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Machine learning for software engineering

1 Introduction

Artificial intelligence (AI) techniques such as machine learning (ML) and particularly
deep learning (DL) tools such as large language models (LLMs) (Zhao et al., 2023) have
been increasingly used to support a wide range of software engineering tasks, or even to
replace traditional manually-based techniques for software development (Hou et al., 2023),
and this leads to the need to consider the effectiveness and implications of such use (Sallou
et al., 2024).

Historically, machine learning was divided into symbolic ML techniques such as
inductive logic programming and non-symbolic techniques based on neural nets and
other quantitative approaches using numeric processing. While symbolic techniques were
successfully used in areas such as learning model transformations (Balogh and Varro,
2009) or code synthesis rules (Lano and Xue, 2023), they have limitations due to the need
for specialized preparation of training data, and non-symbolic techniques have become
predominant in practice due to their advantages in terms of scalability, flexible training
requirements, and wide applicability.

In recent years, non-symbolic ML techniques have been used to perform reverse
engineering of code, to generate code, and to perform many other code-based and software
engineering tasks, as alternatives to rule-based techniques for these activities. The advent
of LLMs from 2020 onwards as a general-purpose deep learning technique has transformed
software development practice, with tools such as Copilot and Cursor being widely used to
produce program code based on natural language requirements and partial specifications,
such as the intended results of test cases. This approach is highly usable for practitioners,
however the reliability and accuracy of LLM-based code generation is still open to question
(Du et al., 2024; Jiang et al., 2024; Rabbi et al., 2025; Sadik et al., 2024; Xue and Lano,
2025), and in practice the outputs of LLMs need scrutiny by human experts before being
used in operational code, as is pointed out by the paper by Uandykova et al. in this
Research Topic.
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In other areas of software engineering practice, ML and
LLMs have been used for the reverse engineering of programs
to specifications (Boronat and Mustafa, 2025; Campenello et al.,
2025; Siala and Lano, 2025a,b,c; Xie et al., 2025) and for code
summarization, refactoring, and program translation (Ahmad
et al., 2023; Gandhi et al., 2024; Lano et al., 2025; Li et al., 2024;
Malyaya et al., 2023; Zhang et al., 2022). In each of these application
domains, the high usability of the conversational interfaces offered
by LLM-based tools often outweighs (at least for non-critical
applications) the stochastic and black-box nature of LLMs and the
need to review LLM outputs.

Machine learning is particularly relevant for tasks where
informal and imprecise information needs to be formalized, as
occurs in requirements engineering processes such as requirements
formalization. Because of the wide variation and highly expressive
nature of natural language, fixed-rule systems for requirements
formalization inevitably have limitations in processing natural
language requirements texts, whilst ML tools such as LLMs can
instead apply their broad language knowledge for the task. The
paper Hemmat et al. in this Research Topic provides a survey of
recent work in this field. The possible problems with LLM use in
this field are identified by Borg (2024).

2 Selected papers

The six selected papers investigate different applications of Al
and ML to software engineering across a range of domains.

In Uandykova et al., the authors analyze the potential for LLM
use in generating industrial-quality Java code. They evaluate the
ChatGPT LLM on a range of realistic tasks. They identify that the
LLM can improve developer productivity and help to efficiently
allocate human resources in projects. However, the study also
points out limitations of the LLM for solving complex problems and
the need for human intervention to verify, correct, and improve
generated code.

The paper of Umar et al. defines a framework for automated
requirements engineering in an agile MDE development context
and uses ML models to extract essential components from textual
requirements specifications, producing UML class diagrams as
formalized specifications which can then be used by further
development stages. They evaluate the framework on two real-
world experimental studies, demonstrating accurate results when
compared with manually derived class diagrams.

Also in the area of requirements engineering, the survey of
Hemmat et al. carried out a systematic literature review of the
field of LLM application within requirements engineering, and
identified 29 primary studies in this area over the period 2020 to
2024. They conclude from analysis of these studies that LLMs have
been successful in requirements specification but that deficiencies
such as the presence of LLM hallucinations still remain.

The paper of Siala and Lano compares LLM-based and rule-
based approaches for reverse engineering, for tasks of Python and
Java reverse engineering to UML specifications. They find that the
baseline performance of an LLM is prone to errors; however, fine-
tuning of an LLM can improve its performance to be comparable to
that of the rule-based methods.
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In Guruge and Priyadarshana, the authors apply the LSTM
ML technique together with Facebook Prophet to support efficient
cloud computing implementation via Kubernetes. The use of ML
enables proactive autoscaling, in contrast to the reactive autoscaling
provided by rule-based techniques. They show that the approach
improves upon existing approaches in terms of prediction accuracy.

The paper Saini et al. introduces a new technique for accurate
classification of visual and textual data, with applications in data
mining and natural language processing. The authors evaluate
their approach on established datasets and compare the results to
well-known AT classifiers such as KNN and Bayes.

3 Conclusions

This Research Topic explored the subject of Al application to
software engineering, and the selected papers cover a wide range
of application areas, from requirements engineering and NLP to
code generation, reverse engineering, and cloud computing. We
can conclude that AI techniques have shown effective capabilities
for performing or supporting software engineering tasks and that
there is substantial potential for extension of these AI applications
to SE and for further development of the field.
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