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Introduction: Climate change poses a significant threat to bird communities,

especially forest-dwelling and narrowly distributed species, which are expected

to experience severe range contractions and higher extinction risks compared to

widely distributed and open-area species. The Chocó region in southwestern

Colombia, known for its rich bird endemism, is particularly vulnerable.

Methods: We analyzed potential distribution shifts for 27 endemic and near-

endemic bird species in the Chocó region using eBird occurrence records and

climate projections. We modeled species distributions under low and high

greenhouse gas emission scenarios for 2050 and 2070, comparing these

projected distributions to current forested and protected areas to evaluate

future conservation needs.

Results: Our findings indicate that nearly all species are projected to lose

climate-suitable areas under at least one future scenario, resulting in a regional

decline in species richness. Changes in species richness are most pronounced

near the Colombia-Ecuador border, suggesting a shift to higher elevations.

Notably, the Scarlet-and-white Tanager (Chrysothlypis salmoni) is predicted to

suffer the greatest losses in climate-suitable area, both within protected and

forested regions.

Discussion: These results highlight the urgency of expanding the protected area

network and conserving key forested regions to help species adapt to climate

change. By providing projected distribution maps and potential range shifts, our

study underscores the importance of modeling future distributions to support

conservation strategies for at-risk species and the ecological services they

provide in tropical montane regions.
KEYWORDS

global warming, population decline, forest cover, neotropics, tropical ornithology, KBA
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1 Introduction
Climate change is expected to cause population-level

modifications to bird communities, leading to contractions,

expansions, or shifts in their distributions due to global warming

(Şekercioğlu et al., 2008; Wormworth and Şekercioğlu, 2011; Mota

et al., 2022). The response to climate change may vary among

species, with those inhabiting tropical forests and having restricted

distributions expected to experience more drastic reductions in

their ranges (Şekercioğlu et al., 2012; de Moraes et al., 2020), as

these species are unlikely to keep pace with rapid changes in

precipitation and temperature patterns (Román-Palacios and

Wiens, 2020). Conversely, generalist species, such as those found

in degraded environments or across wide elevational or latitudinal

gradients, may experience expansions in their ranges due to the

capacity to exploit a broad variety of resources (Sales et al., 2020).

As a result, the expected change in species richness in future climate

scenarios poses a challenge for conservation planning (Vale et al.,

2018), as currently protected areas could become unsuitable for

species that play essential ecological roles (Şekercioğlu, 2006;

Littlefield et al., 2019), thereby threatening natural systems.

Tropical forests, recognized for being the world’s most

biodiverse regions (Raven et al., 2020), have lost most of their

original cover to agricultural and pasturelands (Taubert et al., 2018),

with the majority of the remaining forest still unprotected (Stan

et al., 2024). Climate change may intensify this scenario, as many

regions are anticipated to experience increased warmth and aridity

(Sales et al., 2020), posing a dire risk to species already threatened by

habitat degradation. Additionally, there is uncertainty about

whether protected areas can still match new climate suitable areas

for species in the future (Littlefield et al., 2019), especially in the

understudied tropics (Harris et al., 2011). For example, endemic

monkey species in the eastern Amazonian rainforest are projected

to vanish from most of their current distribution in the future when

considering both forest loss and climate (da Silva et al., 2022). In

particular, the Chocó ecoregion in northwestern South America

emerges as a crucial conservation priority, as it still retains a

substantial amount of forest cover (Anaya et al., 2020). The

Chocó Endemic Bird Area (EBA) is located across much of the

Pacific slope of the Andes in western Colombia and northwestern

Ecuador, and is also part of the larger Tumbes-Chocó-Magdalena

biodiversity hotspot that extends from the Darién lowlands of

eastern Panama to northwestern Peru (Devenish et al., 2009;

Sánchez-Nivicela and Montenegro-Pazmiño, 2022). Recent

discoveries of undescribed species and new distributional records

of other species in the area emphasize the significance of this region

as a hotspot (Guevara Andino and Fernandez-Fernandez, 2020;

Amaya-Vallejo et al., 2021; Velandia Perilla et al., 2021). The Chocó

is the ninth most biodiverse vegetation hotspot globally, with close

to 3,000 endemic species and around 11,000 total plant species in an

area covering around 0.2% of the planet’s surface (Pérez-Escobar

et al., 2019); among birds, the Chocó has the highest number of

endemic bird species of any EBA on the continent, with over 60

species recognized as endemic to the Chocó region (Devenish et al.,

2009; Sánchez-Nivicela and Montenegro-Pazmiño, 2022; BirdLife
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International, 2024b). However, the Chocó has been negatively

affected by major habitat loss through deforestation as well as other

anthropogenic pressures such as hunting and poaching, making this

region a critical conservation priority (Sánchez-Nivicela and

Montenegro-Pazmiño, 2022; BirdLife International, 2024a).

Furthermore, projections already indicate the risk of local

extinctions of bird species in this region in the coming decades

(Velásquez-Tibatá et al., 2013), underscoring the urgency of

addressing this understudied issue in the region to support future

conservation efforts.

Birds, known for their sensitivity to environmental changes,

play a crucial role in revealing patterns essential for future

biodiversity conservation (Triviño et al., 2018). These avian

species contribute to ecosystem functioning by providing a range

of ecological services (Şekercioğlu et al., 2016). They facilitate

natural forest regeneration by moving seeds between fragments,

promote genetic variability through pollination, regulate

populations of other species like insects, and prevent disease

outbreaks by scavenging on carcasses (Şekercioğlu, 2006; Mäntylä

et al., 2011; Ogada et al., 2012; Martıńez and Garcıá, 2017;

Wessinger, 2021). However, recent projections indicate that many

bird species may struggle to find suitable climate conditions in the

future, leading to a depletion in richness and alterations in

community composition (Miranda et al., 2019; Mota et al., 2022),

which could compromise these essential ecological services.

Additionally, the loss of frugivorous birds may severely limit

plants’ capacity to track climate change due to reduced long-

distance seed dispersal (Fricke et al., 2022). For Western

Hemisphere landbirds, intermediate extinction estimates by

Şekercioğlu et al. (2008), based on climate-induced changes in

distributions, range from 1.3% (1.1°C warming) to 30.0% (6.4°C

warming). Birds confined to the Chocó ecoregion could experience

even more drastic reductions in their current distributions

compared to species found elsewhere, as their restricted

geographic ranges make them particularly vulnerable to losing

suitable climate conditions (Velásquez-Tibatá et al., 2013). For

example, the loss of climate-suitable areas could result in an

approximately 75% reduction in the distribution of the Choco

Vireo (Vireo masteri), a species exclusively found in the region,

while the loss is expected to be smaller for the Wattled Guan

(Aburria aburri; ca. 28%), a species whose distribution also extends

into Peru (Velásquez-Tibatá et al., 2013). Furthermore, information

on changes in the distribution of Chocó endemic birds is relatively

scarce, limiting the implementation of appropriate conservation

strategies to ensure their long-term persistence.

In this study, we used ecological niche models to predict the

distribution of 27 endemic or near-endemic birds within the Chocó

region, with a focus on species occurring in southwest Colombia,

under different climate scenarios. We focus on the ranges of these

species not only within this targeted Colombian region but also

across the Chocó and the entirety of a species’ current distribution.

Specifically, we aimed to assess distributional changes and

conservation needs of these species, considering current forested

and protected areas. We anticipated a reduction in species

distributions, with variation across species that may be more

sensitive and specialized, and a lower proportion of suitable areas
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within forested and protected areas in future scenarios. We predict

that some Chocó endemics will likely disappear from southwestern

Colombia, and we expect to observe heightened population

fragmentation across species’ ranges.
2 Methods

2.1 Study area

We assess species distributions, both present and future, across

two spatial scales. In our first, broad spatial scale, we examine

distributions across the entirety of the Chocó region and, to some

extent, part of the Tumbes-Chocó-Magdalena hotspot that occurs

in western Colombia and Ecuador (this is due to the fact that some

of the species noted as Chocó endemics (BirdLife International,

2024b) have eBird records that fall outside of the established

Endemic Bird Area (EBA)). There are various interpretations in

the literature of what specifically constitutes the Chocó region (i.e.,

Pérez-Escobar et al., 2019), so we have chosen to interpret the

Chocó area specifically as that which encompasses the designated

EBA (Devenish et al., 2009; Sánchez-Nivicela and Montenegro-

Pazmiño, 2022). For our second spatial scale, we focused on the

region centered around the Nariño department in southwestern

Colombia, where there are several mid-elevation reserves in the

Chocó that are focused on avian conservation and protection,

including Nature Reserve La Nutria-Pimán, La Planada Nature

Reserve, OECM (other effective area-based conservation measure)

Bangsias BirdLodge, OECM San Antonio, and KBA (Key

Biodiversity Area) Rıó Ñambı.́
2.2 Species selection

When determining which species to include in this analysis, we

selected 27 species (Table 1) that we have been actively capturing

and therefore studying during bird banding operations in the

Colombian Chocó, from 2021 to 2024, at the Rıó Ñambı ́ and
Bangsias reserves located near Altaquer in the Barbacoas

Municipality. Our selected species therefore largely consisted of

the more abundant and less threatened birds within the Chocó (at

least via bird banding), though our list does include some range-

restricted and threatened species as well (i.e., Hoary Puffleg

[Haplophaedia lugens] and Cloud-forest Pygmy-Owl [Glaucidium

nubicola], respectively). This approach allows us to use these largely

widespread and banding-sampled species as best-case indicators for

predicting potential changes that may also affect less frequently

encountered and more cryptic species (i.e., Choco Vireo). Our list

also includes species that feed on a variety of items, including fruits,

invertebrates, vertebrates, and nectar, meaning these species play

important roles in different ecological functions (Table 1).

All 27 species are either endemic or near-endemic to the Chocó

Endemic Bird Area (EBA). Endemic species were identified using

the BirdLife International (2024b) definition, which classifies a

species as endemic if its range is entirely confined to the EBA.

For species not currently listed as endemic by BirdLife
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referencing the species’ projected ranges with the boundaries of

the Chocó EBA to determine if they could be considered endemic

based on geographical restriction. Near-endemic species, on the

other hand, are those that are not exclusively confined to the Chocó

EBA but have a significant portion of their range within this region.

Specifically, the three near-endemic species included in this study

are restricted to the greater Tumbes-Chocó-Magdalena biodiversity

hotspot and have distributions that largely overlap with the

Chocó EBA.
2.3 Avian data preparation

We downloaded the complete eBird world dataset

(www.ebird.org) until the end of 2022 (ebd_prv_relDec-2022)

and filtered the records for 27 Chocó bird species using the R

package auk (Strimas-Mackey et al., 2023). We considered only

complete checklists with all species reported and approved. Then,

we eliminated inconsistencies such as duplicates, records at sea, and

those matching centroids of municipalities using the R package

CoordinateCleaner (Zizka et al., 2019). Finally, we filtered the

records of each species to obtain the maximum number of

occurrences that were at least 5 km apart, to avoid geographical

bias, using the R package spThin (Aiello-Lammens et al., 2015). The

final number of records for each species in the study are listed

in Table 1.

While the eBird taxonomy follows that of the Clements

checklist, we followed the avian taxonomic classifications of

BirdLife International and the global bird checklist of the BirdLife

Taxonomic Working Group (BirdLife International, 2024a) since it

is used by the IUCN Red List for designating global threat

assessments of species (IUCN, 2024). The only main discrepancy

between these two taxonomies is for Chestnut-throated Solitaire

(Cichlopsis chubbi), which is currently recognized, along with two

other highly disjunct populations in South America that are treated

by BirdLife as separate species, by Clements/eBird as a subspecies of

Rufous-brown Solitaire (C. leucogenys). This taxonomic

discrepancy was accounted for during the eBird data filtering

process, since the chubbi population is the only one among the

Rufous-brown complex that occurs in the Chocó region.
2.4 Climate data and ecological
niche modeling

We obtained 19 bioclimatic variables (Table 2) for the baseline

and future scenarios (2050 and 2070) with a spatial resolution of 2.5

arcminutes from the WorldClim platform (Fick and Hijmans,

2017). These variables are derived from precipitation and

temperature measurements and largely used in ecological studies

(Prieto-Torres et al., 2020; Oliveira-Silva et al., 2022). We

considered three Global Climate Models (GCMs): IPSL-CM6A-

LR, MIROC6, and MPI-ESM1-2-HR, and two Shared Socio-

economic Pathways (SSPs): 245 and 585. The selection of these

GCMs was based on their better performance with respect to
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frequency and persistence errors in the South America region

(Cannon, 2020). The SSPs represent optimistic and pessimistic

greenhouse gas emission scenarios, with the optimistic scenario

corresponding to a global temperature increase of up to 3°C on

average, and the pessimistic scenario corresponding to an increase

of up to 5°C on average compared to the preindustrial period

(O’Neill et al., 2014). For each species, we used the R package

ENMwizard (Heming et al., 2019) to perform a Pearson correlation
Frontiers in Conservation Science 04
analysis considering all bioclimatic variables and selected those

below the cutoff value of 0.7 to minimize multicollinearity

(Dormann et al., 2013).

We modeled the ecological niche of Chocó bird species using

the MaxEnt algorithm (Phillips et al., 2006). This algorithm is

widely used in the literature (Velásquez-Tibatá et al., 2013; Corrêa

et al., 2019; Zhu et al., 2021), and its superior performance over

other algorithms has already been demonstrated (Mota et al., 2022).
TABLE 1 Bird species included in the study.

IOC

English Name Scientific Name Primary diet

Endemic

IUCN14.2 (E/NE) Records

2749 White-whiskered Hermit Phaethornis yaruqui Nectar NE LC 190

2944 Violet-tailed Sylph Aglaiocercus coelestis Nectar E LC 140

3055 Hoary Puffleg Haplophaedia lugens Nectar E NT 23

3101 Brown Inca Coeligena wilsoni Nectar E LC 101

3165 Velvet-purple Coronet Boissonneaua jardini Nectar E LC 62

3177 Rufous-gaped Hillstar Urochroa bougueri Nectar E LC 75

3181 Purple-bibbed Whitetip Urosticte benjamini Nectar E LC 54

3204 Empress Brilliant Heliodoxa imperatrix Nectar E LC 65

4931 Purple Quail-Dove Geotrygon purpurata Seed E EN 21

9221 Cloud-forest Pygmy-Owl Glaucidium nubicola Vertebrate E VU 40

11149 Toucan Barbet Semnornis ramphastinus Fruit E NT 93

15170 Uniform Treehunter Thripadectes ignobilis Invertebrate E LC 77

16797 Choco Tapaculo Scytalopus chocoensis Invertebrate E LC 50

17488 Pacific Flatbill Rhynchocyclus pacificus Invertebrate NE LC 59

18212 Orange-breasted Fruiteater Pipreola jucunda Fruit E LC 54

18429 Club-winged Manakin Machaeropterus deliciosus Fruit E LC 78

30148 Chestnut-throated Solitairea Cichlopsis chubbi Fruit E NT 9b

30153 Black Solitaire Entomodestes coracinus Fruit E LC 62

34715
Yellow-

collared Chlorophonia
Chlorophonia flavirostris Fruit E LC 64

36291 Choco Warbler Myiothlypis chlorophrys Invertebrate E LC 78

36515 Ochre-breasted Tanager Habia stolzmanni Fruit NE LC 93

36707 Scarlet-and-white Tanager Chrysothlypis salmoni Fruit E LC 58

37478 Indigo Flowerpiercer Diglossa indigotica Nectar E LC 61

37533 Purplish-mantled Tanager
Iridosornis

porphyrocephalus
Fruit E NT 97

37623 Glistening-green Tanager Chlorochrysa phoenicotis Invertebrate E LC 97

37636 Moss-backed Tanager Bangsia edwardsi Fruit E LC 36

37677 Rufous-throated Tanager Tangara rufigula Fruit E LC 93
aNote that this species is considered by other taxonomic authorities as a subspecies of Rufous-brown Solitaire (C. leucogenys).
bNote that these records correspond to Rufous-brown Solitaire records within the Chocó region only.
English and scientific name taxonomy follows that of BirdLife International (2024b). IOC: ranking of birds in the IOC 14.2 World Bird List; Endemic: species that are either endemic (E) or near-
endemic (NE) to the Chocó Endemic Bird Area (NE species are endemic to the Tumbes-Chocó-Magdalena Hotspot); IUCN: IUCN Red List 2023 threat rankings. Records represent the number
of occurrences left after the procedure to minimize geographical bias (spatial thinning of occurrences).
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We optimized two important parameters of MaxEnt: regularization

multiplier and feature classes, thus generating 70 models per

species. We employed the “block” and “jackknife” methods for

cross-validation (Shcheglovitova and Anderson, 2013; Roberts et al.,

2017). Subsequently, we ranked the best models based on the lowest

omission rate (OR) and the highest area under the curve (AUC)

(Boria et al., 2017). Next, we projected the models onto future

climate scenarios (GCMs and SSPs) and generated consensus

models by averaging the best models for each species and

scenario (see details in Mota et al., 2022). We used the Maximum

Training Sensitivity plus Specificity threshold to convert the final

models into binary maps of 2.5 spatial arcminutes resolution

representing “suitable” or “unsuitable” climate areas. This

threshold is indicated for presence data only (Liu et al., 2013) and

is more restrictive than other thresholds, which aligns with the

projections for our species. Subsequently, we created a buffer

around occurrence records for each species with a radius of

100 km and cropped the binary maps to reduce overprediction

(Mendes et al., 2020). The buffer size was selected based on the

distance between the western Andean slope and the coast, which we

assumed to be accessible areas for the studied species. We used these

cropped binary maps to calculate species richness by climate

scenario using the R package divraster (Mota et al., 2023). The

chosen variables by species and their percentages of contribution

are listed in Supplementary Table S1.
2.5 Total, forested, and protected areas

We used the binary maps to calculate the total climate suitable

area for each species and climate scenario. We acquired Land Cover

Type 1 for the year 2022 from the MCD12Q1 product Version 6.1,

available in the U.S. Geological Survey Earth Explorer platform
Frontiers in Conservation Science 05
(www.earthexplorer.usgs.gov). We extracted the forest cover class

and converted it to a spatial resolution of 2.5 arcminutes. We

overlaid the binary maps with the forested areas to calculate the

climate suitable area within the current forested area.

Additionally, we acquired the maps of protected areas from

the Wor ld Da t aba s e on Pro t e c t ed Area s p l a t f o rm

(www.protectedplanet.net) and converted them from a vector to

a raster file with a spatial resolution of 2.5 arcminutes. We overlaid

the binary maps with the protected areas to calculate the climate

suitable area within the current protected areas.

We used the R package terra (Hijmans et al., 2023) to transform

the data and to measure the area in square kilometers. All

calculations and graphing were conducted in R (version 4.4.1; R

Core Team, 2024) and QGIS (version 3.34; QGIS, 2024).
3 Results

Among the 27 Choco bird species of southwestern Colombia in

our study, species fed mostly on fruits (n = 11), followed by nectar

(n = 9), invertebrates (n = 5), seeds (n = 1), and vertebrates (n = 1).

Their ecological niche models showed a good fit, with the Area

Under the Curve (AUC) higher than 0.7 for all but one species

(Pacific Flatbill, Rhynchocyclus pacificus), which showed an

intermediate fit with an AUC of 0.68. The average AUC value

was 0.78, while the Omission Rate (OR) value was 0.17, ranging

from 0.06 to 0.36 (Supplementary Table S2).

Our projections indicate that the highest concentration of

species in the baseline scenario is located in the southern Chocó

region and on the west and east sides of the Andes Mountains in

southwestern Colombia and northwestern Ecuador (Figure 1A).

Nearly all species are forecast to lose suitable climate areas in at least

one future scenario in these same areas, leading to an overall

reduction in species richness (Figures 1B–E). A small increase in

the number of species is projected in some currently less diverse

regions, including highland areas near the Colombia-Ecuador

border and the east side of the Andes Mountains in southern

Ecuador (Figures 1B–E). These delta richness patterns are

consistent across all future scenarios but become more evident in

the 2070 pessimistic scenario, with up to 22 species losses and 10

species gains (Figures 1B–E).

The average of the total climate suitable areas is 2.7–2.8 times

larger than the suitable area within forested areas, 3.6–3.9 times

larger than the suitable area within protected areas, and 7.3–7.7

times larger than the suitable area within both forested and

protected areas for all climate scenarios evaluated. Additionally,

the average suitable area decreases from the baseline to future

scenarios for all classes. This reduction is higher from the baseline

to the 2070 pessimistic scenario, whereas the reduction is lower but

similar from the baseline to the optimistic scenarios and to the 2050

pessimistic scenario (Figure 2) (Table 3).

Choco Warbler (Myiothlypis chlorophrys) is projected to lose

the largest total climate-suitable area in the optimistic scenarios
TABLE 2 Bioclimatic variables derived from temperature and
precipitation data obtained from WorldClim – Global climate and
weather data (www.worldclim.org).

Variables Description

Bio1
Bio2
Bio3
Bio4
Bio5
Bio6
Bio7
Bio8
Bio9
Bio10
Bio11
Bio12
Bio13
Bio14
Bio15
Bio16
Bio17
Bio18
Bio19

Annual mean temperature
Mean diurnal range (mean of monthly max temp–min temp)
Isothermality (Bio2/Bio7) (×100)
Temperature seasonality (standard deviation ×100)
Max temperature of warmest month
Min temperature of coldest month
Temperature annual range (Bio5-Bio6)
Mean temperature of wettest quarter
Mean temperature of driest quarter
Mean temperature of warmest quarter
Mean temperature of coldest quarter
Annual precipitation
Precipitation of wettest month
Precipitation of driest month
Precipitation seasonality (coefficient of variation)
Precipitation of wettest quarter
Precipitation of driest quarter
Precipitation of warmest quarter
Precipitation of coldest quarter
frontiersin.org

http://www.earthexplorer.usgs.gov
http://www.protectedplanet.net
http://www.worldclim.org
https://doi.org/10.3389/fcosc.2024.1412440
https://www.frontiersin.org/journals/conservation-science
https://www.frontiersin.org


Mota et al. 10.3389/fcosc.2024.1412440
(2050: 53%; 2070: 55%) and the pessimistic 2050 scenario (60%). In

the pessimistic 2070 scenario, however, greater losses are expected

for Scarlet-and-white Tanager (Chrysothlypis salmoni) (84%). Both

species are also projected to lose a significant portion of their

suitable areas within forests. The Yellow-collared Chlorophonia

(Chlorophonia flavirostris) is expected to lose the highest amount of

suitable area within protected areas in the optimistic scenarios

(2050: 41%; 2070: 42%), whereas greater losses in the pessimistic

scenarios are anticipated for Scarlet-and-white Tanager (2050: 54%;

2070: 84%). When considering forested and protected areas

together, the largest contractions in suitable area are projected for

the Moss-backed Tanager (Bangsia edwardsi) in the optimistic

scenarios (2050: 55%; 2070: 57%) and the pessimistic 2050

scenario (55%). In contrast, the Purple Quail-Dove (Geotrygon

purpurata) is projected to be the least affected by climate change,
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proportionally, with a small gain in suitable area ranging from 4%

(341 km²) within forested areas in the pessimistic 2050 scenario to

25% (534 km²) within forested and protected areas combined in the

pessimistic 2070 scenario. The Ochre-breasted Tanager (Habia

stolzmanni) is also expected to be less affected in terms of total

suitable area under the pessimistic scenarios, with a modest gain of

3-5% (3218-6985 km²).
4 Discussion

Our results indicate that climate change is projected to induce

significant changes in the species richness of birds that are endemic

or near-endemic to the Chocó, especially in southwestern

Colombia, with three-quarters of these bird species [in our study]
FIGURE 1

Species richness in the baseline scenario (A) and the difference between the richness in the baseline and future scenarios [delta richness; (B–E)] for
27 endemic or near-endemic bird species across the Chocó in Colombia and Ecuador, with a subset region depicted that focuses on southwestern
Colombia. In the baseline richness map (A), darker colors represent areas with suitable climate conditions for a higher number of species. In the
delta richness maps (B–E), red indicates areas where species are projected to contract their distributions, while blue indicates areas where species
are projected to expand. The future scenarios represent optimistic (SSP245) and pessimistic (SSP585) greenhouse gas emission pathways for 2050
and 2070.
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at risk of extinction. Almost all species are expected to experience a

reduction in their global distributions in at least one future climate

scenario, resulting in a decline in the average suitable area. In

addition, the suitable area within forested and protected areas is

much smaller compared to the total suitable area, highlighting the

urgent need to expand the protected area network in the region.

The change in total species distribution across all future climate

scenarios ranged from -84% to +6%, with an average loss of 28%,

resulting in a reduction of 81% in species richness (Figure 1,

Supplementary Table S3). The potential loss of species was

expected, given the already restricted distributions of Chocó birds,

and our findings align with other studies that reported drastic losses

for endemic birds (Hoffmann et al., 2020), as well as a positive

relationship between range size and suitable area loss (Mota et al.,

2022). Furthermore, the regions projected to experience high

species losses and high species gains are predominantly at

intermediate and high elevations, suggesting potential upslope

shifts of birds in the future. This pattern mirrors trends observed

in other parts of the world (Freeman and Class Freeman, 2014;

Freeman et al., 2018, 2021; Neate-Clegg et al., 2020, 2021; Neate-

Clegg and Tingley, 2023). These results emphasize the value of

modelling future distributions of montane species to forecast

potential elevational range shifts and climate-driven extirpations
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(Freeman et al., 2018; Nowak et al., 2019; Hoffmann et al., 2020).

Additionally, the protected area Cotacachi Cayapas (WDPA, 2024),

which represents the highest species richness in the baseline

scenario, is located near a region projected to remain stable in the

future (Figure 1). Expanding this protected area southwards could

be an effective conservation strategy to address climate

change impacts.

Supporting our prediction, the proportion of suitable area

within forested and protected areas is considerably smaller

compared to the total suitable area, regardless of the climate

scenario, and it is also expected to decrease in the future

(Figure 2; Supplementary Table S3). This suggests that, despite

the availability of sites presenting favorable climate conditions,

without vegetation, forest birds will not persist. This is supported

by the higher vulnerability of forest species to climate change, as

predicted in other studies (Miranda et al., 2019; Sales et al., 2020).

Increasing forest cover in southwestern Colombia may help

mitigate these impacts, not only because of the benefits of

microclimatic conditions provided by natural vegetation but also

to promote connections between potential refuge areas (Flórez-Paı,́

2016; Frey et al., 2016; Guevara et al., 2016). Furthermore, the

proportion of suitable areas within protected areas is even lower,

representing only one-fourth of the total on average

(Supplementary Table S3). This underrepresentation of species

distribution within protected areas has been reported previously,

highlighting the need to expand the coverage of these areas (Vale

et al., 2018; Ivanova and Cook, 2020; Critchlow et al., 2022).

Moreover, as a consequence of suitable area loss induced by

climate change, Chocó birds are expected to show more

fragmented distributions (Figure 3), a pattern already observed

for other Colombian species (Velásquez-Tibatá et al., 2013). The

expansion of the protected area network may prevent the isolation

of bird populations and their risk of extinction by serving as

corridors between suitable areas (Littlefield et al., 2017) that

increase the connectivity of critical habitat at local and landscape

scales (Şekercioğlu, 2009; Palacio et al., 2020).

As we expected, changes in birds’ suitable areas vary among

species (Supplementary Table S3). The species expected to suffer

larger contractions on average in their distributions feed primarily

on invertebrates (Choco Warbler; -61%) and fruits (Yellow-collared

Chlorophonia; -59%). Similarly, forest frugivore birds from the

Atlantic and Amazon forest are also expected to lose a significant

portion of their current distributions (Miranda et al., 2019; Mota

et al., 2022). Moreover, species such as White-flanked Antwren

(Myrmotherula axillaris) and Choco Poorwill (Nyctiphrynus

rosenbergi; this species has been observed but not yet captured at

the Rıó Ñambı ́ and Bangsias reserves by the authors), are also

expected to lose climate suitable area greater than 80% in the future

corroborating the high risk of forest insectivore birds as well

(Velásquez-Tibatá et al., 2013; Miranda et al., 2019). The loss of
FIGURE 2

The average climate suitable area in squared kilometers for 27
endemic or near-endemic bird species across the Chocó in
Colombia and Ecuador by climate scenario. Total: whole suitable
area, FA: suitable area within forested areas, PA: suitable area within
protected areas, and FA + PA: suitable area within forested and
protected areas simultaneously. Vertical bars indicate the standard
error of the mean. The future scenarios represent optimistic
(SSP245) and pessimistic (SSP585) greenhouse gas emission
pathways for 2050 and 2070.
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these species could affect the provision of essential ecological

functions, particularly seed dispersal and insect control, by

reducing the natural regeneration of forests and increasing leaf

damage in plants (Şekercioğlu, 2006; Mäntylä et al., 2011; Wenny

et al., 2016; Martıńez and Garcıá, 2017). Furthermore, Purple Quail-

Dove seems to be favored by future climatic conditions in the Chocó

region, though this gain is still small in absolute terms, representing

a 25% increase within forested and protected areas, totaling only

534 km² (Supplementary Table S3). In this case, protected areas

such as Serranıá de Los Paraguas and Cotacachi Cayapas are

particularly important for the species’ conservation, especially

since the Purple Quail-Dove is already considered endangered

due to habitat loss (del Hoyo et al., 2020). Indeed, birds in the

Colombian Andes have declined across a century due primarily to

reductions in forest cover resulting from land-use change,

deforestation, and habitat fragmentation (Palacio et al., 2020),

indicating that suitable climatic conditions alone cannot ensure

the species’ persistence.
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5 Conclusion

Our study represents the first assessment of future climate

change impacts on endemic and near-endemic Chocó birds in

southwestern Colombia, offering valuable insights for

conservation planning. While a higher number of records could

increase the predictive power of our models, and taking into

account other factors such as dispersal scenarios and species-

specific traits could provide deeper insight into species’ responses

to climate change, our findings nevertheless essentially contribute to

the limited information on climate change impacts in this

biodiverse region. Importantly, we provide projected distribution

maps and potential elevational range shifts, for 27 Neotropical bird

species under different climate scenarios (Figure 3, Appendix B) –

these projections will be useful for conservation efforts and better

understanding trends in resident bird populations. The potential

loss of these species could jeopardize essential ecological services

such as seed dispersal, pollination, and insect control, leading to
TABLE 3 The average climate suitable area in square kilometers for 27 endemic or near-endemic bird species across the Chocó in Colombia and
Ecuador is presented by climate scenario.

Scenario Area Mean SD SE CI Lower CI Upper

Baseline Total 84360 33441 6436 71746 96974

Optimistic 2050 Total 64868 31860 6132 52851 76886

Optimistic 2070 Total 65015 33233 6396 52479 77550

Pessimistic 2050 Total 64496 34584 6656 51451 77541

Pessimistic 2070 Total 52350 33716 6489 39632 65068

Baseline FA 31740 11487 2211 27407 36074

Optimistic 2050 FA 23632 10037 1932 19846 27417

Optimistic 2070 FA 23738 10651 2050 19720 27756

Pessimistic 2050 FA 23313 10994 2116 19166 27460

Pessimistic 2070 FA 18662 10604 2041 14662 22661

Baseline PA 21462 8610 1657 18214 24709

Optimistic 2050 PA 17467 8375 1612 14308 20626

Optimistic 2070 PA 17766 8663 1667 14498 21033

Pessimistic 2050 PA 17691 9079 1747 14266 21115

Pessimistic 2070 PA 14316 8648 1664 11054 17579

Baseline FA + PA 10939 4331 833 9305 12573

Optimistic 2050 FA + PA 8736 4020 774 7219 10252

Optimistic 2070 FA + PA 8936 4186 806 7358 10515

Pessimistic 2050 FA + PA 8838 4361 839 7194 10483

Pessimistic 2070 FA + PA 7181 4104 790 5633 8729
Total: whole suitable area, FA: suitable area within forested areas, PA: suitable area within protected areas, and FA + PA: suitable area within both forested and protected areas simultaneously. SD:
standard deviation, SE: standard error, and CI: 95% confidence interval. The future scenarios represent optimistic (SSP245) and pessimistic (SSP585) greenhouse gas emission pathways for 2050
and 2070.
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cascading effects on other species affecting the entire community

and reducing its resilience to disturbances. Moreover, eBird, one of

the most well-known and widely used citizen and community

science initiatives around the world (Kittelberger et al., 2023),

serves as an important source of bird occurrence data globally

and is an important tool for forecasting species distributions in the

future (Delfino, 2023; Liu et al., 2023). To mitigate the potential

losses of suitable habitats and facilitate species’ range shifts,
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reforestation and habitat restoration should be prioritized

alongside the expansion of protected areas throughout the biome.

These strategies are vital for enhancing habitat connectivity and

creating corridors that allow species to move between fragmented

areas, thereby maintaining biodiversity and the ecosystem services

they provide. Such combined efforts will be crucial in sustaining

bird populations and their ecological roles in the Chocó region

under future climate scenarios.
FIGURE 3

Changes in climate suitable areas for the Scarlet-and-white Tanager (Chrysothlypis salmoni), Choco Warbler (Myiothlypis chlorophrys), Purple Quail-
Dove (Geotrygon purpurata), and Ochre-breasted Tanager (Habia stolzmanni) across the Chocó region in Colombia and Ecuador. Colors indicate
changes in climate suitable area between baseline and future scenarios, with red indicating contraction, blue expansion, gray stability, and white no
suitable climate conditions. The future scenarios represent optimistic (SSP245) and pessimistic (SSP585) greenhouse gas emission pathways for 2050
and 2070. The suitability change for all species is available in Appendix A.
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(Cali, Colombia: Cali).

Guevara Andino, J. E., and Fernandez-Fernandez, D. (2020). A new rare and
endemic species of Sloanea (Elaeocarpaceae) from the Chocó region of Ecuador.
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Şekercioğlu, Ç.H., Schneider, S. H., Fay, J. P., and Loarie, S. R. (2008). Climate
change, elevational range shifts, and bird extinctions. Conserv. Biol. 22, 140–150.
doi: 10.1111/j.1523-1739.2007.00852.x
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