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double deep Q-network based
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Introduction: With the rapid development of 5G technology, Mobile Edge
Computing (MEC) has become a critical component of next-generation network
infrastructures. The efficient deployment of edge servers (ESs) is essential
for enhancing service quality (QoS). However, existing deployment methods
often fail in large-scale, high-density scenarios due to heterogeneous user
distributions and highly variable task loads.
Methods: To address these challenges, we propose a Spectral Clustering and
Double Deep Q-Network-based edge server deployment method (SDD). First,
spectral clustering is applied to extract spatial features such as base station
locations, dividing them into clusters and identifying candidate deployment
centers. A reinforcement learning environment guided by the clustering structure
is then constructed. A Double Deep Q-Network (DDQN) framework is introduced
to jointly optimize server deployment and task load distribution.
Results: The proposed approach improves deployment efficiency and service
quality by balancing system load and reducing service delay. We conduct
large-scale experiments using a real base station dataset from the Shanghai
Telecom Bureau. Our method is compared with multiple baselines, including
Random, Improved Top-K, K-means, and ESL.
Discussion: The experimental results demonstrate that our method outperforms
existing approaches in both delay reduction and load balancing. These findings
validate the effectiveness and practicality of the proposed SDD framework in
large-scale MEC environments.

KEYWORDS

edge server deployment, workload, access latency, spectral clustering, double deep
Q-network

1 Introduction

With the continuous advancement of 5G technology, modern communication systems
face increasingly stringent requirements for low latency, high bandwidth, and high
reliability (Zhou et al., 2021a). To address these challenges, mobile or multi-access
edge computing (MEC) has emerged as a promising computing paradigm. MEC shifts
computing and storage resources from centralized cloud infrastructures to distributed
nodes located at the edge of the network (Zhang J. et al., 2023; Pang et al., 2023). This
architecture enables end users to access computational services in closer proximity, thereby
alleviating the burden on the core network and significantly reducing the service response
time (Yi et al., 2023). The distributed and low-latency nature of MEC makes it particularly
well suited for time-sensitive applications such as intelligent transportation systems, the
industrial Internet of Things (IIoT), and augmented reality (AR) (Ning et al., 2023; Zhou
H. et al., 2023).
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Edge server deployment plays a crucial role in the edge
computing architecture (Vali et al., 2024). It involves the strategic
positioning of multiple edge servers within a designated area,
such as a smart city, to deliver computing services to a wide
array of Internet of Things (IoT) devices (Zhou et al., 2021b;
Lovén et al., 2020). More specifically, the deployment process
entails determining both the number and optimal locations of
edge servers, taking into account factors such as the geographic
distribution of users or devices, service demand, and network
connectivity (Cong et al., 2024). The primary objectives are to
ensure the efficient allocation of computing resources and to
maximize the coverage and quality of edge services.

Many studies have attempted to deploy edge servers closer
to end users to reduce transmission latency and improve service
responsiveness (Vali et al., 2024; Qin et al., 2021). However, these
methods often ignore key factors such as the dynamic nature of
task workloads, which makes maintaining good adaptability in
complex and changing edge computing environments difficult.
Several studies have considered the time-varying characteristics of
workloads and proposed deployment strategies based on machine
learning or other data-driven approaches to improve adaptability
and enable more intelligent resource allocation (Chen et al., 2023;
Zhang H. et al., 2023). However, in practical scenarios, the number
of base stations is already large and continues to grow. For example,
it is estimated that more than 50 5G base stations will be deployed
per square kilometer in Shanghai in the near future (Zhang et al.,
2024). This dense infrastructure scale poses significant challenges
to the computational efficiency and scalability of existing methods.
Therefore, the design of a deployment solution that ensures service
quality (QoS) while achieving high scalability and efficiency has
become a critical issue that must be addressed.

To address the above challenges, we propose an efficient
edge server deployment strategy. Specifically, considering the
uneven user distribution and significant variation in task loads
in edge computing environments, our design strategy is to adopt
reinforcement learning. Reinforcement learning possesses strong
adaptability to dynamic environments and can adjust deployment
strategies based on real-time state observations (Tang et al., 2024),
thus showing great potential in edge server placement problems.
However, traditional reinforcement learning methods typically rely
on end-to-end modeling and training. In large-scale base station
scenarios, such approaches often lead to an excessively large
action space, which significantly reduces training efficiency and
limits scalability. To overcome these limitations, we propose two
key improvements. First, we employ spectral clustering to model
spatial similarity among base stations, identify potential service
regions, and determine initial candidate deployment locations.
This step effectively reduces the action space size and improves
the deployment decisions’ structure and efficiency. Second, we
survey various deep reinforcement learning algorithms and find
that double deep Q-networks (DDQN) are effective in mitigating
Q-value overestimation, thereby enhancing the convergence and
stability of the learning process. Based on the clustering results, we
further apply a DDQN to jointly optimize the deployment of edge
servers and the allocation of task loads, with the aim of improving
both service quality and system deployment efficiency. The main
contributions of this study are summarized as follows:

• We construct an edge server deployment optimization model
that comprehensively considers two key performance metrics:
access latency and load balance.

• To achieve the optimization goal, we propose an edge server
deployment strategy named spectral clustering and double
deep Q-network-based deployment (SDD). First, spectral
clustering is used to divide base stations into spatial clusters
and identify candidate deployment regions. Then, a DDQN
framework is applied to jointly optimize the server placement
and workload allocation. This method improves both service
quality and system efficiency while ensuring load balance.

• To evaluate the effectiveness of the proposed method, we
conduct extensive experiments on a real base station dataset
provided by the Shanghai Telecom Bureau. The results show
that SDD outperforms several baseline algorithms in terms of
access latency reduction and load balancing.

The remainder of the paper is organized as follows. Section 2
describes related works. Section 3 introduces our edge computing
physical model and its formal definitions. Section 4 introduces
the edge server deployment strategy SDD. Section 5 presents our
experimental results and analysis. Finally, Section 6 concludes the
paper and discusses directions for future work.

2 Related work

In this section, we review recent research on edge server
deployment and analyze the key differences between existing
methods and our approach. The specific differences are
summarized in Table 1.

2.1 Static edge server deployment

Many exciting researchers have proposed edge server
deployment strategies to improve service performance in various
application scenarios. For example, Qin et al. (2021) proposed
an improved Top-K algorithm for edge server deployment in
smart city IoT applications, with the aim of optimizing server load
balancing and reducing deployment costs. By considering factors
such as the distance between base stations and edge servers, the
weight ratio of base station workloads, and server coverage, their
method enhances both quality of experience (QoE) and the quality
of service (QoS). Ye et al. (2023) proposed a deployment method
based on the optimal benefit quantity and a genetic algorithm
to determine the number and placement of edge servers. Li
et al. (2022) presented an improved K-means clustering-based
approach for optimizing the number and locations of edge servers
in multi-base station scenarios. Song et al. (2022) introduced a
joint optimization strategy for edge server placement and user task
offloading in wireless edge networks based on a genetic algorithm,
with the aim of minimizing average service delay via efficient
deployment under low-latency constraints. Luo et al. (2022)
proposed a cost-effective edge server network design (ESND)
method to balance network density and construction costs, thereby
enhancing resource sharing and service performance among edge
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TABLE 1 The differences between our work and existing studies.

References Adaptivity BS scale Optimization objective Method

Qin et al. (2021) ✗ 100–1,000 Load balance, cost Improved Top-K

Ye et al. (2023) ✗ 300–3,000 Delay, load balance HE-GA

Li et al. (2022) ✗ 100–1,000 Delay Enhanced K-Means

Song et al. (2022) ✗ # Delay GA

Luo et al. (2022) ✗ # Network cost, density Integer + Approximation

Pan et al. (2024) ✗ # Deployment cost, coverage, latency NSGA-II

Chen et al. (2023) ✓ 200–1,400 Load balance Mobility-aware placement

Pandey et al. (2023) ✓ 50–1,300 Energy, workload balance PSO

Zhou et al. (2024) ✓ 0–200 Latency, energy, load CKM-MAPPO

Zhou Z. et al. (2023) ✓ 0–200 Fast response, latency DDPG

Yan et al. (2024) ✓ # Latency, energy, workload SARSA

Jiang et al. (2023) ✓ 50–350 Cost and latency Ant Colony

Asghari et al. (2023) ✓ 25–100 Load, delay, energy MAPPO

SDD (Ours) ✓ 1,600–2,600 Delay, load balance SC + DDQN

# indicates that the BS scale is measured in terms of user number or user density.

servers in MEC environments. The literature (Pan et al., 2024;
Pandey et al., 2023) used multi-objective non-linear optimization
and genetic algorithms to address deployment challenges in
various scenarios, such as smart manufacturing and smart cities,
with a focus on deployment costs, load balancing, and energy
optimization. Although existing methods have made progress in
edge server deployment, most of them lack in-depth modeling and
responsive mechanisms for varying environmental characteristics,
task requirements, and system states, thus resulting in limited
adaptability under different scenarios and workload conditions.

2.2 Dynamic edge server deployment

In recent years, various adaptive edge server deployment
strategies have been proposed to improve the responsiveness and
robustness of deployment decisions in dynamic and complex
environments. Chen et al. (2023) designed a mobility-aware
placement method to address the load imbalance caused by users’
changing points of interest. Zhang H. et al. (2023) developed a
two-tier digital twin model and a multistage adaptive deployment
optimization algorithm (Multi-AJDO) to capture the dynamics
of MEC networks and efficiently deploy digital twin servers.
Zhou et al. (2024) proposed CKM-MAPPO, which is a multi-
agent reinforcement learning-based strategy for multiobjective
optimization in vehicular networks that focuses on improving
load balance while reducing latency and energy consumption. In
another study, Zhou Z. et al. (2023) introduced CFD, which
is a deployment algorithm based on the deep deterministic
policy gradient (DDPG) for achieving fast response in vehicular
scenarios. Yan et al. (2024) presented ESL, which is a SARSA-
based deployment strategy, to address workload imbalance, latency,
and energy efficiency in IoMT environments. Although these
approaches differ in their algorithmic implementation, which range
from reinforcement learning to digital twin modeling and heuristic

adjustment, they share a common goal: to increase the adaptability
of edge server deployment under time-varying workloads, user
mobility, and system dynamics. Jiang et al. (2023) addressed the
issue of dynamic environments in mobile edge computing and
proposed a deep reinforcement learning-based server placement
strategy. They employed D3QN and PPO algorithms to optimize
different deployment objectives and utilized image-based state
encoding to improve decision-making efficiency. Asghari et al.
(2023) focused on problems such as regional load imbalance
and server migration cost. They proposed a hybrid edge server
deployment mechanism that combines a modified Red Deer
Optimization algorithm with Markov game theory. Their method
integrates both static initial placement and dynamic migration
strategies to enhance overall resource utilization. Bahrami et al.
(2023) tackled the challenges of high energy consumption and
delayed deployment decisions. They introduced an energy-aware
edge server placement strategy based on Deep Q-Learning. By
dynamically adjusting the server positions, their approach aims to
reduce energy usage and service latency while maintaining quality
of service. Although the above methods demonstrate a certain
level of adaptability, their scalability remains limited in large-scale
edge computing scenarios, which makes balancing deployment
efficiency and overall system performance difficult.

Overall, the proposed method differs from existing approaches
in that it places greater emphasis on adaptability to environmental
variations, flexibility in strategy design, and scalability in large-scale
deployment scenarios.

3 Research scenario and model
establishment

In this part, we define the system model for edge
computing along with several formal definitions, as detailed
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TABLE 2 Notations and descriptions.

Symbol Description

B Set of base stations

E Set of edge servers

U Set of user devices

W(b) Task size

B Channel bandwidth

P Signal power

N(b, e) Channel noise power between b and e

α Noise scaling coefficient

v Signal propagation speed in medium

ne Number of processing units at edge server e

μ Processing capacity of a single unit at server e

dtrans(b, e) Transmission delay

dprop(b, e) Propagation delay

dcomp(b, e) Computation delay

d(b, e) Total access delay from b to e

Lb Workload of base station b

ui Online time of intelligent terminal device i

Ls Total workload of edge server s

L Maximum workload difference between any two edge servers

below. The main notations and their meanings are listed
in Table 2.

3.1 System model

As illustrated in Figure 1, the edge computing system
considered in this study adopts a three-tier architecture that
consists of a device layer, an edge layer, and a cloud layer. We let
B = {b1, b2, · · · , bN} denote the set of N base stations (BSs) and
let U = {u1, u2, · · · , uM} represent the set of mobile user devices.
Each base station bi ∈ B serves nearby user terminals and offloads
their computational tasks to an associated edge server. We assume
that K base stations are selected to deploy edge servers (ESs), which
form the edge server set E = {e1, e2, · · · , eK}, where each ek ∈ E is
colocated with a bi ∈ B. We let φ :B → E denote the association
mapping from base stations to edge servers such that each bi is
connected to exactly one edge server. Accordingly, the base stations
are partitioned into K disjoint subsets Bk ⊆ B such that

⋃K
k=1 Bk =

B, Bi ∩ Bj = ∅, for i �= j We denote the coordinates of base
station bi and edge server ek as (xi, yi) and (xk, yk), respectively. The
Euclidean distance between them is as follows:

dis(bi, ek) =
√

(xi − xk)2 + (yi − yk)2 (1)

If an edge server becomes overloaded, part of its workload is
offloaded to a remote cloud server to ensure service continuity and
maintain overall system performance.

3.2 Access delay model

In edge computing systems, the total delay experienced
by a user request typically comprises three main components:
transmission delay, propagation delay, and computation delay.
The backhaul delay is not considered in this study because we
assume high-speed wired connections between edge servers and
base stations, making it negligible compared to the other delay
components. Specifically, transmission delay refers to the time
required to send task data from a base station to an edge server;
propagation delay represents the time taken for the signal to
physically traverse the transmission medium; and computation
delay denotes the time needed for the edge server to process the
task. These three types of delay jointly determine the overall system
performance and are therefore considered in the system design.

Transmission delay: The transmission delay from base station
b to edge server e is computed based on Shannon’s channel capacity
formula (Taub and Schilling, 1991). Given a task of size W(b) (in
bits), the delay is defined as:

dtrans(b, e) = W(b)
Ctrans(b, e)

= W(b)

B · log2

(
1 + P

N(b,e)

) (2)

where B denotes the channel bandwidth, P is the received signal
power, and N(b, e) = α · dis(b, e) represents the noise power, which
is assumed to increase linearly with the distance dis(b, e) between b
and e. The parameter α is a noise scaling coefficient.

Propagation delay: The propagation delay captures the
physical time required for signal transmission between the base
station and the edge server, and is calculated by:

dprop(b, e) = dis(b, e)
v

(3)

where dis(b, s) is the physical distance between b and e, and v is the
signal propagation speed in the medium.

Computation delay: The computation delay depends on the
task size and the processing capacity of the edge server. Assuming
that edge server e has ne processing units, each with a computation
rate μ (in bit/s), the delay is computed as:

dcomp(b, e) = W(b)
ne · μ (4)

Total delay: Combining the above components, the total delay
for task processing from base station b to edge server s is given by:

d(b, e) = dtrans(b, e) + dprop(b, e) + dcomp(b, e) (5)

3.3 Workload model
Workload Evaluation Metrics are used to quantify the load

situation and performance of edge servers. They represent the
total amount of resources and time required to complete tasks or
provide services. Any computational task or application running
on a computing device can be regarded as workload. In this study,
the workload of an edge server s is defined as the total workload of
all base stations served by this edge server, denoted by Ls:
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FIGURE 1

Diagram of Mobile edge computing architecture.

Ls =
∑
b∈Bs

Lb (6)

where Bs ⊆ B represents the set of base stations served by edge
server s, and Lb is the workload of base station b. It can be
formulated as follows:

Lb =
∑

ui∈Ub

ui (7)

where Ub ⊆ U denotes the set of terminal devices associated with
base station b, and ui represents the online time of terminal device
i.

Under this deployment scheme, the workload difference
between any two edge servers can be expressed as L.

L = min max
i,j∈E

|Li − Lj| (8)

In this equation, Li and Lj represent the workloads of edge
server i and edge server j, respectively. The formula expresses the
workload difference between two edge servers. The smaller the
value of L, the more balanced the workloads between the two edge
servers.

3.4 Problem definition

The core issue of this study is how to select and deploy edge
servers to appropriate locations in order to achieve low latency and

balanced workloads. This problem is a multi-objective optimization
problem that requires a trade-off between the following two
objectives: (1) Minimizing user access latency to improve user
experience. (2) Achieving load balancing of edge servers to optimize
system performance. Therefore, the optimization objectives of this
problem can be formally defined as follows:

min
1
|B|

∑
b∈B

∑
e∈E

χbe · (dtrans(b, e)+dprop(b, e)+dcomp(b, e)) (9)

min max
i,j∈E

|Li − Lj| (10)

Subject to

∑
e∈E

χbe = 1, ∀b ∈ B (11)

χbe ∈ {0, 1}, ∀b ∈ B, ∀e ∈ E (12)

d(b, e) ≤ dmax, ∀b ∈ B, ∀e ∈ E (13)

Lsj ≤ Lmax, ∀j ∈ E (14)

Equations 9, 10 define the two optimization objectives:
minimizing average latency and balancing workload, and
Equations 11–14 are the constraints of the objective function.
Equation 11 ensures that each base station is assigned to exactly
one edge server. Equation 12 specifies the binary nature of the
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FIGURE 2

The overall flowchart of SDD.

assignment variable χbe. Equation 13 guarantees that a base station
can only connect to edge servers within a predefined maximum
service range dmax. Equation 14 ensures that the workload of each
edge server does not exceed its maximum processing capacity Lmax.

4 Edge server placement strategy
based on SDD

4.1 Overview of the SDD strategy

This paper proposes a two-phase edge server deployment
strategy based on spectral clustering and DDQN, referred to as
Spectral-DDQN Deployment (SDD). The strategy aims to improve
load balance, reduce delay, and enhance deployment efficiency in
mobile edge computing environments. The process is illustrated in
Figure 2.

In the first phase, spectral clustering is used to partition the
set of base stations into compact subregions. A similarity matrix
based on pairwise distances between base stations is constructed,
and the Laplacian matrix is applied to capture the network’s
topological structure. The centroid of each cluster is selected as the
initial candidate location for edge server deployment. This phase
effectively reduces the dimensionality of the decision space, which
helps reduce the computational complexity and provides a solid
foundation for efficient deployment.

In the second phase, a DDQN is used to optimize the
deployment strategy. Each edge server is treated as an independent
agent that operates in a partially observable environment. Agents
interact with the environment, with the aim of maximizing their
cumulative rewards while adjusting their positions and service

scopes. The DDQN framework mitigates Q-value overestimation
and improves stability via its double-network structure. This phase
optimizes load balance, minimizes delay, and ensures a coordinated
deployment strategy that enhances overall efficiency.

4.2 Base station partitioning and initial
cluster center selection

In large-scale base station networks, nodes often exhibit
complex spatial topologies and nonlinear similarity relationships,
which traditional Euclidean distance-based clustering methods fail
to capture effectively. To better extract the underlying connectivity
among base stations and reduce the complexity of deployment
modeling, this study employs spectral clustering (Tang et al.,
2023; Berahmand et al., 2022) for structure-aware partitioning
of the base station set. The process is illustrated in Figure 3. By
constructing a similarity graph and extracting the eigenvectors
of the graph Laplacian, spectral clustering preserves topological
information while dividing the network into several compact and
densely connected subregions. This process helps alleviate the
curse of dimensionality and improves the convergence efficiency
of subsequent training. After partitioning, the geometric center of
each subregion is calculated based on the coordinates of all base
stations within it and is used as the initial deployment location for
the edge server. These centers serve as reasonable initial values for
the following DDQN-based optimization phase, thus enhancing the
efficiency and stability of strategy learning. The specific steps are
described as follows:
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FIGURE 3

Initial deployment center extraction based on spectral clustering.

1) Similarity matrix construction: Given a set of base stations
B = {b1, b2, . . . , bn}, where each base station bi is located at
coordinates li ∈ R

2, a similarity matrixW ∈ R
n×n is constructed to

quantify the spatial closeness between base stations. The similarity
between any two base stations bi and bj is computed via a Gaussian
kernel:

Wij = exp

(
−‖li − lj‖2

2σ 2

)
, Wii = 0 (15)

where σ is a bandwidth parameter that controls the decay of
similarity with distance, and where Wii = 0 is set manually to
eliminate self-loops in the similarity graph, as we are interested only
in the relationships between different base stations.

2) Laplacian matrix computation: The degree matrix D ∈
R

n×n is a diagonal matrix with the following entries:

Dii =
n∑

j=1

Wij (16)

The normalized Laplacian matrix Lsym is computed as follows:

Lsym = I − D−1/2WD−1/2 (17)

This matrix captures the global topological structure of the base
station network.

3) Spectral embedding: The K smallest eigenvalues of Lsym
and their corresponding eigenvectors {h1, h2, . . . , hK} are extracted.
These are stacked columnwise to form the embedding matrix:

H = [h1, h2, . . . , hK ] ∈ R
n×K (18)

Each row hi serves as a low-dimensional structural
representation of base station bi and captures its connectivity
features within the network.

4) K-means clustering: The embedding vectors Ui are used
as inputs to the K-means algorithm, which clusters them into K
disjoint subregions:

C =
K⋃

k=1

Ck, Ci ∩ Cj = ∅ (19)

Each Ck represents a structurally cohesive region of base
stations. These regions form the basic units for downstream edge
server deployment and resource optimization.

5) Initial center estimation: For each subregion Ck, the
initial deployment location of the edge server is determined by
computing the geometric center of all base stations within the
region. Specifically, the center ck is defined as the coordinatewise
average of all base station positions in Ck, which is expressed as
follows:

ck = 1
|Ck|

∑
lb∈Ck

lb (20)

where ck denotes the geometric center of subregion Ck, lb
represents the coordinates of the b-th base station in the region,
and |Ck| is the number of base stations in Ck. This initialization
provides a spatially representative and computationally efficient
starting point for the subsequent reinforcement learning process,
thus facilitating faster convergence and improved solution quality.

6) Pseudocode: Algorithm 1 performs structure-aware
partitioning of the base station set and generates initial deployment
centers, with the aims of reducing the modeling complexity of
the deployment strategy and improving the efficiency of the
reinforcement learning phase. Lines 1–5 construct a similarity
matrix via a Gaussian kernel to capture the latent connectivity
among base stations. Lines 6–8 compute the graph Laplacian to
extract global topological information. Lines 9–10 apply spectral
embedding and K-means clustering to divide the base stations
into multiple topologically compact subregions. Finally, lines
11–12 calculate the geometric center of each subregion as the
initial deployment location of the corresponding edge server,
which provides a reasonable initialization for subsequent policy
optimization.

4.3 Determining the optimal deployment
location of edge servers

After completing the initial regional partitioning through
spectral clustering, the double deep Q-network (DDQN) method
(Lu et al., 2025; Zhang et al., 2022) is used to further optimize
the location selection and load allocation strategies for the edge
servers. In this framework, each edge server is modeled as an
agent that selects actions based on its own observed state and
interacts with the environment to receive corresponding reward
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Input: Base station set B = {b1,b2, . . .,bn} with
coordinates, number of clusters K, and
Gaussian kernel width σ

Output: Subregion sets {C1, . . .,CK} and initial
deployment centers {c1, . . .,cK}

// Step 1: Construction of a similarity matrix
via a Gaussian kernel

1 The similarity matrix W ∈ R
n×n is initialized to

all zeros ;
2 for i = 1 to n do

3 for j = 1 to n do

4 The distance dij ← ‖li − lj‖ is computed ;

5 Wij ← exp
(
− d2ij

2σ2

)
;

6 end

7 end

// Step 2: Computation of the graph Laplacian
8 for i = 1 to n do

9 Dii ← ∑n
j=1Wij

10 end

11 Lsym ← I− D−1/2WD−1/2

// Step 3: Spectral embedding
12 The first K eigenvectors {h1, . . .,hK} of L are

computed and, the matrix H ∈ R
n×K, where

H[i, :] = [h1(i), . . .,hK(i)], is formed ;
// Step 4: Clustering in the embedding space

13 K-means is applied to the rows of U to obtain
subregions {C1,C2, . . .,CK} ;
// Step 5: Computation of the initial center of
each cluster

14 for k = 1 to K do

15 ck ← 1
|Ck |

∑
lb∈Ck

lb
16 end

17 return {Ck}Kk=1, {ck}Kk=1

Algorithm 1. Base station partitioning and initial center estimation.

signals. Compared with traditional Q-learning and standard DQN
methods, the DDQN adopts a dual-network architecture that
consists of an evaluation network and a target network, which
effectively mitigates the overestimation of Q-values and improves
the stability and accuracy of policy convergence. This method
achieves a good balance between computational complexity and
policy performance, which makes it well suited for edge computing
environments with many nodes and complex state spaces.

4.3.1 MDP definition
To formulate the edge server deployment problem as a

reinforcement learning task, we model the environment as a
Markov decision process (MDP) (Lauri et al., 2023; Zhou and
Abawajy, 2025). This formulation enables the agent to learn
deployment and allocation strategies through sequential decision-
making, where each action affects not only the immediate reward
but also the future system state. The MDP is defined formally by
the following key components:

1) State space: To comprehensively represent the system
environment at each decision step, the state s is defined as a
composite vector that consists of three key components: the current
deployment locations of edge servers, the average access delay
experienced by users, and the degree of load balance across the
system. The formal definition is as follows:

s = [χ , d, L] (21)

where χ ∈ {0, 1}k×m denotes the deployment matrix. Each row
corresponds to an edge server, and each column corresponds to
a base station. The element χi,j = 1 if edge server i is deployed
at base station j and χi,j = 0 otherwise. d represents the current
average access delay, and L is the standard deviation of edge server
workloads, which quantifies the degree of load imbalance in the
system.

2) Action space: The action space describes the deployment
location decisions of edge servers and their associated base station
assignment strategies at each decision step. Specifically, in this
research, the action of each edge server i (i ∈ {1, 2, . . . , k}) at any
decision step is represented by a tuple:

ai = (bi, Gi) (22)

where bi ∈ B denotes the selected deployment location (base
station) for edge server i and where Gi ⊆ B denotes the set of
base stations assigned to and served by edge server i at the current
decision step. Consequently, the complete action space is defined as
the set of actions of all edge servers:

A = {ai | i = 1, 2, . . . , k} (23)

3) Reward function: At each time step t, the edge server agents
make their action decisions at according to the current system state
st and subsequently receive an immediate reward rt . This reward
function comprehensively evaluates the performance of the chosen
actions in terms of task processing delay and load balance while
simultaneously imposing penalties for any edge server overload
occurrence. The reward function is defined as:

rt = − (
α · d(b, e) + β · L + λ · Lover

)
(24)

where α, β , and λ are weighting coefficients that control the relative
importance of delay, load balance, and server overload penalties,
respectively. The term d(b, e) represents the latency between base
station b and edge server e, and L denotes the workload imbalance
metric,

To penalize edge servers for overload conditions, we define
Lover as the cumulative overload across all edge servers:

Lover =
∑
s∈E

max (0, Ls − Cs) (25)

Here, Ls is the current workload of edge server s, and Cs is
its maximum capacity. This term ensures that any excess beyond
capacity contributes to the penalty, thereby guiding the agent to
avoid overload situations.
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FIGURE 4

DDQN-based optimization framework.

4.3.2 DDQN-based multi-agent optimization
framework

As illustrated in Figure 4, this study establishes a reinforcement
learning framework based on a Double Deep Q-Network (DDQN),
designed to optimize the deployment of edge servers and their
corresponding base station allocation strategies. The framework
consists of two neural networks with identical structures but
independent parameters: the current Q-network Q(s, a; θ) and the
target Q-network Q(s, a; θ ′). The current network is responsible
for estimating the Q-values of state-action pairs and guiding the
decision-making process, whereas the target network provides a
stable reference for training updates. This dual-network design
helps alleviate the overestimation problem commonly found in
traditional DQN models.

Moreover, this framework adopts a multi-agent reinforcement
learning (MARL) architecture. Each edge server is modeled as an
independent agent that observes its local environment and selects
actions accordingly. During the training process, agents share
a common Q-network architecture under a centralized training
paradigm, but execution remains decentralized. This design follows
the cooperative MARL setting under the Centralized Training
and Decentralized Execution (CTDE) framework. The agents
collectively work toward the global objective of optimizing server
deployment and load distribution across base stations.

At each time step t, each edge server agent interacts with the
environment as a reinforcement learning agent; it selects an action
at based on the current state st , receives an immediate reward
rt , and transitions to the next state st+1. In constructing the Q
target value, the DDQN introduces a decoupled action selection
strategy, where the current network selects the action and the target
network evaluates it. The corresponding target Q value is computed
as follows:

yt = rt + γ Q
(

st+1, arg max
a′

Q(st+1, a′; θ); θ ′
)

(26)

where yt is the target Q value at time step t, rt is the
immediate reward received from the environment, γ ∈
(0, 1) is a discount factor that balances the importance of
future rewards, Q(st+1, a′; θ) is the predicted Q value of
the next state–action pair from the current Q-network, and
arg maxa′ Q(st+1, a′; θ) is the optimal action selected by the
current network. This decoupled calculation method mitigates
the overestimation bias introduced by the max operator, thereby
improving the stability and generalizability of the learned
deployment policy.

To increase the estimation accuracy of the deployment
strategy, the current Q-network constructs a loss function
based on the target Q-value and optimizes the parameters by
minimizing the prediction error. Specifically, the mean squared
error (MSE) is adopted as the loss function, which is defined
as follows:

L(θ) = (
yt − Q(st , at; θ)

)2 (27)

To optimize the parameters of the current Q-network,
this work adopts the adaptive optimization algorithm
Adam to minimize the loss function L(θ) during each
training iteration. The parameter update is performed
as follows:

θ ← θ − α∇θL(θ) (28)

To reduce the fluctuation in value estimation, the parameters
of the target Q-network θ ′ are not updated during training but
are synchronized periodically with the current network every C
iterations, as defined below:

θ ′ ← θ (29)

During the action selection process, the agent adopts
an ε-greedy policy to balance exploration and exploitation.
Specifically, with a probability of ε, the agent selects a
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random exploratory action; with a probability of 1 − ε,
it selects the action with the highest estimated Q value, as
defined by

at =
⎧⎨
⎩

random action, with probability ε

arg max
a

Q(st , a; θ), with probability 1 − ε
(30)

In the early stage of training, a relatively large ε is typically
used to encourage diverse exploration. As the training progresses,
ε is gradually reduced to promote convergence to near-optimal
policies.

In addition, to increase training efficiency and improve
sample diversity, the DDQN framework incorporates an
experience replay mechanism. In each interaction step,
an experience tuple (st , at , rt , st+1) is stored in the replay
buffer D. During training, mini-batches of experience
data are sampled randomly from D to update the Q-
network. This mechanism helps eliminate the temporal
correlation between consecutive samples and improves
the sampling efficiency and generalization ability of the
learned policy.

4.3.3 Optimal-edge server deployment algorithm
based on a DDQN

Algorithm 2 illustrates the DDQN-based optimization
framework for edge server deployment. Based on the subregion
partitions and initial deployment centers obtained in Stage 1,
this algorithm further refines both physical server placements
and base station assignments via a deep reinforcement learning
framework, with the aim of jointly optimizing the system-wide
average latency and load balance. Lines 1–2 initialize the current
Q-network and the target Q-network and establish the experience
replay buffer D to store state transition samples generated
via server-environment interactions. Lines 3–4 initialize the
environmental state, which includes the server locations, base
station assignments, and system load status, at the beginning of
each training episode to serve as the basis for subsequent policy
learning. Lines 5–9 describe the interaction process between
each edge server agent and the environment: each agent selects
an action based on its current observation via an ε-greedy
strategy, performs either deployment adjustment or base station
reassignment, and then receives an immediate reward and the
next state from the environment. The resulting transition tuple
is stored in the replay buffer D. Lines 10–14 constitute the
core of the policy training phase. A mini-batch of transitions is
sampled from the replay buffer to compute target Q-values. A
loss function based on the mean squared error (MSE) is then
constructed, and the Q-network is updated via gradient descent
to iteratively improve the deployment strategy. Lines 15–16
implement parameter synchronization for the target network:
every G training steps, the target network parameters are updated
by copying those of the current network to mitigate instability in Q
value estimation. After multiple episodes of interaction and policy
updates, the algorithm outputs the optimized server deployment
scheme and base station assignments, thereby effectively

Input: Initial base station partitions {C1, . . .,CK}
and initial deployment centers {c1, . . .,cK}
from Stage 1, environmental parameters,
replay buffer capacity D, target network
update interval C, total number of training
episodes L, mini-batch size M, learning
rate α, and discount factor γ

Output: Optimized deployment actions and base
station assignments for each edge server

1 The current Q-network is initialized with
parameters θ, and the target network is
initialized with parameters θ ′;

2 The replay buffer D is initialized as empty;
3 for episode = 1 to L do

4 The environmental state s0 is initialized with
initial deployment centers {ck};

5 for each edge server ei in the system do

6 The current state st is observed;
7 Action at is selected via an ε-greedy

policy:

at =
⎧⎨
⎩random action, with probability ε

argmaxa Q(st,a; θ), with probability 1− ε

8 Action at is executed, reward rt is
received, and the next state st+1 is
observed;

9 Transition (st,at,rt,st+1) is stored into
replay buffer D;

10 if size of D exceeds D then

11 The oldest experience is discarded;
12 end

13 A mini-batch of size M is sampled from D;
14 The target Q value is computed:

yt = rt + γQ
(
st+1,argmax

a′
Q(st+1,a′; θ); θ ′

)

15 The gradient descent step is performed:

θ ← θ − α∇θ(yt − Q(st,at; θ))2

16 end

17 if episode mod C == 0 then

18 The target network is updated: θ ′ ← θ;
19 end

20 end

21 return Final optimized deployment strategy

Algorithm 2. SDD: DDQN-based edge server deployment
optimization.

reducing the average system latency while improving the overall
load balance.
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TABLE 3 Core parameters.

Parameter Value

Standard server computing capacity μ 100 bps

Channel bandwidth B 5 Hz

Channel signal power P −35 dBm

Signal propagation speed v 2 × 108 m/s

Maximum acceptable service delay dmax 0.2 s

5 Experiments

To evaluate the effectiveness of the proposed solution, we
conducted extensive experiments and compared it with several
algorithms, as detailed below.

5.1 Experimental settings

In this subsection, we present a series of experimental settings.
1) Experimental setup: the experiment was conducted in a

Windows 10 operating system environment with a hardware
configuration of an Intel(R) Core(TM) i7-11800H @2.30 GHz
processing unit (with 16 processor cores), a clock speed of
approximately 2.3 GHz, and a memory capacity of 16,384
MB. All the experimental procedures were implemented via
the Python 3.7 programming language. Table 3 shows the core
parameter settings.

2) Dataset: for the experimental evaluation, we utilized
a real-world base station dataset provided by the Shanghai
Telecommunications Bureau (He et al., 2022). During the data
filtering stage, invalid or incomplete entries were removed, which
resulted in a refined dataset that contains information from 2,800
base stations. The dataset includes key details such as base station
IDs, user access records, geographic coordinates (latitude and
longitude), and continuous 30-day access durations (loads).

3) Methods for comparison.

• Improved Top-K (Qin et al., 2021): the improved
Top-K algorithm optimizes edge server placement by
comprehensively considering base station task weights,
distances, server coverage, and computational capacity limits,
aiming to enhance load balancing and overall deployment
efficiency.

• Random: to address the instability of K-means, the Random
algorithm randomly selects initial cluster centers and reduces
the impact of this selection via multiple initializations, which
results in more stable clustering. It is particularly robust when
handling large-scale data.

• K-means (Li et al., 2022): K-means is a clustering method that
divides the dataset into k clusters by minimizing the distances
between data points and the cluster centers. It iteratively
adjusts the cluster centers, but its performance can be unstable
due to the initial center point selection.

• ESL (Yan et al., 2024): ESL is an advanced algorithm
for ESD. It utilizes FCM clustering to group base
stations for initializing deployment and applies SARSA
reinforcement learning to optimize server placement to
achieve multiobjective optimization for load balance, latency,
and energy consumption.

4) Evaluation metrics.

• Access delay: access delay measures the average
communication latency experienced by users when
connecting to edge servers. It reflects the system’s
responsiveness. A lower access delay indicates that the
deployment strategy effectively reduces the latency between
users and servers, thereby improving service quality.

• Load standard deviation: the load standard deviation reflects
the balance of the task distribution across edge servers.
A smaller standard deviation implies a more uniform
workload distribution, which helps prevent server overload
or underutilization, thus improving resource efficiency and
system stability.

• Reward convergence curve: to assess the learning process
and policy stability of the proposed method, the reward
convergence curve during training is examined. The reward
function jointly considers both access delays and load balance.
The convergence trend of this curve indicates whether
the algorithm can efficiently and stably find an optimal
deployment strategy over time.

5.2 Experimental comparison and analysis

To comprehensively evaluate the effectiveness of the proposed
scheme, we utilized two real-world datasets that correspond to
different time periods and designed two groups of comparative
experiments:

• Experiment 1: in this experiment, the number of deployed
edge servers was varied to compare the performance of
different deployment strategies in terms of access latency and
load standard deviation. It aimed to analyze the effect of
deployment scale on system performance.

• Experiment 2: in this experiment, the number of base stations
was varied while keeping the number of edge servers fixed.
The goal was to evaluate the robustness of each strategy under
changing network sizes, again with a focus on access latency
and load balance.

5.2.1 Performance comparison of different
numbers of edge servers

(1) Access delay analysis : Figures 5, 6 illustrate the access
latency performance of different deployment strategies under
varying numbers of edge servers, which are based on two
datasets from different time periods. The proposed SDD algorithm
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FIGURE 5

Access latency of edge servers (2014-08-01–2014-08-15).

FIGURE 6

Access latency of edge servers (2014-08-16–2014-08-30).

consistently achieved the lowest average access latency across
all deployment scales and time intervals, thus demonstrating
its superior capability in optimizing service placement for
latency reduction. In contrast, ESL yielded slightly greater
latency than SDD did. This was due to its adoption of
a single-agent reinforcement learning framework, which lacks
global state coordination and joint optimization capabilities. As
a result, it may produce suboptimal placement decisions in
multipoint deployment scenarios, thereby leading to nonideal
server distributions and elongated access paths. The Random
method, which relies solely on stochastic deployment, failed
to model the spatial distribution of base stations and user
demand. This often results in edge servers being located far
from high-demand regions, thereby significantly increasing the
average communication latency. Although K-means, which is
a traditional unsupervised clustering algorithm, provided some
degree of spatial aggregation, it clusters nodes solely based on

FIGURE 7

Load standard deviation (2014-08-01–2014-08-15).

FIGURE 8

Load standard deviation (2014-08-16–2014-08-30).

Euclidean distance. This approach overlooks critical factors such
as the user request density, task volume, and network topology.
Consequently, the resulting cluster centers tended to deviate from
the optimal deployment positions, which led to subpar latency
performance. The Improved Top-K method partially shortens
access paths through candidate node ranking and greedy selection.
However, it lacks global load awareness and overall optimization
capability, leading to suboptimal placement decisions. As it focuses
only on local optimization without considering dynamic multi-
task environments, it is prone to local optima and fails to
achieve globally optimal deployment. Consequently, its overall
performance remains inferior to SDD.

(2) Load standard deviation analysis: Figures 7, 8 illustrate
the variation in the load standard deviation as the number
of edge servers increased from 100 to 500 across two time
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FIGURE 9

Access latency of edge servers under different numbers of base
stations (2014-08-01–2014-08-15).

FIGURE 10

Access latency of edge servers under different numbers of base
stations (2014-08-16–2014-08-30).

periods. Overall, all methods showed a decreasing trend, which
indicates that the use of more servers improves load balance.
Among all the schemes, SDD consistently achieved the lowest
deviation. For example, during the period 2014-08-01–2014-08-
15, with 500 servers deployed, the deviation of SDD reached
26.32, representing a reduction of 16.1% compared with ESL
(31.4), and a reduction of 19.76% compared with Improved Top-K
(32.8). This highlights its robust balancing capability under various
densities. ESL ranked second due to its reinforcement learning
mechanism, although it is limited by its single-agent structure.
Random and K-means performed the worst, especially under
low server counts, as they lack workload awareness. Improved
Top-K performed moderately well and narrowed the gap in

FIGURE 11

Load standard deviation under different numbers of base stations
(2014-08-01–2014-08-15).

FIGURE 12

Load standard deviation under different numbers of base stations
(2014-08-16–2014-08-30).

some cases, but lacks adaptive load sensing, which makes it less
effective than SDD.

5.2.2 Performance comparison of different
numbers of base stations

1) Access delay analysis: Figures 9, 10 illustrate the trends in
average access delay across different deployment schemes as the
number of base stations increased from 1,600 to 2,600 over two
distinct time periods. Overall, the access delays of all methods
gradually increased with the increasing number of base stations,
which was primarily because of the increased system workload
caused by denser deployments. As shown in Figure 9, the proposed
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FIGURE 13

Reward convergence comparison between spectral clustering + DDQN and DDQN.

SDD algorithm consistently achieved the lowest access delay under
all deployment scales. For example, when the number of base
stations reached 2,600, the access delay of SDD was 0.109 s, which
is significantly lower than those of ESL (0.115 s), Improved Top-
K (0.124 s), Random (0.131 s), and K-means (0.120 s). Even in
smaller-scale deployments (e.g., with 1,600 base stations), SDD
consistently maintained stable low-latency performance, achieving
a delay of 0.085 s, compared to an access delay of 0.089 s for
ESL. As shown in Figure 10, SDD again outperformed all the
baseline methods. When the number of base stations reached
2600, SDD achieved a delay of 0.103 s, whereas those of both K-
means and Random exceeded 0.12 s, which resulted in relative
differences of nearly 14.12%. At all other deployment scales,
SDD also consistently maintained the lowest access delay, thereby
demonstrating its superior optimization effectiveness.

(2) Load standard deviation analysis: Figures 11, 12 illustrate
the variations in the load standard deviation for different
deployment strategies as the number of base stations increased
from 1,600 to 2,600 across two distinct time periods. Overall,
the load standard deviation for all algorithms tended to increase
with increasing base station count. A comparison of the overall
performance of each method clearly reveals that the proposed SDD
method consistently achieved the lowest load standard deviation
and demonstrated the most stable performance. ESL closely
followed, with good balancing capability. Improved Top-K ranked
in the middle range, whereas both Random and K-means showed
significant fluctuations, especially under large-scale deployments,
thus indicating poor stability. The performance ranking can be
summarized as SDD > ESL > Improved Top-K > Random >

K-means.
The experimental results show that the proposed SDD

algorithm outperformed existing baseline methods in reducing
access delay and improving load balancing among edge servers.
By incorporating spectral clustering for initial deployment
and leveraging DDQN-based reinforcement learning for policy

optimization, SDD consistently achieved superior performance
across various base station and server scales as well as time periods,
thus demonstrating its robustness and effectiveness in complex
deployment environments.

5.2.3 Convergence analysis
Figure 13 compares the reward convergence process between

the proposed spectral clustering + DDQN approach and the
DDQN during training. In terms of the initial reward, spectral
clustering + DDQN started with a significantly higher reward
than DDQN did. This finding indicates that the incorporation
of spectral clustering for initial server grouping provides a more
reasonable deployment prior, thereby effectively reducing the
decision space and alleviating the learning burden. In terms
of convergence speed, spectral clustering + DDQN achieved
stable convergence within approximately 100 episodes, whereas
DDQN began to converge after approximately 200 episodes.
This finding demonstrates that the spectral clustering process
can significantly increase training efficiency and accelerate
policy optimization. In terms of final performance, spectral
clustering + DDQN converged to a higher average reward
of approximately −445, whereas DDQN stabilized near −470.
This gap implies that clustering-guided deployment leads to
both faster convergence and better decision quality, thereby
resulting in lower latency and improved load balance in edge
server deployments.

6 Conclusion

In this paper, we propose an edge server deployment
strategy based on the SDD algorithm, which aims to
optimize both server placement and workload balance. By
jointly considering the locations of base stations, the user

Frontiers in Computer Science 14 frontiersin.org

https://doi.org/10.3389/fcomp.2025.1668495
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Ou and Cheng 10.3389/fcomp.2025.1668495

distribution, and the geographic orientation of the network,
the SDD algorithm effectively reduces the average user access
latency while achieving balanced task allocation among edge
servers. The algorithm first employs spectral clustering to
identify the initial cluster centers and subsequently applies
the DDQN algorithm to further refine these centers, which
results in more accurate server deployment and an enhanced
user experience.

Although the proposed method performed favorably in
experimental evaluations, there is still room for further
improvement. Future research could explore the integration
of this approach with generative artificial intelligence (GAI)
technologies. Leveraging the powerful capabilities of the GAI in
knowledge modeling and policy generation may enable higher-level
adaptation and generalization of deployment strategies, thereby
enhancing the applicability and intelligence of the algorithm in
complex network environments.
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