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A software pipeline for
automated wildlife
population sampling

Peter K. Marsh and Franz J. Kurfess*

Drones for Marine Science and Agriculture, California Polytechnic State University, Computer Science
and Software Engineering, San Luis Obispo, CA, United States
Ecologists today face significant challenges in accurately modeling wildlife

populations. Population surveys provide an essential understanding of an

ecosystem; however, they currently require an extensive amount of labor and

resources to carry out which limits the frequency at which they are conducted.

Lack of population data presents a significant barrier to ecologists in their ability

to understand and model interactions between species and their surroundings.

Preliminary work has been done in employing consumer drones and object

detection software to automate data collection and processing on largemammal

species. Such work suggests these technologies can significantly ease the

process of data collection while maintaining an accuracy comparable to

manual surveying techniques. While previous studies indicate the use of drone

and object detection technology can aid in the collection of population data,

there remain significant barriers in applying such methods to aid in ecological

research on a broader scale. In particular, using object detection to identify target

individuals involves combining many software tools, each of which comes with

its own challenges and complexities. This paper presents a flexible software

framework for automated population sampling that is accessible to researchers

in the field of wildlife research. To achieve this we combine orthomosaic

stitching, object detection, label post-processing, and visualization solutions

into a single software pipeline. We then show how such a pipeline can be run in

the cloud and provide documentation for others to replicate this process. Finally,

we use a consumer drone and free navigation software to demonstrate the

proposed workflow on a herd of cattle and assess its viability in providing useful

population data.

KEYWORDS

drone, wildlife, survey, automated, pipeline, sampling
1 Introduction

As the threat to wildlife and endangered species due to human encroachment increases,

the work of ecologists in understanding and modeling a species’ characteristics and relation

to its environment becomes increasingly important. Effects of habitat loss and ecological

disruption over the last few decades can be seen across a multitude of species types and
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ecosystems. Recent studies estimate that over 50% of the world’s

vertebrate species have suffered population decline and range

contractions due to habitat loss and fragmentation (Ceballos

et al., 2017). Off the coast of Australia, researchers recorded a

92% decline in hammerhead shark abundance between 1962 and

2016 (Roff et al., 2018). Human activities and climate change also

correlate with range shifts in animals, such as rapid changes in bird

populations observed by (Lehikoinen et al., 2013; Marchowski et al.,

2017; Marchowski et al., 2020). Such range shifts can cause large

population concentrations in areas not affected by human

intervention. Marchowski and Leitner (2019) have documented

such episodes of birds’ massive concentrations in small areas using

aerial methods and subsequently employed Kernel Density

Estimation techniques for spatial analysis. Analysis of population

data shows significant changes in wildlife density and distribution.

In order to help mitigate human impact on wildlife we can

monitor small changes in population data and use statistical

modeling to extrapolate future trends. The collection of high-

resolution population data enables ecologists to model

hypothetical future scenarios and generate effective mitigation

techniques to prevent unwanted outcomes. However, despite the

importance of collecting high-resolution population data,

population surveys remain sparse as current survey methods

require an extensive amount of labor, skill, and resources to

carry out.

Preliminary work has been done in employing consumer drones

and object detection software to automate data collection and

processing on large mammal species. Such work suggests these

technologies can significantly ease the process of data collection

while maintaining an accuracy comparable to manual surveying

techniques. A study by Infantes et al. (2022) used a DJI Phantom 4

with a pre-programmed flight path and machine learning detector

to conduct a survey of Scandinavian harbor seals. When compared

with ground-based counts, the machine learning detector identified

seals with 95-97% accuracy. In addition to providing accurate

results in significantly less time than manual surveying techniques

did, drone surveying also provided access to rocky archipelagos

which are largely inaccessible for ground-based surveys. Another

study by Purcell et al. (2022) in New South Wales, Australia,

assessed the viability of using deep learning and object

recognition to perform real-time identification of sharks in drone

footage. The researchers trained two neural networks on a large

archive of video drone footage achieving an accuracy of 80% for

their RetinaNet algorithm and 78% for their MobileNet V1

algorithm both of which compared well to skilled human

observers. Such studies prove the viability of drones and machine

learning in identifying large animal species even in an adverse

ocean environment.

While previous studies indicate the use of drone and object

detection technology can aid in the collection of population data,

there remain significant barriers in applying such a method to aid in

ecological research on a broader scale. In particular, using object

detection to identify target individuals involves combining many

software tools, each of which comes with its own costs and

complexities. In Infantes et al. (2022) study of Scandinavian

harbor seals, researchers used Pix4Dmapper for flight
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programming and orthomosaic stitching, Picterra for model

training and detection of seals, and R for statistical analysis. The

researchers recommend pursuing a cloud-based workflow which

would combine orthomosaic creation, object detection, and

statistical analysis into a single pipeline. If implemented, such a

workflow could aid population researchers in their ability to

conduct surveys, process large amounts of data, and generate

insights necessary to understand and protect target species.

In this paper, we will focus on implementing a cloud-based

wildlife detection pipeline and provide code that can be utilized and

modified by future researchers. Specifically, the pipeline we have

created takes a folder of drone survey images as input and produces

multiple data outputs such as coordinates for each detection of the

target species and Google Earth files that help visualize these

detections. The experiments reported in this study focus on large

mammals, using cows on range land as an example. The

methodology, however, is equally applicable to other animals. The

critical part of the pipeline here is object detection, which has been

applied in our own studies to cows, sheep and sharks, and by others

on a wide range of animals including birds (Marchowski, 2021;

Weinstein et al., 2022; Sikora & Marchowski, 2023). In general,

object detection is a reasonably mature technique, with a variety of

pre-configured Deep Learning architectures such as RetinaNet and

MobileNet mentioned above, and the YOLO family discussed in

more detail below. The use of transfer learning in combination with

a labeled dataset for the specific animal can be used to generate

specific detection models with accuracies in the range of 80-95%. Of

course, this also depends on the animal, the context, and the

similarity of the pre-trained model to the intended application:

Distinguishing dark cows from rangeland is relatively easy, whereas

identifying birds and their nests in bushes, or sharks below the

water surface can be very challenging. Detecting and identifying

objects from multiple classes, such as different animals, also can

increase the level of difficulty significantly. Here, we will focus on

the methodology for creating a cloud-based detection pipeline and

use cows on rangeland to exemplify how the pipeline can

be utilized.
2 Methods

We decided to use Google Colab in order to represent the

pipeline’s execution in the cloud while providing a concrete

example of use that allows for experimentation. Google Colab

provides a serverless Jupyter notebook environment which

harnesses Google Cloud computing resources and allows for

interactive development (Bisong, 2019). The functions of this

notebook could easily be ported over for full automation to

Google Cloud, Amazon Web Services (AWS) or similar cloud

platform. We also opted for a fully open-source software pipeline

in order to preserve the flexibility and customizability of the

workflow. Open-source software can be downloaded, examined,

and modified, whereas consumer software platforms constrain users

to a finite set of uses. The use of open-source software also provides

a low-cost solution for future wildlife researchers who need to

process survey imagery.
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The diagram in Figure 1 gives an overview of the overall flow of

information, with more details in further subsections. Survey

images from drone footage are uploaded and then stitched into

an orthomosaic, which is a composite image of the observation area

without the distortions that would result from a wide-angle photo.

The resulting image can be of very high resolution, making it too

large as direct input for object detection architectures. Hence it is

split up into tiles, and objects are identified within each tile. Care

must be taken to also deal with objects that straddle the boundaries

between the tiles. Detected objects are then labeled, and their

location and category are recorded. On the overall image, objects

are visualized through bounding boxes and labels.
2.1 Image stitching

To stitch the orthomosaic from survey images (see Figure 2) we

used Open Drone Map (ODM), an open-source API which is able

to generate high-resolution orthoimages (Mattivi et al., 2021).

ODM uses a processing pipeline that reads metadata from survey

images such as flight altitude and approximate center coordinates,

compares features and pixels from neighboring images, eliminates

edge distortions, and combines images into a georeferenced

orthomosaic file (Mokrane et al., 2019). This software can be

downloaded and executed locally, however, due to its

computationally intensive nature and reliance on parallelization,

its performance may vary across different operating systems. ODM

can also be run in a user-friendly, cloud processing environment

called WebODM which we can interface with programmatically.

Using WebODM’s API, we upload a folder of survey imagery to

their server and set custom flags to tailor the processing job to our

specific needs. Enabling fast-orthophoto and skip-report will skip

3D reconstruction and performance report generation, both of

which are unnecessary for generating a high-resolution stitch.

Setting orthophoto-kmz will tell WebODM to generate a Google

Earth compatible overlay of the resulting orthomosaic which we will

use later to visualize our results. Finally, setting orthophoto-

resolution to 1.0 cm will ensure a maximum resolution of 1.0 cm

per pixel and disable image compression for images with more

granular resolution. Note that the actual resolution of the resulting

orthomosaic depends on the survey altitude and resolution of the

drone camera but in most cases will be more granular (lower

resolution) than 1.0 cm per pixel. After images are uploaded to

WebODM, stitching occurs in the WebODM cloud server using

compute credits which are free for new users. Longer term users
Frontiers in Conservation Science 03
may purchase compute credits at a low cost after their free credits

are spent. Upon completion of the stitching job, WebODM sends a

response with a folder of outputs including a stitched and geo-

referenced orthomosaic (.tif), and a Google Earth compatible

overlay file (.kmz).
2.2 Sliding window approach

The high resolution of orthoimagery poses substantial

complexities when attempting to identify individuals through

object detection. In order to detect target individuals we must

partition the larger image into tiles, perform object detection on

each tile, and map detected labels from each tile back into the

context of the larger image. However, the presence of objects that

straddle the boundaries between two adjacent tiles must be

accounted for (Ophoff et al., 2023). We used a sliding window

approach which allowed us to break an image up into many sub-

images while accounting for boundary objects (Lee et al., 2017). Our

implementation allows the user to set the width and height of a tile

as well as the desired overlap in pixels. The image is then broken up
FIGURE 1

Diagram of the methods used for survey image processing.
FIGURE 2

Orthomosaic tiling using a sliding window approach.
FIGURE 3

Task completion times for each stage of the processing pipeline.
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into tiles of equal size ensuring that each tile overlaps by at least the

amount of pixels specified by the user. Tile boundaries are also

plotted on a display image which can be viewed once the script

is complete.
2.3 Object detection

In order to detect target individuals (cows) we used the

YOLOv7 object detection algorithm. YOLOv7 employs a single-

pass architecture which is highly efficient in predicting bounding

boxes and class probabilities for multiple objects within an image

(Wang et al., 2022). The model we used was trained by a fellow

researcher in the Drones for Marine Science and Agriculture

research project on a labeled set of aerial cow images. Training

was done on a Mac Studio M1 desktop with 32 GByte of memory

using the YOLOv7 source code published by Wang et al. (2022).

While the model we used was trained locally, Google Colab is

frequently used to train object detection models in the cloud

(Pandiya et al., 2020; Karakaya et al., 2022). In the future, a

training step could be incorporated in the cloud based pipeline.

The result of training a YOLOv7 object detection model is a

PyTorch weights file (.pt) which we are able to utilize in detecting

cows in an image. Once the orthomosaic has been processed into

tiles, we run object detection on each tile, producing bounding

boxes for the predicted location and extent of each cow.
2.4 Processing labels

In order to combine labels from each tile we take into account

the position of each tile within the original image, and the

possibility for duplicate detections due to tile overlap. We first

translate each bounding box by the offset of its parent tile to get its

position in the larger image. We then loop over each pair of

bounding boxes and calculate the Intersection over Union (IoU)

for each. If the pair’s IoU is over 60% we combine the two boxes by

taking the min and max over both. Duplicate detections will appear

on top of each other and therefore our algorithm for combining

labels is simple. More complex combination methods are

recommended if high precision is needed as this method may

create bounding box inflation in overlapping regions. Once the

labels are combined we use the gdal python library to access the

orthoimage’s geospatial data and translate labels from pixel space

into GPS space and write the results to a JSON file (Ma et al., 2020).
2.5 Data output and visualization

We created two main output formats. The first is a CSV file that

lists all the detection bounding boxes in GPS format. The second

output is a KML file for Google Earth which displays a polygon

overlay for each bounding box so it can be visualized in Google

Earth. This can be loaded on top of the orthomosaic generated by

ODM (OpenDroneMap) in order to show target individuals along

with each detection.
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2.6 Testing

In order to test the viability of this pipeline in processing survey

imagery and providing useful outputs, we used a DJI Mavic Pro

drone to survey a herd of cows. We used the free Pix4Dcapture

software to program the drone with an automated flight path,

setting the overlap and sidelap parameters to 80%, and the flying

height to 40 m. These survey parameters were proven effective in

previous studies for providing accurate population data (Baxter and

Hamilton, 2018; Infantes et al., 2022). The survey produced 97

images which we uploaded to Google Drive after the flight for

processing. We then used our cloud pipeline to process the imagery,

timing each stage as it ran. Figure 3 shows the task completion times

across the processing pipeline.
3 Results

The entire workflow from uploading images to downloading

outputs took about 33 minutes to run. Image stitching took the

majority of the time, about 17 minutes. This was expected given the

computational intensity of orthomosaic generation. The orthomosaic

produced by WebODM achieved a resolution of 5.0 cm per pixel.

In order to quantify the accuracy of detection we used multiple

statistical metrics including precision, recall, and F1 score (Csurka

and Larlus, 2013; Infantes et al., 2022). Precision and recall are

calculated using the number of true positive, false positive, and false

negative detections made by the object detection model. As shown

in Figure 4, a true positive refers to a correct detection of a cow, a

false positive refers to the detection of an object that is not a cow,

and a false negative refers to a failure to detect an existent cow. The

equations for precision, recall, and F1 score can be found below

in Figure 5.

Out of our herd of 31 cattle, 26 cows were correctly identified, 5

cows were not identified, and 4 objects were misidentified as cows (a

rock, a shed, and bushes). This yielded a precision of 86.67%, a

recall of 83.87%, and an F1 score of 85.25% (see Figure 6). The F1

Score, being a holistic combination of precision and recall, is often

used to measure the overall accuracy of detection (Csurka and

Larlus, 2013; Infantes et al., 2022). Thus, our object detection model

detected cows in the herd with 85.25% accuracy. We consider these

results as adequate to demonstrate the feasibility of the overall

approach, but not indicative of what can be achieved with carefully

tuned object detection models. A significant source of error in

detections can likely be attributed to the varying altitudes of drone

imagery on which our cow detection model was trained.

Our main focus was to develop methodology for a cloud-based

software pipeline for wildlife detection. To that effect, we were able

to combine all data processing stages into a single software pipeline.

This pipeline can be run in the cloud using Google Colab and

therefore is not dependent on the machine or operating system. The

notebook includes an example dataset, a pre-trained model, and

instructions on how to run the pipeline step by step. It also contains

a streamlined version that can be run in a single stage. The use of

fully open-source software makes it flexible and accessible for

continued experimentation. The pipeline provides interactive and
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descriptive outputs that allow for further analysis of the animal

population being surveyed. With the ability to view data in Google

Earth (Figure 7) , researchers can analyze spatial patterns, habitat

preferences, and population distributions. They can easily share

data with others as Google Earth is free software and runs on PC,

Mac and Linux. The CSV output with GPS coordinates for each

target detection allows for further numerical and statistical analysis

of the population. Additionally, since all code is openly accessible,

future developers have the ability to edit the functionality of the

pipeline and tailor it to their own needs.
4 Discussion

The methods described in this paper exemplify how open-source

software, combined with cloud computing, can be used to process

aerial wildlife surveys. This lowers multiple barriers of entry for

wildlife researchers to begin exploring automated surveying solutions.

First, creating this pipeline in a cloud environment removes

cumbersome hardware and OS dependencies which often impede

progress and require advanced programming knowledge to get

around. The workflow we created comes ready and accessible to

researchers with little programming experience in the form of an

executable Colab Notebook. Second, open-source software such as
Frontiers in Conservation Science 05
this can provide a low-cost alternative to expensive consumer

software products allowing researchers to experiment with data

processing without tying themselves to a specific platform.

During our tests, we identified several limitations of the

proposed method in addressing the general needs of wildlife

sampling. While creating a stitch of survey imagery can be

advantageous for visual outputs and georeferencing, it relies on

animals remaining relatively stationary during the drone flight.

Movement of cows in-between image captures can create stitching

artifacts and duplications that affect the accuracy of detection. On

the other hand, cows tend to move more slowly, and such

movement effects will be more pronounced for faster-moving

animals. Footage of birds, in particular, may capture the same

animal multiple times in different parts of the orthomosaic. Further

work must be done in distinguishing between individuals and

eliminate multiple occurrences of the same individual in one

orthomosaic. Recent studies of similar nature have provided

techniques to mitigate some of the accuracy problems inherent to

wildlife detection. In a study of caribou by Lenzi et al. (2023),

researchers trained an object detection model to specifically

recognize stitching artifacts and differentiate them from true

caribou detections. Such a method has clear potential for

improving the accuracy of detection tools. In certain cases,

however, stitching artifacts may only represent a small source of

error. For example, In Infantes et al.’s study of Scandinavian Harbor

Seals (2022), stitching artifacts were recognized by the researchers

but generally ignored by their detection algorithm. Still, they

achieved a detection accuracy of 95% - 97% when compared with

ground-based counts.

The accuracy of detection will also be affected heavily by the

habitat being surveyed. The open field used in our study provided a

consistent line of sight from the drone to the cows allowing us to

capture unobstructed aerial imagery of the target species. However,

the presence of obstructions such as tree canopy and shrubbery

makes detection of target individuals more difficult. As an

alternative to RGB imagery, thermal imagery can be used in order

to detect animals in harsher environments (Seymour et al., 2017).

Efforts to survey wildlife populations vary greatly based on the

environment and species surveyed and thus data collection and

processing methods must be carefully tailored to the use case.
FIGURE 6

Statistics summary for our accuracy of cow detection.
FIGURE 4

Object detection metrics: True Positive is a correctly detected cow; False positive is the incorrect detection of an object that is not a cow; False
Negative is a failure to detect an existent cow.
FIGURE 5

.Calculation of precision, recall and F1 metrics.
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The novelty of the work done here lies in processing wildlife survey

imagery in a single, cloud-based pipeline. While much research has

focused on the autonomous detection of wildlife, previous methods

rely on a variety of software packages which, used in sequence, provide

a similar functionality to the pipeline we constructed (Infantes et al.,

2022; Mattivi et al., 2021). Overall, this study establishes a starting

point for wildlife researchers to utilize open-source software and cloud

computing in the processing of wildlife survey data. Themain outcome

of the work reported here is to provide a set of tools for the detection of

animals in drone surveys. It is intended for researchers with some

background in the use of such tools but does not require deep

Computer Science or Machine Learning expertise. As the prevalence

of drone technology expands in the field of ecology, such initiatives will

aid researchers in their ability to process vast amounts of survey

imagery into useful population data.
Data availability statement

The datasets generated for this study can be found here: https://

co lab . research .goog le . com/dr ive /1KSZuuSjBSzPxzZk_

3KAFWYfZr26JIssd?usp=sharing.
Ethics statement

The manuscript presents research on animals that does not

require ethical approval for their study.
Author contributions

PM and FK contributed to conception and design of the study.

PM wrote the first draft of the manuscript and organized the code
Frontiers in Conservation Science 06
repository. All authors contributed to manuscript revision, read,

and approved the submitted version.
Funding

Funding for the overall Drones for Marine Science and

Agriculture project was provided by the Santa Rosa Creek

Foundation via the Center for Coastal Marine Sciences at Cal

Poly, San Luis Obispo under grant numbers CPC 47496 and 47613.
Acknowledgments

We’d like to acknowledge the work of Shaina Bagri and Piper

Feldman in training the YOLOv7 model we used for cow detection.
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Publisher's note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.
FIGURE 7

Google Earth visualization using polygon overlays to show Cow Detections. Map Data: ©2021 Google.
frontiersin.org

https://colab.research.google.com/drive/1KSZuuSjBSzPxzZk_3KAFWYfZr26JIssd?usp=sharing
https://colab.research.google.com/drive/1KSZuuSjBSzPxzZk_3KAFWYfZr26JIssd?usp=sharing
https://colab.research.google.com/drive/1KSZuuSjBSzPxzZk_3KAFWYfZr26JIssd?usp=sharing
https://doi.org/10.3389/fcosc.2023.1219482
https://www.frontiersin.org/journals/conservation-science
https://www.frontiersin.org


Marsh and Kurfess 10.3389/fcosc.2023.1219482
References
Baxter, P. W. J., and Hamilton, G. (2018). Learning to fly: integrating spatial ecology
with unmanned aerial vehicle surveys. Ecosphere 9 (4), e02194. doi: 10.1002/ecs2.2194

Bisong, E. (2019). “Google colaboratory,” in Building machine learning and deep
learning models on google cloud platform: a comprehensive guide for beginners.
(Berkeley, CA: Apress) 59–64.

Ceballos, G., Ehrlich, P. R., and Dirzo, R. (2017). Biological annihilation via the
ongoing sixth mass extinction signaled by vertebrate population losses and declines.
Proc. Natl. Acad. Sci. U.S.A. 114 doi: 10.1073/pnas.1704949114.

Csurka, G., and Larlus, D. (2013). What is a good evaluation measure for semantic
segmentation? Proc. IEEE Transaction Pattern Anal. Mach. Intelligent Meylan.
doi: 10.5244/C.27.32

Infantes, E., Carroll, D., Silva, W. T. A. F., Härkönen, T., Edwards, S. V., and Harding,
K. C. (2022). An automated work-flow for pinniped surveys: A new tool for monitoring
population dynamics. Front. Ecol. Evol. 10, 905309. doi: 10.3389/fevo.2022.905309

Karakaya, Mevlüt, Celebi, M. F., Gök, AkınE., and Ersoy, S. (2022). Discovery of
agricultural diseases by deep learning and object detection. Environ. Eng. Manage. J.
(EEMJ) 21 (1), 163–173. doi: 10.30638/eemj.2022.016

Lee, J., Bang, J., and Yang, S.-I. (2017). Object detection with sliding window in
images including multiple similar objects. in 2017 International Conference on
Information and Communication Technology Convergence (ICTC) (Jeju, South Korea:
IEEE), 803–806. doi: 10.1109/ICTC.2017.8190786

Lehikoinen, A., Jaatinen, K., Vähätalo, A. V., Clausen, P., Crowe, O., Deceuninck, B.,
et al. (2013). Rapid climate driven shifts in wintering distributions of three common
waterbird species. Global Change Biol. 19, 2071–2081. doi: 10.1111/gcb.12200

Lenzi, J., Barnas, A. F., ElSaid, A. A., Desell, T., Rockwell, R. F., and Ellis-Felege, S. N.
(2023). Artificial intelligence for automated detection of large mammals creates path to
upscale drone surveys. Sci. Rep. 13, 947. doi: 10.1038/s41598-023-28240-9

Ma, X., Longley, I., Salmond, J., and Gao, J. (2020). PyLUR: Efficient software for land
use regression modeling the spatial distribution of air pollutants using GDAL/OGR
library in Python. Front. Environ. Sci. Eng. 14, 1–14. doi: 10.1007/s11783-020-1221-5

Marchowski, D. (2021). Drones, automatic counting tools, and artificial neural networks
in wildlife population censusing. Ecol. Evol. 11 (22), 16214–16227. doi: 10.1002/ece3.8302

Marchowski, D., Jankowiak, L., Wysocki, D., Lawicki, L., and Girjatowicz, J. (2017).
Ducks change wintering patterns due to changing climate in the important wintering
waters of the Odra River Estuary. PeerJ 5, e3604. doi: 10.7717/peerj.3604

Marchowski, D., Lawicki, L., Fox, A. D., Nielsen, R. D., Petersen, I. K., Hornman, M.,
et al. (2020). Effectiveness of the European Natura 2000 network to sustain a specialist
Frontiers in Conservation Science 07
wintering waterbird population in the face of climate change. Sci. Rep. 10 (1), 20286.
doi: 10.1038/s41598-020-77153-4

Marchowski, D., and Leitner, M. (2019). Conservation implications of extraordinary
Greater Scaup (Aythya marila) concentrations in the Odra Estuary, Poland. Condor 121
(2), duz013. doi: 10.1093/condor/duz013
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