E frontiers ‘ Frontiers in Computer Science

‘ @ Check for updates

OPEN ACCESS

EDITED AND REVIEWED BY
Martin Shepperd,
Brunel University London, United Kingdom

*CORRESPONDENCE
Kevin Lano
kevin.lano@kcl.ac.uk

RECEIVED 22 July 2025
ACCEPTED 01 August 2025
PUBLISHED 19 August 2025

CITATION

Lano K, Rahimi SK, Tehrani SY and Alfraini H
(2025) Editorial: Machine learning for software
engineering. Front. Comput. Sci. 7:1670939.
doi: 10.3389/fcomp.2025.1670939

COPYRIGHT

© 2025 Lano, Rahimi, Tehrani and Alfraihi.
This is an open-access article distributed
under the terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other forums is
permitted, provided the original author(s) and
the copyright owner(s) are credited and that
the original publication in this journal is cited,
in accordance with accepted academic
practice. No use, distribution or reproduction
is permitted which does not comply with
these terms.

Frontiersin Computer Science

TYPE Editorial
PUBLISHED 19 August 2025
pol 10.3389/fcomp.2025.1670939

Editorial: Machine learning for
software engineering

Kevin Lano'*, Shekoufeh Kolahdouz Rahimi?,
Sobhan Yassipour Tehrani® and Hessa Alfraihi*

tInformatics Department, King's College London, London, United Kingdom, 2Computer Science
Department, Roehampton University, London, United Kingdom, *Computer Science Department,
University College London, London, United Kingdom, “Computer Science Department, Princess
Nourah bint Abdulrahman University, Riyadh, Saudi Arabia

KEYWORDS

software engineering, artificial intelligence, machine learning, LLMs, requirements
engineering

Editorial on the Research Topic
Machine learning for software engineering

1 Introduction

Artificial intelligence (AI) techniques such as machine learning (ML) and particularly
deep learning (DL) tools such as large language models (LLMs) (Zhao et al., 2023) have
been increasingly used to support a wide range of software engineering tasks, or even to
replace traditional manually-based techniques for software development (Hou et al., 2023),
and this leads to the need to consider the effectiveness and implications of such use (Sallou
et al., 2024).

Historically, machine learning was divided into symbolic ML techniques such as
inductive logic programming and non-symbolic techniques based on neural nets and
other quantitative approaches using numeric processing. While symbolic techniques were
successfully used in areas such as learning model transformations (Balogh and Varro,
2009) or code synthesis rules (Lano and Xue, 2023), they have limitations due to the need
for specialized preparation of training data, and non-symbolic techniques have become
predominant in practice due to their advantages in terms of scalability, flexible training
requirements, and wide applicability.

In recent years, non-symbolic ML techniques have been used to perform reverse
engineering of code, to generate code, and to perform many other code-based and software
engineering tasks, as alternatives to rule-based techniques for these activities. The advent
of LLMs from 2020 onwards as a general-purpose deep learning technique has transformed
software development practice, with tools such as Copilot and Cursor being widely used to
produce program code based on natural language requirements and partial specifications,
such as the intended results of test cases. This approach is highly usable for practitioners,
however the reliability and accuracy of LLM-based code generation is still open to question
(Du et al., 2024; Jiang et al., 2024; Rabbi et al., 2025; Sadik et al., 2024; Xue and Lano,
2025), and in practice the outputs of LLMs need scrutiny by human experts before being
used in operational code, as is pointed out by the paper by Uandykova et al. in this
Research Topic.

01 frontiersin.org

https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org/journals/computer-science#editorial-board
https://www.frontiersin.org/journals/computer-science#editorial-board
https://www.frontiersin.org/journals/computer-science#editorial-board
https://www.frontiersin.org/journals/computer-science#editorial-board
https://doi.org/10.3389/fcomp.2025.1670939
http://crossmark.crossref.org/dialog/?doi=10.3389/fcomp.2025.1670939&domain=pdf&date_stamp=2025-08-19
mailto:kevin.lano@kcl.ac.uk
https://doi.org/10.3389/fcomp.2025.1670939
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fcomp.2025.1670939/full
https://www.frontiersin.org/research-topics/61382/machine-learning-for-software-engineering
https://doi.org/10.3389/fcomp.2024.1473870
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Lano et al.

In other areas of software engineering practice, ML and
LLMs have been used for the reverse engineering of programs
to specifications (Boronat and Mustafa, 2025; Campenello et al.,
2025; Siala and Lano, 2025a,b,c; Xie et al., 2025) and for code
summarization, refactoring, and program translation (Ahmad
et al., 2023; Gandhi et al., 2024; Lano et al., 2025; Li et al., 2024;
Malyaya et al., 2023; Zhang et al., 2022). In each of these application
domains, the high usability of the conversational interfaces offered
by LLM-based tools often outweighs (at least for non-critical
applications) the stochastic and black-box nature of LLMs and the
need to review LLM outputs.

Machine learning is particularly relevant for tasks where
informal and imprecise information needs to be formalized, as
occurs in requirements engineering processes such as requirements
formalization. Because of the wide variation and highly expressive
nature of natural language, fixed-rule systems for requirements
formalization inevitably have limitations in processing natural
language requirements texts, whilst ML tools such as LLMs can
instead apply their broad language knowledge for the task. The
paper Hemmat et al. in this Research Topic provides a survey of
recent work in this field. The possible problems with LLM use in
this field are identified by Borg (2024).

2 Selected papers

The six selected papers investigate different applications of Al
and ML to software engineering across a range of domains.

In Uandykova et al., the authors analyze the potential for LLM
use in generating industrial-quality Java code. They evaluate the
ChatGPT LLM on a range of realistic tasks. They identify that the
LLM can improve developer productivity and help to efficiently
allocate human resources in projects. However, the study also
points out limitations of the LLM for solving complex problems and
the need for human intervention to verify, correct, and improve
generated code.

The paper of Umar et al. defines a framework for automated
requirements engineering in an agile MDE development context
and uses ML models to extract essential components from textual
requirements specifications, producing UML class diagrams as
formalized specifications which can then be used by further
development stages. They evaluate the framework on two real-
world experimental studies, demonstrating accurate results when
compared with manually derived class diagrams.

Also in the area of requirements engineering, the survey of
Hemmat et al. carried out a systematic literature review of the
field of LLM application within requirements engineering, and
identified 29 primary studies in this area over the period 2020 to
2024. They conclude from analysis of these studies that LLMs have
been successful in requirements specification but that deficiencies
such as the presence of LLM hallucinations still remain.

The paper of Siala and Lano compares LLM-based and rule-
based approaches for reverse engineering, for tasks of Python and
Java reverse engineering to UML specifications. They find that the
baseline performance of an LLM is prone to errors; however, fine-
tuning of an LLM can improve its performance to be comparable to
that of the rule-based methods.

Frontiersin Computer Science

10.3389/fcomp.2025.1670939

In Guruge and Priyadarshana, the authors apply the LSTM
ML technique together with Facebook Prophet to support efficient
cloud computing implementation via Kubernetes. The use of ML
enables proactive autoscaling, in contrast to the reactive autoscaling
provided by rule-based techniques. They show that the approach
improves upon existing approaches in terms of prediction accuracy.

The paper Saini et al. introduces a new technique for accurate
classification of visual and textual data, with applications in data
mining and natural language processing. The authors evaluate
their approach on established datasets and compare the results to
well-known AT classifiers such as KNN and Bayes.

3 Conclusions

This Research Topic explored the subject of Al application to
software engineering, and the selected papers cover a wide range
of application areas, from requirements engineering and NLP to
code generation, reverse engineering, and cloud computing. We
can conclude that AI techniques have shown effective capabilities
for performing or supporting software engineering tasks and that
there is substantial potential for extension of these AI applications
to SE and for further development of the field.

Author contributions

KL: Writing - original draft, Writing — review & editing. SR:
Writing - review & editing. ST: Writing - review & editing. HA:
Writing - review & editing.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Generative Al statement

The author(s) declare that no Gen AI was used in the creation
of this manuscript.

Any alternative text (alt text) provided alongside figures in
this article has been generated by Frontiers with the support of
artificial intelligence and reasonable efforts have been made to
ensure accuracy, including review by the authors wherever possible.
If you identify any issues, please contact us.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

frontiersin.org

https://doi.org/10.3389/fcomp.2025.1670939
https://doi.org/10.3389/fcomp.2025.1519437
https://doi.org/10.3389/fcomp.2024.1473870
https://doi.org/10.3389/fcomp.2025.1537100
https://doi.org/10.3389/fcomp.2025.1519437
https://doi.org/10.3389/fcomp.2025.1516410
https://doi.org/10.3389/fcomp.2025.1509165
https://doi.org/10.3389/fcomp.2025.1550453
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Lano et al.

References

Ahmad, W., Tushar, M., Chakraborty, S, and Chang, K.-W. (2023).
AVATAR: a parallel corpus for Java-Python program translation. arXiv preprint
arXiv:2108.11590v11592. doi: 10.18653/v1/2023.findings-acl.143

Balogh, Z., and Varro, D. (2009). Model transformation by example using
inductive logic programming. SoSyM 8, 347-364. doi: 10.1007/s10270-008-
0092-1

Borg, M. (2024). Requirements engineering and large language models: insights
from a panel. IEEE Softw. 41, 6-10. doi: 10.1109/MS.2023.3339934

Boronat, A., and Mustafa, J. (2025). “MDRE-LLM: a tool for analysing and
applying LLMs in software reverse engineering,” in SANER 25 (Montreal, QC: IEEE).
doi: 10.1109/SANER64311.2025.00090

Campenello, V., Shahbaz, S., Indykov, V., and Struber, D. (2025). On the
use of GPT-4 in the reverse engineering of class diagrams. JoT 24, 1-14.
doi: 10.5381/j0t.2025.24.2.a14

Du, X, Liu, M, Wang, K, Liu, J, Chen, Y., Feng, J., et al. (2024).

“Evaluating large language models in class-level code generation,
in ICSE 2024 (New York, NY: IEEE/ACM). doi: 10.1145/3597503.3
639219

Gandhi, S., Patwardhan, M., Khatri, J., Vig, L, and Medicherla, R. (2024).
“Translation of low-resource COBOL to logically-correct and readable Java leveraging
high-resource Java refinement, in LLM4Code (New York, NY: IEEE/ACM).
doi: 10.1145/3643795.3648388

Hou, X., Zhao, Y., Liu, Y., Yang, Z., Wang, K., Li, L., et al. (2023). LLMs for

software engineering: a systematic literature review. arXiv preprint arXiv:2308.10620.
doi: 10.48550/arXiv.2308.10620

Jiang, J., Wang, F., Shen,], Kim, S, and Kim, S. (2024). A survey on
large language models for code generation. arXiv preprint arXiv:2406.00515.
doi: 10.48550/arXiv.2406.00515

Lano, K,, Siala, H., and Jin, K. (2025). “Comparing LLM-based and model-driven
program translation,” in ICoSSE (Nice: IEEE).

Lano, K, and Xue, Q. (2023). Code Generation by Example Using
Symbolic Machine Learning. Springer Nature Computer Science: New York.
doi: 10.1007/s42979-022-01573-4

Frontiersin Computer Science

03

10.3389/fcomp.2025.1670939

Li, X., Yuan, S., Gu, X., Chen, Y., and Shen, B. (2024). Few-shot code translation via
task-adapted prompt learning. J. Syst. Softw. 212:112002. doi: 10.1016/j.jss.2024.112002

Malyaya, A., Zhou, K., Ray, B, and Chakraborty, S. (2023). On ML-based
program translation: perils and promises. arXiv preprint arXiv:2302.10812v101.
doi: 10.48550/arXiv.2302.10812

Rabbi, F., Ding, Z. and Yang, J. (2025). A multi-language perspective on
the robustness of LLM code generation. arXiv preprint arXiv:2504.19108v191.
doi: 10.48550/arXiv.2504.19108

Sadik, A., Brulin, S., Olhofer, M., Ceravola, A., and Joublin, F. (2024). LLM as a
code generator in agile model-driven development. arXiv preprint arXiv:2410.18489.
doi: 10.48550/arXiv.2410.18489

Sallou, J., Durieux, T., and Panichella, A. (2024). “Breaking the silence: the threats
of using LLMs in software engineering,” in IEEE/ACM ICSE-NIER (New York, NY:
IEEE/ACM). doi: 10.1145/3639476.3639764

Siala, H., and Lano, K. (2025a). “Towards using LLMs in the reverse
engineering of software systems to OCL,” in SANER 2025 (Montreal, QC: IEEE).
doi: 10.1109/SANER64311.2025.00096

Siala, H., and Lano, K. (2025b). “Using LLMs to extract OCL specifications from
Java and Python programs: an empirical study,” in OCL 25, STAF (Aachen: XUE and
LANO CEUR).

Siala, H., and Lano, K. (2025c¢). “Using LLMs to extract UML class diagrams from
Java and Python programs: an empirical study,” in AMDE 25, STAF (Aachen: XUE and
LANO CEUR).

Xie, D., Yoo, B,, Jiang, N., Kim, M., Tan, L., Zhang, X,, et al. (2025). “How effective
are LLMs in generating software specifications?,” in SANER 2025 (Montreal, QC: IEEE).
doi: 10.1109/SANER64311.2025.00014

Xue, Q., and Lano, K. (2025). “Comparing LLM-based and MDE-based code
generation for agile MDE,” in AgileMDE 2025, STAF 2025.

Zhang, C., Wang, J., Zhou, Q,, Xu, T., Tang, K., Gui, H,, et al. (2022). A survey of
automated code summarization. Symmetry 14:471. doi: 10.3390/sym14030471

Zhao, W., Zhou, K., Li, J, Tang, T., Wang, X, Hou, Y. et al. (2023).
A survey of large language models. arXiv preprint arXiv:2303.18223v110.
doi: 10.48550/arXiv.2303.18223

frontiersin.org

https://doi.org/10.3389/fcomp.2025.1670939
https://doi.org/10.18653/v1/2023.findings-acl.143
https://doi.org/10.1007/s10270-008-0092-1
https://doi.org/10.1109/MS.2023.3339934
https://doi.org/10.1109/SANER64311.2025.00090
https://doi.org/10.5381/jot.2025.24.2.a14
https://doi.org/10.1145/3597503.3639219
https://doi.org/10.1145/3643795.3648388
https://doi.org/10.48550/arXiv.2308.10620
https://doi.org/10.48550/arXiv.2406.00515
https://doi.org/10.1007/s42979-022-01573-4
https://doi.org/10.1016/j.jss.2024.112002
https://doi.org/10.48550/arXiv.2302.10812
https://doi.org/10.48550/arXiv.2504.19108
https://doi.org/10.48550/arXiv.2410.18489
https://doi.org/10.1145/3639476.3639764
https://doi.org/10.1109/SANER64311.2025.00096
https://doi.org/10.1109/SANER64311.2025.00014
https://doi.org/10.3390/sym14030471
https://doi.org/10.48550/arXiv.2303.18223
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

	Editorial: Machine learning for software engineering
	1 Introduction
	2 Selected papers
	3 Conclusions
	Author contributions
	Conflict of interest
	Generative AI statement
	Publisher's note
	References

