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The construction of a wall at the United States-Mexico border is known to

impede and deter movement of terrestrial wildlife between the two countries.

One such species is the jaguar, in its northernmost range in the borderlands of

Arizona and Sonora. We developed an anisotropic cost distance model for

jaguar in a binational crossing area of the Madrean Sky Islands at the United

States-Mexico border in Southern Arizona as a case study by using previously

collected GPS tracking data for jaguars, bioenergetic calculations for pumas,

and a digital elevation model. This model describes projected energy

expenditure for jaguar to reach key water sources north of the international

border. These desert springs and the broader study region provide vital habitat

for jaguar conservation and reintroduction efforts in the United States. An

emerging impediment to jaguar conservation and reintroduction is border

infrastructure including border wall. By comparing walled and un-walled

border sections, and three remediation scenarios, we demonstrate that

existing border infrastructure significantly increases energy expenditure by

jaguars and that some partial remediation scenarios are more beneficial than

others. Our results demonstrate opportunities for remediation. Improved

understanding of how border infrastructure impacts physiological

requirements and resulting impacts to jaguar and other terrestrial wildlife in

the United States-Mexico borderlands may inform conservation management.

KEYWORDS

cost distance, jaguar, ecophysiology, natural recolonization, international border,
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Introduction

Transboundary landscapes often coincide with biodiversity

hotspots and hence provide important habitat for threatened

species, but face major threats from habitat fragmentation by

walls and other types of security infrastructure (Erg et al., 2015).

This makes such regions increasingly important to conservation,

especially as physical barriers are increasing globally in number

and extent (Titley et al., 2021). By limiting movement, these

fences and walls threaten to reduce access to water, food, and

mates for wide-ranging and migratory species and those with

naturally or anthropogenically fragmented habitats (Liu et al.,

2020). In the case of the United States-Mexico border, wall

construction has directly reduced the area, quality, and

connectivity of available habitat by physically limiting wildlife

movement, and dispersal of species that cannot climb or move

through existing walls or that avoid light and noise from human

activity and vegetation openings (Flesch et al., 2010; Peters et al.,

2018). A continuous border-wide wall could fragment an

estimated34% of U.S. nonflying native terrestrial animal

species (Peters et al., 2018). One region of the borderlands at

particular risk are the Madrean Sky Islands of southeastern

Arizona in the U.S. and northeastern Sonora in Mexico, with

high biodiversity and home of low-density populations near the

margins of species’ ranges (Lasky et al., 2011). One such animal

is the jaguar (Panthera onca), a species of concern in both the

U.S. and Mexico, which is the target of binational recovery

efforts that may fail in the absence of transboundary connectivity

(Rodrıǵuez-Soto et al., 2013). The Madrean Sky Islands serve as

critical habitat and dispersal routes but face threats from

fragmentation by border infrastructure (Patrick-Birdwell

et al., 2013).

The jaguar is listed as endangered by both Mexico’s Ministry

of Environment and Natural Resources and the United States

Fish andWildlife Service (USFWS, 2014; González-Gallina et al.,

2018). Near the species’ northern limits, Sonora supports the

northernmost breeding population of jaguars from which

individual males sometimes disperse into its historical range in

the southwestern U.S. states of Arizona and New Mexico.

International cooperation and transboundary connectivity are

vital for the conservation and recovery of this northern

population (Svancara et al., 2015; Cassaigne et al., 2016). For

conservation efforts to be successful, landscapes that support

habitat in the borderlands must foster sufficient landscape

connectivity to allow natural movement and dispersal.

Structures such as road crossings and remediation of habitat

altered by humans may benefit movement and dispersal

(Manteca-Rodrıǵuez et al., 2021). In the case of the United

States-Mexico border, potential impediments to movement

include built wall and fence structures and a 60-100-foot-wide

parallel road with flood lights, fixed-location surveillance towers

with access roads, and frequent vehicle traffic that may obstruct

or divert movement and increase energetic costs. Minimizing
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impediments is especially critical in the case of reproduction.

Female jaguars disperse much shorter distances than males, and

hence use a smaller amount of energy for movement (Sadowski-

Smith, 2013; Povilitis, 2015). However, females require

significantly more energy than males when gestating, when

lactating, and when feeding cubs, all events required for

effective jaguar recovery within the U.S. (Oftedal and

Gittleman, 1989; Conde et al., 2010). Currently, only male

jaguars have been documented in the U.S. in recent decades,

and conservation planners are working to design effective

corridors linking populations that minimize energy

expenditure. Similarly, proposed jaguar reintroduction in the

U.S. (Sanderson et al., 2021) would show greater success with

such considerations in remediation, especially as recovery will

likely require both the reintroduction of female jaguars to

Arizona (Babb et al., 2022) and migration of jaguars from

Sonora (Sanderson et al., 2022).
Energy expenditure

Animals minimize energy expenditure by altering behavior

to conserve energy stores (Iodice et al., 2017). One such behavior

change is patrolling of barriers to search for gaps and the

decision to leave the barrier (McInturff et al., 2020). When a

wide-ranging species must maintain connectivity, any

impediment to movement can increase individual energy

expenditure over time by a cumulative effect of moving past

human-built barriers (Jakes et al., 2018). In order to better

understand energy expenditure outside the lab setting, Shepard

et al. (2013) recommended modeling energy landscapes to

“provide a framework with which variation in animal

movements can be understood or predicted over varying

spatial and temporal scales.” Such a model can consider both

terrain and direction of locomotion, requiring an anisotropic

measure of energy expenditure (Vosper, 2003). Anisotropic

modeling assigns different cost values depending on the

direction of travel, which is especially useful in predicting

energy expenditure (Etherington, 2016). As animals may

deviate movement to avoid areas of high energy cost or to

exploit the potential of saving energy (Shepard et al., 2013), cost

distance modeling can serve as a both predictor for movement

and a measure of cumulative bodily cost over time and space

(Chambers et al., 2022a). With such modeling, conservation

planning could better account for survival and reproduction,

which are both dependent on energy efficiency, balancing intake

and expenditure (Kinnison et al., 2003). Measurements are

compared by regression analysis to environmental or other

physiological factors such as step length and mass (Gold, 1973;

Wilson et al., 2013). In the case of wildlife, energy expenditure

has most often been inferred from other models (Rohweder

et al., 2012; Porter et al., 2015) rather than cost distance. Such

bioenergetic models can identify and map hot-spots of
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physiological stress, and there is growing interest in mapping

such ‘stress-scapes’ (Cooke and O’Connor, 2010; Madliger et al.,

2016; Ames et al., 2020).
Jaguar movement and modeling

Movement and dispersal of large carnivores is dependent on

energy reserves and an ample supply of prey and water (Garland,

1983; McNab, 1989; Stander et al., 1997; Boratyński, 2021). This

is especially prevalent in heterogeneous landscapes, particularly

those altered by humans (Rosas-Rosas et al., 2010). Energy is a

limiting factor for individual range size and dispersal (Foster

et al., 2013). To successfully access water, jaguar and their prey

must maintain homeostasis and minimize increases in body

temperature (O’Farrill et al., 2014). Water is most necessary for

the indirect hydration of jaguars through prey (Pietsch et al.,

2011) and in addition, temperature regulation is dependent on

minimizing energy expenditure and ample hydration (Fuller

et al., 2016 This requires limiting energy expenditure (McNab,

2000) and maintaining hydration (Strauss et al., 2017). To assure

efficiency and survival, big-cats minimize energy expenditure by

limiting distance traveled and travel even in rugged terrain to

avoid walking perpendicular to slope (Harmsen et al., 2011;

Wilmers et al., 2017; Dunford et al., 2020). It appears that apex

predators are undertaking long journeys along the border wall.

Evidence of this can be anecdotal, but jaguar journeys ranging

from 3 to 1102 km in Mexico and Central America (Rabinowitz

and Zeller, 2010) have been documented. More recently, a

Mexican gray wolf in New Mexico, followed the U.S.-Mexico

border wall for 23 miles before turning back north (CBD, 2021).

Similarly, jaguars have been shown to look for and use openings

in other linear barriers such as fences and roads (González-

Gallina et al., 2018). Springs could serve as transient refugia and

“stepping-stones”, for a range shift to habitat with greater water

availability than that of Sonora or southern Arizona (Cartwright

et al., 2020). Although species like jaguar could theoretically

move their home ranges in response to a border barrier

(McCallum et al., 2014), limiting factors such as energy

expenditure and resource availability could limit the

effectiveness and overall distance of such movement.

Flesch et al. (2010) used topography and distance based

least-cost paths to assess impacts of the United States-Mexico

border fence on bighorn sheep and show opportunities for

mitigation. Similarly, Thompson and Velilla (2017) used a

combination of least-cost modeling and circuit theory with

landscape characteristics and expert opinion to map and rate

multi-regional corridors for jaguar in South America. Although

animal energetics are inferred in creating such cost surfaces,

analyses are typically isotropic (i.e., not considering the direction

of slope; Green et al., 2020) and do not consider bodily cost,

which is less realistic for individual-based and local models

(Rabinowitz and Zeller, 2010).
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The objective of this study is to measure the effects of border

barriers on the required energy expenditure of individual jaguars

moving north to the U.S. from Mexico. We hypothesized

increases in total energy expenditure for northbound

movements and those to reach key water sources required for

successful dispersal . In particular , we address the

following questions:
i. Is there a significant increase in energy expenditure to

the water sources which are required for maintaining

viable breeding populations by hydration and prey

availability?

ii. What border barrier remediation scenario best reduces

required energy expenditure to reach water sources?
Materials and methods

Critical habitat crossings

In 2014, the U.S. Fish and Wildlife Service (USFWS)

identified areas of critical jaguar habitat, based on current

knowledge of the species’ habitat needs, including prey species,

water, canopy cover, terrain characteristics, and human

population densities (USFWS, 2014). Much of these areas were

within the Madrean Sky Island Ecoregion (Stoner et al., 2015;

Villarreal et al., 2019) where the U.S. Border Patrol maintains

infrastructure at the United States-Mexico border that include

various types of permanent barriers, i.e., walls and fences that

can limit wildlife movement and transboundary landscape

connectivity (McCallum et al., 2014). Stoner et al. (2015)

identified how roads impact habitat connectivity in this same

region, referred to as the Northwestern Recovery Unit in the

USFWS Jaguar Recovery Plan (USFWS, 2018). Based on this

knowledge, we modeled unfragmented habitat in the Madrean

Sky Islands, to identify corridors connecting jaguar habitat

patches from Mexico to the United States using the geospatial

tool Corridor Designer (Majka et al., 2007). This model assumed

existing pedestrian fencing at the United States-Mexico border

had impacted crossings in similar fashion as roads and identified

the most permeable corridors for jaguars in southern Arizona

and New Mexico in the U.S. and northern Sonora and

Chihuahua in Mexico.
Study area

Using area identified by the critical habitat crossing model

described above, we selected the the Tumacacori Highlands near

Nogales, Arizona and Sonora as a case study. This area is a

proposed wilderness area (Hoover et al., 2014) that includes land

managed by the U.S. Forest Service (Coronado National Forest),
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Arizona State Land Department, and private landowners and is

designated as part of the Atacosa critical habitat area by the

USFWS (2014). Because there have been multiple jaguars

identified in this region in the past (Babb et al., 2022),

information to guide conservation is important. This study

takes in to account wa l l cons t ruc t ion as of 2021

(Traphagen, 2021).
Speed estimates

To estimate average speed of jaguar locomotion, we first

extracted elevation values from 30-meter digital elevation

models (DEM) (Farr et al., 2007) and assigned values to

134,690 time-coded GPS data points for 117 individual jaguars

(Morato et al., 2018) in Mexico, Guatemala, Costa Rica, Brazil,

Paraguay, and Argentina. We then derived degree slope and

direction (ascending or descending) from consecutive points

and used the time between these points to derive speed. We

removed all sedentary data (<2 km/hr or 0.56 m/s) and those

speeds impossible for jaguar (>22.2 m/s) (Harmsen et al., 2009).

All remaining data with greater than a day of travel were also

removed from analysis. To preserve accuracy of slope estimates,

we also removed all points with greater than three raster cell

lengths between them.

Using transformed linear regression (R Core Team, 2022),

we modeled the relationship of jaguar speed to slope for both

inclines (Si) and declines (Sd) (p-value< 0.001).

Si = −0:21749 ∗ log(Slope) + 0:70639 ½1�

Sd = −0:25067 ∗ log(Slope) + 0:75648 ½2�
Predicted energy expenditure

To predict energy expenditure (EE) for a 60 kg jaguar, a

value used in previous analysis to represent typical body mass

over the entire distribution of the species, (Hayward et al., 2016)

by slope and distance, we used these calculations in combination

with the formulas developed for cougar (Puma concolor) by

Dunford et al. (2020). As there were no available similar analyses

for jaguar, we assumed this method was suitable due to felid

energy expenditure correlating across species and being

dependent on body mass, food, and climate, irrespective of

body shape (McNab, 2000). Figure 1 shows the results of our

regression analyses and the resulting function of EE by slope for

inclines (EEi) and declines (EEd).

EEi = 5 ∗ (8:15 + 10:99 ∗ Si) +  ((0:31 ∗ Slope

+ 1:98) ∗ (1:47 ∗ Si + 0:088)) ½3�
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EEd = 5 ∗ (8:15 + 10:99 ∗ Sd) + ((0:33 ∗ Slope

+ 1:94) ∗ (1:47 ∗ Sd + 0:088)) ½4�

With the regression results, we created an anisotropic EE cost

distance model using the ArcGIS Path Distance Tool (Esri, 2020)

and a DEM for the binational crossing in southern Arizona

(USGS, 2017). We ran this model from the Mexico border

moving north for an unwalled and a walled EE as of the year

2021 (Chambers et al., 2022b). We extracted the values for the

unwalled and walled EE to the locations of documented springs

(Ledbetter et al., 2018) within the binational crossing in order to

test for change specific to water sources. To test for changes in EE,

we performed t-tests for total walled and unwalled costs and for

walled and unwalled costs at water sources.
Remediation scenario development

Following this initial analysis, we created remediation

scenarios where we added gaps (Saxena and Habib, 2022) to

walled portions of the border and calculated EE for each

(Chambers et al., 2022b). These scenarios would allow jaguars

to cross either in rugged terrain west of the existing wall

(Scenario A), a dry wash, also in relatively rugged terrain,

running north from the existing wall (Scenario B), and a less

rugged terrain (Scenario C) in the east. Each gap was 30 meters

wide, the minimum possible with our raster analysis. We then

extracted these values to the spring locations and ran additional

t-tests for each against the original walled scenario of 2021.
Results

Wall impacts

The mean EE to reach water from the border increased

significantly by 90.94 kcal between the unwalled model and that

with walls (Table 1), which is approximately 4% of the daily

energy required for a 60 kg jaguar (Rueda et al., 2013). EE

increased over the entire area but was greatest in areas directly

north of the wall and for those springs adjacent to the wall

(Figure 2). In the presence of the border wall EE had a maximum

value of 3,724.15 whereas without the wall it was 3,680.7. The

surplus distance required of a jaguar to walk with this caloric

increase ranges from 3 to 9 km.
Remediation scenarios

Scenario A, in the more rugged terrain, showed no

significant change from the 2021 baseline for EE to reach

springs in any part of the binational crossing, whereas scenario
frontiersin.org
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B in the wash and C in the less rugged terrain both reduced EE

but differed little as the mean change for scenario B was 1,368.86

kcal verses 1,366.28 kcal for C. Neither returned to the 1,342.92

kcal of the unwalled scenario. Scenario A, like 2021, had a
Frontiers in Conservation Science 05
maximum of 3,724.15 kcal while both B and C had a maximum

of 3,680.7 kcal. Figure 3 shows how EE decreased on the eastern

side of the binational crossing for those gaps in scenarios B and

C but remained the same in the case of scenario A.
A

B

C

FIGURE 1

Regression scatter plots of incline (A) and decline degree slope (B) and jaguar speed (meters per second) and resulting energy expenditure, in
kilocalories per meter walked, by slope (C).
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Discussion

Border wall construction has increased the energy required

for jaguars to reach key water sources in our binational study

area in the U.S.-Mexico borderlands. This increase was greatest

in springs due north of the border wall and springs adjacent to

the wall. This suggests the wall has an immediate and

compounding effect when jaguars cannot enter the U.S. in the

eastern part of the study region. Energy expenditure required to

reach those springs increases because a jaguar must circumvent

the wall rather than walking directly across the border to the

springs. Remediation scenario A focused in rugged terrain at the

western end of the wall did not decrease EE to reach any springs,

but both scenario B and C focused at a central dry wash and less
Frontiers in Conservation Science 06
rugged terrain in the east significantly decreased EE.

Management that considers energy expenditure and associated

water requirements could support decision making to augment

landscape connectivity for jaguars.

Wall and fence infrastructure are expected to divert

dispersing jaguars and are already known to divert movement

of other species in the region (e.g., puma and coati; McCallum

et al., 2014) and affect energy expenditures (EE). The results of

our analysis support this by demonstrating that border barriers

have immediate impacts on local habitat connectivity and drive

potentially compounding effects of increasing EE of jaguars to

reach areas farther from the border. Jaguar populations depend

on caloric reserves and ample supply of water and prey (Anile

et al., 2020), needs which are greater in semi-arid regions and
FIGURE 2

Cumulative jaguar energy expenditure (kcal) from the border north pre-wall (left) and with walls as of 2021 (right) in the United States portion of
the Critical habitat crossings corridor for our case study around Nogales, Arizona. Spring locations post-wall are symbolized by difference in EE
from pre-wall scenario (Chambers et al., 2022b).
TABLE 1 Results of t-test comparing energy expenditures (kcal) for jaguar, unwalled and walled 2021 and t-tests comparing remediation
scenarios A, B, and C to walled 2021.

Unwalled Walled (2021) Scenario A Scenario B Scenario C

Mean 1,342.92 1,433.86 1,433.86 1,368.86 1,366.28

Variance 1,171,262.19 1,279,002.75 1,279,002.75 1,170,234.86 1,160,336.55

t stat -4.89 0 4.59 4.21

p-value < 0.001 1 < 0.001 < 0.001
f

Scenario A creates a crossing in rugged terrain on the west of the existing wall. Scenario B uses a dry wash in a more central location. Scenario C uses less rugged terrain, east of both A and B.
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areas altered by humans (Rosas-Rosas et al., 2010). Hence,

minimization of energy expenditures may improve the

probability of reproductive success and survival and support

maintenance or increase of the jaguar population (Foster et al.,

2013). With the increase of EE to reach springs, we recommend

remediation scenarios that best limit EE by providing gaps like

those in large dry washes for rugged habitat and near the center

of our study area the wall and less rugged spaces like that of the

eastern portion of the crossing. Analyses focused on other

regions of the borderlands and potential wall locations could

support gap placement decisions dependent on the influence of

terrain ruggedness on EE.
Frontiers in Conservation Science 07
Data availability statement

Raster layers of cumulative energy expenditure models and

metadata are available as a U.S. Geological Survey (USGS) 451

Data Release at the USGS data repository ScienceBase

(Chambers et al. 2022; doi: 10.5066/P9DSSV2Q).
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FIGURE 3

Maps showing decrease in energy expenditure (kcal) from 2021 walled scenario for remediation scenarios (A–C) and box and whisker plots of
difference in energy expenditure, from 2021 walled energy expenditure (y-axis), for each remediation scenario (x-axis), (A–C). Greatest change is
seen in scenario (B) while scenario (A) shows no difference between 2021 and remediation. Triangles mark mean energy expenditure for each
difference in scenario.
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