fcomp.2025.1649354
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Uotila

is in a bijective relationship with the set

{x | Ha(x) = 0}. (22)

Every left-deep plan T can be written as a sequence of joins
(e e1,..
new relation to the current connected join tree, and the join tree T

.»€|v|—1), where each e, = (i,jr) € E joins exactly one

adheres to the query graph G in the sense of Subsection 2.1. Define
amapping ¢: T — {0, 1}V by

1 Gj)=ern

¢(€,) =x. =
o 0 otherwise.

By construction, the image ¢(T) x satisfies the

following properties:

There is exactly one active variable at each rank r € [1,|V]—1],
which is forced by the constraint in Equation 13.

Consecutive joins share exactly one relation and extend
connectivity, which is encoded with the constraint in
Equation 14.

All the relations appear in the solution, which is encoded with
the constraint in Equation 15.

Only edges (i.e., joins) in E are used, so there are no cross
products. We called these constraints respecting the query
graph G, and they were encoded in Equations 18, 19.

Since this means that for the element ¢(T) = x every constraint
is satisfied, we obtain that Hy,(x) = 0. Conversely, for any x
for which Hy,(x) = 0, the previous constraints are satisfied,
which means that exactly one join per rank is activated, and we
obtain a connected left-deep sequence of edges in E. This decodes
aplan T = ¢ !(x). Thus, we obtain the bijection between sets in
Equations 21, 22.

2. Next, we define a rank-wise invariant, which is proved to
preserve the join order cost. The DP algorithm (without cross
products) maintains, at iteration r, the DP table, which records
all connected subplans with r + 1 relations. It also stores for each
subplan its total cost under the cost function in Equation 2. Then,
there exists an invariant I(r) as follows. After Algorithm 3 has
generated all terms up to rank r, for every connected subplan S with

.
|S| = r + 1, there exist a set of variables [xf‘k S }k . such that

1. The product term created by Algorithm 3 for S,
r
k
1_[Figjio
k=0

is part of Heost, and

. the sum of coeflicients contributed along this product (with
as from Equation 11) equals the DP total cost of S, i.e., the
cumulative sum of intermediate cardinalities described by the
cost function in Equation 2. Particularly, activating exactly these
r + 1 variables yields Hcost equal to the DP table entry for S.

Proof of the invariant. First, we consider the base case, when
r = 0. By Algorithm 3, all the joins between the leaf relations are
included in the cost function Heost: @(ijy = fij|Ril|R;], which is
exactly the DP cost of that binary join. Thus, I(0) holds.

Frontiersin Computer Science

12

10.3389/fcomp.2025.1649354

Inductive step. Assume that I(r—1) holds. This means that there
exists a connected subgraph Spey of size r. Fix a connected subplan
S of size r + 1. By construction, Algorithm 3 forms S by extending
Sprey with an adjacent edge (7,j') € E that adds exactly one new
relation. The new coeflicient attached to this extension is «g, which
is computed with Equation 11. This is precisely the cardinality,
i.e., cost for the intermediate result after adding the (#,7') join.
Summing this with the previously accumulated coefficients for
Sprev> which exists by the induction assumption, gives exactly the
DP total cost for S. Hence, I(r) holds.

Thus, for any left-deep plan T and x = ¢(T), when applying
I(|V] — 2), we obtain

Heost(x) = C(T). (23)

3. Finally, we consider optimality under the penalty constraint.
We choose the constant C so that any violation of the validity
constraint Hy, raises the objective by at least the maximum possible
variation of Heost. Since every term in Heog is positive, the simple
choice for this is C: = Hcos(1), where 1 = (1,...,1). Then, any
minimizer x* of Hg, must satisfy Hyy(x*) = 0. This means that
x* is valid and corresponds to some left-deep plan T*, which we
showed earlier.

Among such valid assignments, minimizing Hp,) becomes
identical to minimizing Hcog. Restricting to valid x = ¢(T) gives
Heost(x) = C(T), as we pointed out in Equation 23. Therefore, x*
encodes a plan T* whose cost is minimal among all left-deep plans
without cross products. This is exactly the DP optimum without
cross products: Heost(x*) = C(T*). This finalizes the proof.

Theorem 4. Let Hcot be the heuristic method’s cost HUBO defined
in subsection 3.2. Let x* be a minimizer of Heyst. Then, Heost(x) <
Cgreedy> 1-€., the cost from the greedy algorithm gives an upper
bound for the cost from the heuristic algorithm.

Proof. We use the same rank index r € [0,]V] — 2] as in
the previous theorem, and use the same cost-coefficient mapping
defined in Equation 11. We again prove an invariant with respect
to r as follows.

Invariant: For each rank r, the greedy algorithm’s partial plan,
Ty, is contained within the set of partial plans (the frontier)
maintained by the heuristic HUBO construction.

Base case (r = 0): The heuristic algorithm includes all leaf joins
atrank 0, so it contains the cheapest leaf join chosen by the classical
greedy algorithm.

Inductive step: Assume the invariant holds for rank r — 1,
meaning T,_; is in the heuristic’s frontier. The greedy algorithm
extends T,_; by selecting the adjacent relation that minimizes
the local cost increment. According to Equation 11, these local
increments are precisely the a-coefficients for the valid rank-r
extensions of T,_; in the HUBO formulation.

At rank r, the heuristic selects the top extensions based on
the smallest coefficients. Since the greedy choice corresponds to
the extension with the smallest increment (and thus smallest
coefficient), it is guaranteed to be selected by the heuristic. Thus,
the partial plan T; is included in the heuristic’s frontier, completing
the induction.

Because the heuristic frontier contains the entire greedy path
To, ..., T|jvj—2 and the HUBO objective function sums the same

frontiersin.org

https://doi.org/10.3389/fcomp.2025.1649354
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Uotila

local increment that the greedy algorithm accumulates along that
path, there exists a feasible assignment x” whose value equals the
cost Cgreedy from the classical greedy algorithm. The minimizer
x* of Heost among valid plans cannot therefore do any worse, and
we obtain

Heost (%) < Heost(x) = Cgreedy~

5.1 Complexity analysis

Here, we consider the computational complexities of the
proposed algorithms. The join order problem with the cost model
in Equation 2 is generally NP-hard (Cluet and Moerkotte, 1995).
The time complexity of dynamic programming algorithm depends
on the query graph, the type of the dynamic programming
algorithm, the type of the returned join plan (left-deep, zigzag,
bushy, etc.), and whether cross products are included (Moerkotte
and Neumann, 2006). The computational complexity ranges from
O3Vl to linear. More precisely, the dynamic programming
algorithm in this work is based on Algorithm 1. The complexity
analysis of this algorithm shows that the worst-case running time
is 021y for clique graphs (Neumann and Gubichev, 2014).
Note that this is for left-deep trees, whereas the similar algorithm
for finding bushy plans has complexity O(3!V) (Neumann and
Gubichev, 2014).

Similarly, the time complexity of the greedy algorithm in
Algorithm 2 depends on the structure of the query graph. The
algorithm first evaluates the join between every pair of relations
with respect to the query graph, requiring at most O(|V|?) steps.
The greedy algorithm continues to evaluate the current cheapest
plan with all the relations, which leads to a final time complexity
of O(|V]?).

The complexity of solving HUBO and QUBO-based problems
on quantum and classical hardware can be divided into multiple
steps. The HUBO and QUBO problems are theoretically NP-
complete problems (Lucas, 2014; Boros and Hammer, 2002). In
practice, their difficulty also depends on the number of variables,
the number of terms, the degree of the terms, the range of the
coeflicients, and how close the ground state is to the first excited
state. For this HUBO formulation, the degree of the terms is at
most the number of relations in the query. The cardinalities and
selectivities of the relational database instance fully define the range
of the coefficients. In the following, we will analyze the number of
variables and the number of terms relying on the description of
Algorithm 3.

5.1.1 Complexity of HUBO construction

The complexity of Algorithm 3 depends on the query graph.
The outer loop over ranks runs for r = 0,...,|V| — 2. When
r = 0, the algorithm performs |E| steps. When r > 0, the
algorithm performs the following. Let |#,| denote the set of all
connected subgraphs with exactly » + 1 vertices at rank r. At
each rank r > 0, the algorithm loops over all |E| edges, and for
each edge, iterates over the set of partial plans in H,—; to test
whether the edge can extend the subplan by one relation. Each

Frontiersin Computer Science

10.3389/fcomp.2025.1649354

such check and possible extension costs O(1) time. Hence, the total

runtime is
[V]-1 |[V]—-1
O[IEI+ Y IEl- M| =0 > IEl M
r=1 r=0

Thus, we see that the total performance depends on the
growth of the term |#H,|. Worst-case complexity is achieved in a
clique query graph, where every subset of r + 1 vertices forms a
connected subgraph, so |H,| = (J_‘Cll) Substituting into the bound
above gives

O(|E| .2“") -0 (|V|2 : 2“/').

Thus, Algorithm 3 has exponential time complexity in the
worst case, which matches the combinatorial complexity of the
dynamic programming algorithm for join-order selection.

For other query graphs, the number of connected subsets is
smaller. It is sufficient to consider only subtrees since Algorithm 3
enumerates only connected subgraphs that are left-deep plans,
which are trees. It was proved that the number of subtrees for
chains is (|V\2+1) and the number of subtrees for star graphs is
0@Vl (Székely and Wang, 2005). This leads to the complexity
result that the number of subgraphs grows as O(|V|?) for chain
graphs, which in turn yields a time complexity of O(|V|?) since
|E] = |V| — 1. For the star graphs, we have |[E| = |V| — 1 and thus
obtain complexity O(|V| - 2!V1), which also aligns with the study
by Ono and Lohman (1990). Finally, we obtain that the number of
connected subgraphs for a cycle graph with [V]is [V|(]V| —1) + 1,
which leads to a time complexity O(| V|?), because |E| = | V.

Since Algorithm 3 is used to construct the terms for the
HUBO optimization problem, the correspondence between the
time complexity and the number of terms is one-to-one. Thus,
the number of terms scales one-to-one with the time complexity.
To summarize this complexity, in the worst case, term generation
scales as O(2!V1), although practical query graphs often yield
polynomial growth.

17.51 —e— Q-Join - Cycle
3 15.04 —— Schoénberger et al. (2023) - Cycle
5 Schoénberger et al. (2024) - Cycle
(%]
S 12.51
o
S
= 10.0 A
;v: 7.5
e}
S 50
3
>)l
e Mv’/
0.0 4=
10 20 30 40 50 60
Relations

FIGURE 4

Comparison of the number of mandatory variables in the study by
Schénberger et al. (2023a,b) to all variables in our optimization
model.

frontiersin.org

https://doi.org/10.3389/fcomp.2025.1649354
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Uotila

5.1.2 Variable scalability

Our method achieves advantageous variable scalability
compared to the most scalable methods (Schonberger et al,
2023a,b). The model in the study by Saxena et al. (2024) uses the
same variable definitions as that in the study by Schénberger et al.
(2023b), so the scalability comparison also applies to this article.
The scalability is visualized in Figure 4 for cycle query graphs.
The chain, star, and tree graphs have identical relative scalability
between the three methods. We aim to emphasize that these are
the only mandatory variables for the two compared methods.
The previous techniques require more variables to estimate the
cost thresholds, which depend on the problem. We excluded the
variable scalability described by Nayak et al. (2024) since the
growth of variable count is exponential in their study.

6 Experimental evaluation

In this section, we present the results of a comprehensive
experimental evaluation that includes optimizing join order

TABLE 1 Summary of proposed algorithms.

Method name Cost function Validity constraint

10.3389/fcomp.2025.1649354

selection on various combinations of query graphs, problem
formulations, and classical and quantum optimizers. For each
method proposed in this article, we evaluate the technique against
five common query graph types: clique, star, chain, cycle, and tree.
Each query graph is labeled using the format ’Graph name - number
of nodes’. For each graph type and graph size, we sampled 20 query
graph instances with random cardinalities and selectivities. The
cardinalities are randomly sampled from the range 10 to 50, and
selectivity from the interval (0, 1]. The costs are summed over the
20 query graph instances, describing a realistic cumulative error,
and scaled with respect to the cost returned from the dynamic
programming algorithm with cross products, which is the optimal
left-deep plan. This means that the results are compared to the
optimal left-deep plans. The code, the exact query graphs, and
parameters used for this experimental evaluation are available in
the GitHub repository (Uotila, 2025a). Since we have used 20
query graph instances for five different graph types, ranging in
size from 3 to 60, and solved them with four different quantum
and classical solvers, the total number of optimized problems is in
the thousands. We refer to the implementation of our algorithms
as Q-Join.

After fixing one of the three proposed methods and a
query graph instance, we constructed the corresponding HUBO
optimization problem. Then, we submitted the problem for

Precise 1 Precise cost function Cost function dependent each selected solver. The available solvers include two quantum
Precise 2 Precise cost function Cost function independent computing approaches (D-Wave quantum annealer and D-Wave
hybrid quantum annealer) and two classical approaches (exact
Heuristic Heuristic cost function Cost function dependent . L.
poly solver and Gurobi optimizer). In all cases except the exact
BN (Q-Join: Presice 1
B Dynamic programming w/o cross-products
B Greedy w/o cross-products
Clique-4 Cycle-4 Cycle-5 Star-3
+2 1.0090 + 1.0004 1.0011 A 1.0027 A
S 1.0068 - 1.0003 1 1.0008 - 1.0020
"3 1.0045 1.0002 1.0006 1 1.0013
—‘8 1.0023 1 1.0001 A 1.0003 A 1.0007 A
“2 1.0000 A 1.0000 A 1.0000 - 1.0000 1
Chain-3 Chain-4 Chain-5 Chain-6
+ 1.0007 4 1.0055 A 1.0068 1.0070 1
S 1.0005 1 1.0041 1 1.0051 1.0053 1
e L0005 1.0027 - 1.0034 1 1.0035 1
T"d 1.0002 1 1.0014 A 1.0017 - 1.0018 A
2 1.0000 A 1.0000 - 1.0000 A 1.0000
Tree-3 Tree-4 Tree-5 Tree-6
“g’ 1.0002 - 1.0015 A 1.0093 - 1.0046 A
o 1.0011 A 1.0069 A 1.0034 1
"8 1.0001 1.0007 4 1.0046 1.0023 -
'?3 1.0004 1 1.0023 - 1.0011 -
e 100004 1.0000 - 1.0000 1 1.0000 1
FIGURE 5
Precise 1 results using D-Wave's exact poly solver. For Clique-3, Cycle-3, Star-4, and Star-5, all three methods achieved optimal cost.

Frontiersin Computer Science 14

frontiersin.org

https://doi.org/10.3389/fcomp.2025.1649354
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Uotila

10.3389/fcomp.2025.1649354

B (Q-Join: Presice 1

B Dynamic programming w/o cross-products
B Greedy w/o cross-products

Clique-4 Cycle-4
+ 1.0090 1.0004
S 1.0068 1.0003
"3 1.0045 1.0002 A
Té 1.0023 - 1.0001 -
2 1.0000 - 1.0000
Chain-3 Chain-4
+ 1.0007 1.0055
S 1.0005 - 1.0041 1
9 1.0004 - 1.0027 1
'ﬁd 1.0002 A 1.0014 -
3 1.0000 A 1.0000 1
Chain-7 Chain-8
+2 1.0045 1 1.0086
S 1.0034 4 1.0065 -
D 1.0022 1.0043 - III
7‘3 1.0011 1.0021
2 1.0000 A 1.0000
Tree-5 Tree-6
+ 1.0093 - 1.0161
S 1.0069 1.0121 1 I
’8 1.0046-III 1.0080 A
T“d 1.0023 1 1.0040
2 1.0000 - 1.0000

FIGURE 6
Precise 1 results using Gurobi solver.

Cycle-5 Star-3
1.0012 A 1.0027 A
1.00009 A 1.0020 A
1.0006 A 1.0013 A
1.0003 A 1.0007 A
1.0000 - 1.0000 A
Chain-5 Chain-6
1.0068 - 1.0070 A
1.0051 A 1.0053 A1
1.0034 A 1.0035 A
1.0017 A 1.0018
1.0000 A 1.0000 A
Tree-3 Tree-4
1.0002 - 1.0015 A
1.0011 A
1.0001 1.0007
1.0004 A

1.0000 - 1.0000 -

poly solver, the HUBO problem needs to be translated into the
equivalent QUBO problem.

Our evaluation focuses on solution quality, rather than solver
runtime. A direct comparison of execution times is impractical, as
system-level latencies heavily influence them. A direct comparison
of execution times might be misleading in this scenario because
the quantum annealer’s microsecond-scale annealing time is only
one component of a larger process that includes significant classical
overhead from problem embedding and post-processing. The pre-
and post-processing latencies include problem encoding, network
communication, solver queuing, and interpreting the result. We
identify that a meaningful comparison of execution times between
classical and quantum systems is still a research question.

Summary of proposed methods. We have proposed three
algorithms to solve the join order selection problem with a higher-
order unconstrained binary optimization model. Table 1 introduces
names for these methods, which are used in this Experimental
Evaluation section.

The results should be interpreted as follows. For each case, we
have solved the join order selection problem using four different

Frontiersin Computer Science 15

methods: our algorithm in evaluation, dynamic programming
without cross products, a greedy algorithm without cross products,
and finally, dynamic programming with cross products. Since
dynamic programming with cross products produces the optimal
left-deep plan, we scale the cumulative cost over 20 different join
order optimization problems with this cost. This way, we obtain a
metric that enables us to compare these methods without explicitly
dealing with cost values. The actual range of costs is arbitrary
since the cardinalities and selectivities are randomly sampled. For
example, suppose our algorithm has a scaled cost of 1.007. In that
case, this means that the cumulative cost of the 20 returned plans
from our algorithm is 0.7% larger than the cumulative cost for the
optimal plans from dynamic programming with cross products.

6.1 Evaluating Precise 1 formulation
First, we evaluate Precise 1 formulation, which combines

a precise cost function and cost-dependent validity constraints.
Figure 5 shows the results of optimizing join order selection using

frontiersin.org

https://doi.org/10.3389/fcomp.2025.1649354
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Uotila

10.3389/fcomp.2025.1649354

B Dynamic programming w/o cross-products

B Q-Join: Presice 1
B Greedy w/o cross-products
Clique-4 Cycle-4
+2 1.0090 - 1.0004 1
S 1.0068 1.0003
3 1.0045 1.0002 -
Té 1.0023 - 1.0001 A
“2 1.0000 1.0000 A
Star-3 Chain-3
+ 1.0027 A 1.0007 -
S 1.00201 1.0005 -
B 1.0013 III i
TS 1.0007 - 1.0002 1
2 1.0000 A 1.0000 A
Chain-6 Chain-7
+ 1.0070 1 1.0045 -
S 1.0053 1.0034 1
2 100351 1.0022 -
'?‘3 1.0018 - 1.0011 -
2 1.0000 A 1.0000 A
Tree-5 Tree-6
+ 1.0093 1 1.0046 -
S 1.0069 1.0034 1 I
D 1.0046 III 1.0023 -
?\’3 1.0023 A 1.0011 -
2 1.0000 A 1.0000 A
FIGURE 7
Precise 1 results using D-Wave's Leap Hybrid solver.

Cycle-5 Cycle-6
1.0011 A 1.0105 A
1.0008 A 1.0079 1
1.0006 - 1.0052 -
1.0003 1 1.0026 -
1.0000 - 1.0000 A
Chain-4 Chain-5
1.0055 A 1.0068
1.0041 - 1.0051 A
1.0027 A 1.0034
1.0014 A 1.0017 A
1.0000 A 1.0000 A
Tree-3 Tree-4
1.0002 - 1.0015 A1
1.0011 A
1.0001 A 1.0007 A
1.0004 -

1.0000 - 1.0000 -

D-Wave’s exact poly solver, which is part of the Ocean framework.
Following the bounds given by Theorem 3, the HUBO model
consistently generates a plan that matches the quality of the plan
produced by the dynamic programming algorithm without the
cross products. We also observe that the returned plans are at most
0.7% larger than the optimal plan from dynamic programming with
the cross products.

Second, we solved the same HUBO formulations using the
classical Gurobi solver. The results are presented in Figure 6. The
HUBO-t0o-QUBO translation does not decrease the algorithm’s
quality, and the method is able to find the correct plans. The results
remain very close to the optimal join tree, consistently matching
the quality of the dynamic programming algorithm that does not
use cross products.

Third, we addressed the same problems using D-Wave's
Leap Hybrid solver, a cloud-based quantum-classical optimization
platform. The results are in Figure 7. In this case, the results are
consistently as good as those from the dynamic programming
algorithm without the cross products, with some exceptions due to

Frontiersin Computer Science 16

the heuristic nature of the quantum computer: Cycle-6, Chain-7,
and Tree-6.

Finally, Figure 8 shows the results from D-Wave’s quantum
annealer, which does not use hybrid features to increase solution
quality. This resulted in performance that did not match that of the
previous solvers, and this performance decrease had already been
identified in the study by Schénberger et al. (2023a). While the
quality was not as good as the previous solutions, the valid plans
might still be usable, with only a few percent deviation from the
global optimum.

6.2 Evaluating Precise 2 formulation

The key idea behind the Precise 2 formulation is to tackle larger
join order optimization cases, as the validity constraints are more
efficient in terms of the number of higher-order terms. We include
the exact poly solver results to demonstrate that this formulation
encodes precisely the correct plans. For the other solvers, we only

frontiersin.org

https://doi.org/10.3389/fcomp.2025.1649354
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Uotila

10.3389/fcomp.2025.1649354

B (-Join: Presice 1

B Dynamic programming w/o cross-products
B Greedy w/o cross-products

Clique-3 Clique-4
+ 1.0893 - 1.5169
S 1.0662 1 1.3668 -
g 1.04371 1.2316I
T“d 1.0216 - 1.1098 -
2 1.0000 - 1.0000 A
Cycle-5 Star-3
+2 1.0434 1 1.0241
S 1.0324-I 1.0181-I
'8 1.0215 - 1.0120 A
—‘8 1.0107 A 1.0060 -
2 1.0000 - 1.0000 1
Chain-3 Chain-4
+ 1.0263 - 1.0068
S 1.0197-I 1.0051 -
3 1.0131 1.0034 III
7‘3 1.0065 - 1.0017
2 1.0000 - 1.0000 A
Chain-7 Tree-3
+ 1.0674 - 1.0415
& 1.0501-I 1.0310I
’8 1.0332 - 1.0206 -
T"d 1.0164 1.0102
2 1.0000 - 1.0000 1

FIGURE 8
Precise 1 results using D-Wave's quantum annealer without hybrid features.

Cycle-3 Cycle-4
1.0776 1.0940 A1
1.0577 A 1.0697 1
1.0381 A 1.0460 1
1.0189 - 1.0227 1
1.0000 - 1.0000 A1

Star-4 Star-5
1.1173 A
1.0868
1.0570 A
1.0281 A
1.0000 A

Chain-5 Chain-6
1.0291 A
1.0217 A
1.0144
1.0072 A
1.0000 A

1.0297
1.0222 4
1.0147
1.0073 1
1.0000

-
-

1.0328 1
1.0245 A
1.0163 1
1.0081 1
1.0000 -

-
.

Tree-4 Tree-5
1.0747 A
1.0555 A
1.0367 A
1.0182 A
1.0000 A

1.1343
1.0991
1.0650
1.0320
1.0000

-
-

show results that optimized larger queries compared to the previous
Precise 1 method.

First, the results from the exact poly solver in Figure 9
demonstrate that this algorithm follows the bounds of Theorem 3.
In practice, the returned plans are again very close to the optimal
plans. We can also see that compared to the Precise 1 method, the
different set of validity constraints work equally well.

Second, to evaluate the Gurobi solver, we scaled up the problem
sizes significantly from the Precise 1 method. The results are
presented in Figure 10. On the other hand, we observed that finding
the point that minimizes both cost and validity constraints becomes
increasingly challenging as the problem sizes increase.

Slightly unexpectedly, the hybrid solver did not perform as
well as we expected, as shown in Figure 11. The solver does not
have tunable hyperparameters, which could be adjusted to obtain
better results. Finally, we do not include the results from the D-
Wave quantum solver without hybrid features since the solver
did not scale beyond the cases that were already presented in
Figure 8.

Frontiersin Computer Science 17

6.3 Evaluating heuristic formulation

The key motivation behind the heuristic formulation is to tackle
even larger query graphs. Our main goal is to demonstrate that
this algorithm reaches acceptable results with superior scalability
compared to the previous Precise 1 and 2 formulations. The
results also indicate that Theorem 4 is respected in practice. The
optimal results are now computed with dynamic programming
without cross products. Due to space limitations, we only included
the results from the Gurobi solver, which we consider the
most demonstrative, and we had unlimited access to it since it
runs locally.

The results are presented so that we have computed and scaled
the difference between each pair of methods. A value that differs
from 0 indicates that the two methods gave different join trees
with different costs. Since one of the methods is near-optimal (DP
without cross products), it is clear which method produced the
suboptimal result. This way, we can compare all three methods
simultaneously. In all cases, we observe that the heuristic algorithm

frontiersin.org

Uotila

10.3389/fcomp.2025.1649354

BN Q-Join: Presice 2
I Dynamic programming w/o cross-products
[0 Greedy w/o cross-products

Cycle-5 Star-3

1.0027 -

1.0020 -

1.0013 -
1.0007 -

1.0000

Chain-4 Chain-5

1.0068 -

1.0051

1.0034 -

1.0017 -

1.0000

Tree-4 Tree-5

Cycle-4
1.0004 1 1.0011 A
>
8 1.0003 - 1.0008 -
3 1.0002 - L0000
E 1.0001 - 1.0003 +
9]
1.0000 - 1.0000 A
Chain-3
1.0007 A 1.0055 A
3
8 1.0005 - 1.0041 A
. 4 -
- 1.000 1.0027 A
<
& 100027 1.0014
wn
1.0000 - 1.0000 A
Tree-3
1.0015 A
2 1.0002 1
o 1.0011 1
Q
"8 1.0001 A 1.0007 4
—
S 1.0004 -
9]
1.0000 - 1.0000
FIGURE 9
Precise 2 results using D-Wave's exact poly solver.

1.0093

1.00609 -

1.0046 -

1.0023 1

1.0000

respects Theorem 4 in practice, meaning that the formulation
produced a plan with a cost equal to the classical greedy algorithm.

Figure 12 shows the results of applying the heuristic method
to chain, cycle, and clique query graphs. Scalability for clique
graphs in this complex case is modest, and greedy plans are
generally far from optimal plans for both our method and the
classical greedy algorithm. The results for chain graphs and cycle
graphs demonstrate the best scalability. For cycle graphs, our
greedy method was able to find better plans than the classical
greedy algorithm.

6.4 Comparison with quantum-inspired
digital annealing

We evaluated the method proposed in the study by Schonberger
et al. (2023b) using the same workloads and present the results
in Figure 13. Their technique is the improved algorithm from
the study by Schonberger et al. (2023a). The results demonstrate

Frontiersin Computer Science

that our methods perform at the same level as theirs on these
workloads. The authors propose a novel readout technique that
enhances the results. Since we could not access special quantum-
inspired hardware, the digital annealer, we used the Gurobi solver,
which returns only a single result by default. Thus, the readout
technique was not applicable. In the studied cases, it did not seem
to decrease quality.

The results demonstrate that their method achieves a
comparable accuracy to ours, which is optimal or nearly optimal.
We have computed the exact results with dynamic programming
using cross products and compared the relative cumulative costs
between the methods. Their method also appears to be able
to identify beneficial cross products. Due to the higher-order
terms in our method, which currently need to be rewritten in
quadratic format, their method remains more scalable than ours.
On the other hand, our theoretical bounds, query-graph-aware
problem formulation, the more straightforward variable definition,
and the novel usage of the higher-order model demonstrate
specific contributions and improvements over their methods. We
are also confident that our model will incorporate features that

frontiersin.org

https://doi.org/10.3389/fcomp.2025.1649354
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Uotila

10.3389/fcomp.2025.1649354

FIGURE 10

BN Q-Join: Presice 2

I Dynamic programming w/o cross-products

[Greedy w/o cross-products

Precise 2 results that were not part of Precise 1 results using Gurobi solver.

i Clique-5 Clique-6 Cycle-10 Cycle-11 Cycle-12
& 1.0024 1.0138 1.0805 1.9595 2.6962

O 1.0018 1.0103 1.0598 1.6562 21041

o 3

S 1.0012 1.0069 1.0395 1.3998 g

~ 1.0006 1.0034 1.0195 11831 12814

(% 1.0000 1.0000 1.0000 1.0000 1.0000

- Cycle-13 Cycle-14 Cycle-6 Cycle-7 Cycle-8
8 1.0871 1.0467 1.0022 1.0017 1.0043

© 1.0646 1.0348 1.0016 1.0013 1.0032

'8 1.0426 1.0231 1.0011 1.0008 1.0021

T‘G 1.0211 1.0115 1.0005 1.0004 1.0011

£ 1.0000 1.0000 1.0000 1.0000 1.0000

- Cycle-9 Star-10 Star-7 Star-8 Star-9
8 1.0036 1.0088 1.0548 1.0180

O 1.0027 1.0066 1.0001 1.0408 1.0134

"8 1.0018 1.0044 1.0270 1.0089

~ 1.0009 1.0022 1.0000 1.0134 1.0045

ﬁ 1.0000 1.0000 1.0000 1.0000

- Chain-10 Chain-11 Chain-12 Chain-13 Chain-14
8 1.0009 1.0171 1.0166 1.0607 1.0125

© 1.0007 1.0128 1.0124 1.0452 1.0094

2 1.0004 1.0085 1.0082 1.0299 1.0063

'701 1.0002 1.0042 1.0041 1.0148 1.0031

% 1.0000 | 1.0000 1.0000 1.0000 1.0000

- Chain-15 Chain-9 Tree-10 Tree-11 Tree-12
8 1.0626 1.0139 1.0130 1.0481 1.0248

O 1.0466 1.0104 1.0097 1.0359 1.0185

"8 1.0308 1.0069 1.0065 1.0238 1.0123

Tﬁ 1.0153 1.0035 1.0032 1.0118 1.0061

ﬁ 1.0000 _ | 1.0000 1.0000 1.0000 | 1.0000

s Tree-7 Tree-8 Tree-9

8 1.0310 1.0021 1.0228

© 1.0231 1.0015 1.0171

"8 1.0154 1.0010 1.0113

T‘G 1.0077 1.0005 1.0057

% 1.0000 1.0000 1.0000

enable expansion for outer joins, accommodate more complex
dependencies between predicates, and allow the usage of other
types of cost functions.

7 Discussion

In this study, we developed a novel higher-order binary
optimization formulation for optimizing join order selection for
left-deep query plans. This is a fundamentally new approach to
one of the most studied query optimization problems in the
database domain. Our formulation is accompanied by formal
guarantees, as proven in Theorems 3 and 4. Our method respects
query graphs, which makes it distinct from previous formulations.

Frontiersin Computer Science

19

Although this leaves out cross products, it also simplifies problem
formulation for certain query graphs. It paves the way for
future methods that rely on information about query graphs.
As shown in Figure 4, our method requires a relatively small
number of binary variables. Finally, we conducted a comprehensive
experimental evaluation that demonstrated the usage of quantum
annealers in this task, deepened our understanding of differences
between quantum and classical solvers in this real-life problem,
and showed that the results in Theorems 3 and 4 are respected
in practice.

The starting point for our study has been primarily the previous
quantum computing formulations (Schonberger et al, 2023a;
Winker et al., 2023a; Schonberger et al., 2023¢; Nayak et al., 2024;
Franz et al., 2024; Schonberger et al., 2023b; Saxena et al., 2024) for

frontiersin.org

https://doi.org/10.3389/fcomp.2025.1649354
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Uotila

10.3389/fcomp.2025.1649354

BN Q-Join: Presice 2
B Dynamic programming w/o cross-products
W Greedy w/o cross-products
- Clique-5 Cycle-7 Cycle-8 Star-7 Star-8
8 1.0133 1.1549 1.0917 1.0293 1.0316
© 1.0100 1.1140 1.0680 1.0219 1.0236
"8 1.0066 1.0746 1.0448 1.0145 1.0157
= 1.0033 | 1.0367 1.0222 1.0072 1.0078
S 1.0000 | 1.0000 {Mlemes| 1.0000 M| 1.0000 {Mawes| 1.0000 {BMumee
- Chain-8 Tree-10 Tree-7 Tree-9
8 1.0299 1.0913 1.0477 1.0096 1.0444
© 1.0224 1.0677 1.0355 1.0072 1.0331
"8 1.0149 1.0446 1.0236 1.0048 1.0220 i
= 1.0074 1.0221 1.0117 1.0024 1.0109 ’ l
% 1.0000 1.0000 ~| 1.0000 1.0000 1.0000
FIGURE 11
Precise 2 results using D-Wave's Leap Hybrid solver.
—e— Quantum/Greedy
—=— Quantum/Optimal
— == Perfect ratio
Chain Cycle Clique
1.06
1.10
1.3 1
._g 1.04
[1.05 4 1.2 -
3 L
o
O 1.02 A
1.00 1.14
i
1.00 1.0 +
T T T T T T T T T T
20 40 60 20 40 60 4 6 8 10
Relations # Relations # Relations
FIGURE 12
Heuristic results for different query graph topologies using Gurobi solver. Optimal results were solvable up to 16 relations. Considering the results for
star and tree graphs, our algorithm and the greedy algorithm without cross products, we consistently obtained the same results.

the join order selection problem. Our method’s scalability in real-
life problems outperforms many previous studies (Schonberger
etal., 2023a; Franz et al., 2024; Schonberger et al., 2023c), where the
authors have demonstrated their algorithms with 2 to 7 relations.
The method proposed in the study by Schonberger et al. (2023b)
offers the best scalability and accuracy. However, their algorithm
lacks a guarantee of optimality and requires the use of more
variables (Figure 4). The comparison to this approach showed
accuracy similar to our method in small query graphs. We also note
that classical solvers compete with the quantum annealers in this
task, even though they run locally on a laptop. This demonstrates
that quantum annealers are not scalable enough to solve these
types of problems efficiently, and their performance is crucially
problem-dependent.

Frontiersin Computer Science

20

Classical approaches for solving HUBO problems typically
rely on approximate methods due to the exponential growth
in complexity of these problems. Integer programming can be
used to find approximate solutions for HUBO problems, but
it suffers from scalability issues and does not always ensure
feasibility (Munoz, 2017). Machine learning techniques, including
graph neural networks, have been explored for approximating
HUBO solutions (Schuetz et al., 2022). However, these approaches
often require training data and may struggle to generalize to
previously unseen instances. Simulated annealing has been applied
as another classical strategy for tackling HUBO problems (Wang
et al., 2025). While these classical methods are effective for small-
and medium-sized instances, they encounter significant challenges
as problem size increases, highlighting the potential usability of

frontiersin.org

https://doi.org/10.3389/fcomp.2025.1649354
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Uotila 10.3389/fcomp.2025.1649354

Clique Cycle Star
1.020 1.015 4
o 1515 1.004 A
= 1.010 -
-
-
] 1.002 A
6 1.010 1.005
@)
1.005 1 T T T T 1‘000 i T T T T T T 1.000 L T T T T T T T T
3 4 5 6 4 6 8 10 12 14 3456 7 8 910
#Relations #Relations #Relations
Chain Tree
1.03 1.15 -
° =
=
g 1.02 4 1.10 -
——
8 1.01 1.05
o v ’
1'00 L T T T T T T 100 L T T T T T T T T T T
4 6 8 10 12 14 3456 7 8 9101112
#Relations #Relations
FIGURE 13
QUBO formulation accuracy on different query graph topologies with QUBO formulation proposed in the study by Schénberger et al. (2023b)

quantum-native approaches such as QAOA. In theory, the HUBO exponentially in some cases. The current HUBO problem
formulations in this article can be addressed using the same QAOA- formulations also do not account for bushy trees or cross
based methods employed in Uotila et al. (2025). products, which would further enhance the quality of the

Quantum computing for HUBO problems represents an solution. We are also limited to inner joins and the simple cost
emerging area in the fleld of quantum optimization. For example, = model. The problem of optimizing join order selection also
Campbell and Dahl (2022) explored the use of the Quantum relies on cardinality estimations, which is a separate challenge
Approximate Optimization Algorithm (QAOA) for higher-order in query optimization. Finally, there is considerable room for
graph coloring problems. Techniques such as bias-field digitized improvement in solving HUBO problems on both classical
counterdiabatic quantum optimization have been developed to and quantum hardware. Very few methods can effectively
enhance the solution of higher-order binary problems (Romero tackle HUBO optimization problems. In this regard, quantum
et al, 2025; Cadavid et al, 2025), and various methods have computing appears to be theoretically one of the most promising
been proposed for optimizing variational quantum circuits approaches to optimizing complex HUBOs. In future research,
tailored to these challenges (Verchere et al, 2023). Higher- we are excited to explore the universal quantum computing
order problems have also served as benchmarks for comparing capabilities for solving HUBOs. Unfortunately, the problem sizes

QAOA and quantum annealing performance (Pelofske et al, studied in this work were still too large for the current universal
2023; Sachdeva et al.,, 2024; Pelofske et al., 2024b; Gilbert quantum computers.

et al,, 2023), as well as for studying the scaling behavior and Previous methods have been limited to inner joins. Extending
parameter concentration properties of QAOA (Pelofske et al, our binary variables to model non-inner joins is theoretically

2024a). Initial applications for HUBO formulations include higher- straightforward, for instance, by adding a component to indicate
order portfolio optimization (Uotila et al., 2025), the formalization the join type (inner or outer). While this modification is simple, the
of practical matrix multiplication algorithm search (Uotila, 2024b), cost function and constraints also need adjustments. Since our cost
and optimization in railway rescheduling (Domino et al, 2022). HUBO is explicitly based on the recursive join order cost function,
While HUBO formulations are classically challenging, it remains encoding predicate dependencies is also feasible. Our HUBO
open whether they offer an actual computational advantage on formulations can be further approximated with other heuristics to
quantum hardware. make them feasible for solving a larger set of complex query graphs.
Multiple challenges remain. The biggest challenge in our Exploring these extensions offers promising directions for future
method is the higher-order terms, whose number grows research in join order optimization with quantum computing.

Frontiersin Computer Science 21 frontiersin.org

https://doi.org/10.3389/fcomp.2025.1649354
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Uotila

8 Conclusion

In this study, we have developed three novel graph-aware
higher-order binary optimization models to solve the join order
selection problem in relational databases. The HUBO problems
can be divided into cost functions and validity constraints.
We presented two new binary optimization formulations for
the cost function and proved that one encodes the same join
trees as the dynamic programming algorithm without cross
products. The other finds plans that are at least as good as
those returned by the greedy algorithm without cross products.
Finally, we presented a comprehensive experimental evaluation
of these algorithms on various quantum and classical solvers.
The experimental evaluation demonstrated the practical
usability of these HUBO formulations and the fact that we
respect the proven bounds in practice. While classical solvers
remained competitive, these types of binary optimization
models will serve as the essential element for future quantum
optimization platforms.

Data availability statement

The datasets presented in this study can be found in
online repositories. The names of the repository/repositories
found in the

and accession number(s) can be

article/supplementary material.

Author contributions

VU: Writing - original draft, Software, Writing - review &
editing, Data curation, Conceptualization, Investigation, Formal
analysis, Visualization, Methodology.

References

Abbas, A., Ambainis, A., Augustino, B., Baertschi, A., Buhrman, H., Coffrin, C.
J., et al. (2024). Quantum Optimization: Potential, Challenges, and the Path Forward.
Washington, DC: US Department of Energy.

Aharonov, D., van Dam, W., Kempe, J., Landau, Z, Lloyd, S., Regev, O., et al. (2004).
Adiabatic quantum computation is equivalent to standard quantum computation.
arXiv [preprint]. arXiv:quant-ph/0405098v2. doi: 10.48550/arXiv.quant-ph/0405098v2

Albash, T., and Lidar, D. A. (2018). Adiabatic quantum computation. Rev. Mod.
Phys. 90, 015002. doi: 10.1103/RevModPhys.90.015002

Apolloni, B., Carvalho, C., and de Falco, D. (1989). Quantum stochastic
optimization. Stoch. Processes Appl. 33, 233-244. doi: 10.1016/0304-4149(89)90040-9

Aramon, M., Rosenberg, G., Valiante, E., Miyazawa, T., Tamura, H., Katzgraber, H.
G., et al. (2019). Physics-inspired optimization for quadratic unconstrained problems
using a digital annealer. Front. Phys. 7:48. doi: 10.3389/fphy.2019.00048

Arute, F., Arya, K., Babbush, R, Bacon, D., Bardin, J. C,, Barends, R, et al. (2019).
Quantum supremacy using a programmable superconducting processor. Nature 574,
505-510. doi: 10.1038/s41586-019-1666-5

Bittner, T., and Groppe, S. (2020). “Avoiding blocking by scheduling
transactions using quantum annealing” in Proceedings of the 24th Symposium
on International Database Engineering & Applications, IDEAS °20 (New York,
NY: Association for Computing Machinery), 1-10. doi: 10.1145/3410566.34
10593

Boros, E., and Hammer, P. L. (2002). Pseudo-boolean optimization. Discrete Appl.
Math. 123, 155-225. doi: 10.1016/S0166-218X(01)00341-9

Frontiersin Computer Science

10.3389/fcomp.2025.1649354

Funding

The author(s) declare that financial support was received for the
research and/or publication of this article. Open access funded by
Helsinki University Library.

Conflict of interest

The author declares that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Generative Al statement

The author(s) declare that Gen AI was used in the creation of
this manuscript. Generative Al was used to improve the quality of
language, code and visualizations.

Any alternative text (alt text) provided alongside figures in
this article has been generated by Frontiers with the support of
artificial intelligence and reasonable efforts have been made to
ensure accuracy, including review by the authors wherever possible.
If you identify any issues, please contact us.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Cadavid, A. G., Dalal, A., Simen, A., Solano, E., and Hegade, N. N. (2025).
Bias-field digitized counterdiabatic quantum optimization. Phys. Rev. Res. 7:L022010.
doi: 10.1103/PhysRevResearch.7.1022010

Calikyilmaz, U., Groppe, S., Groppe, J., Winker, T., Prestel, S., Shagieva, F., et al.
(2023). Opportunities for quantum acceleration of databases: optimization of queries
and transaction schedules. VLDB 16, 2344-2353. doi: 10.14778/3598581.3598603

Campbell, C., and Dahl, E. (2022). “Qaoa of the highest order,” in 2022 IEEE 19th
International Conference on Software Architecture Companion (ICSA-C) (Honolulu, HI:
1EEE), 141-146. doi: 10.1109/ICSA-C54293.2022.00035

Cluet, S., and Moerkotte, G. (1995). “On the complexity of generating optimal
left-deep processing trees with cross products,” in Database Theory — ICDT ’95, eds.
G. Gottlob, and M. Y. Vardi (Berlin, Heidelberg: Springer Berlin Heidelberg), 54-67.
doi: 10.1007/3-540-58907-4_6

Denchev, V. S., Boixo, S., Isakov, S. V., Ding, N., Babbush, R., Smelyanskiy, V.,
et al. (2016). What is the computational value of finite-range tunneling? Phys. Rev. X
6:031015. doi: 10.1103/PhysRevX.6.031015

Domino, K., Kundu, A., Salehi, O., and Krawiec, K. (2022). Quadratic and
higher-order unconstrained binary optimization of railway rescheduling for quantum
computing. Quantum Inf. Process. 21:337. doi: 10.1007/s11128-022-03670-y

D-Wave Quantum Inc. (2024). Non-Quadratic (Higher-Degree) Polynomials.
Available online at: https://docs.dwavequantum.com/en/latest/quantum_research/
reformulating html#non- quadratic- higher- degree- polynomials (Accessed February
01, 2024).

frontiersin.org

https://doi.org/10.3389/fcomp.2025.1649354
https://doi.org/10.48550/arXiv.quant-ph/0405098v2
https://doi.org/10.1103/RevModPhys.90.015002
https://doi.org/10.1016/0304-4149(89)90040-9
https://doi.org/10.3389/fphy.2019.00048
https://doi.org/10.1038/s41586-019-1666-5
https://doi.org/10.1145/3410566.3410593
https://doi.org/10.1016/S0166-218X(01)00341-9
https://doi.org/10.1103/PhysRevResearch.7.L022010
https://doi.org/10.14778/3598581.3598603
https://doi.org/10.1109/ICSA-C54293.2022.00035
https://doi.org/10.1007/3-540-58907-4_6
https://doi.org/10.1103/PhysRevX.6.031015
https://doi.org/10.1007/s11128-022-03670-y
https://docs.dwavequantum.com/en/latest/quantum_research/reformulating.html#non-quadratic-higher-degree-polynomials
https://docs.dwavequantum.com/en/latest/quantum_research/reformulating.html#non-quadratic-higher-degree-polynomials
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Uotila

D-Wave Quantum Inc. (2025). What is Quantum Annealing? Available online at:
https://docs.dwavequantum.com/en/latest/quantum_research/quantum_annealing_
intro.html (Accessed June 16, 2025).

D-Wave Systems Inc. (2024). Dimod.Generators. Combinations. Available online at:
https://docs.ocean.dwavesys.com/en/stable/docs_dimod/reference/generated/dimod.
generators.combinations.html (Accessed: October 12, 2024).

Farhi, E., Goldstone, J., Gutmann, S. and Sipser, M. (2000). Quantum
computation by adiabatic evolution. arXiv [preprint]. arXiv:quant-ph/0001106.
doi: 10.48550/arXiv.quant-ph/0001106

Franz, M., Winker, T., Groppe, S., and Mauerer, W. (2024). Hype or heuristic?
quantum reinforcement learning for join order optimisation. arXiv [preprint].
arXiv:2405.07770. doi: 10.48550/arXiv.2405.07770

Fritsch, K., and Scherzinger, S. (2023). Solving hard variants of database
schema matching on quantum computers. Proc. VLDB Endowment 16, 3990-3993.
doi: 10.14778/3611540.3611603

Gilbert, V., Rodriguez, J., Louise, S., and Sirdey, R. (2023). “Solving higher order
binary optimization problems on nisq devices: experiments and limitations,” in Lecture
Notes in Computer Science, volume LNCS-10477 of Computational Science — ICCS 2023,
page 224-232, Prague, Czech Republic, eds. J. Mikyska, C. D. Mulatier, M. Paszynski,
V. V. Krzhizhanovskaya, J. J. Dongarra, and P. M. A. Sloot (Cham: Springer Nature
Switzerland). doi: 10.1007/978-3-031-36030-5_18

Gill, S. S., Kumar, A, Singh, H., Singh, M., Kaur, K., Usman, M., et al. (2022).
Quantum computing: A taxonomy, systematic review and future directions. Softw.
Pract. Exp. 52, 66-114. doi: 10.1002/spe.3039

Grimm, R., Weidemiiller, M., and Ovchinnikov, Y. B. (2000). “Optical dipole
traps for neutral atoms,” in Advances In Atomic, Molecular, and Optical Physics,
Vol. 42 (New York, NY: Academic Press), 95-170. doi: 10.1016/S1049-250X(08)6
0186-X

Grover, L. K. (1996). “A fast quantum mechanical algorithm for database
search,” in Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory
of Computing, STOC ’96 (New York, NY: Association for Computing Machinery),
212-219. doi: 10.1145/237814.237866

Gruenwald, L., Winker, T., Calikyilmaz, U., Groppe, J., and Groppe, S. (2023).
“Index tuning with machine learning on quantum computers for large-scale database
applications,” in Joint Workshops at 49th International Conference on Very Large
Data Bases (VLDBW’23) — International Workshop on Quantum Data Science and
Management (QDSM’23) (Vancouver, BC).

Harrow, A., and Montanaro, A. (2017). Quantum computational supremacy. Nature
549, 203-209. doi: 10.1038/nature23458

Ibaraki, T., and Kameda, T. (1984). On the optimal nesting order for computing
n-relational joins. ACM Trans. Database Syst. 9, 482-502. doi: 10.1145/1270.1498

Kadowaki, T., and Nishimori, H. (1998). Quantum annealing in the transverse ising
model. Phys. Rev. E 58, 5355-5363. doi: 10.1103/PhysRevE.58.5355

Kim, Y., Eddins, A., Anand, S., Wei, K. X,, van den Berg, E., Rosenblatt, S., et al.
(2023). Evidence for the utility of quantum computing before fault tolerance. Nature
618, 500-505. doi: 10.1038/541586-023-06096-3

King, A. D., Nocera, A., Rams, M. M., Dziarmaga, J., Wiersema, R., Bernoudy,
W., et al. (2024). Computational supremacy in quantum simulation. arXiv [preprint].
arXiv:2403.00910 [cond-mat, physics:quant-ph]. doi: 10.48550/arXiv.2403.00910

Kirkpatrick, S., Gelatt, C. D., and Vecchi, M. P. (1983). Optimization by simulated
annealing. Science 220, 671-680. doi: 10.1126/science.220.4598.671

Kittelmann, F., Sulimov, P., and Stockinger, K. (2024). “Qardest: using quantum
machine learning for cardinality estimation of join queries, in Workshop on
Quantum Computing and Quantum-Inspired Technology for Data-Intensive Systems
and Applications, Q-Data 2024, Santiago, Chile, June 9-15, 2024 (New York,
NY: ACM), 1. Sabek, 1. Trummer, and S. Prestel doi: 10.1145/3665225.36
65444

Knill, E., Laflamme, R., and Milburn, G. J. (2001). A scheme for efficient quantum
computation with linear optics. Nature 409, 46-52. doi: 10.1038/35051009

Leis, V., Gubichev, A., Mirchev, A., Boncz, P., Kemper, A., Neumann, T, et al.
(2015). How good are query optimizers, really? Proc. VLDB Endow. 9, 204-215.
doi: 10.14778/2850583.2850594

Liu, H., Kumar, A, Spedalieri, F., and Sabek, I. (2025). “Hybrid quantum-
classical optimization for bushy join trees,” in Proceedings of the 2nd Workshop on
Quantum Computing and Quantum-Inspired Technology for Data-Intensive Systems
and Applications, Q-Data °25 (New York, NY: Association for Computing Machinery),
20-24. doi: 10.1145/3736393.3736695

Lucas, A. (2014). Ising formulations of many np problems. Front. Phys. 2:5.
doi: 10.3389/fphy.2014.00005

Madsen, L. S., Laudenbach, F., Askarani, M. F., Rortais, F., Vincent, T., Bulmer, J.
F. F, et al. (2022). Quantum computational advantage with a programmable photonic
processor. Nature 606, 75-81. doi: 10.1038/s41586-022-04725-x

Mc Keever, C., and Lubasch, M. (2024).
computing using compressed quantum circuits.
doi: 10.1103/PRXQuantum.5.020362

Towards adiabatic quantum
PRX Quantum 5:020362.

Frontiersin Computer Science

23

10.3389/fcomp.2025.1649354

Moerkotte, G., and Neumann, T. (2006). “Analysis of two existing and one new
dynamic programming algorithm for the generation of optimal bushy join trees
without cross products,” in Proceedings of the 32nd International Conference on Very
Large Data Bases, VLDB 06 (Seoul: VLDB Endowment), 930-941.

Moerkotte, G., and Neumann, T. (2008). “Dynamic programming strikes back,” in
Proceedings of the 2008 ACM SIGMOD International Conference on Management of
Data (Vancouver, BC: ACM), 539-552. doi: 10.1145/1376616.1376672

Munoz, G. (2017). Integer Programming Techniques for Polynomial Optimization.
New York, NY: Columbia University.

Nayak, N., Prisacaru, A., Calikyllmaz, U., Groppe, J., and Groppe, S. (2025).
“Quantum-enhanced transaction scheduling with reduced complexity via solving
qubo iteratively using a locking mechanism,” in Proceedings of the 2nd Workshop on
Quantum Computing and Quantum-Inspired Technology for Data-Intensive Systems
and Applications, Q-Data "25 (New York, NY: Association for Computing Machinery),

26-35. doi: 10.1145/3736393.3736701

Nayak, N., Winker, T., Calikyilmaz, U., Groppe, S., and Groppe, J. (2024). Quantum
join ordering by splitting the search space of qubo problems. Datenbank-Spektrum 24,
21-32. doi: 10.1007/s13222-024-00468-3

Neumann, P., Mizuochi, N., Rempp, F., Hemmer, P., Watanabe, H., Yamasaki, S.,
et al. (2008). Multipartite entanglement among single spins in diamond. Science 320,
1326-1329. doi: 10.1126/science.1157233

Neumann, T., and Gubichev, A. (2014). Query Optimization. Technische Universitit
Miinchen; Chair for Database Systems. Available online at: https://db.in.tum.de/
teaching/ws1415/queryopt/?lang=en (Accessed September 23, 2025).

Neumann, T., and Radke, B. (2018). “Adaptive optimization of very large join
queries,” in Proceedings of the 2018 International Conference on Management of Data,
SIGMOD 18 (New York, NY: Association for Computing Machinery), 677-692.
doi: 10.1145/3183713.3183733

Nielsen, M. A., and Chuang, I. L. (2010). Quantum Computation and Quantum
Information: 10th Anniversary Edition. Cambridge: Cambridge University Press.

Ono, K., and Lohman, G. M. (1990). “Measuring the complexity of join
enumeration in query optimization,” in Proceedings of the 16th International Conference
on Very Large Data Bases, VLDB *90 (San Francisco, CA: Morgan Kaufmann Publishers
Inc), 314-325.

Paul, W. (1990). Electromagnetic traps for charged and neutral particles. Rev. Mod.
Phys. 62:531. doi: 10.1103/RevModPhys.62.531

Pelofske, E., Birtschi, A., Cincio, L., Golden, J., and Eidenbenz, S. (2024a). Scaling
whole-chip qaoa for higher-order ising spin glass models on heavy-hex graphs. NPJ
Quantum Inf. 10, 1-18. doi: 10.1038/s41534-024-00906-w

Pelofske, E., Birtschi, A., and Eidenbenz, S. (2023). “Quantum annealing vs. qaoa:
127 qubit higher-order ising problems on NISQ computers,” in High Performance
Computing: 38th International Conference, ISC High Performance 2023, Hamburg,
Germany, May 21-25, 2023, Proceedings (Berlin, Heidelberg: Springer-Verlag),
240-258. doi: 10.1007/978-3-031-32041-5_13

Pelofske, E., Birtschi, A., and Eidenbenz, S. (2024b). Short-depth qaoa circuits
and quantum annealing on higher-order ising models. npj Quantum Inf. 10, 1-19.
doi: 10.1038/s41534-024-00825-w

Romero, S. V., Visuri, A.-M., Cadavid, A. G., Simen, A., Solano, E., Hegade, N. N,
et al. (2025). Bias-field digitized counterdiabatic quantum algorithm for higher-order
binary optimization. Commun. Phys. 8:348. doi: 10.1038/s42005-025-02270-3

Sachdeva, N., Hartnett, G. S., Maity, S., Marsh, S., Wang, Y., Winick, A, et al.
(2024). Quantum optimization using a 127-qubit gate-model ibm quantum computer
can outperform quantum annealers for nontrivial binary optimization problems. arXiv
[preprint]. arXiv:2406.01743. doi: 10.48550/arXiv.2406.01743

Saxena, P., Sabek, I., and Spedalieri, F. M. (2024). “Constrained quadratic model for
optimizing join orders,” in Workshop on Quantum Computing and Quantum-Inspired
Technology for Data-Intensive Systems and Applications, Q-Data 2024, Santiago, Chile,
June 9-15, 2024, eds. 1. Sabek, I. Trummer, and S. Prestel (New York, NT: ACM).
doi: 10.1145/3665225.3665447

Schoénberger, M. (2022). “Applicability of quantum computing on database query
optimization,” in Proceedings of the 2022 International Conference on Management of
Data (Philadelphia, PA: ACM), 2512-2514. doi: 10.1145/3514221.3520257

Schoénberger, M., Scherzinger, S., and Mauerer, W. (2023a). “Ready to leap (by co-
design)? join order optimisation on quantum hardware,” in Proceedings of the ACM
on Management of Data (New York, NY: Association for Computing Machinery).
doi: 10.1145/3588946

Schonberger, M., Trummer, I, and Mauerer, W. (2023b). Quantum-
inspired digital annealing for join ordering. Proc. VLDB Endow. 17, 511-524.
doi: 10.14778/3632093.3632112

Schoénberger, M., Trummer, I, and Mauerer, W. (2023¢). “Quantum optimisation
of general join trees,” in Joint Workshops at 49th International Conference on Very
Large Data Bases (VLDBW’23) — International Workshop on Quantum Data Science
and Management (QDSM’23) (Vancouver, BC).

Schuetz, M. J., Brubaker, J. K., and Katzgraber, H. G. (2022). Combinatorial
optimization with physics-inspired graph neural networks. Nat. Mach. Intell. 4,
367-377. doi: 10.1038/542256-022-00468-6

frontiersin.org

https://doi.org/10.3389/fcomp.2025.1649354
https://docs.dwavequantum.com/en/latest/quantum_research/quantum_annealing_intro.html
https://docs.dwavequantum.com/en/latest/quantum_research/quantum_annealing_intro.html
https://docs.ocean.dwavesys.com/en/stable/docs_dimod/reference/generated/dimod.generators.combinations.html
https://docs.ocean.dwavesys.com/en/stable/docs_dimod/reference/generated/dimod.generators.combinations.html
https://doi.org/10.48550/arXiv.quant-ph/0001106
https://doi.org/10.48550/arXiv.2405.07770
https://doi.org/10.14778/3611540.3611603
https://doi.org/10.1007/978-3-031-36030-5_18
https://doi.org/10.1002/spe.3039
https://doi.org/10.1016/S1049-250X(08)60186-X
https://doi.org/10.1145/237814.237866
https://doi.org/10.1038/nature23458
https://doi.org/10.1145/1270.1498
https://doi.org/10.1103/PhysRevE.58.5355
https://doi.org/10.1038/s41586-023-06096-3
https://doi.org/10.48550/arXiv.2403.00910
https://doi.org/10.1126/science.220.4598.671
https://doi.org/10.1145/3665225.3665444
https://doi.org/10.1038/35051009
https://doi.org/10.14778/2850583.2850594
https://doi.org/10.1145/3736393.3736695
https://doi.org/10.3389/fphy.2014.00005
https://doi.org/10.1038/s41586-022-04725-x
https://doi.org/10.1103/PRXQuantum.5.020362
https://doi.org/10.1145/1376616.1376672
https://doi.org/10.1145/3736393.3736701
https://doi.org/10.1007/s13222-024-00468-3
https://doi.org/10.1126/science.1157233
https://db.in.tum.de/teaching/ws1415/queryopt/?lang=en
https://db.in.tum.de/teaching/ws1415/queryopt/?lang=en
https://doi.org/10.1145/3183713.3183733
https://doi.org/10.1103/RevModPhys.62.531
https://doi.org/10.1038/s41534-024-00906-w
https://doi.org/10.1007/978-3-031-32041-5_13
https://doi.org/10.1038/s41534-024-00825-w
https://doi.org/10.1038/s42005-025-02270-3
https://doi.org/10.48550/arXiv.2406.01743
https://doi.org/10.1145/3665225.3665447
https://doi.org/10.1145/3514221.3520257
https://doi.org/10.1145/3588946
https://doi.org/10.14778/3632093.3632112
https://doi.org/10.1038/s42256-022-00468-6
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Uotila

Selinger, P. G., Astrahan, M. M., Chamberlin, D. D., Lorie, R. A., and Price, T.
G. (1979). “Access path selection in a relational database management system,” in
Proceedings of the 1979 ACM SIGMOD International Conference on Management of
Data, SIGMOD °79 (New York, NY: Association for Computing Machinery), 23-34.
doi: 10.1145/582095.582099

Shor, P. (1994). “Algorithms for quantum computation: discrete logarithms and
factoring,” in Proceedings 35th Annual Symposium on Foundations of Computer Science
(Santa Fe, NM: IEEE), 124-134. doi: 10.1109/SFCS.1994.365700

Steinbrunn, M., Moerkotte, G., and Kemper, A. (1997). Heuristic and
randomized optimization for the join ordering problem. VLDB J. 6, 191-208.
doi: 10.1007/s007780050040

Székely, L. A., and Wang, H. (2005). On subtrees of trees. Adv. Appl. Math. 34,
138-155. doi: 10.1016/j.aam.2004.07.002

Trummer, L. (2025). “Leveraging quantum computing for optimal data allocation
in distributed systems,” in Proceedings of the 2nd Workshop on Quantum Computing
and Quantum-Inspired Technology for Data-Intensive Systems and Applications,
Q-Data °25 (New York, NY: Association for Computing Machinery), 10-17.
doi: 10.1145/3736393.3736692

Trummer, I, and Koch, C. (2016). Multiple query optimization on the
d-wave 2x adiabatic quantum computer. Proc. VLDB Endow. 9, 648-659.
doi: 10.14778/2947618.2947621

Trummer, I, and Koch, C. (2017). “Solving the join ordering problem via mixed
integer linear programming,” in Proceedings of the 2017 ACM International Conference
on Management of Data, SIGMOD ’17 (New York, NY: Association for Computing
Machinery), 1025-1040. doi: 10.1145/3035918.3064039

Trummer, I, and Venturelli, D. (2024). “Leveraging quantum computing for
database index selection,” in Workshop on Quantum Computing and Quantum-Inspired
Technology for Data-Intensive Systems and Applications, Q-Data 2024, Santiago, Chile,
June 9-15, 2024, eds. 1. Sabek, I. Trummer, and S. Prestel (New York, NY: ACM).
doi: 10.1145/3665225.3665445

Uotila, V. (2022). “Synergy between quantum computers and databases,” in of the
VLDB 2022 PhD Workshop co-located with the 48th International Conference on Very
Large Databases (VLDB 2022), 3186 (Sydney), 4.

Uotila, V. (2024a). “Quantum natural language processing application for
estimating SQL query metrics,” in 2024 IEEE International Conference on Quantum
Computing and Engineering (QCE), Vol. 2 (Montreal, QC: IEEE), 392-393.
doi: 10.1109/QCE60285.2024.10321

Uotila, V. (2024b). “Tensor decompositions and adiabatic quantum computing for
discovering practical matrix multiplication algorithms,” in 2024 IEEE International
Conference on Quantum Computing and Engineering (QCE), Vol. 01 (Montreal, QC:
IEEE), 390-401. doi: 10.1109/QCE60285.2024.00053

Uotila, V. (2025a). Q-join Github Repository. Available online at: https://github.
com/valterUo/Q-Join (Accessed June 16, 2025).

Frontiersin Computer Science

24

10.3389/fcomp.2025.1649354

Uotila, V. (2025b). “Sql2circuits: estimating cardinalities, execution times, and costs
for sql queries with quantum natural language processing,” in IEEE International
Conference on Quantum Computing and Engineering (QCE) (Albuquerque).

Uotila, V., Julia, R., and Zhao, B. (2025). “Higher-order portfolio optimization with
quantum approximate optimization algorithm,” in 2025 IEEE International Conference
on Quantum Computing and Engineering (QCE) (Albuquerque: IEEE).

Uotila, V., and Lu, J. (2023). “Quantum annealing method for dynamic virtual
machine and task allocation in cloud infrastructures from sustainability perspective,”
in 2023 IEEE 39th International Conference on Data Engineering Workshops
(ICDEW) (Anaheim, CA: IEEE), 105-110. doi: 10.1109/ICDEW58674.2023.
00023

Verchere, Z., Elloumi, S., and Simonetto, A. (2023). “Optimizing variational circuits
for higher-order binary optimization,” in 2023 IEEE International Conference on
Quantum Computing and Engineering (QCE) (Los Alamitos, CA: IEEE Computer
Society), 19-25. doi: 10.1109/QCE57702.2023.00011

Vogrin, M., Vogrin, R, Groppe, S., and Groppe, J. (2024). “Supervised learning
on relational databases with quantum graph neural networks,” in QDSM@VLDB
(Guangzhou)

Wang, B.-Y., Cui, X, Zeng, Q., Zhan, Y., Yung, M.-H.,, Shi, Y., et al. (2025). Speedup
of high-order unconstrained binary optimization using quantum z 2 lattice gauge
theory. Commun. Phys. 8:150. doi: 10.1038/542005-025-02072-7

Wendin, G. (2017). Quantum information processing with superconducting
circuits: a review. Rep. Prog. Phys. 80:106001. doi: 10.1088/1361-6633/aa7ela

Willsch, D., Willsch, M., Gonzalez Calaza, C. D., Jin, F., De Raedt, H., Svensson,
M., et al. (2022). Benchmarking advantage and d-wave 2000q quantum annealers
with exact cover problems. Quantum Inf Process. 21:141. doi: 10.1007/s11128-022-0
3476-y

Winker, T., Calikyilmaz, U., Gruenwald, L., and Groppe, S. (2023a). “Quantum
machine learning for join order optimization using variational quantum circuits
in Proceedings of the International Workshop on Big Data in Emergent Distributed
Environments, BIDEDE "23 (New York, NY: Association for Computing Machinery),
1-7. doi: 10.1145/3579142.3594299

Winker, T., Groppe, S., Uotila, V., Yan, Z., Lu, J., Franz, M., et al. (2023b).
“Quantum machine learning: foundation, new techniques, and opportunities for
database research,” in Companion of the 2023 International Conference on Management
of Data, SIGMOD 23 (New York, NY: Association for Computing Machinery), 45-52.
doi: 10.1145/3555041.3589404

Zhong, H.-S., Wang, H., Deng, Y.-H., Chen, M.-C,, Peng, L.-C., Luo, Y.-H., et al.
(2020). Quantum computational advantage using photons. Science 370, 1460-1463.
doi: 10.1126/science.abe8770

Zhu, Q., Cao, S., Chen, F.,, Chen, M.-C,, Chen, X,, Chung, T.-H,, et al. (2021).
Quantum computational advantage via 60-qubit 24-cycle random circuit sampling.
arXiv [preprint]. arXiv:2109.03494. doi: 10.48550/arXiv:2109.03494

frontiersin.org

https://doi.org/10.3389/fcomp.2025.1649354
https://doi.org/10.1145/582095.582099
https://doi.org/10.1109/SFCS.1994.365700
https://doi.org/10.1007/s007780050040
https://doi.org/10.1016/j.aam.2004.07.002
https://doi.org/10.1145/3736393.3736692
https://doi.org/10.14778/2947618.2947621
https://doi.org/10.1145/3035918.3064039
https://doi.org/10.1145/3665225.3665445
https://doi.org/10.1109/QCE60285.2024.10321
https://doi.org/10.1109/QCE60285.2024.00053
https://github.com/valterUo/Q-Join
https://github.com/valterUo/Q-Join
https://doi.org/10.1109/ICDEW58674.2023.00023
https://doi.org/10.1109/QCE57702.2023.00011
https://doi.org/10.1038/s42005-025-02072-7
https://doi.org/10.1088/1361-6633/aa7e1a
https://doi.org/10.1007/s11128-022-03476-y
https://doi.org/10.1145/3579142.3594299
https://doi.org/10.1145/3555041.3589404
https://doi.org/10.1126/science.abe8770
https://doi.org/10.48550/arXiv:2109.03494
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

	Left-deep join order selection with higher-order unconstrained binary optimization on quantum computers
	1 Introduction
	2 Problem definition and background
	2.1 Join order selection problem
	2.2 Dynamic programming and greedy algorithms for join order selection
	2.3 Unconstrained binary optimization
	2.4 Optimization on quantum hardware

	3 Join order cost as HUBO
	3.1 Precise cost function as HUBO
	3.2 Encoding heuristic cost function as HUBO

	4 Join order validity as HUBO
	4.1 Cost function-dependent validity
	4.1.1 Select one valid plan
	4.1.2 Every rank must appear exactly once in the solution

	4.2 Cost function-independent validity
	4.2.1 Clique graphs
	4.2.2 Chain, star, cycle, and tree graphs

	5 Theoretical analysis
	5.1 Complexity analysis
	5.1.1 Complexity of HUBO construction
	5.1.2 Variable scalability

	6 Experimental evaluation
	6.1 Evaluating Precise 1 formulation
	6.2 Evaluating Precise 2 formulation
	6.3 Evaluating heuristic formulation
	6.4 Comparison with quantum-inspired digital annealing

	7 Discussion
	8 Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Generative AI statement
	Publisher's note
	References

