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Landscapes are social–ecological systems (SESs) that produce ecosystem

services, which change over time in response to environmental, biotic, and

social drivers. Failure to consider this variability, and the feedbacks that can

stabilize or destabilize systems, can have consequences for sustainable

ecosystem services provision. This study applies a conceptual meta-

framework, past–present–future lens, to interpret changes in land cover and

ecosystem services within the Cape Floristic Region (CFR) of South Africa.

Paleoecology (fossil pollen, spores, and charcoal) and participatory system

dynamics modeling were used to explore long-term variability in provisioning

ecosystem services (plant biodiversity) and the drivers of this variability (fire and

herbivory) at Elandsberg Private Nature Reserve (Elandsberg PNR). From ca.

1800s, the paleoecological record suggests that environmental changes,

particularly a transition to unpalatable Elytropappus-dominated vegetation,

were driven by grazing and that an ecological threshold was crossed in ca.

1950s due to agricultural intensification. Participatory system dynamics was used

to identify feedbacks in the dynamic SES structure. The ecological model

replicates the paleoecological results and, furthermore, suggests that in the

future, returning the system to within historical ranges variability may require

sustained reductions in both grazing and fire over decades. This innovative

approach blends paleoecology and participatory system dynamics to provide

an evidence-based understanding of temporal variability and feedbacks for

policymakers and land-use managers to inform sustainable land management.

KEYWORDS

sustainable land management, ecosystem services, multi-stakeholder engagement,
threshold behaviour, scenario-thinking, hysteresis
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1 Introduction

Ecosystem services are the benefits that people obtain from the

environment. They are broadly categorized into supporting,

provisioning, regulating, and cultural services and include

biodiversity, food, clean air and water, and recreational

opportunities (Millennium Ecosystem Assessment, 2005).

Ecosystem services are derived from ecological infrastructure, e.g.,

healthy mountain catchments, wetlands, soils, and corridors of

natural habitat, which together form a network of interconnected

structural elements in the landscape (Cumming et al., 2014).

Effective management, conservation, and restoration practices

toward healthy and productive ecosystems are essential, given the

critical links between ecosystem services, human wellbeing, and

sustainable development (Olen and Audouin, 2007; Midgley et al.,

2014; Pasquini and Cowling, 2015; Holden et al., 2021). Internal

and external environmental drivers, such as climate change, fire,

and land-use change, as well as biotic drivers, such as grazing, can

have a stabilizing or destabilizing effect on ecosystems.

Consequently, this will cause a shift in the benefits that

ecosystems provide to people (Dearing et al., 2012). Furthermore,

it is essential to understand how these drivers interact to maintain

or regain production and the utilization of ecosystem services.

A past–present–future lens (Dawson, 2011; Birks, 2012; Gillson

and Marchant, 2014; Marchant and Lane, 2014; Gillson, 2015) of

environmental change can be used as a meta-framework to help in

the understanding of complexity-based social–ecological systems

(SESs), including variability and non-conformity with a system

(Figure 1). In our study, we use paleoecology (past), stakeholder

participation (present), and a simulation experiment (future) to

develop a process-based perspective that can help in the

understanding of SES resilience. The resilience perspective is core

to systems thinking as it emphasizes non-linear dynamics,
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thresholds, uncertainty, and surprise (Meadows, 2008). SES

resilience is the capacity and ability of a SES to change and

respond to impacts by sustaining, restoring, or adapting its

function, structure, and feedback. It determines how periods of

gradual change interplay with periods of rapid change and how

such dynamics interact across temporal and spatial scales (Folke,

2006), and how those interactions affect ecosystem services (Chapin

et al., 2010; Lew et al., 2016; Marchese et al., 2018). An

interdisciplinary approach is needed to understand the interacting

processes that drive the dynamics of ecosystem services provision.

This study applies a conceptual meta-framework, past–present–

future lens, to interpret changes in land cover and ecosystem

services, with the aim of identifying a “safe operating space”

(Rockström et al., 2009; Dearing et al., 2014; Hossain et al., 2017)

for sustainable land management within the CFR, a globally

recognized biodiversity hotspot. A safe operating space is a value-

based description that is important for grounding the scientific

information in the SES context and encourages stakeholder

ownership and buy-in for sustainable land management.

Systems thinking offers a broad perspective that can be used to

understand sustainability. It allows for a process-based

understanding of SESs and opens the door to understanding how

systems change over time. SESs do not respond in an incremental

and predictable way to increasing or decreasing external pressures,

an effect is rarely proportional to the cause, and what happens

locally in a system often does not apply in distant regions (other

states of the system or patches in the landscape) (Sterman, 2002;

Reyers et al., 2018). Therefore, complexity-based SESs are non-

linear in their dynamics. To achieve sustainable ecosystem

management, stakeholder participation and mutual learning are

required (Knight et al., 2008; Wheeler et al., 2019). Stakeholder

engagement is seen as a best practice, particularly in supporting

problem scoping and policy analyses (Langsdale, 2007; Videira
FIGURE 1

The past–present–future lens of environmental change as a conceptual meta-framework to explore long-term changes in ecosystem services and
drivers for understanding the resilience of complexity-based social–ecological systems (SESs). Figure adapted from Dirk (2022).
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et al., 2010; Voinov and Bousquet, 2010; Inam et al., 2015; Bou

Nassar et al., 2020), and has been found to be effective in

conservation science in the region (Balmford, 2003; Cowling and

Pressey, 2003; Gelderblom et al., 2003; Rouget et al., 2014).

Although many ecosystem services are produced independently of

human intervention, research shows that people can influence the

coproduction of ecosystem services (Bengtsson, 2015; Fischer and

Eastwood, 2016). Therefore, this study seeks to understand how

land-use managers perceive current policies and management

measures, and how multiple stakeholders value the insights

derived from the interdisciplinary study that incorporates

paleoecology data into ecosystem assessments (Dearing et al.,

2012; Gillson and Marchant, 2014; Gillson, 2015; Jeffers et al.,

2015) and system dynamics data into environmental management

(Ford, 2000). By obtaining these insights, the study can shed light

on the intersection between human decision-making and the

processes that underpin ecosystem services and resilience at the

Elandsberg Private Nature Reserve (Elandsberg PNR).

System dynamics (SD) modeling, as a subset of systems

thinking, is one of the many approaches and tools used to

understand the complexities of social–ecological dynamics.

Participatory system dynamics (PSD) is a form of SD that applies

system diagrams and computer simulations in group settings

(Voinov and Bousquet, 2010; Kopainsky et al., 2017). SD has

been applied to environmental management interventions (Ford,

2000) for resilience (Bennett et al., 2005; Ciobanu and Saysel, 2020)

and scenario planning (Turner K. G. et al., 2016; Miller et al., 2017;

Allington et al., 2018), water resource management (Stave, 2003;

Tidwell et al., 2004; Simonovic, 2009; Winz et al., 2009; Beall et al.,

2011; Rehan et al., 2011; Wang et al., 2011; Clifford-Holmes et al.,

2017b, a), marine ecosystems (Weller et al., 2016; Vermeulen et al.,

2022), fire management (Collins et al., 2013), ecological restoration

(Crookes et al., 2013; Turner B. L. et al., 2016; Menendez et al.,

2020), and agro-ecological systems (Stave and Kopainsky, 2015;

Brzezina et al., 2016; Turner B. L. et al., 2016; Von Loeper et al.,

2016; Bennich et al., 2018; Herrera de Leon and Kopainsky, 2019;

Turner and Kodali, 2020). Investigating the future is important as it

improves our understanding of complexity-based SES by modeling

dynamic behavior and non-linearity and behavior such as

thresholds and regime shifts.

Furthermore, some regime shifts may show evidence for non-

linear-reversible fold bifurcations with major time lags or hysteresis

(Dearing et al., 2015; Jackson and Wood, 2018; González Sagrario

et al., 2020). This is an important factor for land-use managers to

contemplate for future resilience and sustainable development

planning. Paleoecology and modeling can be used to create

boundary objects such as behavior over time graphs and a visual

user interface, respectively, that can facilitate dialogue between

multiple stakeholders (Star and Griesemer, 1989; Black, 2013;

Fischer and Riechers, 2019). These boundary objects have enough

content to be interpreted differently by different knowledge holders,

but maintain their integrity. The learning that comes with

interpreting the paleoecological data, assessing current systemic

structures and values systems, can be used to help plan for future

scenarios. There are meaningful SD applications in climate change

adaptation and decision support tools in South Africa (Griggs, 2013;
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Brent et al., 2017a; Brent et al., 2017b; Aronson et al., 2019;

Carnohan et al., 2021), which provide motivation for the present

study to add to this sum of knowledge. This approach of combining

paleoecological data on plant biodiversity, herbivory, and fire

history with qualitative data on the connections between changes

in ecosystem services and land-use and climatic drivers as obtained

through stakeholder engagement and quantitative SD modeling is

rare. Although this meta-conceptual framework was only applied to

a small geographical region with very specific conditions and

vegetation types, the methodology of combining paleoecology and

PSD itself is novel in the Cape Floristic Region (CFR), South Africa,

and the broader African continent, with potential implications for

sustainable land management and biodiversity conservation.

In this study, Elandsberg Private Nature Reserve (Elandsberg

PNR) in the Berg River Catchment was chosen as a lowland

conservation site with high biodiversity value and a notable history

of land-use change, ranging from a transition from little human

intervention prior to European settlement, to a period of intensifying

agricultural use and finally to a period primarily focused on nature

conservation since its proclamation as a nature reserve in 1973 when

large indigenous herbivores were reintroduced. In the Elandsberg

PNR case, ecosystem services are linked to human wellbeing and

provide ES such as plant biodiversity, wildmeat/wool/dairy, and

fuelwood, which provide economic opportunities such as

ecotourism and biodiversity conservation. Integrating such

evidence-, process-, and simulation-based data demonstrates the

importance of landscape history as an important component of

biodiversity conservation and the sustainable use of natural

resources in multi-functional landscapes. The combination of

techniques described above was used to address the following

questions: 1) What variables/processes confer resilience and what

processes stabilize or destabilize SES? 2) How can conservation and

restoration practices and the sustainable management of ecosystem

services be incorporated into the Elandsberg PNR?

This knowledge can serve as a basis for developing more

effective management strategies and policies for future

sustainability over decadal timescales similar to the timeframes of

paleoecological records (Dearing et al., 2012; Gillson and Marchant,

2014; Gillson, 2015; Jeffers et al., 2015). It is necessary to undertake

participatory efforts with stakeholders to establish management

thresholds by correlating the pollen record with precise estimates

of the land cover of the proposed indicator taxa (e.g., Gillson and

Duffin, 2007). This can provide an indication of the probable

efficacy of existing management strategies in restoring and

safeguarding SES in the future. Thus, the mechanisms for SES

resilience must be identified and the following research questions

can assist in its exploration:
1) What are the main changes in plant biodiversity, fire, and

herbivory over time? (past)

2) What are the feedbacks that drive these changes? (past–

present)

3) Can the changes in ecosystem services, drivers, and

interactions between system processes identified in the

paleoecological record be simulated? (past–present)
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Fron
4) How might these changes in ecosystem services, drivers, and

interactions impact on ecosystem function/resilience for

biodiversity conservation and ecotourism practices at

Elandsberg PNR in the future? (future)

5) What sustainable land management practices can be

implemented to increase ecosystem resilience (greater

plant biodiversity and acceptable levels of grazing and

fire) within a safe operating space? (future)
2 Materials and methods

2.1 Study site

The study site from which the paleoecological data originate

(Forbes, 2014) is a lowland conservation site called Elandsberg

Private Nature Reserve (Elandsberg PNR) (3,500 ha) (Figure 2).

Elandsberg PNR is a Stewardship Contract Nature Reserve since

1973 situated on Farm Bartholomeus Klip (−33.45000S and

19.05000E) within the Middle Berg River Catchment, located in

the Western Cape Province toward the south-west of South Africa.

The Middle Berg River Catchment, which is a part of the winter

rainfall zone (WRZ) of the CFR, is characterized by Mediterranean

climatic conditions with warm dry summers and rainfall being at its

maximum during the winter season, representing precipitation in

the equatorward margin of the westerly wind belt (Chase and

Meadows, 2007; Haensler et al., 2011; Chevalier and Chase, 2015).

The CFR is a globally recognized biodiversity hotspot (Low and

Rebelo, 1996; Mittermeier et al., 1998; Goldblatt and Manning,

2000; Myers et al., 2000; Manning and Goldblatt, 2012), and it has a
tiers in Conservation Science 04
long history of land use, currently supporting commercial

agriculture, conservation, and urban areas. Elandsberg PNR was

chosen as a proof of concept to apply a past–present–future lens and

identify management targets to enhance social–ecological resilience.

Located in an intermediate level of land-use disturbance and

elevation gradient (151 m above sea level), it is a suitable

illustrative example for capturing significant transitions in the

landscape over centennial–millennial temporal scales (Dirk,

2022). Since the proclamation of Elandsberg PNR in 1973, large

indigenous herbivores were reintroduced and are currently

managed at the site: eland (Taurotragus oryx), blue wildebeest

(Connochaetes taurinus), black wildebeest (Connochaetes gnou),

zebra (Equus spp.), red hartebeest (Alcelaphus buselaphus),

gemsbok (Oryx gazelle), bontebok (Damaliscus orcas orcas), and

springbok (Antidorcas marsupialis). The Mediterranean climate of

the WRZ and the geology at Elandsberg PNR support species-rich

Renosterveld and Fynbos vegetation types. Renosterveld is an

evergreen, fire-prone Mediterranean-type shrubland or

asteraceous shrubland with mainly tussock (bunch) grasses and a

high diversity of geophytes and typically occurs on fine-grained,

nutrient-rich substrates (Mucina and Rutherford, 2006; Rebelo

et al., 2006). Fynbos is classified as evergreen, hard-leaved, fire-

adapted shrubland or heathland and commonly occurs on nutrient-

poor soils (Moll and Jarman, 1984; Van Wilgen and Richardson,

1985; Bergh et al., 2014). The VANG core was extracted from a

small-sized wetland (Forbes, 2014) on an ecotone between

Swartland Shale Renosterveld and Swartland Alluvium Fynbos

(Mucina and Rutherford, 2006) (Figure 3), which makes it useful

in detecting vegetation change as species are at their biological and/

or environmental limits at the between-biome scale (Ekblom and

Gillson, 2017; MacPherson et al., 2019; Gillson et al., 2020). Pollen
FIGURE 2

Map showing the general study focal area with three case study sites, with the respective quaternary catchments, covering an elevation gradient
within the Middle Berg River Catchment in the Cape Floristic Region, South Africa. The lowland conservation site analyzed in this study is Elandsberg
Private Nature Reserve (PNR) with the sedimentary core labeled as “VANG”.
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from the most abundant pollen types in the 1,300-year-old VANG

paleoecological record is employed as a proxy for plant biodiversity,

with Asteraceae long/high-spine type-1 pollen representing

multiple Asteraceous plant species, yet being indistinguishable at

the family and genus level, and Asteraceae Stoebe/Elytropappus-

type pollen (hereafter, Renosterbos pollen) representing a single

Asteraceous species, Renosterbos, which is unpalatable and, when

in high abundances, is deemed less desirable for conservation.

Paleo-proxies for drivers of change associated with land-use

disturbance include macro-charcoal, serving as a proxy for local

fire history, and coprophilous fungal spores, functioning as a proxy

for herbivory/grazing. Therefore, the VANG core provided a

precolonial benchmark that helped to determine whether a

regime shift in fire, grazing, and Renosterbos abundance had

taken place.
2.2 Methodological approach

There are selection of mixed methods and resulting data types

that can be analyzed with a past–present–future lens (Kirsten et al.,

2023), and therefore, a boundary crossing approach is required.

Boundary crossing can be described as a generative process that

involves the effective integration of diverse knowledge types and

domains while creating new knowledge through collaborative

networks and processes (Jean et al., 2018). The five-phase SD

modeling process (Sterman, 2000) was used: problem articulation,

formulation of a dynamic hypothesis, formulation of a simulation

model, model testing, and policy design and evaluation. The

modeling process provided an overarching methodological

structure for integrating applied paleoecology, multistakeholder

engagement, and system dynamics modeling in an iterative and

scientifically rigorous manner. As Elandsberg PNR was chosen as a

proof of concept, participating stakeholders (Supplementary
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Table 1) were aware that their contribution was part of an

applied paleoecological research study and that the SD model

development was exploratory in nature. The text below

summarizes the methodological approach detailed in Dirk (2022),

while Figure 4 illustrates the 12 process steps as they relate to the

five phases of the SD modeling process and the conceptual

meta-framework.

2.2.1 Phase 1: problem articulation (past)
Process step 1: Past environmental change was explored using

multi-proxy, high-temporal resolution quantitative paleoecological

data of plant biodiversity (fossil pollen), fire history (macro-

charcoal), and herbivory (coprophilous/dung fungal spores) from

the VANG sedimentary record (Forbes et al., 2018). The utilization

of multiple proxies offers the benefit of enabling a comprehensive

examination of environmental changes, as each proxy will respond

differently both temporally and spatially (Gillson and Willis, 2004;

Gell et al., 2005; Pederson et al., 2006; Willis and Birks, 2006;

Dearing, 2008; Gil-Romera et al., 2010; Birks, 2012; Dearing et al.,

2012; Gell, 2012; Jeffers et al., 2015). Standard procedures were

followed for the extraction and analysis of the paleoecological

proxies and chronology (Appleby et al., 1979; Appleby, 2001;

Bennett and Willis, 2002; Lowe and Walker, 2014) spanning the

ca. 1,300-year VANG sedimentary record from Elandsberg PNR

case study (Forbes, 2014; Forbes et al., 2018). Reconstructed

environmental history was used to identify unprecedented trends

within the sedimentary record at the site. These decadal–

centennial–millennial time series data were used as reference

modes in the development of the simulation model.

Process step 2: A historical timeline depicting past land-use and

climate change events at the study site and within the CFR was

composed using relevant paleoecological literature and records

from historical sources including log books from Elandsberg PNR

(see Supplementary Material in Forbes et al., 2018). This
FIGURE 3

Map of the lowland conservation site, Elandsberg PNR, within the Lower Berg River Catchment, of the Cape Floristic Region, South Africa (Dirk,
2021: p. 65). The sediment core (VANG) was retrieved in October 2012. The paleoecological findings are published in Forbes (2014) and Forbes et al.
(2018), and a subset of the paleoecological dataset was used for system dynamics analysis in the present study.
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information defined the socioecological context and assisted with

the interpretation of the long-term changes in paleoecological data

from the VANG sedimentary record at Elandsberg PNR.

2.2.2 Phase 1 (continued): problem
articulation (present)

Process step 3: A vegetation survey was conducted to assess the

vegetation within 5 × 10 m plots located in each vegetation unit

surrounding the Vangkraal Spring wetland where the VANG core

was retrieved. The dominant species present in each plot were

identified and their respective percentage abundance was

documented. The data collected from the vegetation survey were

used to evaluate the correlation between modern vegetation type and

modern pollen rain. Results from the vegetation survey previously

published in Forbes (2014) and Forbes et al. (2018) were used to

understand the present-day landscape dynamics at the study site. It is

assumed that the pollen profile from the VANG core reflects changes

in vegetation, as well as the impacts of climate and land use over time

at a local level, thus aided in interpreting the paleoecological data.
Frontiers in Conservation Science 06
Process step 4: Over a 3-year period, several semistructured

interviews (Supplementary Table 1) were conducted with multiple

stakeholders—commercial farmers, conservation practitioners, and

government authorities—to gain insights regarding the SES context

and assist with paleoecological data interpretation and model

development (Dirk, 2022). When it comes to modeling decision-

making, there are two core principles that should be taken into

consideration. First, the structure of the model should reflect the

physical and institutional environment of the system in question. It

is essential that it captures the structure of the SES to be effective.

Second, the model needs to take into consideration the decision

process of the key stakeholders involved in the real system, since

their mental models may influence the overall systemic structure

(Forrester, 1961; van den Belt, 2004; Maani and Cavana, 2007;

Maani, 2013; Berkes, 2017).

Process step 5: The same categories of stakeholders participated

in a multistakeholder engagement workshop held on 4 July 2019

(Supplementary Table 1). An adapted group model building script

(Wilkerson et al., 2020) incorporating a general social learning
FIGURE 4

Summary of the methodological process steps used in this interdisciplinary study when following a past–present–future lens. The approach is moving
toward a more evidence-, process-, and simulation/scenario-based understanding of social–ecological systems (SESs). Figure adapted from Dirk (2022).
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process (Reed et al., 2010) and mediated modeling (van den Belt,

2004) was used to facilitate a consensus-based group discussion.

Therefore, participatory tools such as the World Café method and

sustainability dialogues (Carson, 2011; Currie, 2018) were used by

the model facilitation team for variable elicitation and to encourage

reflection and co-creation on how selected ecosystem services (plant

biodiversity, water quality, and soil erosion regulation) are

connected in the system and how the SES problems are related to

land management and climate change within the Middle Berg River

Catchment, CFR (Dirk, 2022).

Process step 6: The qualitative data on ecosystem services and

drivers of change obtained from the semistructured interviews and

multistakeholder engagement workshop were analyzed thematically

using the multiple levels of a systems perspective as applied to a

natural and human-designed system articulated by the iceberg

model (Monat and Gannon, 2015).

Process step 7: Subsequently, the qualitative data were used to

construct a visual diagram, commonly known as a “systems map,”

that depicts the relationships between entities of a system and

holistically considers different mental models (Mahajan et al.,

2019). In-depth information collected from the semistructured

interviews and workshop was not intended for making statistical

inferences but rather informed the discussion of the paleoecological

and computational model results. Therefore, connections between

variables were recorded by the modeller using modelling software

(Stel la® Architect , 2019. isee systems inc.) after the

multistakeholder engagement workshop, with no further active

modes of engagement with stakeholders for the co-construction

of the simulation model’s structures.

2.2.3 Phase 2: formulation of a dynamic
hypothesis (past–present)

Process step 8: Based on the paleoecological data (time-series

data used as reference modes) and systems map, an appropriate

model boundary was identified for the SES problem at

Elandsberg PNR.

Process step 9: Thereafter, a qualitative model was developed to

illustrate the dynamic hypothesis. This qualitative model was

represented as a causal loop diagram (CLD), which included both

reinforcing and balancing/counteracting feedback loops. Using the

systems map and CLDs to build theory diagrammatically provides a

conceptual model of contemporary SES problems and how the

problematic behavior emerged and changed due to the systemic

structure of the SES, thus building a richer, process-based

understanding (Langsdale, 2007; Videira et al., 2010; Voinov and

Bousquet, 2010; Inam et al., 2015; Bou Nassar et al., 2020).

2.2.4 Phase 3: formulation of the simulation
model and Phase 4: model testing (past–
present–future)

Process step 10: A quantitative, simulation model was

developed to focus on the effects of land-use disturbance (fire and

grazing) on unpalatable Elytropappus rhinocerotis (Renosterbos)

and Asteraceous shrub cover, excluding grasses. Although the

paleoecological data were not calibrated according to measures of

modern vegetation, fire, and grazing levels as this was not within the
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scope of this study, the ecological model was calibrated using

paleoecological data as proxies for changes in plant biodiversity,

fire, and grazing (dated ca. 750–2012 CE) (Forbes, 2014; Forbes

et al., 2018). Furthermore, the ecological model formulation

considered foundational literature related to resilience theory

including alternative stable states and management thresholds,

patch-mosaic landscapes, and disturbance and the competitive

exclusion principle such as the success to the successful systems

archetype (Kim and Anderson, 1998; Biggs and Rogers, 2003;

Milton, 2007; Radloff et al., 2014; Bond, 2019; Gillson et al., 2019;

Weiner et al., 2019; Wang and Liu, 2020). In addition to the

literature, expert input provided invaluable context for

perceptions of past/future drivers of change and values-based

interpretation of paleoecological data, informing model

development and analysis (Videira et al., 2010; Voinov and

Bousquet, 2010; van den Belt and Blake, 2015; Roux et al., 2017;

Helfgott, 2018). In the current model structure, a boundary decision

was made to focus on the effects of land-use disturbance (fire and

grazing) on Renosterbos and Asteraceous shrub cover, excluding

grasses. Therefore, the ecological model represented the system as a

set of stocks (Renosterbos pollen, Asteraceae pollen, macro-

charcoal, and coprophilous fungal spores) and flows (e.g., increase

and decrease in plant diversity, fire, and grazing in and out of the

stocks). Variables such as micro-charcoal, exotic pollen, areas under

protection/stewardship, “old lands” areas, and climate parameters

were excluded from the stock and flow diagram (SFD) due to model

boundary selection.

Climate change has an indirect effect on grazing (i.e., less

precipitation has a direct effect on primary productivity and thus

the vegetation cover as a grazing resource). Furthermore, climate

change was indirectly included according to the way climate

warming impacts the Fire Danger Index (FDI) days and

consequently the likelihood of increased fire occurrence in the

landscape (Forsyth and van Wilgen, 2008; Kraaij and Wilgen,

2014) (Table 1; Supplementary Table 3). It is to be noted that this

model was formulated for exploratory purposes and not for

predictive ones; therefore, the model structure directly associated

with climate change variables, such as temperature and precipitation,

was excluded as a further model boundary selection decision.

The reliability of the paleodata and the vegetation dynamics

literature allowed for the optimization of rates that influenced the

main flows (increasing and decreasing Asteraceous, Renosterbos,

and fire). Different rates were used for pre- and post-1800 since this

was when grazing began to increase with a delayed regime shift

occurring in the ca. 1950s. Model validation testing was carried out

throughout all five phases of the SD modeling process to increase

confidence in the model structure and behavior and to provide an

opportunity to improve the model iteratively. The suite of model

validation tests used in this study (results shown in Supplementary

Table 2) covers types/categories that have a good spread of varying

degrees of complexity according to their validation hierarchy and

model hierarchy (Schwaninger and Groesser, 2009; Groesser and

Schwaninger, 2012). The ecological model formulation (decision

rules, parameter estimation, initial values, and associated

assumptions of key variables) is documented according to SD best

practices in the Supplementary Material so that it can be
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reproduced since the SD approach advocates model transparency

and the ease of communication with regard to all model elements

(Martinez-Moyano, 2012). Such model documentation and

transparency enable model users to identify and understand the

assumptions, relationships, and data used in the model.

2.2.5 Phase 5: policy design and evaluation
(present–future)

Process step 11: Various scenarios and policies linked to

management thresholds were designed and evaluated via model

simulation analyses (AD 750–2100), including future scenarios of

changes in plant biodiversity and sensitivity analysis. Model results

were discussed from 1950 to 2100 since this timescale can detect

future regime shifts. This includes a relative conservation time

horizon of the 2030 Sustainable Development Goals (United

Nations Development Program (UNDP), 2016) and 2050

timescale used in climate change projections (Turpie et al., 2002;

Meadows, 2006; Haensler et al., 2011; Hoffman et al., 2011).

Furthermore, as changes in the VANG paleoecological record

occurred over decadal–centennial timescales, extending the

timescale to 2100 is appropriate to detect change.

Process step 12: Since the SD modeling process is iterative

(Sterman, 2000), there is an opportunity to test the ecological model

for model validation. Therefore, an interactive model interface

referred to as a visual user interface, known as the Land
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Management Decision-Support Tool, was developed as a user-

friendly end-product (Story Interface in Stella ® Architect, 2019)

to provide decision support to Elandsberg PNR reserve managers

when setting sustainable land-use guidelines/strategies on future

grazing and fire that would protect local plant biodiversity,

safeguard ecosystem services, and build resilience in the

landscape. The interface allows for engagement with interactive

data visualizations powered by the simulation model and can be

used as a boundary object to facilitate dialogue (Star and Griesemer,

1989; Black, 2013; Fischer and Riechers, 2019) about any surprising

simulation results at further stakeholder engagement such as past–

present–future lens workshops dedicated to model validation and

participatory scenario planning. Furthermore, the interface may be

continually updated along with model development, aiming to

provide end-users access to the model through the interface.
3 Results

3.1 A long-term paleoecological
perspective

The central modeling problem of the Elandsberg PNR case

study is how to increase plant biodiversity (decrease Renosterbos

cover) and, therefore, improve ecosystem function for plant
TABLE 1 Summary of parameters that define the policy space for land-use management at Elandsberg Private Nature Reserve used in the ecological model.

Base Scenario 1: 10-year Cape drought Scenario 2: Climate warming

Base

Initial conditions for fire and grazing levels.
Management interventions are reactive rather than
proactive and climate change adaptation is not a
priority.

The current Cape drought has been ongoing in
various regions since 2015. This is the worst
drought in 100 years. Assumption that dry
conditions will persist for another 6 years before
receiving improved average rainfall. Improved data
need to be obtained for this region to make this
more realistic since the size of the change is an
assumed rate (0.1). Additional data from Fynbos fire
dynamics experts are required.

Scenario 2 assumes that fires will increase
at a certain steady rate after the year 2020.
The increase in fire increase rate (0.001
slope) is an assumption about how
climate change increases the Fire Danger
Index days, and there are more fires due
to hot and dry conditions (Stakeholder
Workshop 1 July 2019) and van Wilgen
et al. (2012).

Policy 1.1:
fire

prevention

Decreases the fire increase rate (by 0.1 from 2020
onward) due to increased fire prevention in the
form of public awareness raising about high Fire
Danger Index days.

Scenario 1—increase fire increase rate (0.23 + 0.1)
for 10 years.
Decrease fire increase rate by 0.1 from 2020 onward.

Scenario 2—increase fire increase rate by
0.23 + 0.001 slope.
Decrease fire increase rate by 0.1 from
2020 onward.

Policy 1.2:
fire control

Increase fire decrease rate by enforcing fire break
laws and improving Fire Support Association
initiatives such as training during controlled burns.
Assumption: 0.1 rate to decrease fire per year

Scenario 1—increase fire increase rate (0.23 + 0.1)
for 10 years.
Increase fire decrease rate by 0.1 from 2020 onward.

Scenario 2—increase fire increase rate by
0.23 + 0.001 slope.
Increase fire decrease rate by 0.1 from
2020 onward.

Policy 2:
decrease to

9.5%
grazing only

Policy 2 is the decision taken by Elandsberg PNR
to reduce their stocking number to the pre-1950s
level (9.4% therefore 0.095) (Forbes et al., 2018)
for a certain period of time (5, 10, or 50 years).

Scenario 1—increase fire increase rate (0.23 + 0.1)
for 10 years.
Grazing levels decreased to 0.095.

Scenario 2—increase fire increase rate by
0.23 + 0.001 slope.
Grazing levels decreased to 0.095.

Policy 3:
adaptive

grazing–fire
management

Managers use adaptive grazing–fire management to
decrease grazing to the average pre-1950s levels
(9.4%) for a certain period of time (5, 10, or 50
years) and then also implement management that
decreases fire (via fire prevention—Policy 1.1 and
control—Policy 1.2). Grazing levels decreased to
0.095 for 50 years then return to 0.53 + decrease
fire increase rate by 0.1 + increase fire decrease
rate by 0.1.

Scenario 1—increase fire increase rate (0.23 + 0.1)
for 10 years.
Grazing levels decreased to 0.095 for 50 years then
return to 0.53 + decrease fire increase rate by 0.1 +
increase fire decrease rate by 0.1.

Scenario 2—increase fire increase rate by
0.23 + 0.001 slope.
Grazing levels decreased to 0.095 for 50
years then return to 0.53 + decrease fire
increase rate by 0.1 + increase fire
decrease rate by 0.1.
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biodiversity conservation and possibly sustainable ecotourism

practices in the future. Together with the long-term patterns from

high-temporal resolution, multiproxy paleodata as reference modes

(process steps 1 and 8), connections with systemic structure and

mental models, as derived from stakeholder engagement insights,

become more explicit. Mapping out the SES problem in this way is

useful in the identification of potential leverage points as places to

intervene in the system that influence the feedback loops of

ecosystem services and drivers that cause the SES problems

described by stakeholders and evidenced in the paleorecord.

Figure 5 provides a synthesized depiction of key results relevant

to the SES problem and used in model development. A further

detailed account of the unabridged paleoecological record can be

found in Forbes (2014) and Forbes et al. (2018).

The ca. 1,300-year-old VANG sedimentary core (Forbes et al.,

2018) data were used as reference modes (Figure 5) for the SD

simulation model. Fossil pollen from the most abundant pollen

types in the VANG paleorecord is used as a proxy for plant

biodiversity. The Asteraceae family is characterized by the

presence of two distinct pollen types in the paleorecord:

As teraceae long/h igh-sp ine type-1 po l l en , which i s

indistinguishable at the family and genus levels, and Asteraceae

Stoebe/Elytropappus-type pollen, which is from a single Asteraceous

species called Renosterbos, that is unpalatable and, when present in

high abundances, is considered less desirable for biodiversity

conservation purposes. Paleoproxies for drivers of change

associated with land-use disturbance include macro-charcoal as a

proxy for local fire history and coprophilous fungal spores as a

proxy for herbivory/grazing. Paleoecological results include the

significant changes in land use at various time markers and show

two ecological regimes (domains of attraction or alternative stable

states) occurring over the past ca. 1,300 years—Regime V-1 from ca.

AD 750–1950 and Regime V-2 from ca. AD 1950–2012. Thus, the

regime shift occurred in the ca. AD 1950s during a period of

agricultural intensification including grain and livestock (cattle and
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sheep) agriculture, and it is characterized by a decrease in plant

biodiversity, evident by a decrease in Asteraceous pollen and an

unprecedented increase in Renosterbos pollen in the time period in

the sediment sequence from this site (Figure 5). Decreased plant

biodiversity was gradually driven by increased grazing since ca. AD

1800s during a period when indigenous peoples, Khoi-San Hunter/

Herders, no longer occupied the region and European settler

agriculture became dominant. In the ca. AD 1950s, during

agricultural intensification, the interacting effects between

increased grazing and increased burning show an upward trend.

Trends of increased grazing and burning continued during the ca.

AD 1970s when Elandsberg PNR was proclaimed as a nature

reserve and large indigenous herbivores were reintroduced in AD

1973 until the present (Figure 5).
3.2 Systems thinking and stakeholder
engagement to understand complex SESs

The purpose of the multistakeholder engagement workshop was

to help familiarize the stakeholders with the SD modeling process,

elicit variables that explained the SES problems, and identify the

model boundary (Figure 6). By using the stakeholder perceptions of

the connections between ecosystem services and drivers results

indicated that land-use managers with local contextual knowledge

have a good understanding of the connections between ecosystem

services and drivers. The thematic analysis conducted after the

workshop illustrated the nuanced perspectives of changes in

ecosystem services and connections to socioeconomic drivers,

which are regarded as implicit mental models that are made more

explicit by recording their perceptions in the visual diagram/

systems map (see Supplementary Figure 1). Stakeholders

recognized the importance of biodiversity and that protected

areas act as a source of biodiversity needed for resilience and

socioeconomic benefits. The following summarizes the
FIGURE 5

Synthesis diagram of key selected paleoecological proxy data from Elandsberg Private Nature Reserve, South Africa, used as reference modes that show
problematic behavior over time: decreased plant biodiversity (pollen) and increased grazing (coprophilous/dung fungal spores) and local fire (macro-
charcoal). Climate variation and land use during the ca. 1,300 years is summarized on the far left. Pollen zones depict a regime shift: Zone V-1 is <1950s
and Zone V-2 is 1950s–2012. A further detailed account of the unabridged paleorecord can be found in Forbes (2014) and Forbes et al. (2018).
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perceptions that surfaced during the dialogues, which could be

framed as possible problem definitions to be explored in further

research in the CFR: a) plant biodiversity is threatened due to

multiple interacting factors; b) land-use management decisions

heavily influence the level of grazing and there is little long-term

information on its impact; c) fire regimes are changing; and d)

management does not have the adaptive capacity to

evolve appropriately.

The systems map in Supplementary Figure 1 shows that there

was a notable emphasis on systemic governance variable level that

could be leverage points for achieving sustainable land management

in the region. Connections between the systemic governance issues

are captured in detail in the systems map (see hexagons in

Supplementary Figure 1) but some examples include funding of

the biodiversity section, illegal clearing of natural vegetation, tools

and training to manage fire, and rehabilitation of the riparian zone.

The systems map aided in zooming in on a particular SES problem

(Supplementary Figure 1) and the case-specific CLD (Dirk, 2022:

p. 214).

Figure 7 is important for model boundary selection, i.e.,

identifying key variables and stocks that would be modeled for

Elandsberg PNR. The dynamic hypothesis articulated by the six

feedback loops in the case-specific CLD are R1–R4, B1, and B2,

which underpin the systemic structure of the SES problem. Factors

mentioned in the Asteraceous shrubs dominance (R1) and
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Renosterbos dominance (R2) loops are the most central to the

dynamic behavior over time. The reinforcing loop R1 is the loop

that reinforces the dominance of Asteraceous shrubs, which is a

result of the reinforcing loop R4 that reinforces the low levels of

grazing and fire levels. It has been observed that there were low

levels of grazing on palatable plants (grasses and some

Asteraceous shrubs) by large indigenous herbivores during the

period of Khoi-San Hunter/Herders inhabiting the region until

AD 1600s. This was until increased grazing pressure from

livestock during agricultural intensification during AD 1800s–

1950s (as evidenced in Regime V-1 of Figure 5). This has

resulted in the dominance of unpalatable Asteraceous shrubs

which is reinforced by the feedback between resources, the

space available for Asteraceous shrubs (reinforcing loop R1) and

Renosterbos (reinforcing loop R2), and low grazing and fire levels

(R4 and B1). A feedback between resources and the space

available for Asteraceous shrubs (R1) is linked to a shift in loop

dominance from Asteraceous shrubs dominance during the pre-

1950s to Renosterbos dominance (R2) post-1950s and is explained

by the threshold behavior observed in the paleorecord between ca.

AD 1800 and 1950 (Figure 5) and how the drivers and feedbacks

interacted non-linearly and caused the system to shift from one

stable state (Regime V-1: Asteraceous shrub-dominated regime) to

an alternative stable state (Regime V-2: unpalatable Renosterbos-

dominated regime).
FIGURE 6

Photo grid of multistakeholder participation and materials used in the multistakeholder engagement workshop—designed for co-creation and
reflection on sustainable land management in the Middle Berg River Catchment (Dirk, 2022: p. 214).
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Regime V-1 in the pollen record is characterized by a

heterogeneous, patch-mosaic landscape that includes patches of

different vegetation units/elements (i.e., patches of Alluvium

Fynbos, Renosterveld-Fynbos Ecotone, grassland, Shale

Renosterveld, Grassland-Renosterveld matrix, and thicket) that

result in less widespread fires, thus promoting further

heterogeneity in vegetation units and varying postfire ages of

vegetation patches (Forbes et al., 2018). However, once grazing

levels reached a threshold, loop dominance favored Renosterbos

competition. The feedbacks that maintained Regime V-2 are high

grazing–fire dynamics (R3, R4, and B1), which reinforces

competition that favors the unpalatable Renosterbos (R2) over

other palatable Asteraceous shrubs. Despite Renosterbos

dominance, at the present day, the site remains heterogeneous to

a certain extent due to conservation practices including fire

management and grazing management of large indigenous

herbivores (Dirk, 2022). The heterogeneous landscape comprises

patches of different vegetation types/units—Asteraceous shrubs,

thicket, and indigenous grasses and varying postfire ages persist

in the landscape though at lower levels than in precolonial times.
3.3 The interface between paleoecology
and modeling

Development of the simulation model, called the ecological

model, via an SFD and select model analysis results from the

simulation model, the behavior of the preliminary scenario, and

policy analyses are described here. The policy space for biodiversity

conservation at Elandsberg PNR is defined in Table 1 and detailed

in Supplementary Table 3. The ecological model sufficiently

replicates the paleoecological record as reference modes and
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reproduces threshold behavior driven by grazing since the ca. AD

1800s resulting in an ecological threshold being crossed in ca. AD

1950s coupled with an unprecedently high local fire regime. A

snapshot of the modeled plant biodiversity and fire levels in the

future (AD 2050 and AD 2100) are shown in Table 2, whereas

Figures 8, 9 show how trends in vegetation dynamics evolve from

AD 2020 to 2100. Table 2 highlights significant findings for each

simulated scenario. In the "base-case" scenario, which reflects

business as usual assuming constant rates of change in the

abundance of Asteraceous shrubs, Renosterbos, fire, and grazing

levels, a decrease in plant biodiversity is observed, marked by an

increase in Renosterbos and a decrease in Asteraceous shrubs. The

shaded areas in Table 2 show a more favorable ratio (0.35 in 2050

and 0.19 in 2100) if managers choose to only control grazing (Policy

2, Table 1, Supplementary Table 3) and lack adequate resources for

fire prevention and control. In this case, the Asteraceae pollen level

would reach only 7.7% by 2100, and macro-charcoal levels would be

1.07 times higher (1,875 particles cm–3) compared to the base case

(1,760 particles cm–3). If managers decrease fire levels only, there

will be some recovery in Asteraceous shrubs but unpalatable

Renosterbos still persists (Figure 8). Simulated fire control (Policy

1.1) resulted in fewer local fires (macro-charcoal 1,248 articles cm–3

(shown by red shading in Table 2)) compared with fire prevention

(Policy 1.2) (macro-charcoal 1,732 particles cm–3 (shown by grey

shading in Table 2)); however, fire prevention is not beneficial for

increasing biodiversity (ratio 0.19 in AD 2050 and 0.09 in AD 2100

—in Table 2) since Renosterveld and Fynbos vegetation is fire-

prone and requires fire for regeneration.

Interestingly, the decision point variable “Duration of policy:

Time to adjust grazing management” (Policy 3, Supplementary

Table 3), an adaptive grazing–fire management, has varying

consequences depending on the duration of implementation,
FIGURE 7

Causal loop diagram depicting the dynamic hypothesis (feedback loops R1–R4, B1, and B2) for the ecological model for biodiversity conservation
based on Forbes et al. (2018) and Forbes (2014) and expert input resulting from the multistakeholder engagement. Connectors highlighted in pink
influence the management policy and scenario analyses.
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FIGURE 8

Five-scenario analysis outputs for the ecological model showing changes in plant biodiversity [pollen proportion data of (A) multiple Asteraceae
species and (B) one unpalatable species, Renosterbos] and (C) fire (macro-charcoal) over time (1950–2100) for the Elandsberg PNR.
TABLE 2 Summary of results from the scenario and policy analyses for the ecological model.

Scenario
name

Decision points and initial values since
2021

Palatable
Asteraceae
pollen (%)

Unpalatable
Renosterbos
pollen (%)

Macro-
charcoal
(particles
cm−3)

Ratio of
Asteraceous

to
Renosterbos

Fire increase
rate

Fire
decrease

rate

Grazing
level

2050 2100 2050 2100 2050 2100 2050 2100

Base case –1– 0.23 0.05 0.53 8.17 3.71 41.73 44.45 1,754 1,760 0.20 0.08

General
climate change
–2–

0.23 + 0.1 + 0.001
slope

0.05 0.53 7.80 3.27 41.18 43.01 1,812 1,879 0.19 0.08

Fire control –
3–

0.23 + 0.1 + 0.001
slope

0.05 + 0.1 0.53 10.32 6.97 50.20 49.91 1,058 1,248 0.21 0.14

Fire
prevention –

4–

(0.23 + 0.1 + 0.001
slope) −0.1

0.05 0.53 8.56 4.21 44.04 44.72 1,571 1,723 0.19 0.09

Decrease to
9.5% grazing
only –5–

0.23 0.05 0.095 13.31 7.68 38.23 40.39 1,799 1,875 0.35 0.19

5 years
adaptive
management –
2–

(0.23 + 0.1 + 0.001
slope) until after 5
years then −0.1

0.05 until
after 5 years
then +0.1

0.095 for 5
years then

return to 0.53
12.26 10.60 56.37 55.37 513 722 0.22 0.19

10 years
adaptive
management –
3–

(0.23 + 0.1 + 0.001
slope) until after 10
years then −0.1

0.05 until
after 10 years
then +0.1

0.095 for 10
years then

return to 0.53
12.71 10.97 55.75 55.07 524 721 0.23 0.20

50 years
adaptive
management –
4–

(0.23 + 0.1 + 0.001
slope) until after 50
years then −0.1

0.05 until
after 50 years
then +0.1

0.095 for 50
years then

return to 0.53
13.31 11.88 38.23 53.30 1,799 770 0.35 0.22
F
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which can range from 5 to 50 years. Here, the measure of

equilibrium is expressed in terms of a ratio or fraction. The

surface sample from ca. AD 75 to 2012 record is outside of the

pre-1950s range for pollen (Forbes, 2014; Forbes et al., 2018). On

average, the pre-1950s ratio of Asteraceous to Renosterbos pollen

was 2.1, whereas the post-1950s ratio was low at 0.4 (Forbes et al.,

2018). Ideally, policy and management would aim to return levels of

grazing, fire, and plant biodiversity to that of a pre-1950s reference

condition (i.e., an Asteraceous to Renosterbos pollen ratio of 2.1

and lower levels of fire and grazing). Simulation results suggest that

it may not be possible to return vegetation to pre-1950s levels, so the

policy should aim to decrease Renosterbos by lower grazing and

control the high fire frequency problem. Therefore, Policy 3 may be

the most desirable intervention to maintain this new current system

state by not crossing a land cover change management threshold

that is calibrated to an Asteraceae to Renosterbos pollen ratio of

0.22–0.35 (see green shading in Table 2).

However, considering the priorities of the current stakeholders

managing Elandsberg PNR, it may be unfavorable for a thriving

private nature reserve to decrease its large indigenous herbivore

stocking rates for 50 years; thus, the duration could be decreased to

10 or 5 years. When only implementing the policy for 5–10 years

before adjusting grazing back to its current levels, the simulation

experiment suggests that Renosterbos pollen abundance at 2100

would be almost the same (55.0%) compared with implementing

the policy adjusted after 50 years (53.0%); thus, the difference was

negligible between the policy scenarios. Similarly, Asteraceous

shrubs would be between 10.60% and 11.0% after adaptive

management for 5–10 years, which is not much less than 11.9%

after 50 years. Furthermore, the ratio of Asteraceous to Renosterbos

pollen in 2050 and 2100 under various scenarios is shown in the last

two columns of Table 2. Before the regime shift occurred around the

ca. AD 1950s, Asteraceous shrubs and Renosterbos were in

equilibrium (i.e., see Figure 5, Regime V-1 with no abrupt

changes in ecosystem services and drivers) for at least 1,200 years
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(Forbes et al., 2018), with Asteraceous shrubs dominant in the

system (see R1 of Figure 7).
4 Discussion

4.1 Insights for ecological restoration and
safe operating space for the management
of SES resilience

This study investigates how biodiversity, fire, and herbivory

have changed over time; the feedback that drives these changes; how

these changes can be simulated; and how changes in biodiversity,

fire, and herbivory may impact ecosystems in the future. By

simulating past change using paleoecology and participatory

system dynamics modeling, we have a basis for interrogating how

future management of fire and grazing might affect plant

biodiversity results. In this process, it is essential to identify the

drivers of a system regime shift and what variables maintain the

system state in a SES; this is imperative for understanding what

mechanism(s) enable conditions for the resilience of a system and

can be explored through the conceptual past-present-future meta-

framework (Figure 1), using Elandsberg PNR as a case study. This

framework considers changes in ecosystem services and drivers of

change in the context of sustainable land-use management within

the CFR’s multifunctional landscape. The study contributes to a

comprehensive exploration of how sustainable land management

practices can be employed with the aim to manage ecosystem

resilience, and the following paragraphs address the research

questions outlined above.

4.1.1 What are the main changes in plant
biodiversity, fire, and herbivory over time? (past)

The paleoecological record shows that the main changes that

occurred were an increase in the dominance of Renosterbos post-
B CA

FIGURE 9

Expansion of Policy 3’s adaptive grazing–fire management analysis outputs (5, 10, and 50 years) compared with the base case for the ecological
model showing changes in plant biodiversity [pollen proportion data of (A) multiple Asteraceae species and (B) one unpalatable species,
Renosterbos] and (C) fire (macro-charcoal) over time (1950–2100) for the Elandsberg PNR.
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1950 in response to increased grazing and fire (Forbes et al., 2018).

The ecological processes changed slowly pre-1950s, particularly the

slow increases in herbivory since the ca. AD 1800s coupled with low

levels of fire, and these controlled the resilience of a patch-mosaic

landscape dominated by Asteraceous shrubs. After the ca. 1950s

regime shift, the rates of change increased for herbivory, and a

slower increase in local fire controlled the less resilient patch-

mosaic landscape that has increased Renosterbos dominance. In

complexity terms, the slower processes can be viewed as controlling

resilience (Biggs et al., 2009; Carpenter et al., 2009).

4.1.2 What are the feedbacks that drive these
changes? (past–present)

Changes in biodiversity, fire, and herbivory over time are driven

by feedbacks in the environment. For instance, a high grazing

pressure can lower the availability of pasture, reducing the

abundance of grasses and palatable Asteraceous shrubs. Similarly,

if fire intensity and frequency increase, the abundance of

Asteraceous shrubs can decrease due to their fire-prone and fire-

adapted nature, and grazing pressure can increase as herbivores

have more access to palatable plants. This dynamic feedback loop

changes plant biodiversity (provisioning/supporting ecosystem

service) over time and therefore illustrates how ecological

integrity is impacted (Figure 7). As the rates of change in drivers

increase, the landscape processes increase and resilience in a

particular vegetation state is no longer maintained. The new

vegetation state is therefore governed by new slow processes; for

example, Figure 7 shows the slow process of Renosterbos

homogenization by reinforcing loop R3 (unpalatable shrub causes

fire persistence) which is currently maintaining the resilience of a

more undesirable state.

The dynamics over time are supported conceptually by

resilience theory (including alternative stable states and

management thresholds), disturbance in patch-mosaic landscapes,

and the competitive exclusion principle (the success to the

successful systems archetype–feedback loop dominance changing

from R1 to R2 over time) (Kim and Anderson, 1998; Biggs and

Rogers, 2003; Milton, 2007; Radloff et al., 2014; Bond, 2019; Gillson

et al., 2019; Weiner et al., 2019; Wang and Liu, 2020). Furthermore,

even in the absence of precise calibration data regarding modern

relationships between pollen, charcoal, and dung fungal spores, the

paleoecological record from the past is an invaluable resource for

understanding these changes over time (Figure 5; Supplementary

Figure 2). Similar to the findings reported by Radloff et al. (2014)

and Dirk (2022) in other Renosterveld landscapes within the CFR,

the ca. 1,300-year-old VANG record showed that herbivory (not

fire) was the main driver of change in plant biodiversity.

Specifically, the paleoecological work revealed that more

herbivory caused a regime shift from Asteraceous shrubs to

unpalatable Renosterbos, and more local fires maintained the

regime (Figure 7).

The changes in biodiversity, fire, and herbivory can have a

major impact on the ecosystem function and resilience for

biodiversity conservation and ecotourism practices at Elandsberg

PNR. Fire and herbivory, if not managed properly, can have a

negative effect on biodiversity. This can then lead to the ecosystem
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becoming more vulnerable to external factors, such as climate

change, and having an effect on the plant biodiversity, which then

has an impact on the ecosystem services, such as water quality and

soil erosion. Stakeholders reported that the multiple interacting

effects of fire include too frequent fires, damaged topsoil, and

invasive alien plants (IAPs). As a result, plant biodiversity is likely

to decrease sooner than expected as evident in the Elandsberg PNR

regime shift in ca. AD 1950s. The most significant stakeholders’

perception was that the true impacts of fire are unknown due to the

lack of systems that adequately monitor the effects of fire

on biodiversity.

4.1.3 Can the changes in ES, drivers, and
interactions between system processes identified
in the paleoecological record be simulated?
(past–present)

This study provides a proof of concept that it is possible to simulate

the changes in ecosystem services (ES), drivers, and interactions

between system processes identified in the paleoecological record.

Research that combines long-term paleoecological data with system

dynamics is rare (but see, e.g., Armstrong McKay et al., 2019).

Therefore, the present study’s methodological approach to extend the

temporal scale and by utilizing the reference modes provided by the

paleoecological record during model development is unconventional in

the SD field and SES research and is the first of its kind within the CFR,

South Africa, and the African continent. This novel methodological

approach (paleoecology, stakeholder engagement, and system

dynamics) has the potential to provide management decision

support for land-use managers as it considers the historical range of

variability and, therefore, “paleo-safe operating space” insights based

on historical range of variability into how the system may respond to

different management interventions and under different future

scenarios. This provides a better understanding of the complexities of

the system and allows for more informed decisions about the system’s

management and conservation to be made. By taking into account the

physical and institutional environment and the underlying mental

models of the stakeholders, we can create an effective decision-making

model, which is tailored to the individual system. Therefore, PSD

modeling (including future scenario techniques) can be used to

simulate these processes and ultimately provide lessons from the past

to improve our understanding of what interventions are needed

(Gillson, 2015; Hossain et al., 2016; Armstrong McKay et al., 2019)

to restore plant biodiversity and reduce degradation for sustainable

land management at Elandsberg PNR.

4.1.4 How might these changes in ecosystem
services, drivers, and interactions impact on
ecosystem function/resilience for biodiversity
conservation and ecotourism practices at
Elandsberg PNR in the future? (future)

Variability in ecosystem services and the feedback affecting

system stability are important to consider for sustainable ecosystem

services provision. Therefore, the levels of fire, herbivory,

Asteraceous shrubs, and unpalatable Renosterbos abundance

(Forbes, 2014; Forbes et al., 2018) can be used as indicators to

assess ecosystem function, alternative stable states and ecological
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thresholds, and SES resilience. Asteraceous shrubs and Renosterbos

were stable for at least 1,200 years (Forbes et al., 2018), with

Asteraceous shrubs dominating the system (see Regime V-1 of

Figure 5). On average, the ratio of Asteraceous to Renosterbos

pollen was 2.1 before 1950, but it decreased to a low 0.4 after 1950.

This shift in the ratio reflects a regime shift in the ecosystem services

and drivers of the system, which impacts resilience. Long-term data

can provide insight into patterns associated with system structure,

and modeling this SES problem related to land degradation and

biodiversity loss can help to improve biodiversity conservation at

this site.

The simulation model has shown that an undesirable

Renosterbos-dominated alternative stable state may be

approaching since ca. AD 1950s. This could variously be

described as a tipping point, a crossing of an ecological threshold,

a regime shift, or a transition to an alternative stable state (Holling,

1973; Ludwig et al., 1997; Folke et al., 2004; Walker and Meyers,

2004). The land-use disturbance regime shift of the ca. AD 1950s,

however, was likely not a critical threshold, but the simulation

results from 2022 to 2100 show a potentially new ecological regime

or system state that would be crossing a critical threshold. This new

state would consist of unpalatable Renosterbos together with a

higher fire frequency and would be considered “negatively resilient”

due to its resistance to change (Lake, 2013; Grace and Pope, 2015;

Oliver et al., 2015). Adaptive grazing–fire management practices

that decrease grazing pressure and the rate of fire (Figure 7) are

recommended to maintain or improve current levels of plant

biodiversity and prevent a future regime shift to an alternative

stable state, “degraded Renosterveld” (Dirk, 2022).

4.1.5 What sustainable land management
practices can be implemented to increase
ecosystem resilience within a safe
operating space?

The time-series data in Figure 5 show that the paleoecological

record can be used to test assumptions and make informed

management recommendations for the future. The VANG record

from Elandsberg PNR, spanning ca. 1,300 years, has revealed a

substantial shift from a pre-1950s to post-1950s regime in terms of

the ecological character (Finlayson et al., 2005; Gell et al., 2013;

Davidson, 2016; Gell et al., 2018). This shift means that setting

biodiversity conservation targets based on the reference state of AD

1973 is unrealistic, as the landscape was already degraded when

Elandsberg PNR was proclaimed in AD 1973. If the dynamic

hypothesis shown in Dirk (2022: p. 214; Figure 7) is true, then

the main impacts on ecosystem services are a decrease in plant

biodiversity (supporting and provisioning services) with subsequent

negative impacts on other ecosystem services such as water quality,

soil erosion regulation, pollination (regulating services) and

recreation, livelihoods, and economic activity due to social

conflict between biodiversity conservation and ecotourism

priorities (cultural services). Therefore, to increase ecosystem

resilience and create a safe operating space, we recommend using

adaptive grazing–fire management practices, such as a) reducing

grazing to pre-1950s levels for a desirable period of time and b)

implementing fire prevention and improved fire control. These
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measures should be implemented over decades and might be

complemented by manual clearing of Renosterbos. Though

potentially costly and challenging, manual clearing of Renosterbos

and rehabilitation using various clearing techniques (e.g., loppers,

slashers, dickers, and varying burning intensities) (Millar et al.,

2007; Palmer, 2010), alongside reduced grazing and burning, will

hopefully maintain heterogeneity and the current regime where the

ratio of Asteraceae : Renosterbos pollen is between 0.22 and

0.35 (Table 2).

In addition, changes in biodiversity, fire, and herbivory can also

affect the cultural services provided by the ecosystem, such as

recreation, livelihoods, and economic activity. Therefore, it is

important to consider how these changes may impact the

ecosystem services and resilience of Elandsberg PNR in order to

ensure its sustainability. Structural character resilience can be

recognized by a loss of original ecological character due to

instability of a vegetation type, with an ecological threshold being

crossed. Simulation results show increased resilience of an

undesirable degraded state (Figure 9). Therefore, functional

redundancy may explain the structural character resilience (Dirk,

2022) at a between-biome scale of the ecosystem (see Figure 3) at

the ecotone between Renosterveld and Fynbos vegetation) despite

crossing a land-use disturbance threshold in ca. AD 1950s

(Figure 5). Given the evidence for possible hysteresis in the

future, we recommend that managers maintain and monitor

current land-use practices or restore ecological character to avoid

a critical ecological threshold being crossed. Reversibility of an even

more degraded Renosterveld state in the future (Slingsby et al.,

2014; Forbes et al., 2018) is highly unlikely. Hysteresis must be

considered when setting thresholds for adaptive grazing–fire

management (Holling, 1973; Ludwig et al., 1997; Folke et al.,

2004; Walker and Meyers, 2004), as the ecological model’s future

scenario analysis suggests that it may be difficult to return the

ecological system to its pre-1950s historical range of variability even

if grazing and fire intensity are reduced to pre-1950s levels.

Therefore, manual clearing of unpalatable Renosterbos is

recommended to decrease the likelihood of a future regime shift

to a degraded alternative stable state that is undesirably resilient due

to its resistance to change or reversibility to a desirable state. With

these practices in place, managers can actively restore

the ecosystem.
4.2 Significance, limitations, and
future work

The study demonstrates the importance of a past–present–

future perspective in understanding the dynamics of SES. It

shows the power of combining paleoecological data with

stakeholder participation and SD modeling, providing a powerful

tool for defining management thresholds and safe operating spaces.

While representing a proof of concept, further studies are needed to

develop generic insights and decision support tools and develop

possible scripts and adjustments to make it applicable in other

contexts and at a wider scale. The interactive simulation model

interface translates long-term data that can be used by policymakers
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and land-use managers. It helps to generate insights on how to

maintain ecological integrity that preserves supporting/

provisioning and regulating services which, in turn, benefit

complex SESs. This interactive tool may be valuable during future

multistakeholder engagement and participatory scenario planning

workshops within and outside of paleoecology and biodiversity

conservation networks in similar ways that other decision support

tools have benefited sustainable land management (e.g., Bieber

et al., 2018; Armstrong McKay et al., 2019; Rupnik et al., 2019).

When combining methods from different fields, it is important to

consider the social implications of knowledge sharing. Consequently, to

further augment SES resilience, it is necessary to heighten the target

multistakeholder group’s cognizance of paleoecological data to

contextually define the historical range of variability and explore the

impacts on ecosystem services. Furthermore, familiarity with system

dynamics modeling can assist stakeholders in exploring dynamic

feedback and future scenarios (Turner K. G. et al., 2016; Miller et al.,

2017; Allington et al., 2018), furnishing greater comprehension of how

the ecosystem may react to distinct management interventions as

demonstrated in other SD decision support tools developed (Brent

et al., 2017a; Brent et al., 2017b; Carnohan et al., 2021). Paleoecological

evidence can ground potential future scenarios and help stakeholders

plan preventative measures. The Land Management Decision Support

Tool captures tacit knowledge (see Figure 10 and openly available

online: https://exchange.iseesystems.com/public/cherie-dirk/ecological-

model-land-management-decision-support-tool) and can be used as a

boundary object to facilitate discussion, explore scenarios, and support

education and outreach. The SD modeling process is iterative, and

through these iterations, the model can be improved and validated,

which could improve the articulation of the dynamic SES problem so

that the problem can be better simulated. All of these measures can

help manage trade-offs to maintain or improve plant biodiversity and

support socioeconomic benefits and prevent hysteretic reorganization.

This exploratory study has its own limitations, such as the lack of

calibration of paleoecological data with modern pollen and charcoal

(e.g., Gillson and Duffin, 2007). It is essential to note the regional

specificity of this study’s results, which may not be applicable across

similar sites in the CFR, even though the methods might be
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transferable. Further research is necessary to ensure the same trends

are observed in similar landscapes in the region (e.g., see high-

resolution, multiproxy paleoecological insights on changes in plant

biodiversity, water quality, soil erosion regulation, fire, and grazing at

Rhenostervlei Farm—Dirk, 2022). Moreover, this exploratory study

was limited by the model’s tight model boundary inability to account

for all possible variables and interactions involved in the system.

Furthermore, potential impacts of changes in biodiversity, fire, and

herbivory may not be considered, thus not providing a complete

picture of the system, especially because no direct paleoclimate

proxies were explored in the VANG paleorecord. Thus, vectors

related to climate change such as changes in temperature and rainfall

and the decline in pan evaporation and wind run and extreme weather

events such as floods and drought events (Turpie et al., 2002; Meadows,

2006; Haensler et al., 2011; Hoffman et al., 2011) can be included to

enhance a submodel of the ecological model presented here. To

improve this work in the future, the model must be developed

further by incorporating more variables of a climate submodel and

interactions, as the changes in temperature and precipitation will also

have a strong direct impact on the distribution of plants and herbivores

and the composition of communities.

Low levels of modeling experience and the lack of input from

some stakeholder groups were further limitations. A more informed

value-based description would require paleoproxy calibration and

stakeholder consultation, especially around grazing–fire

management regimes, in terms of what stakeholders perceive to

be desirable and feasible and within what time period (Table 2;

Figure 9). However, not all stakeholders may be willing to engage in

the modeling process, making it uncertain to comment whether the

current landscape state is within a safe and just operating space.

This emphasizes the need for engaging stakeholders in the process

of building and refining the model, as this can help to ensure that

their expectations and needs are considered. Furthermore, it would

be beneficial to explore the implications of including different types

of stakeholders in the model building process, testing different levels

of intensity of participation in the model building processes (Bots

and Van Daalen, 2008; Voinov and Bousquet, 2010; Voinov et al.,

2016; Clifford-Holmes et al., 2017a) and the analysis of outcomes.
FIGURE 10

Screenshot of the ecological model Stella user interface to be used as a Land Management Decision Support Tool. Available via open access at the
following link: https://exchange.iseesystems.com/public/cherie-dirk/ecological-model-land-management-decision-support-tool.
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At the multistakeholder engagement workshop, stakeholders

expressed their concern about the current levels of fire and

emphasized the need for greater fire prevention and control

measures (Dirk, 2022). To better understand the dynamics of the

system, more research is needed to explore how changes in

biodiversity, fire, and herbivory may affect the system. The

increase in fire was related to climate and was impacted by land-

use management. While stakeholders are already taking fire

prevention precautions by not using certain agricultural machines

on high FDI days, the ratio of Asteraceae to Renosterbos pollen

(0.19 in 2050 and 0.08 in 2100—Table 2) did not change

significantly compared with the base case—see pink shading in

Table 2. Stakeholders mentioned the inadequacy and ineffectiveness

of current fire prevention precautions and suggested that additional

systemic structures are needed to support the fire protection

services, raise awareness, and lobby for more financial resources

for fire control (Dirk, 2022). With the inclusion of the official

climate predictions from the IPCC in future scenario analysis, the

potential impacts of a hot dry climate (scenario 2) and drought

(scenario 1) on fire could be further explored.

This research provides a comprehensive structure for

stakeholder engagement in the proposed conceptual meta-

framework and its replication in different contexts. Traditional

formats of paleoproxy diagrams included in scientific articles of

peer-reviewed journals such as Figure 5 could be perceived as too

technical for anyone outside the field (and particularly for key local

stakeholders) and may therefore be ineffective for on-the-ground

impact. The present study provides an example of how the past–

present–future conceptual meta-framework can be used and

demonstrated in a user-friendly modeling tool for stakeholders

(Figure 10). Although this fell outside of the scope of the study, it is

essential to consider the application of this model to other regions

and cultures, as well as the effectiveness of stakeholder engagement

in a variety of contexts. Finally, it is important to examine if

stakeholder engagement leads to more holistic approaches to

ecosystem service management.
5 Conclusion

This article uses a past–present–future conceptual meta-

framework to explore the variability of ecosystem services and

land-use drivers in the Cape Floristic Region (CFR) of South

Africa, a globally recognized biodiversity hotspot. Blending

paleoecology and participatory system dynamics (PSD) provides

context for understanding dynamic social–ecological systems to

explore scenarios, and yields safe operating parameters and

management targets for social–ecological resilience and

sustainability. The following are the key takeaways from this study.

1) The paleoecological data indicate the main changes including a loss

of plant biodiversity post-1950, specifically an increase in

Renosterbos and a loss of palatable Asteraceous shrubs. 2) The loss

of diversity was driven by increased grazing and burning, which

continued throughout the transition from a farm to a nature reserve.

3) System dynamics modeling can be used to identify feedback in the

dynamic social–ecological system structure. The dynamic hypothesis
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articulated a state shift in causal loop dominance from the abundance

of multiple Asteraceous shrubs to unpalatable E. rhinocerotis

(Renosterbos), and an interdisciplinary approach was used to

understand the interacting processes that drive the dynamics of

ecosystem services provision. 4) The changes in biodiversity, fire,

and herbivory in the future could have a major impact on the

ecosystem function and resilience of Elandsberg PNR. 5)

Paleoecological data can be used to define the historical range of

variability in plant biodiversity, herbivory, and fire. Simulation

models suggest a potentially new ecological regime or system state

dominated by unpalatable Renosterbos, with a higher fire frequency

and difficulty in reversing it. Reduction in grazing and burning would

be beneficial but might not return the plant diversity to its former

state. Recommended actions to increase ecosystem resilience include

adaptive grazing–fire management, reducing land-use disturbance by

reducing fire and grazing, and increasing stakeholders’ awareness of

paleoecological data and system dynamics. Active restoration of

previous vegetation composition, such as clearing of Renosterbos, is

suggested, but it can be costly and challenging. However, changes in

these factors may maintain the sustainability of the ecosystem but

could also affect the cultural services provided by the ecosystem.

By combining paleoecological data and participatory SD

modeling, the study is a proof of concept showing that it is

possible for the changes in ecosystem services, drivers, and

interactions between system processes identified in the

paleoecological record to be simulated. The process translates

paleoecological data into a form useful for policymakers and

land-use managers. A Land Management Decision Support Tool

is available to facilitate discussion and explore scenarios and can be

used as an education and outreach tool. By applying a contextual

evidence- and process-based understanding of the temporal

variability and dynamic feedback between ecosystem services and

drivers, this proof of concept showed the benefits of blending

paleoecology and PSD to explore future scenarios. The results of

the combined approach can be used to articulate safe operating

parameters and management targets that can enhance social–

ecological resilience and sustainability of systems like the

Elandsberg PNR, supporting the broad objectives of sustainable

land management and biodiversity conservation.
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