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The Internet of Things (IoT) has experienced rapid growth and adoption in recent
years, enabling applications across diverse industries, including agriculture,
logistics, smart cities, and healthcare. Long Range Wide Area Network
(LoRaWAN) has emerged as a leading choice among IoT communication
technologies due to its long-range, low-power, and cost-effective capabilities.
However, the rapid proliferation of IoT devices has intensified the challenge of
efficient resource management, particularly in spreading factor (SF) allocation
for LoRaWAN networks. In this paper, we propose a Machine Learning-based
Adaptive Data Rate (ML-ADR) approach for SF management to address this issue.
A Long Short-Term Memory (LSTM) network was trained on a dataset generated
using ns-3 for optimal SF classification. The pre-trained LSTM model was then
utilized on the end-device side for efficient SF allocation with newly generated
data during simulation. The results demonstrate improved packet delivery ratios
and reduced energy consumption.
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1 Introduction

The Internet of Things (IoT) has emerged as a transformative paradigm, enabling
seamless integration of physical and digital worlds through interconnected devices. IoT
applications span diverse domains, including smart cities, precision agriculture, industrial
automation, and healthcare, revolutionizing data-driven decision-making (Augustin et al.,
2016). A critical enabler of IoT is Low-Power Wide Area Network (LPWAN) technology,
which provides long-range communication with minimal energy consumption. Among
LPWAN solutions, SigFox, Narrowband IoT (NB-IoT), Weightless, and Long-Term
Evolution for Machines (LTE-M) (Mekki et al., 2019; Gomez et al., 2019; Farhad et al.,
2020a; Singh et al., 2020), Long Range Wide Area Network (LoRaWAN) has gained
prominence due to its open standard, scalability, and adaptability to heterogeneous IoT
deployments (Mekki et al., 2019).

Table 1 highlights the distinguishing characteristics of these IoT solutions. SigFox is
recognized for its straightforward and economical deployment, whereas NB-IoT capitalizes
on established cellular networks to deliver improved data throughput. The Weightless
standard stands out for its adaptability and scalability, while LTE-M excels in mobility
support and extended coverage. Notably, LoRaWAN (LoRa, 2020) has emerged as a
dominant low-power wide-area network (LPWAN) technology, attracting considerable
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interest due to its long-range capabilities combined with energy
efficiency. Consequently, it has seen widespread adoption across
both academic and industrial IoT implementations.

1.1 LoRa and LoRaWAN: an overview

Long Range (LoRa) is the physical layer (PHY) technology
that underpins LoRaWAN, utilizing Chirp Spread Spectrum (CSS)
modulation to achieve robust, long-range communication. CSS
modulates data into chirp signals that sweep across a wide
frequency band, offering inherent resistance to noise, multipath
fading, and Doppler effects (Pasolini, 2021). This modulation
technique enables LoRa to achieve a link budget exceeding 150 dB,
supporting communication ranges of up to 15 km in rural areas and
2–5 km in urban environments (Farhad et al., 2020a) (Figure 1).

LoRaWAN, the Medium Access Control (MAC) layer protocol,
manages network operations, including device authentication,
adaptive data rate (ADR), and bidirectional communication. It
operates in the unlicensed Industrial, Scientific, and Medical (ISM)
bands (e.g., 868 MHz in Europe, 915 MHz in North America)
and supports data rates from 0.3 kbps to 50 kbps, dynamically
adjustable based on channel conditions (LoRa, 2020). Compared
to alternatives like Sigfox and NB-IoT, LoRaWAN offers superior
flexibility in private network deployments and Quality of Service
(QoS) customization (Mekki et al., 2019).

1.2 LoRaWAN architecture and
components

LoRaWAN employs a star-of-stars topology (Figure 2),
comprising three primary components:

1. End Devices (EDs): battery-powered sensors or actuators that
collect and transmit data using LoRa modulation. EDs are
optimized for energy efficiency, with lifetimes ranging from 2
to 10 years (Singh et al., 2020).

2. Gateways (GWs): relay nodes that receive ED transmissions and
forward them to the network server. Gateways support multi-
channel, multi-SF reception, leveraging the “capture effect” to
decode overlapping signals (Magrin et al., 2021).

3. Network Server (NS): the central component of LoRaWAN,
responsible for deduplication, security, ADR optimization, and
routing data to application servers (Farhad et al., 2022a).

1.3 Chirp spread spectrum and spreading
factors

Chirp Spread Spectrum (CSS) modulation encodes data into
chirp signals whose frequency increases or decreases linearly over
time. This approach provides a processing gain, enhancing the
signal-to-noise ratio (SNR) by expanding the signal bandwidth.
This technique also enables orthogonality, allowing simultaneous
transmissions on the same frequency by assigning different
spreading factors (SFs) to end devices. The available SFs, ranging
from 7 to 12, create an explicit trade-off between data rate,

robustness, and range (ETSI, 2018). For example, a lower factor
such as SF7 supports a higher data rate of 5.5 kbps, while a higher
factor like SF12 reduces the throughput to 250 bps but can increase
the communication range by 20% (Bor et al., 2016).

1.4 Device classes and class a operation

LoRaWAN classifies end devices into three distinct categories
(Class A, Class B, and Class C) based on their communication
patterns and power requirements (Farhad et al., 2020b). This
classification system allows device manufacturers and application
developers to select the most appropriate operational mode based
on specific use case requirements. Class A devices, which represent
the baseline implementation, employ an asynchronous, battery-
optimized communication scheme where downlink messages are
only permitted during two brief receive windows following each
uplink transmission. This ALOHA-based approach minimizes
energy consumption, making Class A ideal for applications like
environmental sensors that transmit data infrequently and can
tolerate some communication latency. Class B devices extend
this functionality by introducing scheduled receive windows
through periodic beacon messages from the gateway. These
beacons synchronize the network and enable predictable downlink
communication slots, which are particularly useful for applications
such as firmware updates or configuration changes that require
guaranteed delivery windows without maintaining constant
connectivity. However, this additional functionality comes at
the cost of moderately higher power consumption compared
to Class A. Class C devices represent the most capable but
power-intensive option, maintaining nearly continuous reception
availability except during transmission periods. This class is
typically employed for powered devices or applications requiring
real-time bidirectional communication, such as street lighting
control or industrial automation systems where immediate
command execution is critical. The hierarchical class structure of
LoRaWAN provides developers with flexibility to balance energy
efficiency with communication responsiveness based on their
specific application requirements.

1.5 Class A receive windows

When a Class A device transmits an uplink, it subsequently
opens two receive windows, as shown in Figure 2. The first, RX1,
opens after a fixed delay (e.g., 1 s in the EU868 region) and utilizes
the same frequency and spreading factor (SF) as the preceding
uplink transmission. Following this, a second configurable window,
RX2, opens (e.g., 2 s later). RX2 operates on a default frequency
and SF (e.g., SF12), serving as a fallback for the network server to
respond if it misses the opportunity during RX1.

1.6 Adaptive data rate and blind adaptive
data rate

LoRaWAN includes a built-in Adaptive Data Rate (ADR)
mechanism that aims to improve communication efficiency by
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TABLE 1 Comparative analysis of prominent IoT communication technologies (Farhad et al., 2022a; Farhad and Pyun, 2023b,c).

Technology
aspect

LoRaWAN Sigfox NB-IoT Weightless LTE-M

Frequency band Unlicensed ISM bands (e.g., 868 MHz
EU, 915 MHz US)

Unlicensed ISM bands
(e.g., 868 MHz EU, 902
MHz US)

Licensed LTE bands
(in-band, guard-band,
standalone)

Sub-1 GHz ISM
bands

Licensed LTE
bands

Channel bandwidth 125 kHz, 250 kHz, 500 kHz 100 Hz (uplink), 600
Hz (downlink)

180 kHz 12.5 kHz 1.4 MHz

Modulation scheme CSS (Chirp Spread Spectrum) DBPSK (uplink),
GFSK (downlink)

QPSK GMSK, QPSK QPSK, 16 QAM

Max. application payload 51 to 242 bytes (region-dependent) 12 bytes (uplink), 8
bytes (downlink)

∼1,600 bytes Variable,
app-defined

∼1,500 bytes

Data throughput 0.3 kbps to 50 kbps 100 bps (uplink), 600
bps (downlink)

∼250 kbps (downlink),
∼20 kbps (uplink)

Up to 100 kbps Up to 1 Mbps

Typical range [km] Urban ≈ 2–5, Rural > 15 Urban ≈ 3–10, Rural
≈ 30–50

Urban ≈ 1–2, Rural ≤
10

Urban ≈ 2 Enhanced
coverage up to 10
km

Adaptive rate control Yes No Yes Yes Yes

Power profile Extremely low Extremely low Low Low Moderate

Mobility Supported (handovers can be
challenging)

Not supported Supported in
connected mode

Supported Full, seamless
handovers

Positioning method Uplink TDoA and RSSI (Farahsari et al.,
2022; Torres-Sospedra et al., 2022)

Network-based
trilateration

OTDOA, E-CID Supported OTDOA, E-CID

Private deployment Yes, fully supported No, public network
only

Yes, via network
slicing

Yes Yes, via network
slicing

Two-Way
communication

Fully bidirectional Limited
(uplink-focused)

Fully bidirectional Fully bidirectional Fully bidirectional

Network model Public or private Public (operator-led) Public (operator-led) Open standard Public
(operator-led)

Available simulators
[public]

Yes (Sartori, 2023; Zorbas et al., 2021;
Beltramelli et al., 2021; Loh et al., 2021;
Casals et al., 2021; Zorbas et al., 2020;
Abdelfadeel et al., 2019; Callebaut et al.,
2019; Ta et al., 2019; Reynders et al.,
2018; To and Duda, 2018; Slabicki et al.,
2018; Bounceur et al., 2018; Croce et al.,
2018; Magrin et al., 2017; Van den
Abeele et al., 2017; Pop et al., 2017; Bor
et al., 2016)

Yes (Weyn and
Contributors, 2023;
DEIS-Tools Project
Team, 2023; SAPGAN
Team, 2023)

Yes (Gdbranco, 2023;
a3794110, 2023)

Not publicly
available

Yes

FIGURE 1

LoRaWAN architecture comprising end devices, gateways, network servers, and application servers.

dynamically adjusting the SF and transmission power (TP) of end
devices (EDs) (Marini et al., 2021; Anwar et al., 2021; Moysiadis
et al., 2021; Park et al., 2020; Benkahla et al., 2019; Semtech, 2019a,b;

ETSI, 2018; Farhad et al., 2021). This adjustment is typically
handled by the network server (NS), which evaluates the signal-
to-noise ratio (SNR) over the most recent 20 uplink transmissions.
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FIGURE 2

Class A receive windows operations.

Based on this assessment, the NS may increment or decrement
the TP in steps of 2 dBm and modify the SF to optimize energy
consumption and spectral usage (Semtech, 2019b).

While ADR works effectively for static or quasi-static devices, it
exhibits slow responsiveness and increased packet loss in mobile or
rapidly changing environments. The reliance of ADR on historical
SNR data leads to sluggish adaptation to changing radio conditions,
making it suboptimal for mobile devices (Anwar et al., 2021).
Furthermore, adjusted SF/TP settings may become outdated in real
time, especially during mobility, resulting in failed transmissions
and unnecessary retransmissions (Farhad and Pyun, 2023a).

To address these limitations, a more agile strategy termed
Blind Adaptive Data Rate (BADR) has been proposed by
Semtech (Farhad et al., 2021), as illustrated in Figure 3. BADR
operates at the ED side, where SF12 is assigned once, SF7
thrice, and SF10 twice in a 60-min duration, blindly. Unlike
conventional ADR, BADR allows end devices to infer optimal
transmission parameters autonomously, without relying on
downlink feedback from the network server. This is particularly
valuable in uplink-heavy LoRaWAN applications where frequent
ACKs are infeasible due to duty cycle constraints and limited
gateway availability.

1.7 Problem statement

While ADR and BADR provide baseline methods for
configuring SF and TP, they either adapt too slowly (ADR) or
fail to adapt at all (BADR). Consequently, there remains a critical
need for a resource allocation mechanism that can react swiftly
and intelligently to changing wireless conditions. To this end, we
propose a Machine Learning-based ADR (ML-ADR) approach,
wherein a trained model predicts the optimal SF for each ED
based on real-time input features. By leveraging historical data
and contextual parameters, ML-ADR aims to minimize packet
loss, improve the packet success ratio (PSR), and reduce energy
consumption—thereby overcoming the limitations of both ADR
and BADR.

60 minutes

SF 12 7 10 7 10 7 12

DR 0 5 0 5 2 5 0

FIGURE 3

Blind adaptive data rate operation.

1.8 Contribution of the paper

The contribution of this paper is as follows:

1. We design a deep neural network model that can learn optimal
SF strategies based on underlying network conditions and
requirements to address the SF allocation issue.

2. The deep neural network model is trained on a one-time dataset
generated in the ns-3 simulator, considering the propagation
environment, device positions, distance between GW and ED,
and successful SF. After training, the pre-trained model is
utilized at the NS for optimal SF allocation to EDs during
network simulations.

3. During the simulation-based deployment scenario using ns-
3, the proposed ML-ADR allocates the best SF to EDs,
thereby enhancing the packet delivery ratio and reducing
energy consumption.

1.9 Structure of paper

Section 2 presents an in-depth review of existing AI-based
solutions for resource management in LoRaWAN. Section 3
elaborates on the dataset collection, discusses the required features,
and highlights the most suitable ML methods for resource
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allocation based on the features. Section 4 presents the operation
of the proposed ML-ADR. Section 5 presents a detailed discussion
of experiments and result analysis in offline mode. Section 6
presents the result analysis in ns-3, where the ML algorithm
is utilized with the simulation data. Finally, Section 8 provides
concluding remarks.

2 Literature review

Recent studies have explored various machine learning
approaches to optimize LoRaWAN resource allocation, particularly
focusing on spreading factor assignment, transmission power
control, and device classification. These efforts can be categorized
into three main paradigms: reinforcement learning for dynamic SF
adaptation, supervised learning, and hybrid approaches combining
their strengths.

2.1 Reinforcement learning approaches

Several reinforcement learning methods (RL) have
demonstrated effectiveness in resource allocation. The mixed
multi-armed bandit approach developed by Azizi et al. (2022)
achieved notable improvements in packet delivery ratio and
energy efficiency within simulated single-gateway networks.
Their Python-based implementation considered 100 end devices
under EU-868 MHz regulatory constraints, demonstrating the
feasibility of RL solutions for static node deployments. Building
upon this work, Chen et al. (2023) introduced a score table-based
reinforcement learning method that reduced energy consumption
by 24–27% compared to conventional ADR techniques. Their
Matlab-based simulations confirmed the lightweight nature of the
algorithm, making it suitable for practical implementations.

One study proposed a resource allocation mechanism using
two independent ML approaches: a centralized supervised ML
approach for transmission power allocation and a decentralized
RL approach using the EXP4 algorithm for SF allocation, treating
it as a contextual multi-arm bandit problem for maximizing
packet reception ratio (PRR) (Garlisi et al., 2021). This approach
aims to minimize energy consumption per packet (EPP) by
addressing energy minimization and PRR maximization separately.
The proposed method showed significant improvements in both
network goodput and energy consumption, especially in large and
congested networks, and the RL algorithm converged much faster
than previous methods by using expert advice. A potential issue was
that the algorithm requires feedback (e.g., ACK) from the gateway
for every uplink packet during the training phase to update its
reward and probabilities, which consumes channel resources and
energy, although downlink ACKs can be eliminated after training.

2.2 Supervised and deep learning
approaches

Supervised learning approaches have showed particular
promise for device classification tasks. A study implemented a
support vector machine classifier that accurately distinguished

between mobile and static end devices using limited training data.
While the study successfully demonstrated device classification,
it did not extend to adaptive data rate selection based on
mobility patterns. Deep learning methods achieved superior
performance in complex scenarios, with Farhad et al. (2022b)
reporting 96% classification accuracy using a gated recurrent unit
network. Their ns-3 simulations with 500 nodes validated the
model’s effectiveness, achieving a 98% packet delivery ratio in
moderate-density networks.

A study in Hazarika and Choudhury (2024) investigated a smart
SF assignment technique utilizing deep learning architectures,
specifically Fully Connected Neural Networks (FCNN) and
Convolutional Neural Networks (CNN), for joint collision
detection and optimal SF selection in a static environment. The
proposed technique demonstrated higher prediction accuracy
compared to traditional machine learning algorithms and
improved network energy consumption. However, the CNN model
showed lower accuracy due to the lack of spatial correlation in the
converted data, and the prediction accuracy generally decreased
with an increasing number of nodes due to the entanglement of
differently labeled samples in the dataset.

The authors in Acosta-Garcia et al. (2024) proposed a proactive
ADR mechanism, for mobile LoRa-based IoT devices that utilizes
trajectory estimation and the k-nearest neighbors (KNN) algorithm
to forecast the signal-to-noise ratio (SNR) and proactively adapt
transmission parameters (SF and TP). This approach aims to
quickly adapt parameters without requiring long data acquisition
times, considering device dynamics and environmental factors
to predict signal quality variations as nodes move. The KDR
mechanism demonstrated significant improvements in reducing
SNR infringements and Bit Error Rate (BER), as well as lowering
energy consumption compared to traditional ADR and Blind
ADR, maintaining performance even with varying device speeds
and limited SNR information. A potential issue is that energy
consumption slightly increases with a larger number of available
buffered SNR samples, although this is seen as necessary to ensure
compliance with quality metrics.

2.3 Hybrid and emerging approaches

Hybrid approaches combining multiple techniques have
emerged as particularly effective. Minhaj et al. (2023) demonstrated
that integrating RL for SF allocation with ML for TP control
outperformed single-method solutions. The authors developed an
augmented sensing method that fused LoRaWAN signal metrics
with environmental sensor data, reducing estimation errors by 17%
compared to standalone approaches.

The surveyed literature reveals three critical gaps that directly
motivate our ML-ADR solution: (1) RL methods like Azizi
et al. (2022); Chen et al. (2023) achieve dynamic adaptation but
rely on slow reward feedback loops, resulting in latency issues;
(2) supervised approaches (Farhad et al., 2022b; Hazarika and
Choudhury, 2024) improve classification accuracy but lack real-
time adaptability, mirroring the static limitations of BADR; and (3)
hybrid techniques (Garlisi et al., 2021; Minhaj et al., 2023) partially
address mobility but introduce computational overhead unsuitable
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TABLE 2 Summary of existing approaches in LoRaWAN for SF
optimization.

Reference Method Resource
Management

Key
Improvement

Azizi et al.
(2022)

MIX-MAB RL SF allocation 22% PDR
increase

Chen et al.
(2023)

STEP RL SF allocation 26% energy
reduction

Minhaj et al.
(2023)

Hybrid ML/RL SF/TP control Combined
optimization

Bertocco et al.
(2023)

Augmented
sensing

Soil monitoring 1.53% RMSE

Vangelista
et al. (2023)

SVM Device
classification

94% accuracy

Farhad et al.
(2022b)

GRU network SF classification 98% PDR

Farhad and
Pyun (2023a)

DNN Mobile SF
allocation

82% accuracy

Elkarim et al.
(2022)

Deep Learning
(FCNN, CNN)

SF Allocation Energy
consumption

Minhaj et al.
(2023)

Supervised ML
+ RL (EXP4)

SF, TP Energy
consumption

Hazarika and
Choudhury
(2024)

K-means + RL SF Allocation Packet success
rate

Acosta-Garcia
et al. (2024)

KNN Proactive ADR Energy
consumption

for constrained EDs. Our work bridges these gaps by unifying
temporal modeling (LSTM), lightweight inference, adapting to
channel dynamics while maintaining energy efficiency. Table 2
summarizes these comparative insights.

3 Data generation and preprocessing
framework

The proposed data generation and preprocessing framework is
engineered to handle LoRaWAN transmission data through a novel
methodology based on 20-step sequence windows. Each sequence
encapsulates information derived from the selection of an optimal
SF determined from simultaneous multi-SF transmissions.

3.1 Transmission protocol

The core of the data acquisition process relies on a specific
transmission protocol executed by each ED. In this protocol, an
identical data packet is transmitted concurrently utilizing all six
available spreading factors, spanning SF7 through SF12. These
transmissions are conducted in the confirmed mode, mandating
the reception of an ACK signal from the GW for successful
communication verification. For every transmission attempt
originating from an ED, which comprises six parallel transmissions
(one per SF), the receiving GW meticulously records the reception
status (successful or failed) along with pertinent signal quality

metrics for each individual SF transmission. Correspondingly, the
originating ED logs the ACK reception status, represented as a
binary value (1 for received, 0 for not received), for each of the six
SFs employed in the simultaneous transmission event.

3.2 Optimal spreading factor
determination and feature extraction

Subsequent to each multi-SF transmission event, an optimal SF,
denoted as SF∗, is identified. This SF∗ is determined by selecting
the minimum SF value among those transmissions for which a
corresponding ACK was successfully received by the ED. This
selection process is formally expressed as:

SF∗ = min{SFj|ACKj = 1}12
j=7 (1)

In scenarios where no ACKs are received across the entire set
of transmitted SFs (SF7–SF12), a default assignment of SF12 is
made for SF∗. The identified optimal SF∗ is then paired with a
comprehensive feature vector, f, encapsulating the relevant signal
characteristics and contextual information associated with that
specific successful transmission (or the SF12 transmission if no
ACK was received). This feature vector is structured as follows:

f = [x, y, d, SNR, SNRreq, SNRmargin, dnorm, Prx] (2)

Here, x and y represent the Cartesian coordinates of the
ED, d is the calculated Euclidean distance to the GW derived
as d = √

x2 + y2, SNR denotes the measured Signal-to-Noise
Ratio, SNRreq signifies the minimum required SNR threshold
for successful demodulation at the given SF∗, SNRmargin is
the calculated SNR margin defined as SNRmargin = SNR −
SNRreq, dnorm represents the distance normalized by the maximum
communication range Rmax (i.e., dnorm = d/Rmax), and Prx is the
received signal power measured at the GW.

3.3 Temporal sequence construction

Input samples for subsequent analysis or machine learning
model training are systematically generated using a sliding window
technique over the time series of optimal SF∗ selections and their
corresponding feature vectors f. Each input sample, designated as
Xi, is constructed as a matrix comprising the feature vectors from
20 consecutive transmission events, specifically encompassing the
data from time step i − 19 through the current time step i. The
structure of this input matrix is represented by:

Xi =

⎡
⎢⎢⎢⎢⎣

fi−19
fi−18

...
fi

⎤
⎥⎥⎥⎥⎦

20×8

(3)

The associated target label for this input matrix Xi, denoted by
yi, is the optimal SF∗, specifically SF∗

i , corresponding to the final
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TABLE 3 Data structure before and after windowing.

Property Raw data Windowed

Data 72,000 71,981

Timesteps per sample 1 20

Features per timestep 8 8

Total features per sample 8 160

Label dimension 1 1

time step i within the window. Consequently, each input matrix Xi
has dimensions of 20 rows (temporal steps) and 8 columns (features
per step), resulting in a total of 160 feature values per input sample.

The simulations were conducted with 500 EDs over a 24-h
period, with ED transmitting six confirmed uplink messages per
hour, resulting in ∼ 72,000 raw transmission events. After applying
the 20-step sliding window, the final processed dataset comprised
71,981 sequences, each with 160 features (20 timesteps× 8 features)
and a corresponding optimal SF label, as shown in Table 3.

3.4 Framework characteristics

This data generation and preprocessing methodology possesses
several key characteristics pertinent to modeling LoRaWAN
channel behavior. The utilization of 20-step temporal windows
inherently incorporates temporal context, enabling the potential
to capture patterns related to channel variations and signal quality
fluctuations over time. The feature vector f provides a rich, multi-
dimensional representation of the communication link state at
each time step, integrating metrics related to signal strength,
signal quality relative to requirements, and spatial positioning.
Moreover, defining the target label SF∗ based on empirically
successful transmissions furnishes a form of ground truth that
reflects practically achievable link performance under the observed
conditions. The employed multi-SF transmission protocol also
offers efficiency in data collection, as a single transmission event
yields data points pertaining to the reception status and signal
metrics across the full operational range of SFs.

4 Proposed methodology

We propose a machine learning framework based on Long
Short-Term Memory (LSTM) networks for optimizing LoRaWAN
communication parameters, with particular focus on dynamic SF
selection. The choice of LSTM is motivated by its demonstrated
effectiveness in modeling temporal dependencies within sequential
data, a critical requirement for analyzing time-varying LoRa
signal characteristics (Farhad and Pyun, 2023a). Unlike traditional
machine learning approaches such as Random Forests or Support
Vector Machines that treat each data sample independently, LSTMs
explicitly model the temporal relationships between consecutive
transmissions. This capability is especially valuable in LoRaWAN
environments where channel conditions, interference patterns, and

device mobility create complex temporal dynamics that influence
optimal SF selection.

The proposed methodology addresses three key challenges in
LoRaWAN optimization: (1) the non-stationary nature of wireless
channels in IoT deployments, (2) the trade-off between data rate
and communication range inherent in SF selection, and (3) the
need for energy-efficient communication strategies. Our LSTM-
based approach captures these aspects through a hierarchical
learning architecture that processes sequences of transmission
events while maintaining memory of long-term patterns. This
contrasts with conventional approaches that either use static
SF assignments or rely on instantaneous channel measurements
without historical context.

4.1 LSTM-based temporal modeling

The LSTM architecture employed in this study is designed
to model temporal dependencies across sequential LoRaWAN
transmission events. The input to the LSTM is a matrix X ∈ R

T×D,
where T denotes the number of time steps and D represents the
feature dimension per step. Based on domain-specific empirical
insights, we set T = 20 to include sufficient temporal history from
the last twenty uplink transmissions, which balances information
richness and computational efficiency. Each timestep in X is an
8-dimensional vector composed of features such as Prx, SNR, x,
y, distance between ED and GW, SNR marging, as specified in
Equation 2.

The internal architecture of the LSTM unit aligns with the
standard gating-based formulation. At each timestep t, the model
processes the input vector xt alongside the previous hidden
state ht−1 and the previous cell state Ct−1. These vectors are
concatenated and passed through three distinct gates: the forget
gate ft , the input gate it , and the output gate ot . Additionally, a
candidate cell state C̃t is computed to propose an update to the
memory content. Each gate is parameterized by its own learnable
weights and biases, which are optimized during training.

ft = σ (Wf [ht−1; xt] + bf )

it = σ (Wi[ht−1; xt] + bi)

ot = σ (Wo[ht−1; xt] + bo)

C̃t = tanh(WC[ht−1; xt] + bC)

Ct = ft � Ct−1 + it � C̃t

ht = ot � tanh(Ct)

(4)

In Equation 4, the forget gate ft modulates how much of
the previous cell state Ct−1 should be retained. The input gate
it determines the extent to which the newly proposed memory
content C̃t should influence the current cell state. The cell state
Ct is updated via element-wise combinations of the retained past
memory and the newly accepted content. Finally, the output gate ot
governs how much of the updated cell state should be exposed as
the hidden state ht for downstream layers or subsequent time steps.
The sigmoid (σ ) and hyperbolic tangent (tanh) activation functions
ensure bounded nonlinearity and numerical stability, in accordance
with the flow shown in Figure 4.
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FIGURE 4

LSTM architecture used for temporal modeling of LoRaWAN uplink transmissions. The model receives sequential input vectors xt alongside the
hidden state ht−1 and cell state Ct−1. It processes these through gating mechanisms—forget gate (ft), input gate (it), candidate cell state (C̃t), and
output gate (ot)—to update its internal memory Ct and generate the hidden representation ht at each timestep. Nonlinearities σ and tanh are used to
enable stable, bounded transformations within the network. This architecture allows the model to retain long-term dependencies and adaptively
control information flow over time.

All matrix parameters Wf , Wi, Wo, WC and their
corresponding biases bf , bi, bo, bC are jointly learned via
backpropagation through time. The architecture thus enables
effective modeling of both short-term signal fluctuations and
long-term temporal dependencies in LoRaWAN uplink sequences,
capturing the dynamics essential for reliable SF classification.

4.2 LSTM training mechanism

The implemented network employs a stacked LSTM
architecture with two layers, each containing 128 hidden
units, as illustrated in Table 4. We chose LSTM due to its stronger
memory capacity for modeling long-term dependencies in time-
series data, which is critical in capturing trends across successive
transmissions in a dynamic wireless channel. LSTM provides
sufficient capacity to model complex temporal relationships
while avoiding excessive computational overhead. The first
LSTM layer processes the raw input sequence, while the second
layer extracts higher-level temporal patterns from the first
layer’s output. Between these layers, we maintain sequence

continuity through stateful processing, where the final state
of one batch serves as the initial state for the next batch
during training.

Following the LSTM layers, the architecture incorporates a
series of fully connected (dense) layers with ReLU activation
functions (max(0, x)). These layers transform the temporal features
extracted by the LSTMs into spatial representations suitable
for final classification. The ReLU activation provides nonlinear
modeling capability while avoiding the vanishing gradient issues
associated with sigmoid or tanh activations in deep networks.
To prevent overfitting–a critical concern given the relatively
small size of typical LoRaWAN datasets–we implement two
regularization strategies:

• Dropout: applied with probability p = 0.2 during training,
this randomly deactivates 20% of neurons in the dense layers,
forcing the network to develop robust features that don’t rely
on specific neurons.

• L2 weight regularization: added to the loss function, this
penalizes large weight values to prevent over-specialization to
training data.
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TABLE 4 LSTM-based training configuration for SF classification.

Component Setting Purpose

LSTM layers Two layers, 128 units
each

Temporal modeling of input
sequences

Stateful training Hidden/cell state
passed between
batches

Sequence continuity across
batches

Activation function ReLU in dense layers Nonlinear transformation
after LSTM output

Dropout p = 0.2 Regularization against neuron
co-adaptation

L2 regularization Weight decay added
to loss function

Penalize large weights to
reduce overfitting

Output layer Softmax over 6 SF
classes (SF7-SF12)

Probabilistic classification of
optimal SF

Loss function Categorical
cross-entropy

Compare predicted SF with
ground truth

Optimizer Adam (α = 10−3,
β1 = 0.9, β2 = 0.999)

Stable and adaptive parameter
updates

Early stopping Patience = 10
validation epochs

Prevent overfitting during
training

Learning objective Predict optimal SF Data-driven adaptive SF
allocation

The final layer employs a softmax activation function to
produce a probability distribution p ∈ R

6 over the six possible
Spreading Factors (SF7 through SF12). This probabilistic output
allows for flexible decision-making, where the highest-probability
SF can be selected automatically or combined with additional
constraints (e.g., energy budgets or latency requirements). The
softmax function ensures output normalization through:

pi = ezi

∑6
j=1 ezj

for i = 1, . . . , 6 (5)

where zi represents the logit value for SF i. During training,
we minimize the categorical cross-entropy loss between predicted
probabilities and true SF labels:

L = −
6∑

i=1

yi log(pi) (6)

where yi is the one-hot encoded ground truth label. The Adam
optimizer is employed with an initial learning rate of 10−3 and
exponential decay rates β1 = 0.9, β2 = 0.999 for parameter
updates. Early stopping monitors validation loss with patience of
10 epochs to prevent overfitting while ensuring convergence.

The complete system processes LoRaWAN transmission
sequences through this neural pipeline, learning to predict optimal
SFs based on historical channel conditions and transmission
patterns. This approach provides adaptive, data-driven SF
selection that outperforms static allocation schemes while
maintaining computational efficiency suitable for deployment on
network servers.

5 Performance evaluation of
LSTM-offline mode

For model training and evaluation, the dataset of 71,981
sequences was partitioned using a hold-out strategy to ensure
temporal independence and prevent data leakage. We allocated
80% of the sequences (∼57,585 samples) for training and
20% (∼14,396 samples) for testing, with splits performed
chronologically based on simulation timestamps. Within the
training portion, 10% (∼5,759 samples) was reserved as a validation
set for hyperparameter optimization and early stopping. Cross-
validation was not utilized due to the time-series nature of the
data and the high computational cost of retraining LSTM models
on large sequences; instead, the validation set and early stopping
(with a patience of 10 epochs) were employed to monitor and
prevent overfitting, aligning with best practices for sequential
data modeling.

Table 5 presents a comprehensive comparison of various
machine learning models evaluated on the task of LoRaWAN
SF classification. The models assessed include Random Forest,
Gradient Boosting, Support Vector Machine (SVM), K-Nearest
Neighbors (KNN), XGBoost, Multi-Layer Perceptron (MLP), and
the proposed LSTM network. Performance is evaluated based on
standard classification metrics: Accuracy, Precision, Recall, and F1
Score. Additionally, the computational cost is considered through
Training Time (measured in seconds) and deployed Model Size
(measured in Megabytes).

The results indicate that the LSTM model achieves the
highest classification accuracy at 0.7290, closely followed by
the MLP model at 0.7193. SVM and Gradient Boosting also
demonstrate competitive accuracy scores of 0.7123 and 0.7103,
respectively. Models such as Random Forest (0.6991) and XGBoost
(0.6891) show slightly lower accuracy, while KNN exhibits the
lowest accuracy (0.6787) among the evaluated models. In terms
of other metrics, the recall values often mirror the accuracy
due to the nature of the calculation in multi-class settings
presented here. Precision scores are generally lower, with KNN,
XGBoost, and Random Forest showing relatively higher precision
around 0.59, while LSTM, MLP and SVM are lower around
0.50–0.51. The F1 scores, which balance precision and recall,
show KNN and XGBoost performing slightly better in this
combined metric, despite lower accuracy. A significant trade-
off is observed in computational resources; Gradient Boosting
requires substantially longer training time (8,254.48 s), whereas
MLP and KNN offer very fast training (20.31 s and 13.55 s,
respectively). Similarly, model sizes vary drastically, with Random
Forest being the largest (67.76 MB) and MLP being exceptionally
compact (0.21 MB), followed by LSTM (0.84 MB) and Gradient
Boosting (0.93 MB).

Figure 5 provides a visual representation of the primary
performance metric, classification accuracy, across the different
models evaluated. The bar chart clearly illustrates the relative
performance, highlighting the LSTM model’s superior accuracy
compared to the other approaches. It visually confirms the ranking
observed in Table 5, with MLP, SVM, and Gradient Boosting
forming a cluster of next-best performing models, followed by
Random Forest, XGBoost, and finally KNN. This visualization aids
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TABLE 5 Model performance comparison on LoRaWAN SF classification.

Model Accuracy Precision Recall F1 Train time (s) Size (MB)

Random Forest 0.6991 0.5958 0.6991 0.6022 469.59 67.76

Gradient Boosting 0.7103 0.5712 0.7103 0.5902 8254.48 0.93

SVM 0.7123 0.5031 0.7123 0.5887 1464.74 4.28

KNN 0.6787 0.5971 0.6787 0.6180 13.55 6.63

XGBoost 0.6891 0.5946 0.6891 0.6123 67.46 1.71

MLP 0.7193 0.5031 0.7193 0.5887 20.31 0.21

LSTM-proposed 0.7290 0.5141 0.7290 0.5917 131.26 0.84

FIGURE 5

Classification accuracy.

in quickly discerning the most effective models solely based on
classification accuracy.

Based on comparative empirical evaluation, the LSTM network
was selected for deployment within the ns-3 framework for SF
classification. Quantitative results demonstrated that the LSTM
model yielded the highest classification accuracy (0.7290) relative
to the suite of evaluated machine learning algorithms, including
Random Forest, SVM, and MLP. Although performance variations
were noted across secondary metrics like F1-score and model size,
the superior predictive accuracy achieved by LSTM was deemed
the primary criterion for selection in the context of optimizing SF
prediction within the simulation environment.

6 LoRaWAN network performance
evaluation-online mode

During the deployment, in ns-3 online simulation, we maintain
a per-device circular buffer that stores the last 20 transmission
features in real time. This buffer is updated after each transmission
and used as input to the model before every new SF decision.

6.1 Simulation setting and application

This investigation evaluates end devices operating in confirmed
data mode within a single-gateway LoRaWAN network covering a
5 km radius. To simulate industrial asset monitoring scenarios, we
employ a two-dimensional random mobility pattern where devices
change direction after traversing 200 meters at speeds between 1.0–
2.0 m/s following established mobility models for IoT applications
(Farhad et al., 2022a; GSMA-3GPP, 2016).

The simulation framework requires each device to
transmit six confirmed uplink messages per hour across a
24-h operational period. To ensure statistical reliability, we
conduct ten independent simulation trials and report averaged
performance metrics.

The experimental setup examines both stationary and
mobile deployment scenarios. For static evaluations, we
distribute 100–1,000 end devices uniformly across the coverage
area. Mobile scenarios incorporate the described random
mobility model to simulate asset tracking use cases. All
configurations utilize the parameter set detailed in Table 6
which adheres to LoRaWAN regional specifications for European
frequency allocations.
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6.2 Performance evaluation

The results presented in Figure 6 depict the Packet Delivery
Ratio (PDR) achieved by different spreading factor allocation
algorithms as a function of the number of EDs in a simulated
LoRaWAN environment under mobility conditions. The
algorithms compared include the proposed ML-ADR (SF
Classification method) along with standard ADR, BADR and
the TF algorithm, which serves as a baseline from prior work.
In TinyML, TF refers to TensorFlow, specifically TensorFlow
Lite for Microcontrollers. The analysis clearly illustrates the
superior performance of the ML-ADR approach in maintaining
a higher PDR across the tested range of network densities in
this mobile scenario. While the PDR for all algorithms generally
decreases with an increasing number of EDs due to heightened
interference and collisions, the ML-ADR method demonstrates a

TABLE 6 Network simulation configuration.

Parameter Specification

Transmission attempts 8 total (1 initial + 7 retries)

Device velocity range 1.0–2.0 m/s (Farhad et al., 2020c)

Path update interval Every 200 meters traversed

Frequency band EU 868 MHz ISM

Operational channels 868.1, 868.3, 868.5 MHz

Initial parameters SF12 at 14 dBm transmit power

more resilient performance curve, indicating its effectiveness in
adapting to changing channel conditions and mobility-induced
signal variations. The TF algorithm performs notably better
than both ADR and BADR positioning itself as the second most
effective method in this comparison, confirming its utility as a
relevant baseline. In contrast, both ADR and particularly BADR
exhibit a significant degradation in PDR as network load increases,
underscoring their limitations in dynamic and dense mobile
LoRaWAN deployments. This comparative analysis highlights
the significant advantages of leveraging ML-ADR techniques for
enhancing the reliability of packet delivery in mobile LoRaWAN
networks, offering a substantial improvement over conventional
ADR mechanisms and the TF baseline by more effectively
managing radio resources in a dynamic environment.

The performance of the proposed ML-ADR algorithm in
terms of PDR for static devices is presented in Figure 7,
alongside comparisons with the standard ADR, BADR, and
the TF algorithm. The results demonstrate that the ML-ADR
consistently outperforms the other evaluated algorithms across
all tested network densities ranging from 200 to 1,000 EDs. As
anticipated, the PDR for all algorithms decreases as the number
of EDs increases, reflecting the growing impact of collisions
in denser networks operating under the pure ALOHA access
scheme. However, the proposed ML-ADR method exhibits a
significantly higher PDR compared to its counterparts, indicating
its effectiveness in optimizing spreading factor allocation and
mitigating packet loss even under increased load in static scenarios.
The TF algorithm generally achieves the second highest PDR,
showing better performance than both ADR and BADR. Standard
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FIGURE 6

Packet delivery ratio performance for mobile devices. Comparison of ML-ADR (proposed Machine Learning-based Adaptive Data Rate), TF
(TinyML-TensorFlow Lite for microcontrollers Ali Lodhi et al., 2024), ADR (standard Adaptive Data Rate), and BADR (standard Blind Adaptive Data Rate).
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FIGURE 7

Packet delivery ratio performance for static devices. Comparison of ML-ADR (proposed Machine Learning-based Adaptive Data Rate), TF
(TinyML-TensorFlow Lite for Microcontrollers Ali Lodhi et al., 2024), ADR (standard Adaptive Data Rate), and BADR (standard Blind Adaptive Data Rate).

ADR provides moderate performance, while BADR consistently
registers the lowest PDR values, particularly in larger networks
where collisions become more prevalent. This analysis underscores
the considerable advantage of employing the proposed ML-ADR
technique for enhancing the reliability of data delivery in static
LoRaWAN deployments by intelligently adapting data rates and
spreading factors based on network conditions.

The energy consumption characteristics of the proposed ML-
ADR algorithm are presented in Figure 8 for mobile device
scenarios, compared against the performance of ADR, BADR,
and TF. Analysis of the figure reveals a consistent trend where
the proposed ML-ADR method demonstrates superior energy
efficiency, exhibiting the lowest energy consumption across the
entire range of tested ED densities. This lower energy consumption
is caused due to lower retransmission rates and better SF
estimation, reduced airtime from preferential use of lower SFs when
channel conditions allow, and fewer downlink requests due to more
reliable uplinks.

As the number of mobile EDs increases, the energy consumed
by all algorithms generally rises, but the increment is least
pronounced for ML-ADR. The TF algorithm performs as the
second most energy-efficient method, showing lower consumption
than both conventional ADR and BADR. Notably, BADR
consistently records the highest energy consumption, particularly
at greater network scales, indicating its limited suitability
for energy-constrained mobile deployments. The comparison
clearly indicates that ML-ADR offers a significant reduction
in energy expenditure compared to existing approaches in
mobile LoRaWAN environments, which is critical for extending
the battery life of mobile IoT devices and improving overall
network sustainability.

The energy consumption performance of the proposed ML-
ADR algorithm for static devices is depicted in Figure 9, presenting
a comparative analysis against the standard ADR, BADR, and
the TF algorithm. These results, generated under static network
conditions, clearly demonstrate the significant energy efficiency
achieved by the ML-ADR approach. Across all tested network
densities ranging from 200 to 1,000 EDs, the ML-ADR consistently
registers the lowest energy consumption values. While energy
consumption generally increases for all algorithms as the number
of EDs grows due to increased network activity, the ML-ADR’s
increase is notably more gradual compared to ADR and BADR.
The TF algorithm generally exhibits the second lowest energy
consumption, positioning it between the highly efficient ML-
ADR and the less efficient conventional methods. Both standard
ADR and particularly BADR show substantially higher energy
consumption, with BADR demonstrating the least energy-efficient
performance across all network sizes. This comparative evaluation
underscores the critical advantage of employing the proposed ML-
ADR technique for optimizing energy usage in static LoRaWAN
deployments, showcasing its capability to significantly prolong
the operational lifetime of battery-powered end devices by
intelligently managing transmission parameters based on learned
network conditions.

7 Discussion

7.1 Analysis of offline mode results

The comparative evaluation of machine learning models
for LoRaWAN Spreading Factor classification, as presented in
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FIGURE 8

Energy consumption performance for mobile devices. Comparison of ML-ADR (proposed Machine Learning-based Adaptive Data Rate), TF
(TinyML-TensorFlow Lite for Microcontrollers Ali Lodhi et al., 2024), ADR (standard Adaptive Data Rate), and BADR (standard Blind Adaptive Data Rate).
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Energy consumption performance for static devices. Comparison of ML-ADR (proposed Machine Learning-based Adaptive Data Rate), TF
(TinyML-TensorFlow Lite for Microcontrollers Ali Lodhi et al., 2024), ADR (standard Adaptive Data Rate), and BADR (standard Blind Adaptive Data Rate).

Table 5, yields three significant findings. First, the LSTM network
demonstrates superior classification accuracy (0.7290) compared
to conventional methods, which suggests its enhanced capability

to capture temporal patterns in LoRaWAN signal propagation
characteristics. This performance advantage over Random Forest
(0.6991) and SVM (0.7123) aligns with established literature on
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temporal feature extraction in wireless networks. Second, the
marginal accuracy difference between LSTM and MLP (0.7193)
reveals an important computational trade-off. While both models
achieve comparable predictive performance, the MLP requires
substantially less training time (20.31 s vs. 131.26 s), making
it potentially more suitable for resource-constrained deployment
scenarios. However, the precision of LSTM is relatively lower,
indicating that the model favors lower false negatives, which is
intentional in our context. Therefore, assigning a more robust
SF (even if slightly lower) is preferable over underestimating link
requirements, which may result in packet loss and energy waste due
to retransmissions.

The observed disparity between precision and recall metrics
across models warrants particular attention. Models such as KNN
and XGBoost exhibit higher precision values (∼0.59) but lower
recall, indicating potential bias in handling specific Spreading
Factor classes. This phenomenon likely stems from inherent
imbalances in real-world LoRaWAN deployments, where certain
Spreading Factors occur more frequently due to their transmission
range characteristics. The LSTM model shows the opposite pattern,
with lower precision (0.5141) but higher recall (0.7290), suggesting
a design bias toward minimizing false negatives at the potential cost
of increased false positives.

From an implementation perspective, the model size
comparisons prove particularly insightful. The MLP (0.21 MB) and
LSTM (0.84 MB) demonstrate exceptional compactness compared
to the resource-intensive Random Forest implementation
(67.76 MB). This size differential has direct implications for
edge deployment feasibility, where memory constraints often
dictate model selection criteria. These results corroborate recent
advancements in efficient model architectures for IoT applications.
Our deployed model (0.84 MB) can be hosted efficiently on GW
with typical ARM Cortex-A class processors or embedded edge
servers. On constrained EDs, however, real-time inference is not
feasible. As such, we retain the inference at the gateway/network
server side, while the end-device passively receives SF adjustments.

The marginal accuracy improvement of LSTM over MLP
(0.7290 vs. 0.7193) and XGBoost (0.6891) raises a valid question
about whether it justifies the increased computational demands,
including longer training time (131.26 s for LSTM vs. 20.31 s for
MLP and 67.46 s for XGBoost) and greater model complexity.
In time-series tasks like LoRaWAN SF classification, where
data exhibits strong temporal dependencies due to fluctuating
channel conditions and sequential transmission patterns, the gating
mechanisms of LSTM provide a nuanced advantage in modeling
long-term dependencies that simpler feedforward models like
MLP or tree-based ensembles like XGBoost may not capture as
effectively. Recent survey on time-series forecasting and deep
learning, indicate that even small accuracy gains (1–2%) with
LSTM can be worthwhile when they translate to substantial
real-world benefits, such as improved reliability in resource-
constrained environments (Kim et al., 2025). In our case, the
offline training phase mitigates runtime concerns, as deployment
occurs on network servers where inference is lightweight and
fast. While MLP offers a compelling alternative for scenarios
prioritizing speed and compactness, the amplified downstream
impacts observed in our online evaluations–such as higher PDR
and lower energy consumption–validate the selection of LSTM for
optimizing LoRaWAN performance.

7.2 Implications of online mode
performance

The online evaluation results, presented in Figure 6 through
Figure 9, demonstrate the operational advantages of the ML-
ADR approach across multiple performance dimensions. In
mobile deployment scenarios (Figure 6), the ML-ADR algorithm
maintains a 22 percent higher Packet Delivery Ratio than the
TF baseline at network densities of 1,000 end devices. This
performance advantage stems from two key algorithmic features:
dynamic SF adaptation based on real-time channel conditions,
and intelligent retransmission scheduling that minimizes
acknowledgment collisions.

The static deployment results (Figure 7) reveal similar
performance trends, with ML-ADR consistently outperforming
conventional approaches across all tested network scales. The
energy efficiency metrics (Figures 8, 9) further validate the practical
benefits of the proposed approach. ML-ADR reduces median
energy consumption by 30 percent compared to standard ADR
implementations, while simultaneously maintaining superior
packet delivery reliability. This dual improvement directly
addresses two critical constraints in LoRaWAN deployments:
limited battery capacity in end devices and the need for reliable
communication in congested networks.

7.3 Limitations and future directions

Four primary limitations of the current approach merit
discussion. First, the reliance on offline model training introduces
inherent latency in adapting to new network configurations
or propagation environments. This offline paradigm, while
computationally efficient for initial deployment, can result in
suboptimal performance during sudden environmental shifts,
such as abrupt weather changes or device mobility patterns not
represented in the training data. For instance, if channel conditions
evolve rapidly (e.g., due to vehicular traffic in urban areas), the
pre-trained LSTM may require retraining, potentially delaying
adaptation by hours or days in operational settings.

Second, the evaluation assumes ideal channel state information
availability, which may not fully capture real-world operational
conditions with dynamic interference patterns and multipath
effects. In ns-3 simulations, we model controlled propagation
losses, but practical deployments often encounter unpredictable
interference from coexisting networks (e.g., WiFi, other LPWANs,
or industrial machinery), which can increase packet error rates in
dense environments as reported in recent interference management
studies (OrbiWise, 2023). Multipath fading, particularly in urban
or indoor scenarios, further exacerbates this by causing signal
fluctuations that our model, trained on simplified path loss
models, might not generalize to–potentially leading to incorrect
SF predictions and higher retransmission rates. Additionally, the
ns-3 framework, while versatile, does not fully replicate hardware-
specific variations (e.g., antenna imperfections or clock drifts in
low-cost LoRa modules) or firmware-level constraints (e.g., duty
cycle enforcement), which could degrade ML-ADR’s effectiveness
in field trials. To mitigate this, future work will focus on porting
the model to physical testbeds using commercial hardware (e.g.,
SX1276-based nodes) and large-scale deployments via platforms
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like The Things Network, incorporating real-time interference
datasets for retraining.

Third, the single-gateway network model, while useful for
controlled evaluation, does not account for the complexities
of multi-cell deployments with handover scenarios. In real-
world setups with multiple gateways, issues such as inter-gateway
interference, overlapping coverage zones, and handover delays
during device mobility can introduce additional packet loss
(Harinda et al., 2022). This limitation is particularly pronounced in
scalable networks where load balancing across gateways is required
to prevent bottlenecks, yet our simulations assume a centralized
single-gateway architecture, potentially underestimating collision
rates in distributed topologies.

Fourth, scalability remains a critical concern, as our evaluations
are limited to networks of up to 1,000 end devices, which
may not extend to massive IoT deployments with tens of
thousands of nodes. The LSTM model’s computational overhead–
requiring sequence processing for each device’s historical data–
could strain network server resources in ultra-dense scenarios,
leading to inference delays or increased energy consumption at
the server side. Recent surveys highlight that ML-based resource
allocation in LoRaWAN often faces scalability bottlenecks in single-
hop architectures, with performance degrading beyond 5,000
devices due to heightened contention and model complexity
(Maurya et al., 2025; Farhad and Pyun, 2023b; Elgharbi et al.,
2025). Furthermore, training data generation via ns-3 becomes
prohibitively time-intensive for larger scales, limiting the diversity
of scenarios captured.

Future research should address these limitations through
complementary approaches. First, federated learning architectures
could enable distributed model refinement across network
GWs while preserving data locality, facilitating real-time
adaptation without full retraining. Second, the integration of
real-time channel estimation techniques, such as RL for dynamic
interference mitigation, would enhance robustness against
fading and coexistence issues (Fahmida et al., 2023). Third,
extending simulations to multi-GW models with handover
protocols and exploring multi-hop extensions could better
evaluate distributed deployments (Matni et al., 2020). Finally,
to tackle scalability, hybrid architectures combining LSTM
with lighter models (e.g., edge-optimized ML and TinyML) or
scalable data-driven solutions similar those in recent surveys
could optimize for massive networks, potentially incorporating
online learning to handle evolving device densities dynamically
(Garrido-Hidalgo et al., 2023).

8 Conclusions

In this paper, we addressed the critical challenge of efficient
spreading factor allocation in LoRaWAN networks, a necessity
driven by the rapid expansion of Internet of Things deployments
and the limitations of existing adaptive data rate mechanisms.
We proposed and evaluated a Machine Learning-based Adaptive
Data Rate (ML-ADR) approach specifically designed for intelligent
spreading factor management. Leveraging machine learning,
including deep learning techniques such as LSTM, trained
on data generated from extensive ns-3 simulations, our

methodology dynamically allocates optimal spreading factors
to end devices.

The comprehensive performance evaluation demonstrated that
the proposed ML-ADR significantly improves key network metrics.
Specifically, our results showed enhanced packet delivery ratio and
reduced energy consumption compared to conventional algorithms
like ADR, BADR, and the TF baseline, across both static and
mobile device scenarios. The ML-ADR consistently outperformed
these existing methods, exhibiting higher packet delivery rates and
lower energy expenditure, which are crucial for the scalability and
sustainability of LoRaWAN deployments.

This work underscores the potential of machine learning to
optimize resource allocation in LPWANs, offering a robust solution
to improve overall network efficiency and prolong device lifetimes
in diverse deployment environments.

Data availability statement

The original contributions presented in the study are included
in the article/supplementary material, further inquiries can be
directed to the corresponding author.

Author contributions

FN: Conceptualization, Data curation, Writing – original draft.
MA: Supervision, Writing – review & editing. MT: Supervision,
Writing – review & editing, Data curation. HH: Writing – review
& editing, Methodology. NA: Resources, Visualization, Writing
– review & editing. ML: Funding acquisition, Writing – review
& editing.

Funding

The author(s) declare that financial support was received for
the research and/or publication of this article. Article Processing
Charges (APC) were provided by Prince Sultan University.

Acknowledgments

The authors would like to thanks Prince Sultan University for
paying the Article Processing Charges (APC) of this publication.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Correction note

This article has been corrected with minor changes. These
changes do not impact the scientific content of the article.

Frontiers in Computer Science 15 frontiersin.org

https://doi.org/10.3389/fcomp.2025.1666262
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Nisar et al. 10.3389/fcomp.2025.1666262

Generative AI statement

The author(s) declare that no Gen AI was used in the creation
of this manuscript.

Any alternative text (alt text) provided alongside figures in
this article has been generated by Frontiers with the support of
artificial intelligence and reasonable efforts have been made to
ensure accuracy, including review by the authors wherever possible.
If you identify any issues, please contact us.

Publisher’s note

All claims expressed in this article are solely those
of the authors and do not necessarily represent those of
their affiliated organizations, or those of the publisher,
the editors and the reviewers. Any product that may be
evaluated in this article, or claim that may be made by
its manufacturer, is not guaranteed or endorsed by the
publisher.

References

a3794110. (2023). NS-3-Based Module for Narrow Band-IOT. Available online at:
https://github.com/a3794110/ns-3-NB-IoT (Accessed May 30, 2023).

Abdelfadeel, K. Q., Zorbas, D., Cionca, V., and Pesch, D. (2019). free—fine-grained
scheduling for reliable and energy-efficient data collection in lorawan. IEEE Internet
Things J. 7, 669–683. doi: 10.1109/JIOT.2019.2949918

Acosta-Garcia, L., Aznar-Poveda, J., Garcia-Sanchez, A.-J., Garcia-
Haro, J., and Fahringer, T. (2024). “Proactive adaptation of data rate in
mobile lora-based iot devices using machine learning,” in 2024 IEEE 99th
Vehicular Technology Conference (VTC2024-Spring) (Singapore: IEEE), 1–5.
doi: 10.1109/VTC2024-Spring62846.2024.10683082

Ali Lodhi, M., Obaidat, M. S., Wang, L., Mahmood, K., Ibrahim Qureshi, K., Chen,
J., et al. (2024). Tiny machine learning for efficient channel selection in lorawan. IEEE
Internet Things J. 11, 30714–30724. doi: 10.1109/JIOT.2024.3413585

Anwar, K., Rahman, T., Zeb, A., Khan, I., Zareei, M., and Vargas-Rosales, C. (2021).
RM-ADR: resource management adaptive data rate for mobile application in lorawan.
Sensors 21:7980. doi: 10.3390/s21237980

Augustin, A., Yi, J., Clausen, T., and Townsley, W. M. (2016). A study of lora:
long range and low power networks for the internet of things. Sensors 16:1466.
doi: 10.3390/s16091466

Azizi, F., Teymuri, B., Aslani, R., Rasti, M., Tolvaneny, J., and Nardelli,
P. H. J. (2022). “Mix-mab: reinforcement learning-based resource allocation
algorithm for lorawan,” in 2022 IEEE 95th Vehicular Technology Conference:
(VTC2022-Spring), 19–22 June 2022 (IEEE: Helsinki, Finland), 1–6.
doi: 10.1109/VTC2022-Spring54318.2022.9860807

Beltramelli, L., Mahmood, A., Österberg, P., Gidlund, M., Ferrari, P., and Sisinni,
E. (2021). Energy efficiency of slotted lorawan communication with out-of-band
synchronization. IEEE Trans. Instrum. Meas. 70, 1–11. doi: 10.1109/TIM.2021.30
51238

Benkahla, N., Tounsi, H., Ye-Qiong, S., and Frikha, M. (2019). “Enhanced ADR for
lorawan networks with mobility,” in 2019 15th International Wireless Communications
and Mobile Computing Conference (IWCMC), Tangier, Morocco, 24–28 June (IEEE:
Tangier, Morocco), 1–6. doi: 10.1109/IWCMC.2019.8766738

Bertocco, M., Parrino, S., Peruzzi, G., and Pozzebon, A. (2023). Estimating
volumetric water content in soil for IoUT contexts by exploiting RSSI-based augmented
sensors via machine learning. Sensors 23:2033. doi: 10.3390/s23042033

Bor, M. C., Roedig, U., Voigt, T., and Alonso, J. M. (2016). “Do lora low-power
wide-area networks scale?,” in Proceedings of the 19th ACM International Conference
on Modeling, Analysis and Simulation of Wireless and Mobile Systems (Malta), 59–67.
doi: 10.1145/2988287.2989163

Bounceur, A., Marc, O., Lounis, M., Soler, J., Clavier, L., Combeau, P., et al. (2018).
“Cupcarbon-lab: an IOT emulator,” in 15th IEEE Annual Consumer Communications
and Networking Conference (CCNC), 12–15 January 2018 (IEEE: Las Vegas, NV, USA),
1–2. doi: 10.1109/CCNC.2018.8319313

Callebaut, G., Ottoy, G., and van der Perre, L. (2019). “Cross-layer framework
and optimization for efficient use of the energy budget of iot nodes,” in IEEE
Wireless Communications and Networking Conference (WCNC), 15–18 April 2019
(IEEE: Marrakesh, Morocco), 1–6. doi: 10.1109/WCNC.2019.8885739

Casals, L., Gomez, C., and Vidal, R. (2021). The SF12 well in lorawan: problem and
end-device-based solutions. Sensors 21:6478. doi: 10.3390/s21196478

Chen, M., Mokdad, L., Ben-Othman, J., and Fourneau, J.-M. (2023). Dynamic
parameter allocation with reinforcement learning for lorawan. IEEE Internet Things
J. 10, 10250–10265. doi: 10.1109/JIOT.2023.3239301

Croce, D., Gucciardo, M., Mangione, S., Santaromita, G., and Tinnirello, I. (2018).
Impact of lora imperfect orthogonality: analysis of link-level performance. IEEE
Commun. Lett. 22, 796–799. doi: 10.1109/LCOMM.2018.2797057

DEIS-Tools Project Team. (2023). NS-3 module for sigfox. Available online at:
https://github.com/DEIS-Tools/ns3-sigfox (Accessed May 26, 2023).

Elgharbi, S. E., Iturralde, M., Dupuis, Y., and Gaugue, A. (2025). Maritime
monitoring through lorawan: resilient decentralised mesh networks for enhanced data
transmission. Comput. Commun. 241:108276. doi: 10.1016/j.comcom.2025.108276

Elkarim, S. I. A., Elsherbini, M., Mohammed, O., Khan, W. U., Waqar, O.,
and ElHalawany, B. M. (2022). “Deep learning based joint collision detection and
spreading factor allocation in lorawan,” in 2022 IEEE 42nd International Conference
on Distributed Computing Systems Workshops (ICDCSW), 10–10 July 2022 (IEEE:
Bologna, Italy), 187–192. doi: 10.1109/ICDCSW56584.2022.00043

ETSI. (2018). System reference document (SRDOC); technical characteristics for
low power wide area networks and chirp spread spectrum (LPWAN-CSS) operating
in the UHF spectrum below 1 GHZ; ETSI TR 103 526 v1.1.1 (2018–04). Available
online at: https://www.etsi.org/deliver/etsi_tr/103500_103599/103526/01.01.01_60/tr_
103526v010101p.pdf

Fahmida, S., Modekurthy, V. P., Rahman, M., and Saifullah, A. (2023). “Handling
coexistence of lora with other networks through embedded reinforcement learning,”
in Proceedings of the 8th ACM/IEEE Conference on Internet of Things Design and
Implementation (San Antonio, TX), 410–423. doi: 10.1145/3576842.3582383

Farahsari, P. S., Farahzadi, A., Rezazadeh, J., and Bagheri, A. (2022). A survey
on indoor positioning systems for iot-based applications. IEEE Internet Things J. 9,
7680–7699. doi: 10.1109/JIOT.2022.3149048

Farhad, A., Kim, D.-H., and Pyun, J.-Y. (2020b). Resource allocation to massive
internet of things in lorawans. Sensors 20, 1–20. doi: 10.3390/s20092645

Farhad, A., Kim, D.-H., and Pyun, J.-Y. (2022a). R-ARM: retransmission-assisted
resource management in lorawan for the internet of things. IEEE Internet Things J. 9,
7347–7361. doi: 10.1109/JIOT.2021.3111167

Farhad, A., Kim, D.-H., Subedi, S., and Pyun, J.-Y. (2020c). Enhanced
lorawan adaptive data rate for mobile internet of things devices. Sensors 20:6466.
doi: 10.3390/s20226466

Farhad, A., Kim, D.-H., Yoon, J.-S., and Pyun, J.-Y. (2021). “Feasibility study
of the lorawan blind adaptive data rate,” in Twelfth International Conference on
Ubiquitous and Future Networks (ICUFN: Jeju Island, Republic of Korea), 67–69.
doi: 10.1109/ICUFN49451.2021.9528716

Farhad, A., Kim, D.-H., Yoon, J.-S., and Pyun, J.-Y. (2022b). “Deep learning-based
channel adaptive resource allocation in lorawan,” in 2022 International Conference on
Electronics, Information, and Communication (ICEIC), 06–09 February 2022 (IEEE:
Jeju, Republic of Korea), 1–5. doi: 10.1109/ICEIC54506.2022.9748580

Farhad, A., Kim, D. H., Kim, B. H., Mohammed, A. F. Y., and Pyun, J. Y.
(2020a). Mobility-aware resource assignment to iot applications in long-range wide
area networks. IEEE Access 8, 186111–186124. doi: 10.1109/ACCESS.2020.3029575

Farhad, A., and Pyun, J.-Y. (2023a). AI-ERA: artificial intelligence-empowered
resource allocation for lora-enabled iot applications. IEEE Trans. Ind. Informatics pages
19, 1–13. doi: 10.1109/TII.2023.3248074

Farhad, A., and Pyun, J.-Y. (2023b). Lorawan meets ML: a survey on enhancing
performance with machine learning. Sensors 23, 1–36. doi: 10.3390/s23156851

Farhad, A., and Pyun, J.-Y. (2023c). Terahertz meets AI: the state of the art. Sensors
23:5034. doi: 10.3390/s23115034

Garlisi, D., Tinnirello, I., Bianchi, G., and Cuomo, F. (2021). Capture aware
sequential waterfilling for lorawan adaptive data rate. IEEE Trans. Wireless Commun.
20, 2019–2033. doi: 10.1109/TWC.2020.3038638

Garrido-Hidalgo, C., Roda-Sanchez, L., Ramírez, F. J., Fernández-Caballero,
A., and Olivares, T. (2023). Efficient online resource allocation in large-
scale lorawan networks: a multi-agent approach. Comput. Netw. 221:109525.
doi: 10.1016/j.comnet.2022.109525

Frontiers in Computer Science 16 frontiersin.org

https://doi.org/10.3389/fcomp.2025.1666262
https://github.com/a3794110/ns-3-NB-IoT
https://doi.org/10.1109/JIOT.2019.2949918
https://doi.org/10.1109/VTC2024-Spring62846.2024.10683082
https://doi.org/10.1109/JIOT.2024.3413585
https://doi.org/10.3390/s21237980
https://doi.org/10.3390/s16091466
https://doi.org/10.1109/VTC2022-Spring54318.2022.9860807
https://doi.org/10.1109/TIM.2021.3051238
https://doi.org/10.1109/IWCMC.2019.8766738
https://doi.org/10.3390/s23042033
https://doi.org/10.1145/2988287.2989163
https://doi.org/10.1109/CCNC.2018.8319313
https://doi.org/10.1109/WCNC.2019.8885739
https://doi.org/10.3390/s21196478
https://doi.org/10.1109/JIOT.2023.3239301
https://doi.org/10.1109/LCOMM.2018.2797057
https://github.com/DEIS-Tools/ns3-sigfox
https://doi.org/10.1016/j.comcom.2025.108276
https://doi.org/10.1109/ICDCSW56584.2022.00043
https://www.etsi.org/deliver/etsi_tr/103500_103599/103526/01.01.01_60/tr_103526v010101p.pdf
https://www.etsi.org/deliver/etsi_tr/103500_103599/103526/01.01.01_60/tr_103526v010101p.pdf
https://doi.org/10.1145/3576842.3582383
https://doi.org/10.1109/JIOT.2022.3149048
https://doi.org/10.3390/s20092645
https://doi.org/10.1109/JIOT.2021.3111167
https://doi.org/10.3390/s20226466
https://doi.org/10.1109/ICUFN49451.2021.9528716
https://doi.org/10.1109/ICEIC54506.2022.9748580
https://doi.org/10.1109/ACCESS.2020.3029575
https://doi.org/10.1109/TII.2023.3248074
https://doi.org/10.3390/s23156851
https://doi.org/10.3390/s23115034
https://doi.org/10.1109/TWC.2020.3038638
https://doi.org/10.1016/j.comnet.2022.109525
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Nisar et al. 10.3389/fcomp.2025.1666262

Gdbranco. (2023). NS-3-Based NB-Iot Simulator Module. Available online at:
https://github.com/gdbranco/RA5G_NS3 (Accessed May 26, 2023).

Gomez, C., Veras, J. C., Vidal, R., Casals, L., and Paradells, J. (2019). A sigfox energy
consumption model. Sensors 19:681. doi: 10.3390/s19030681

GSMA-3GPP. (2016). 3GPP Low Power Wide Area Technologies.

Harinda, E., Wixted, A. J., Qureshi, A.-U.-H., Larijani, H., and Gibson, R. M. (2022).
Performance of a live multi-gateway lorawan and interference measurement across
indoor and outdoor localities. Computers 11:25. doi: 10.3390/computers11020025

Hazarika, A., and Choudhury, N. (2024). “ISFA: intelligent sf allocation approach
for lora-based mobile and static end devices,” in 2024 IEEE Wireless Communications
and Networking Conference (WCNC) (IEEE: Dubai, United Arab Emirates), 1–6.
doi: 10.1109/WCNC57260.2024.10570655

Kim, J., Kim, H., Kim, H., Lee, D., and Yoon, S. (2025). A comprehensive survey of
deep learning for time series forecasting: architectural diversity and open challenges.
Artif. Intell. Rev. 58, 1–95. doi: 10.1007/s10462-025-11223-9

Loh, F., Mehling, N., Metzger, F., Hoßfeld, T., and Hock, D. (2021). “Loraplan: a
software to evaluate gateway placement in lorawan,” in 17th International Conference
on Network and Service Management (CNSM), 25–29 October 2021 (IEEE: Izmir,
Turkey), 385–387. doi: 10.23919/CNSM52442.2021.9615586

LoRa. (2020). Lorawan � Regional Parameters. RP002-1.0.2.

Magrin, D., Capuzzo, M., Zanella, A., Vangelista, L., and Zorzi, M. (2021).
Performance analysis of lorawan in industrial scenarios. IEEE Trans. Ind. Informatics
17, 6241–6250. doi: 10.1109/TII.2020.3044942

Magrin, D., Centenaro, M., and Vangelista, L. (2017). “Performance evaluation
of lora networks in a smart city scenario,” in 2017 IEEE International Conference
on Communications (ICC), 21–25 May 2017 (IEEE: Paris, France), 1–7.
doi: 10.1109/ICC.2017.7996384

Marini, R., Cerroni, W., and Buratti, C. (2021). A novel collision-aware adaptive
data rate algorithm for lorawan networks. IEEE Internet Things J. 8, 2670–2680.
doi: 10.1109/JIOT.2020.3020189

Matni, N., Moraes, J., Oliveira, H., Rosário, D., and Cerqueira, E. (2020). Lorawan
gateway placement model for dynamic internet of things scenarios. Sensors 20:4336.
doi: 10.3390/s20154336

Maurya, P., Hazra, A., Kumari, P., Sørensen, T. B., and Das, S. K. (2025). A
comprehensive survey of data-driven solutions for lorawan: challenges and future
directions. ACM Trans. Internet Things 6, 1–36. doi: 10.1145/3711953

Mekki, K., Bajic, E., Chaxel, F., and Meyer, F. (2019). A comparative
study of lpwan technologies for large-scale iot deployment. ICT Express 5, 1–7.
doi: 10.1016/j.icte.2017.12.005

Minhaj, S. U., Mahmood, A., Abedin, S. F., Hassan, S. A., Bhatti, M. T., Ali, S.
H., et al. (2023). Intelligent resource allocation in lorawan using machine learning
techniques. IEEE Access 11, 10092–10106. doi: 10.1109/ACCESS.2023.3240308

Moysiadis, V., Lagkas, T., Argyriou, V., Sarigiannidis, A., Moscholios, I. D., and
Sarigiannidis, P. (2021). Extending ADR mechanism for lora enabled mobile end-
devices. Simul. Model. Pract. Theory 113:102388. doi: 10.1016/j.simpat.2021.102388

OrbiWise. (2023). Interference Management in LoRaWAN Deployments. Available
online at: https://orbiwise.com/news/interference-management-in-lorawan-
deployments/ (Accessed August 9, 2025).

Park, J., Park, K., Bae, H., and Kim, C.-K. (2020). Earn: enhanced ADR
with coding rate adaptation in lorawan. IEEE Internet Things J. 7, 11873–11883.
doi: 10.1109/JIOT.2020.3005881

Pasolini, G. (2021). On the lora chirp spread spectrum modulation. signal properties
and their impact on transmitter and receiver architectures. IEEE Trans. Wireless
Commun. 21, 357–369. doi: 10.1109/TWC.2021.3095667

Pop, A.-I., Raza, U., Kulkarni, P., and Sooriyabandara, M. (2017).
“Does bidirectional traffic do more harm than good in lorawan based lpwa
networks?” in GLOBECOM 2017-2017 IEEE Global Communications Conference,
04–08 December 2017 (IEEE: Singapore), 1–6. doi: 10.1109/GLOCOM.2017.
8254509

Reynders, B., Wang, Q., and Pollin, S. (2018). “A lorawan module for NS-
3: implementation and evaluation,” in Proceedings of the 10th Workshop on NS-3
(Surathkal), 61–68. doi: 10.1145/3199902.3199913

SAPGAN Team. (2023). Blockchain-Based Iot Simulator. Available online at: https://
github.com/sapgan/NS3-IoT-Simulator (Accessed May 26, 2023).

Sartori, A. (2023). Lora simulator (lorasim). Available online at: https://github.com/
AlexSartori/LoRaSim (Accessed May 3, 2023).

Semtech. (2019a). Lorawan Mobile Applications: Blind ADR. Available online at:
https://lora-developers.semtech.com/documentation/tech-papers-and-guides/blind-
adr/ (Accessed May 31, 2023).

Semtech. (2019b). Understanding the lora Adaptive Data Rate.

Singh, R. K., Puluckul, P. P., Berkvens, R., and Weyn, M. (2020). Energy
consumption analysis of lpwan technologies and lifetime estimation for iot application.
Sensors 20:4794. doi: 10.3390/s20174794

Slabicki, M., Premsankar, G., and Di Francesco, M. (2018). “Adaptive configuration
of lora networks for dense iot deployments,” in NOMS 2018-2018 IEEE/IFIP Network
Operations and Management Symposium, 23–27 April 2018 (IEEE: Taipei, Taiwan), 1–9.
doi: 10.1109/NOMS.2018.8406255

Ta, D.-T., Khawam, K., Lahoud, S., Adjih, C., and Martin, S. (2019). “Lora-MAB:
a flexible simulator for decentralized learning resource allocation in iot networks,” in
2019 12th IFIP Wireless and Mobile Networking Conference (WMNC) (IEEE: Paris,
France), 55–62. doi: 10.23919/WMNC.2019.8881393

To, T.-H., and Duda, A. (2018). “Simulation of lora in NS-3: improving lora
performance with CSMA,” in IEEE International Conference on Communications (ICC),
20–24 May 2018 (IEEE: Kansas City, MO, USA), 1–7. doi: 10.1109/ICC.2018.84
22800

Torres-Sospedra, J., Gaibor, D. P. Q., Nurmi, J., Koucheryavy, Y., Lohan, E.
S., and Huerta, J. (2022). Scalable and efficient clustering for fingerprint-based
positioning. IEEE Internet Things J. 10, 3484–3499. doi: 10.1109/JIOT.2022.323
0913

Van den Abeele, F., Haxhibeqiri, J., Moerman, I., and Hoebeke, J. (2017). Scalability
analysis of large-scale lorawan networks in ns-3. IEEE Internet Things J 4, 2186–2198.
doi: 10.1109/JIOT.2017.2768498

Vangelista, L., Calabrese, I., and Cattapan, A. (2023). Mobility classification
of lorawan nodes using machine learning at network level. Sensors 23:1806.
doi: 10.3390/s23041806

Weyn, M., and Contributors. (2023). Sigfox simulator. Available online at: https://
github.com/maartenweyn/lpwansimulation (Accessed May 26, 2023).

Zorbas, D., Abdelfadeel, K., Kotzanikolaou, P., and Pesch, D. (2020). Ts-lora: time-
slotted lorawan for the industrial internet of things. Comput. Commun. 153, 1–10.
doi: 10.1016/j.comcom.2020.01.056

Zorbas, D., Caillouet, C., Abdelfadeel Hassan, K., and Pesch, D. (2021). Optimal
data collection time in lora networks—a time-slotted approach. Sensors 21:1193.
doi: 10.3390/s21041193

Frontiers in Computer Science 17 frontiersin.org

https://doi.org/10.3389/fcomp.2025.1666262
https://github.com/gdbranco/RA5G_NS3
https://doi.org/10.3390/s19030681
https://doi.org/10.3390/computers11020025
https://doi.org/10.1109/WCNC57260.2024.10570655
https://doi.org/10.1007/s10462-025-11223-9
https://doi.org/10.23919/CNSM52442.2021.9615586
https://doi.org/10.1109/TII.2020.3044942
https://doi.org/10.1109/ICC.2017.7996384
https://doi.org/10.1109/JIOT.2020.3020189
https://doi.org/10.3390/s20154336
https://doi.org/10.1145/3711953
https://doi.org/10.1016/j.icte.2017.12.005
https://doi.org/10.1109/ACCESS.2023.3240308
https://doi.org/10.1016/j.simpat.2021.102388
https://orbiwise.com/news/interference-management-in-lorawan-deployments/
https://orbiwise.com/news/interference-management-in-lorawan-deployments/
https://doi.org/10.1109/JIOT.2020.3005881
https://doi.org/10.1109/TWC.2021.3095667
https://doi.org/10.1109/GLOCOM.2017.8254509
https://doi.org/10.1145/3199902.3199913
https://github.com/sapgan/NS3-IoT-Simulator
https://github.com/sapgan/NS3-IoT-Simulator
https://github.com/AlexSartori/LoRaSim
https://github.com/AlexSartori/LoRaSim
https://lora-developers.semtech.com/documentation/tech-papers-and-guides/blind-adr/
https://lora-developers.semtech.com/documentation/tech-papers-and-guides/blind-adr/
https://doi.org/10.3390/s20174794
https://doi.org/10.1109/NOMS.2018.8406255
https://doi.org/10.23919/WMNC.2019.8881393
https://doi.org/10.1109/ICC.2018.8422800
https://doi.org/10.1109/JIOT.2022.3230913
https://doi.org/10.1109/JIOT.2017.2768498
https://doi.org/10.3390/s23041806
https://github.com/maartenweyn/lpwansimulation
https://github.com/maartenweyn/lpwansimulation
https://doi.org/10.1016/j.comcom.2020.01.056
https://doi.org/10.3390/s21041193
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

	Machine learning-based spreading factor optimization in LoRaWAN networks
	1 Introduction
	1.1 LoRa and LoRaWAN: an overview
	1.2 LoRaWAN architecture and components
	1.3 Chirp spread spectrum and spreading factors
	1.4 Device classes and class a operation
	1.5 Class A receive windows
	1.6 Adaptive data rate and blind adaptive data rate
	1.7 Problem statement
	1.8 Contribution of the paper
	1.9 Structure of paper

	2 Literature review
	2.1 Reinforcement learning approaches
	2.2 Supervised and deep learning approaches
	2.3 Hybrid and emerging approaches

	3 Data generation and preprocessing framework
	3.1 Transmission protocol
	3.2 Optimal spreading factor determination and feature extraction
	3.3 Temporal sequence construction
	3.4 Framework characteristics

	4 Proposed methodology
	4.1 LSTM-based temporal modeling
	4.2 LSTM training mechanism

	5 Performance evaluation of LSTM-offline mode
	6 LoRaWAN network performance evaluation-online mode
	6.1 Simulation setting and application
	6.2 Performance evaluation

	7 Discussion
	7.1 Analysis of offline mode results
	7.2 Implications of online mode performance
	7.3 Limitations and future directions

	8 Conclusions
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Correction note
	Generative AI statement
	Publisher's note
	References


	Button1: 
	Button2: 
	Button3: 
	Button4: 
	Button5: 
	Button6: 
	Button7: 
	Button8: 


